WO2016115695A1 - 一种同步方法、装置及系统 - Google Patents

一种同步方法、装置及系统 Download PDF

Info

Publication number
WO2016115695A1
WO2016115695A1 PCT/CN2015/071221 CN2015071221W WO2016115695A1 WO 2016115695 A1 WO2016115695 A1 WO 2016115695A1 CN 2015071221 W CN2015071221 W CN 2015071221W WO 2016115695 A1 WO2016115695 A1 WO 2016115695A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
synchronization signal
network device
user equipment
symbol
Prior art date
Application number
PCT/CN2015/071221
Other languages
English (en)
French (fr)
Inventor
王键
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15878373.8A priority Critical patent/EP3242512B1/en
Priority to CN201580066976.1A priority patent/CN107005959B/zh
Priority to PCT/CN2015/071221 priority patent/WO2016115695A1/zh
Priority to KR1020177022998A priority patent/KR102201789B1/ko
Priority to US15/545,471 priority patent/US10567206B2/en
Publication of WO2016115695A1 publication Critical patent/WO2016115695A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/70735Code identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a synchronization method, apparatus, and system.
  • a wireless communication system data communication is performed between devices by transmission and reception of signals.
  • the receiving device needs to synchronize the data frame with the transmitting device.
  • the transmitting device needs to transmit a synchronization signal.
  • the receiving device implements frequency synchronization and time synchronization by detecting this known synchronization signal. After that, the receiving device also needs to periodically detect the synchronization signal to maintain frequency synchronization and time synchronization, otherwise it is possible to lose data frame synchronization in the subsequent data communication process.
  • the frequency domain deviation is within one-half of the sub-carrier width and the approximate range of time synchronization is determined by coarse synchronization.
  • the coarse synchronization is realized by the primary synchronization signal (English name: Primary Synchronization Signal, English abbreviation: PSS), and the secondary synchronization signal (English full name: secondary synchronization signal, English abbreviation: SSS) signal.
  • PSS Primary Synchronization Signal
  • SSS secondary synchronization signal
  • Fine synchronization is realized by the cell reference signal (English full name: cell reference signal, English abbreviation: CRS) signal. It is generally believed that in the LTE system, the time required for the receiver to reacquire synchronization is 40 ms, and the period during which the receiver needs to continuously track synchronization is 5 ms. In the LTE system that authorizes the carrier, the system can continuously occupy the carrier, so the system can transmit the synchronization signals (the coarse synchronization signal and the fine synchronization signal) according to the synchronization requirements. In the LTE system, the signal used for coarse synchronization has a transmission interval of 5 ms. The signal used for fine synchronization has a transmission interval of 0.285 ms.
  • CRS cell reference signal
  • Embodiments of the present invention provide a synchronization method, apparatus, and system, and relate to the field of communications, which can implement synchronization of data frames transmitted between devices in an unlicensed carrier.
  • a synchronization method comprising:
  • the network device sets a synchronization signal in the first subframe
  • the network device Transmitting, by the network device, the first subframe or the first subframe and the second subframe to a user equipment, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, and the second subframe
  • the frame includes N OFDM symbols;
  • the first subframe and the second subframe are unlicensed carrier subframes.
  • the network device sets a synchronization signal in the first subframe, including:
  • the network device sets the synchronization signal in a predetermined symbol of the first subframe.
  • the first subframe includes four cell reference signals CRS; and the network device sets a synchronization signal in the first subframe.
  • the network device sets the synchronization signal in a third symbol in the first subframe.
  • the first subframe includes a cell reference signal CRS port or two cell reference signal CRS ports;
  • the synchronization signal is set in the first subframe, including:
  • the network device sets the synchronization signal in a second symbol in the first subframe.
  • the first subframe does not include a cell reference signal CRS; and the network device sets a synchronization signal in the first subframe, including:
  • the network device sets the synchronization signal in a first symbol of the first subframe.
  • the first subframe includes two time slots, and the network device sets a synchronization signal in the first subframe, including The network device sets the synchronization signal at a penultimate first symbol or a second last symbol of a first time slot in the first subframe.
  • the synchronization signal includes at least one of: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • a synchronization method including:
  • the first subframe includes M orthogonal frequency division multiplexing OFDM symbols
  • the second subframe includes N OFDM symbols, where M and N are positive integers, and M>N;
  • the user equipment performs synchronization according to the synchronization signal, where the first subframe and the second subframe are unlicensed carrier subframes.
  • the determining, by the user equipment, a location range of an orthogonal frequency division multiplexing OFDM symbol carrying a synchronization signal in the first subframe includes:
  • the user equipment acquires a starting position of the third subframe
  • the third subframe is an authorized carrier subframe.
  • the method further includes:
  • the user equipment detects a cell reference signal CRS of the second subframe
  • the user equipment acquires a starting position of the second subframe according to the cell reference signal CRS, where a starting position of the second subframe is that the user equipment receives the second child sent by the network device The position of the first OFDM symbol of the frame.
  • the synchronization signal includes at least one of: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • a network device including:
  • a setting unit configured to set a synchronization signal in the first subframe
  • a sending unit configured to send, to the user equipment, the first subframe or the first subframe and the second subframe, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, and the second The subframe includes N OFDM symbols;
  • the first subframe and the second subframe are unlicensed carrier subframes.
  • the setting unit is configured to set the synchronization signal in a predetermined symbol of the first subframe.
  • the first subframe includes four cell reference signals CRS;
  • the setting unit is specifically configured to set the synchronization signal in a third symbol in the first subframe.
  • the first subframe includes a cell reference signal CRS port or two cell reference signal CRS ports;
  • the setting unit is specifically configured to set the synchronization signal in a second symbol in the first subframe.
  • the first subframe does not include a cell reference signal CRS
  • the setting unit is specifically configured to be set in the first symbol in the first subframe
  • the synchronization signal is set.
  • the first subframe includes two time slots
  • the setting unit is specifically configured to set the synchronization signal in a last symbol or a second last symbol of a first time slot in the first subframe.
  • the synchronization signal includes at least one of: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • a user equipment including:
  • a receiving unit configured to receive a first subframe or the first subframe and a second subframe that are sent by the network device, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, and the second subframe
  • the frame includes N OFDM symbols, where M and N are positive integers, and M>N;
  • a location determining unit configured to determine a location range of an orthogonal frequency division multiplexing OFDM symbol carrying a synchronization signal in the first subframe received by the receiving unit;
  • An acquiring unit configured to acquire the synchronization signal according to the location range of the OFDM symbol determined by the location determining unit;
  • a synchronization unit configured to perform synchronization according to the synchronization signal acquired by the acquiring unit, where the first subframe and the second subframe are unlicensed carrier subframes.
  • the location determining unit is specifically configured to acquire a starting position of the third subframe, and according to the starting position of the third subframe, the OFDM symbol
  • the cyclic prefix CP and the number of cell reference signals CRS of the first subframe determine a range of locations of the OFDM symbol
  • the third subframe is an authorized carrier subframe.
  • the user equipment further includes:
  • a detecting unit configured to detect a cell reference signal CRS of the second subframe
  • the location determining unit is further configured to acquire a starting position of the second subframe according to the cell reference signal CRS detected by the detecting unit, where a starting position of the second subframe is received by the user equipment The first of the second subframe sent by the network device The location of the OFDM symbols.
  • the synchronization signal includes at least one of: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • a fifth aspect provides a network device, including: a processor, an interface circuit, a memory, and a bus; and the processor, the interface circuit, and the memory are connected through the bus and complete communication with each other;
  • the processor is configured to set a synchronization signal in the first subframe.
  • the interface circuit is configured to send the first subframe or the first subframe and the second subframe to a user equipment, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, The second subframe includes N OFDM symbols;
  • the first subframe and the second subframe are unlicensed carrier subframes.
  • the processor is configured to set the synchronization signal in a predetermined symbol of the first subframe.
  • the first subframe includes four cell reference signals CRS;
  • the processor is specifically configured to set the synchronization signal in a third symbol in the first subframe.
  • the first subframe includes a cell reference signal CRS port or two cell reference signal CRS ports;
  • the processor is specifically configured to set the synchronization signal in a second symbol in the first subframe.
  • the first subframe does not include a cell reference signal CRS
  • the processor is specifically configured to set the synchronization signal in a first symbol in the first subframe.
  • the first subframe includes two time slots.
  • the processor is configured to set the synchronization signal in a last symbol or a second last symbol of a first time slot in the first subframe.
  • the synchronization signal includes at least one of: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • a sixth aspect provides a user equipment, including: a processor, an interface circuit, a memory, and a bus; wherein the processor, the interface circuit, and the memory are connected through the bus and complete communication with each other;
  • An interface circuit configured to receive a first subframe or the first subframe and a second subframe that are sent by the network device, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, and the second subframe
  • the frame includes N OFDM symbols, where M and N are positive integers, and M>N;
  • a processor configured to determine a location range of an orthogonal frequency division multiplexing OFDM symbol carrying a synchronization signal in a first subframe received by the interface circuit; acquiring the synchronization signal according to a location range of the OFDM symbol; The synchronization signal is synchronized, and the first subframe and the second subframe are unlicensed carrier subframes.
  • the processor is specifically configured to acquire a starting position of a third subframe, and according to a starting position of the third subframe, the OFDM symbol
  • the cyclic prefix CP and the number of cell reference signals CRS of the first subframe determine a range of locations of the OFDM symbol
  • the third subframe is an authorized carrier subframe.
  • the processor is further configured to detect a cell reference signal CRS of the second subframe, and acquire, according to the cell reference signal CRS, the second subframe. a starting position, where the starting position of the second subframe is a location where the user equipment receives the first OFDM symbol of the second subframe sent by the network device.
  • the synchronization signal includes at least one of: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • a communication system is provided.
  • the network device provided in any of the foregoing fifth aspects, and any one of the user equipments provided in the foregoing sixth aspect.
  • the network device in the subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting the synchronization signal in the first subframe, and the user equipment is receiving The synchronization signal is acquired and synchronized in the first subframe, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a synchronization method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a data frame according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a synchronization method according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of resource block allocation according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a synchronization method according to still another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of resource block allocation according to another embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a data frame according to another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a synchronization method according to still another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of resource block allocation according to still another embodiment of the present invention.
  • FIG. 11 is a schematic flowchart of a synchronization method according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of resource block allocation according to still another embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a synchronization method according to still another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a user equipment according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the user equipment (English name: User Equipment, English abbreviation: UE) provided by the embodiment of the present invention may be a cellular phone, a cordless phone, a session initiation protocol (English name: Session Initiation Protocol, SIP: phone), a wireless local ring. Road (English full name: Wireless Local Loop, English abbreviation: WLL) station, personal digital processing (English full name: Personal Digital Assistant, English Abbreviations: PDA), handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or other devices connected to wireless modems.
  • a session initiation protocol English name: Session Initiation Protocol, SIP: phone
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant, English Abbreviations: PDA
  • handheld devices with wireless communication capabilities in-vehicle devices, wearable devices, computing devices, or other devices connected to wireless modems.
  • the network device provided by the embodiment of the present invention may be a base station, where the base station may refer to a device in the access network that communicates with the user equipment over one or more sectors on the air interface.
  • the base station can be used to convert the received air frame and the Internet Protocol (English full name: Internet Protocol, English abbreviation: IP) into a router between the user equipment and the rest of the access network, wherein the rest of the access network Some can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station in a global mobile communication system (Global System for Mobile communication, English abbreviation: GSM) or code division multiple access (English full name: Code Division Multiple Access, English abbreviation: CDMA) (English full name: Base Transceiver) Station, English abbreviation: BTS), can also be the base station in the Wideband Code Division Multiple Access (English name: Wideband Code Division Multiple Access, English abbreviation: WCDMA) (English name: Base Station, English abbreviation: BS), or Evolved base station (English full name: evolutional Node B, English abbreviation: NodeB or eNB or e-NodeB) in long-term evolution (English full name: Long Term Evolution, English abbreviation LTE), and macro base station in cellular wireless communication system
  • GSM Global System for Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • BS Base Station
  • Evolved base station English
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated, thereby defining "first”, “first” A feature of "two” may include one or more of the features, either explicitly or implicitly.
  • the “first” and “second” in the following embodiments are only used for distinguishing, such as the first subframe and the second subframe.
  • the embodiment of the present invention is used in the communication system shown in FIG. 1, including the network device D1 and the user equipment D2, and the network device D1 and the user equipment D2 need to perform data frame synchronization in the unlicensed carrier.
  • the embodiment of the present invention provides a synchronization method, which is applied to the foregoing communication system to implement synchronization of data frames in an unlicensed carrier.
  • the network device side includes the following steps:
  • the network device sets a synchronization signal in the first subframe.
  • step 101 includes: the network device setting a synchronization signal in a predetermined symbol of the first subframe, wherein the synchronization signal includes a coarse synchronization signal and a fine synchronization signal; and exemplary, the first reservation of the network device in the first subframe A coarse synchronization signal is set in the symbol; wherein the position of the first predetermined symbol in the first subframe may be determined by referring to the number of cell reference signal CRS ports used in the unlicensed carrier.
  • the network device sets the fine synchronization signal in the second predetermined symbol and the third predetermined symbol in the first subframe. The location of the second predetermined symbol and the third predetermined symbol in the first subframe may be determined by referring to the length of the cyclic prefix included in the data in the unlicensed carrier.
  • the network device sends the first subframe or the first subframe and the second subframe to the user equipment.
  • the first subframe includes M orthogonal frequency division multiplexing (English full name: OFDM) symbols, and the second subframe includes N OFDM symbols; where M and N are positive integers, and M>N
  • the first subframe and the second subframe are unlicensed carrier subframes.
  • the time slots are usually defined as odd time slots (English: even-numbered slots) and even time slots (English: odd-numbered slots).
  • the network device in the subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting the synchronization signal in the first subframe, so that the user equipment receives the first Synchronization signals are acquired in the subframes and synchronized, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the normal cyclic prefix is used in the unlicensed carrier, and 32 symbols are transmitted by using 4 CRS ports, wherein 28 symbols behind the data frame shown in FIG. 3 constitute two subframes, and the first 4 symbols in the data frame are conveniently described ( As shown in FIG. 3, including the first to fourth 4 symbols, it is defined as an incomplete subframe #1, and 28 symbols behind the data frame constitute subframes #2 and #3, where subframes #2 and #3 Used as the first subframe in the present invention, #1 is used as the second subframe.
  • the embodiment of the present invention shown in FIG. 4 provides a synchronization method, including:
  • the network device sets a coarse synchronization signal in a third symbol in the first subframe.
  • the coarse synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the network device sets a fine synchronization signal in a first symbol and a fifth symbol in the first subframe.
  • the fine synchronization signal includes: a cell reference signal CRS.
  • a cell reference signal CRS Specifically, as shown in FIG. 5, a resource block allocation diagram including four CRS ports is shown, according to the mapping relationship between an antenna port and a resource block, where the antenna is shown in FIG. The actual location R 0 of the port mapped in the resource block, and the potential location R x that the antenna port may map in the resource block, the network device sets the CRS in the first symbol and the fifth symbol in the first subframe And setting the primary synchronization signal PSS and/or the secondary synchronization signal SSS in the third highest symbol of the possible positions to reduce the delay of the user equipment for coarse synchronization.
  • PSS and/or the secondary synchronization signal SSS in the third highest symbol of the possible positions to reduce the delay of the user equipment for coarse synchronization.
  • step 201 may be replaced by: the network device setting a coarse synchronization signal in a last symbol or a second last symbol of a first time slot in the first subframe. Or the network device sets the coarse synchronization signal in any other possible symbols in the first subframe.
  • the network device sends the first subframe or the first subframe and the second subframe to the user equipment.
  • the network device in the subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting the synchronization signal in the first subframe, so that the user equipment receives the Synchronization signals are acquired and synchronized in a sub-frame, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the following is based on the use of a normal cyclic prefix in an unlicensed carrier, using one or two CRS ports and 32 symbols, wherein 28 symbols behind the data frame shown in FIG. 3 constitute two subframes, which are described in the data frame for convenience of description.
  • the first 4 symbols (including the 1st to 4th total 4 symbols in FIG. 3) are defined as one incomplete subframe #1, and the 28 symbols behind the data frame constitute subframes #2 and #3, where the subframe #2 and #3 are used as the first subframe in the present invention, and #1 is used as the second subframe.
  • the embodiment of the present invention shown in FIG. 6 provides a synchronization method, including:
  • the network device sets a coarse synchronization signal in a second symbol in the first subframe.
  • the coarse synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the network device sets a fine synchronization signal in a first symbol and a fifth symbol in the first subframe.
  • the fine synchronization signal includes: a cell reference signal CRS.
  • CRS cell reference signal
  • the network device is first in the first subframe.
  • the CRS is set in the symbol and the fifth symbol, and the primary synchronization signal PSS and/or the secondary synchronization signal SSS are set in the second highest symbol of the possible positions, so as to reduce the delay of the user equipment for coarse synchronization. .
  • a preferred manner is that when the unlicensed carrier uses the CRS port, the network device sets a coarse synchronization signal in the first symbol in the first subframe, so that the user equipment preferentially performs coarse synchronization.
  • step 301 may be replaced by: the network device sets a coarse synchronization signal in the last symbol or the second last symbol of the first time slot in the first subframe, or the network device is in the first The coarse sync signal is set by any other possible symbols in the sub-frame.
  • the network device sends the first subframe or the first subframe and the second subframe to the user equipment.
  • the network device in the subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting the synchronization signal in the first subframe, so that the user equipment receives the Synchronization signals are acquired and synchronized in a sub-frame, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the following is based on the use of an extended cyclic prefix in an unlicensed carrier, using 28 CRS ports to transmit 28 symbols, wherein 24 symbols behind the data frame shown in FIG. 8 constitute two subframes, and the first 4 of the data frames are described for convenience.
  • the symbols (including the first to fourth 4 symbols in FIG. 8) are defined as one incomplete subframe #1, and the 24 symbols behind the data frame constitute subframes #2 and #3, where subframe #2 And #3 is used as the first subframe in the present invention, and #1 is used as the second subframe.
  • the embodiment of the present invention with reference to FIG. 9 provides a data transmission method, including:
  • the network device sets a coarse synchronization signal in a third symbol in the first subframe.
  • the coarse synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the network device sets a fine synchronization signal in a first symbol and a fourth symbol in the first subframe.
  • the fine synchronization signal includes: a cell reference signal CRS.
  • a cell reference signal CRS Specifically, as shown in FIG. 10, a resource block allocation diagram including four CRS ports is shown, according to the mapping relationship between an antenna port and a resource block, where the antenna is shown in FIG. The actual location R 0 of the port mapped in the resource block, and the potential location R x that the antenna port may map in the resource block, the network device sets the CRS in the first symbol and the fourth symbol in the first subframe And setting the primary synchronization signal PSS and/or the secondary synchronization signal SSS in the third highest symbol of the possible positions to reduce the delay of the user equipment for coarse synchronization.
  • PSS and/or the secondary synchronization signal SSS in the third highest symbol of the possible positions to reduce the delay of the user equipment for coarse synchronization.
  • a preferred manner is that when the unlicensed carrier uses the CRS port, the network device sets a coarse synchronization signal in the first symbol in the first subframe, so that the user equipment preferentially performs coarse synchronization.
  • step 401 may also be replaced by: the network device setting a coarse synchronization signal in a last symbol or a second last symbol of a first time slot in the first subframe. Or the network device sets a coarse synchronization signal in any other possible symbol in each subframe.
  • the network device sends the first subframe or the first subframe and the second subframe to the user equipment.
  • the network device in the subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting the synchronization signal in the first subframe, so that the user equipment receives the Synchronization signals are acquired and synchronized in a sub-frame, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the following is based on the use of an extended cyclic prefix in an unlicensed carrier, using 28 CRS ports to transmit 28 symbols, wherein 24 symbols behind the data frame shown in FIG. 8 constitute two subframes, and the first 4 of the data frames are described for convenience.
  • the symbols (including the first to fourth 4 symbols in FIG. 8) are defined as one incomplete subframe #1, and the 24 symbols behind the data frame constitute subframes #2 and #3, where subframe #2 And #3 is used as the first subframe in the present invention, and #1 is used as the second subframe.
  • the embodiment of the present invention with reference to FIG. 11 provides a data transmission method, including:
  • the network device sets a coarse synchronization signal in a second symbol in the first subframe.
  • the coarse synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the network device sets a fine synchronization signal in a first symbol and a fourth symbol in the first subframe.
  • the fine synchronization signal includes: a cell reference signal CRS.
  • CRS cell reference signal
  • FIG. 12 a resource block allocation diagram including four CRS ports is shown, according to the mapping relationship between the antenna port and the resource block, where the antenna is shown in FIG.
  • a preferred manner is that when the unlicensed carrier uses the CRS port, the network device sets a coarse synchronization signal in the first symbol in the first subframe, so that the user equipment preferentially performs coarse synchronization.
  • step 501 may also be replaced by: the network device setting a coarse synchronization signal in a last symbol or a second last symbol of a first time slot in the first subframe. Or the network device sets a coarse synchronization signal in any other possible symbol in each subframe.
  • the network device sends the first subframe or the first subframe and the second subframe to the user equipment.
  • the network device in the subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting the synchronization signal in the first subframe, so that the user equipment receives the Synchronization signals are acquired and synchronized in a sub-frame, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • an embodiment of the present invention provides a data frame synchronization method, which is applied to synchronization of an unlicensed carrier, and includes:
  • the user equipment receives a first subframe or the first subframe and a second subframe that are sent by the network device.
  • the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M>N; the first subframe includes M Orthogonal Frequency Division Multiplexing (OFDM) symbol, the second subframe includes N OFDM symbols; where M and N are positive integers, and M>N, the first subframe and the first The two subframes are unlicensed carrier subframes.
  • the user equipment determines a location range of the orthogonal frequency division multiplexing OFDM symbol that carries the synchronization signal in the first subframe.
  • step 602 specifically includes:
  • the user equipment acquires a starting position of the third subframe.
  • the third subframe is an authorized carrier subframe. Because the subframe of the authorized carrier is the same as the subframe of the unlicensed carrier, the bearer synchronization in the first subframe may be directly determined according to the starting position of the authorized carrier subframe. The position range of the OFDM symbol of the orthogonal frequency division multiplexing of the signal.
  • the user equipment determines a location range of the OFDM symbol according to a starting position of the third subframe, a cyclic prefix CP of the OFDM symbol, and a number of cell reference signals CRS of the first subframe.
  • the user equipment acquires the synchronization signal according to a location range of the OFDM symbol.
  • the synchronization signal includes a coarse synchronization signal and a fine synchronization signal
  • the coarse synchronization signal includes at least one of: a primary synchronization signal PSS and a secondary synchronization signal SSS
  • the fine synchronization signal includes: a cell reference signal CRS.
  • the user equipment performs synchronization according to the synchronization signal, where the first subframe and the second subframe are unlicensed carrier subframes.
  • step 604 the coarse synchronization signal is specifically performed on the unlicensed carrier. Synchronization, fine synchronization is performed on the unlicensed carrier by detecting the cell reference signal CRS.
  • the network device in the subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting the synchronization signal in the first subframe, and the user equipment receives the first Synchronization signals are acquired in the subframes and synchronized, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the method further includes:
  • the user equipment detects a cell reference signal CRS of the second subframe.
  • the user equipment acquires a starting position of the second subframe according to the cell reference signal CRS, where a starting position of the second subframe is that the user equipment receives the second subframe that is sent by the network device The location of the first OFDM symbol.
  • the user equipment detects the CRS in the second subframe, and acquires the second subframe according to the CRS.
  • the starting position to synchronize the transmission of data frames between devices throughout the unlicensed carrier may also be a complete subframe, and the start position of the entire data frame is the position of the first OFDM symbol of the first subframe determined in step 602.
  • an embodiment of the present invention provides a network device, where the foregoing synchronization method is implemented, including:
  • a setting unit 141 configured to set a synchronization signal in the first subframe
  • the sending unit 142 is configured to send, to the user equipment, the first subframe or the first subframe and the second subframe, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, where The two subframes include N OFDM symbols;
  • the first subframe and the second subframe are unlicensed carrier subframes.
  • the network device in a subframe of the unlicensed carrier, the network device sends the first subframe carrying the synchronization signal to the user equipment by setting a synchronization signal in the first subframe, so that the user equipment receives the first Synchronization signals are acquired in the subframes and synchronized, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the setting unit 141 is configured to set the synchronization signal in a predetermined symbol of the first subframe.
  • the first subframe includes four cell reference signals CRS;
  • the setting unit 141 is specifically configured to set the synchronization signal in a third symbol in the first subframe.
  • the first subframe includes one cell reference signal CRS port or two cell reference signal CRS ports;
  • the setting unit 141 is specifically configured to set the synchronization signal in a second symbol in the first subframe.
  • the first subframe does not include a cell reference signal CRS
  • the setting unit 141 is specifically configured to set the synchronization signal in a first symbol in the first subframe.
  • the first subframe includes two time slots.
  • the setting unit 141 is specifically configured to set the synchronization signal in a last symbol or a second last symbol of a first time slot in the first subframe.
  • the synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the sending unit 142 in this embodiment may be a transmitter of a network device.
  • the setting unit 141 may be a separately set processor, or may be integrated in a processor of the network device, or may be stored in the memory of the base station in the form of program code, and is called by a processor of the network device. And the function of the above setting unit 141 is executed.
  • the processor described herein may be a central processing unit (English name: Central Processing Unit, English abbreviation: CPU), or a specific integrated circuit (English name: Application Specific Integrated Circuit, English abbreviation: ASIC), or configured One or more integrated circuits embodying embodiments of the present invention
  • an embodiment of the present invention provides a user equipment, which is used to implement the foregoing synchronization method, and includes:
  • the receiving unit 151 is configured to receive a first subframe or the first subframe sent by the network device a frame and a second subframe, the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, the second subframe includes N OFDM symbols, where M and N are positive integers, and M>N;
  • a location determining unit 152 configured to determine a location range of an orthogonal frequency division multiplexing OFDM symbol carrying a synchronization signal in the first subframe received by the receiving unit 151;
  • the obtaining unit 153 is configured to acquire the synchronization signal according to the location range of the OFDM symbol determined by the location determining unit 152;
  • the synchronization unit 154 is configured to perform synchronization according to the synchronization signal acquired by the acquiring unit 153, where the first subframe and the second subframe are unlicensed carrier subframes.
  • the network device in a subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting a synchronization signal in the first subframe, and the first subframe of the user equipment is received. Synchronization signals are acquired in the frame and synchronized, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the location determining unit 152 is specifically configured to acquire a starting position of the third subframe, according to a starting position of the third subframe, a cyclic prefix CP of the OFDM symbol, and the first sub
  • the number of cell reference signals CRS of the frame determines a range of locations of the OFDM symbol; wherein the third subframe is an authorized carrier subframe.
  • the user equipment further includes:
  • the detecting unit 155 is configured to detect a cell reference signal CRS of the second subframe
  • the location determining unit 152 is further configured to acquire a starting position of the second subframe according to the cell reference signal CRS detected by the detecting unit 155, where a starting position of the second subframe is the user
  • the device receives a location of a first OFDM symbol of the second subframe sent by the network device.
  • the synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • the receiving unit 151 in this embodiment may be a receiver of the user equipment.
  • the location determining unit 152 may be a separately set processor, or may be implemented in one processor of the user equipment, or may be stored in the memory of the user equipment in the form of program code, and processed by one of the user equipments.
  • the device invokes and executes the functions of the above position determining unit 152.
  • the obtaining unit 153 and the synchronization unit 154 The implementation of the detection unit 155 is similar to the location determination unit 152 and may be integrated with the location determination unit 152 or may be implemented independently.
  • the processor described herein can be a central processing unit CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention.
  • an embodiment of the present invention provides a network device for implementing the foregoing synchronization method, including: a processor 161, an interface circuit 162, a memory 163, and a bus 164; the processor 161 and the interface circuit 162.
  • the memory 163 is connected through the bus 164 and completes communication with each other;
  • the processor 161 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a central processing unit CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention, such as one or more microprocessors (English full name) : digital singnal processor, English abbreviation: DSP), or one or more field programmable gate arrays (English full name: Field Programmable Gate Array, English abbreviation: FPGA).
  • the memory 163 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device.
  • the memory 163 may include a random access memory (English name: Random-Access Memory, English abbreviation: RAM), and may also include non-volatile memory (English name: non-volatile memory, English abbreviation: NVRAM), such as disk storage, flash memory. (Flash) and so on.
  • the bus 164 can be an industry standard architecture (English name: Industry Standard Architecture, English abbreviation: ISA) bus, external device interconnection (English full name: Peripheral Component, English abbreviation: PCI) bus or extended industry standard architecture (English full name: Extended Industry Standard Architecture, English abbreviation: EISA) bus.
  • the bus 164 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 16, but it does not mean that there is only one bus or one type of bus.
  • the interface circuit 162 can be configured as a transmitter having a signal transmitting function.
  • the processor 161 is configured to set a synchronization signal in the first subframe.
  • the interface circuit 162 is configured to send the first subframe or the first subframe and the second subframe to a user equipment, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, where The second subframe includes N OFDM symbols;
  • the first subframe and the second subframe are unlicensed carrier subframes.
  • the network device in a subframe of the unlicensed carrier, the network device sends the first subframe carrying the synchronization signal to the user equipment by setting a synchronization signal in the first subframe, so that the user equipment receives the first Synchronization signals are acquired in the subframes and synchronized, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the processor is configured to set the synchronization signal in a predetermined symbol of the first subframe.
  • the first subframe includes four cell reference signals CRS;
  • the processor 161 is specifically configured to set the synchronization signal in a third symbol in the first subframe.
  • the first subframe includes one cell reference signal CRS port or two cell reference signal CRS ports;
  • the processor 161 is specifically configured to set the synchronization signal in a second symbol in the first subframe.
  • the first subframe does not include a cell reference signal CRS
  • the processor 161 is specifically configured to set the synchronization signal in a first symbol in the first subframe.
  • the first subframe includes two time slots.
  • the processor 161 is specifically configured to set the synchronization signal in a last symbol or a second last symbol of a first time slot in the first subframe.
  • the synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • an embodiment of the present invention provides a user equipment, which is used to implement
  • the synchronization method includes: a processor 171, an interface circuit 172, a memory 173, and a bus 174; the processor 171, the interface circuit 172, and the memory 173 are connected through the bus 174 and complete communication with each other;
  • the processor 171 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a central processing unit CPU, or a specific integrated circuit ASIC, or one or more integrated circuits configured to implement embodiments of the present invention, such as one or more microprocessors (English full name) : digital singnal processor, English abbreviation: DSP), or one or more field programmable gate arrays (English full name: Field Programmable Gate Array, English abbreviation: FPGA).
  • the memory 173 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the access network management device.
  • the memory 173 may include a random access memory (English name: Random-Access Memory, English abbreviation: RAM), and may also include non-volatile memory (English name: non-volatile memory, English abbreviation: NVRAM), such as disk storage, flash memory. (Flash) and so on.
  • the bus 174 can be an industry standard architecture (English name: Industry Standard Architecture, English abbreviation: ISA) bus, external device interconnection (English full name: Peripheral Component, English abbreviation: PCI) bus or extended industry standard architecture (English full name: Extended Industry Standard Architecture, English abbreviation: EISA) bus.
  • the bus 174 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 17, but it does not mean that there is only one bus or one type of bus.
  • the interface circuit 172 can be configured as a receiver having a signal receiving function.
  • the interface circuit 172 is configured to receive the first subframe or the first subframe and the second subframe that are sent by the network device, where the first subframe includes M orthogonal frequency division multiplexing OFDM symbols, and the second The subframe includes N OFDM symbols, where M and N are positive integers, and M>N;
  • the processor 171 is configured to determine a bearer synchronization in the first subframe received by the interface circuit. Orthogonal frequency division multiplexing OFDM symbol position range of the signal; acquiring the synchronization signal according to the location range of the OFDM symbol; synchronizing according to the synchronization signal, the first subframe and the second subframe are Unlicensed carrier subframe.
  • the network device in a subframe of the unlicensed carrier, sends the first subframe carrying the synchronization signal to the user equipment by setting a synchronization signal in the first subframe, and the first subframe of the user equipment is received. Synchronization signals are acquired in the frame and synchronized, thereby realizing synchronization of data frames transmitted between devices in an unlicensed carrier.
  • the processor 171 is specifically configured to acquire a starting position of the third subframe, according to a starting position of the third subframe, a cyclic prefix CP of the OFDM symbol, and the first subframe.
  • the number of cell reference signals CRS determines the location range of the OFDM symbol
  • the third subframe is an authorized carrier subframe.
  • the processor 171 is further configured to detect a cell reference signal CRS of the second subframe, and acquire a start position of the second subframe according to the cell reference signal CRS, where the second subframe is The starting position is a location where the user equipment receives the first OFDM symbol of the second subframe sent by the network device.
  • the synchronization signal includes at least one of the following: a primary synchronization signal PSS and a secondary synchronization signal SSS.
  • a computer readable medium comprising computer readable instructions that, when executed, perform the following operations: 101 to 102, 201 to 203, 301 to 303, 401 performing the methods in the above embodiments.
  • the operation to 403, 501 to 503 or 601 to 604.
  • a computer program product including the computer readable medium described above.
  • the signaling mentioned in the text includes, but is not limited to, an indication, an information, a signal, or a message, and is not limited herein.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold as a separate product When sold or used, it can be stored on a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明的实施例提供一种同步方法、装置及系统,涉及通信领域,能够在非授权载波中实现设备之间传输数据帧的同步。该同步方法,应用于非授权载波的同步,网络设备在第一子帧中设置同步信号;所述网络设备向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。本发明的实施例用于同步信号传输。

Description

一种同步方法、装置及系统 技术领域
本发明的实施例涉及通信领域,尤其涉及一种同步方法、装置及系统。
背景技术
无线通信系统中,设备之间通过信号的发送和接收进行数据通信。在进行数据通信之前,接收设备需要和发送设备进行数据帧同步。为了实现接收设备和发送设备的数据帧同步,发送设备需要发送同步信号。接收设备通过检测这个已知的同步信号,实现频率同步和时间同步。之后,接收设备还需要周期的检测同步信号,来维持频率同步和时间同步,否则有可能在后续的数据通信过程中失去数据帧同步。
在授权载波长期演进(英文全称:Long Term Evolution,英文缩写:LTE)系统中,通过粗同步,实现频率域偏差在正负二分之一个子载波宽度之内,并确定时间同步的大概范围;通过精同步,进一步缩小频率域的偏差,并准确的确定第一径的到达时间,完成整个同步过程。其中,粗同步是通过主同步信号(英文全称:Primary Synchronization Signal,英文缩写:PSS)、辅同步信号(英文全称:secondary synchronization signal,英文缩写:SSS)信号实现的。精同步是通过小区参考信号(英文全称:cell reference signal,英文缩写:CRS)信号实现的。一般认为,在LTE系统中,接收机需要重新获取同步的时间是40ms,接收机需要持续跟踪同步的周期是5ms。在授权载波的LTE系统中,系统可以持续的占用载波,因此系统可以根据同步的要求,发送同步信号(粗同步信号和精同步信号)。在LTE系统中,用来进行粗同步的信号,发送间隔是5ms。用来进行精同步的信号,发送间隔是0.285ms。
但是在非授权载波中,由于非授权载波是竞争接入的,因此 系统占用的时间既不是连续的,也不是周期的。因此系统也没法保证用以同步的信号能够持续周期的发送。这就需要针对非授权载波,设计新的数据帧的同步方法,实现非授权载波上的数据帧同步。
发明内容
本发明的实施例提供一种同步方法、装置及系统,涉及通信领域,能够在非授权载波中实现设备之间传输数据帧的同步。
第一方面,提供一种同步方法,包括:
网络设备在第一子帧中设置同步信号;
所述网络设备向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
结合第一方面,在第一种可能的实现方式中,所述网络设备在第一子帧中设置同步信号,包括:
所述网络设备在所述第一子帧的预定符号中设置所述同步信号。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一子帧包括四个小区参考信号CRS;所述网络设备在第一子帧中设置同步信号,包括:
所述网络设备在所述第一子帧中的第三个符号中设置所述同步信号。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;所述网络设备在第一子帧中设置同步信号,包括:
所述网络设备在所述第一子帧中的第二个符号中设置所述同步信号。
结合第一方面的第一种可能的实现方式,在第四种可能的实现 方式中,所述第一子帧不包括小区参考信号CRS;所述网络设备在第一子帧中设置同步信号,包括:
所述网络设备在所述第一子帧中的第一个符号中设置所述同步信号。
结合第一方面的第一种可能的实现方式,在第五种可能的实现方式中,所述第一子帧包括两个时隙,所述网络设备在第一子帧中设置同步信号,包括:所述网络设备在所述第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置所述同步信号。
结合第一方面或第一方面的任意一种可能的实现方式,在第六种可能的实现方式中,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
第二方面,提供一种同步方法,包括:
用户设备接收网络设备发送的第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
所述用户设备确定所述第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围;
所述用户设备根据所述OFDM符号的位置范围获取所述同步信号;
所述用户设备根据所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
结合第二方面,在第一种可能的实现方式中,所述用户设备确定所述第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围,包括:
所述用户设备获取第三子帧的起始位置;
所述用户设备根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围,
其中,所述第三子帧为授权载波子帧。
结合第二方面,在第二种可能的实现方式中,所述方法还包括:
所述用户设备检测所述第二子帧的小区参考信号CRS;
所述用户设备根据所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
结合第二方面或第二方面中任意一种可能的实现方式,在第三种可能的实现方式中,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
第三方面,提供一种网络设备,包括:
设置单元,用于在第一子帧中设置同步信号;
发送单元,用于向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
结合第三方面,在第一种可能的实现方式中,所述设置单元,用于在所述第一子帧的预定符号中设置所述同步信号。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一子帧包括四个小区参考信号CRS;
所述设置单元,具体用于在所述第一子帧中的第三个符号中设置所述同步信号。
结合第三方面的第一种可能的实现方式,在第三种可能的实现方式中,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;
所述设置单元,具体用于在所述第一子帧中的第二个符号中设置所述同步信号。
结合第三方面的第一种可能的实现方式,在第四种可能的实现方式中,所述第一子帧不包括小区参考信号CRS;
所述设置单元,具体用于在所述第一子帧中的第一个符号中设 置所述同步信号。
结合第三方面的第一种可能的实现方式,在第五种可能的实现方式中,所述第一子帧包括两个时隙,
所述设置单元,具体用于在所述第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置所述同步信号。
结合第三方面或第三方面的任意一种可能的实现方式,在第六种可能的实现方式中,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
第四方面,提供一种用户设备,包括:
接收单元,用于接收网络设备发送的第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
位置确定单元,用于确定所述接收单元接收的第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围;
获取单元,用于根据所述位置确定单元确定的所述OFDM符号的位置范围获取所述同步信号;
同步单元,用于根据所述获取单元获取的所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
结合第四方面,在第一种可能的实现方式中,所述位置确定单元,具体用于获取第三子帧的起始位置;根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围,
其中,所述第三子帧为授权载波子帧。
结合第四方面,在第二种可能的实现方式中,所述用户设备还包括:
检测单元,用于检测所述第二子帧的小区参考信号CRS;
所述位置确定单元,还用于根据所述检测单元检测的所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一 个OFDM符号的位置。
结合第四方面或第四方面中任意一种可能的实现方式,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
第五方面,提供一种网络设备,包括:处理器、接口电路、存储器和总线;所述处理器、接口电路、存储器通过所述总线连接并完成相互间的通信;
其中,所述处理器用于在第一子帧中设置同步信号;
所述接口电路,用于向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
结合第五方面,在第一种可能的实现方式中,所述处理器,用于在所述第一子帧的预定符号中设置所述同步信号。
结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一子帧包括四个小区参考信号CRS;
所述处理器,具体用于在所述第一子帧中的第三个符号中设置所述同步信号。
结合第五方面的第一种可能的实现方式,在第三种可能的实现方式中,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;
所述处理器,具体用于在所述第一子帧中的第二个符号中设置所述同步信号。
结合第五方面的第一种可能的实现方式,在第四种可能的实现方式中,所述第一子帧不包括小区参考信号CRS;
所述处理器,具体用于在所述第一子帧中的第一个符号中设置所述同步信号。
结合第五方面的第一种可能的实现方式,在第五种可能的实现 方式中,所述第一子帧包括两个时隙,
所述处理器,具体用于在所述第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置所述同步信号。
结合第五方面或第五方面的任意一种可能的实现方式,在第六种可能的实现方式中,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
第六方面,提供一种用户设备,包括:处理器、接口电路、存储器和总线;所述处理器、接口电路、存储器通过所述总线连接并完成相互间的通信;
接口电路,用于接收网络设备发送的第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
处理器,用于确定所述接口电路接收的第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围;根据所述OFDM符号的位置范围获取所述同步信号;根据所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
结合第六方面,在第一种可能的实现方式中,所述处理器,具体用于获取第三子帧的起始位置;根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围,
其中,所述第三子帧为授权载波子帧。
结合第六方面,在第二种可能的实现方式中,所述处理器还用于检测所述第二子帧的小区参考信号CRS;根据所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
结合第六方面或第六方面中任意一种可能的实现方式,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
第七方面,提供一种通信系统,
包括上述第三方面提供的任意一种网络设备和第四方面提供的任意一种用户设备;
或者,
包括上述第五方面提供的任意一种网络设备和上述第六方面提供的任意一种用户设备。
上述提供的同步方法、装置及系统,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的实施例提供的一种通信系统的结构示意图;
图2为本发明的实施例提供的一种同步方法流程示意图;
图3为本发明的实施例提供的一种数据帧的结构示意图;
图4为本发明的另一实施例提供的一种同步方法流程示意图;
图5为本发明的实施例提供的一种资源块分配示意图;
图6为本发明的又一实施例提供的一种同步方法流程示意图;
图7为本发明的另一实施例提供的一种资源块分配示意图;
图8为本发明的另一实施例提供的一种数据帧的结构示意图;
图9为本发明的再一实施例提供的一种同步方法流程示意图;
图10为本发明的又一实施例提供的一种资源块分配示意图;
图11为本发明的另一实施例提供的一种同步方法流程示意图;
图12为本发明的再一实施例提供的一种资源块分配示意图;
图13为本发明的又一实施例提供的一种同步方法流程示意图;
图14为本发明的实施例提供的一种网络设备的结构示意图;
图15为本发明的实施例提供的一种用户设备的结构示意图;
图16为本发明的另一实施例提供的一种网络设备的结构示意图;
图17为本发明的另一实施例提供的一种用户设备的结构示意图。
具体实施方式
现在参照附图描述多个实施例,其中用相同的附图标记指示本文中的相同元件。在下面的描述中,为便于解释,给出了大量具体细节,以便提供对一个或多个实施例的全面理解。然而,很明显,也可以不用这些具体细节来实现所述实施例。在其它例子中,以方框图形式示出公知结构和设备,以便于描述一个或多个实施例。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统等。
本发明的实施例提供的用户设备(英文全称:User Equipment,英文缩写:UE)可以是蜂窝电话、无绳电话、会话启动协议(英文全称:Session Initiation Protocol,英文缩写:SIP)电话、无线本地环路(英文全称:Wireless Local Loop,英文缩写:WLL)站、个人数字处理(英文全称:Personal Digital Assistant,英 文缩写:PDA)、具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它设备。
本发明的实施例提供的网络设备可以为基站,其中基站可以是指接入网中在空中接口上通过一个或多个扇区与用户设备通信的设备。基站可用于将收到的空中帧与网际协议(英文全称:Internet Protocol,英文缩写:IP)分组进行相互转换,作为用户设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。基站可以是全球移动通信系统(英文全称:Global System for Mobile communication,英文缩写:GSM)或码分多址(英文全称:Code Division Multiple Access,英文缩写:CDMA)中的基站(英文全称:Base Transceiver Station,英文缩写:BTS),也可以是宽带码分多址(英文全称:Wideband Code Division Multiple Access,英文缩写:WCDMA)中的基站(英文全称:Base Station,英文缩写:BS),还可以是长期演进(英文全称:Long Term Evolution,英文缩写LTE)中的演进型基站(英文全称:evolutional Node B,英文缩写:NodeB或eNB或e-NodeB),又如蜂窝无线通信系统中的宏基站和微基站,本发明实施例中并不限定。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。以下实施例中“第一”和“第二”仅用于区别,如第一子帧和第二子帧。
本发明的实施例用于如图1所示的通信系统,包括网络设备D1和用户设备D2,网络设备D1和用户设备D2需要在非授权载波中进行数据帧同步。
具体的,本发明的实施例提供一种同步方法,应用于上述的通信系统以实现非授权载波中数据帧的同步,参照图2所示,在网络设备侧包括以下步骤:
101、网络设备在第一子帧中设置同步信号。
具体的,步骤101包括:网络设备在第一子帧的预定符号中设置同步信号,其中同步信号包括粗同步信号和精同步信号;示例性的,网络设备在第一子帧中的第一预定符号中设置粗同步信号;其中,该第一预定符号在第一子帧中的位置可以参考非授权载波中所使用的小区参考信号CRS端口数量确定。示例性的,网络设备在第一子帧中的第二预定符号和第三预定符号中设置精同步信号。其中,该第二预定符号和第三预定符号在第一子帧中的位置可以参考非授权载波中的数据包括的循环前缀的长度确定。
102、网络设备向用户设备发送第一子帧或第一子帧和第二子帧。
第一子帧包括M个正交频分复用(英文全称:Orthogonal Frequency Division Multiplexing,英文缩写OFDM)符号,第二子帧包括N个OFDM符号;其中M和N为正整数,且M>N,第一子帧和第二子帧为非授权载波子帧。示例性的,M=14或12,参照LTE系统的无线帧结构,其中每个数据帧包含若干个子帧(英文:Subframe),其中每个子帧包含两个时隙(英文:slot)其中这两个时隙通常定义为奇数时隙(英文:even-numbered slots)和偶数时隙(英文:odd-numbered slots),在非授权载波中的数据包括的循环前缀为正常循环前缀(英文全称:Normal cyclic prefix,英文缩写:NCP)时,M=14,每个时隙用来传输7个OFDM符号;在非授权载波中的数据包括的循环前缀为扩展循环前缀(英文全称:Extend cyclic prefix,英文缩写:ECP)时,M=12每个时隙用来传输6个OFDM符号,其中M>N,所以第二子帧为不完整的子帧。
上述提供的同步方法,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,以便用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
具体的,参照现有技术中LTE系统的无线帧结构,以下基于 非授权载波中使用正常循环前缀,采用4个CRS端口传输32个符号,其中如图3所示的数据帧后边的28个符号构成两个子帧,为了方便描述将数据帧中前4个符号(如图3中包括第1个至第4共4个符号)定义为一个不完全子帧#1,数据帧后边的28个符号组成子帧#2和#3,其中子帧#2和#3用作本发明中的第一子帧,#1用作第二子帧。
基于正常循环前缀的情况,参照图4所示本发明的实施例提供一种同步方法,包括:
201、网络设备在第一子帧中的第三个符号中设置粗同步信号。
其中,粗同步信号包括以下至少一个:主同步信号PSS和辅同步信号SSS。
202、网络设备在第一子帧中的第一个符号和第五个符号设置精同步信号。
精同步信号包括:小区参考信号CRS。具体的,参照图5所示,示出了一种包含四个CRS端口的资源块分配示意图,根据天线端口(英文:antenna port)与资源块的映射关系,其中图中5中示出了天线端口在资源块中映射的实际位置R0,以及天线端口在资源块中可能映射的潜在位置Rx,网络设备在第一子帧中的第一个符号和第五个符号个符号中设置CRS,并在可能位置中最靠前的第三个符号中设置主同步信号PSS和/或辅同步信号SSS,以便降低用户设备进行粗同步的延时。
一种优选的方式是非授权载波使用CRS端口时,网络设备在第一子帧中的第一个符号中设置所述粗同步信号,以便用户设备优先进行粗同步,当然这只是一种实施方式,作为一种可选的实施方式,步骤201也可以替换为:所述网络设备在第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置粗同步信号。或者网络设备在第一子帧中其他可能的任意符号设置粗同步信号。
203、网络设备向用户设备发送第一子帧或第一子帧和第二子帧。
上述提供的数据传输方法,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,以便用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
以下基于,非授权载波中使用正常循环前缀,采用1个或者2个CRS端口32个符号,其中如图3所示的数据帧后边的28个符号构成两个子帧,为了方便描述将数据帧中前4个符号(如图3中包括第1个至第4共4个符号)定义为一个不完全子帧#1,数据帧后边的28个符号组成子帧#2和#3,其中子帧#2和#3用作本发明中的第一子帧,#1用作第二子帧。
基于正常循环前缀的情况,参照图6所示本发明的实施例提供一种同步方法,包括:
301、网络设备在第一子帧中的第二个符号中设置粗同步信号。
其中,粗同步信号包括以下至少一个:主同步信号PSS和辅同步信号SSS。
302、网络设备在第一子帧中的第一个符号和第五个符号设置精同步信号。
精同步信号包括:小区参考信号CRS。具体的,其中图中7中示出了天线端口在资源块中映射的实际位置R0,以及天线端口在资源块中可能映射的潜在位置Rx,网络设备在第一子帧中的第一个符号和第五个符号个符号中设置CRS,并在可能位置中最靠前的第二个符号中设置主同步信号PSS和/或辅同步信号SSS,以便降低用户设备进行粗同步的延时。
一种优选的方式是非授权载波使用CRS端口时,网络设备在第一子帧中的第一个符号中设置粗同步信号,以便用户设备优先进行粗同步,当然这只是一种实施方式,作为一种可选的实施方式,步骤301也可以替换为:网络设备在第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置粗同步信号,或者网络设备在第一 子帧中其他可能的任意符号设置粗同步信号。
303、网络设备向用户设备发送第一子帧或第一子帧和第二子帧。
上述提供的数据传输方法,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,以便用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
以下基于,非授权载波中使用扩展循环前缀,采用4个CRS端口传输28个符号,其中如图8所示的数据帧后边的24个符号构成两个子帧,为了方便描述将数据帧中前4个符号(如图8中包括第1个至第4共4个符号)定义为一个不完全子帧#1,数据帧后边的24个符号组成子帧#2和#3,其中子帧#2和#3用作本发明中的第一子帧,#1用作第二子帧。
基于扩展循环前缀的情况,参照图9所示本发明的实施例提供一种数据传输方法,包括:
401、网络设备在第一子帧中的第三个符号中设置粗同步信号。
其中,粗同步信号包括以下至少一个:主同步信号PSS和辅同步信号SSS。
402、网络设备在第一子帧中的第一个符号和第四个符号设置精同步信号。
精同步信号包括:小区参考信号CRS。具体的,参照图10所示,示出了一种包含四个CRS端口的资源块分配示意图,根据天线端口(英文:antenna port)与资源块的映射关系,其中图中10中示出了天线端口在资源块中映射的实际位置R0,以及天线端口在资源块中可能映射的潜在位置Rx,网络设备在第一子帧中的第一个符号和第四个符号个符号中设置CRS,并在可能位置中最靠前的第三个符号中设置主同步信号PSS和/或辅同步信号SSS,以便降低用户设备进行粗同步的延时。
一种优选的方式是非授权载波使用CRS端口时,网络设备在所述第一子帧中的第一个符号中设置粗同步信号,以便用户设备优先进行粗同步,当然这只是一种实施方式,作为一种可选的实施方式,步骤401也可以替换为:所述网络设备在第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置粗同步信号。或者网络设备在每个子帧中其他可能的任意符号设置粗同步信号。
403、网络设备向用户设备发送第一子帧或第一子帧和第二子帧。
上述提供的数据传输方法,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,以便用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
以下基于,非授权载波中使用扩展循环前缀,采用4个CRS端口传输28个符号,其中如图8所示的数据帧后边的24个符号构成两个子帧,为了方便描述将数据帧中前4个符号(如图8中包括第1个至第4共4个符号)定义为一个不完全子帧#1,数据帧后边的24个符号组成子帧#2和#3,其中子帧#2和#3用作本发明中的第一子帧,#1用作第二子帧。
基于扩展循环前缀的情况,参照图11所示本发明的实施例提供一种数据传输方法,包括:
501、网络设备在第一子帧中的第二个符号中设置粗同步信号。
其中,粗同步信号包括以下至少一个:主同步信号PSS和辅同步信号SSS。
502、网络设备在第一子帧中的第一个符号和第四个符号设置精同步信号。
精同步信号包括:小区参考信号CRS。具体的,参照图12所示,示出了一种包含四个CRS端口的资源块分配示意图,根据天线端口(英文:antenna port)与资源块的映射关系,其中图中12中示出 了天线端口在资源块中映射的实际位置R0,以及天线端口在资源块中可能映射的潜在位置Rx,网络设备在第一子帧中的第一个符号和第四个符号个符号中设置CRS,并在可能位置中最靠前的第二个符号中设置主同步信号PSS和/或辅同步信号SSS,以便降低用户设备进行粗同步的延时。
一种优选的方式是非授权载波使用CRS端口时,网络设备在所述第一子帧中的第一个符号中设置粗同步信号,以便用户设备优先进行粗同步,当然这只是一种实施方式,作为一种可选的实施方式,步骤501也可以替换为:所述网络设备在第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置粗同步信号。或者网络设备在每个子帧中其他可能的任意符号设置粗同步信号。
503、网络设备向用户设备发送第一子帧或第一子帧和第二子帧。
上述提供的数据传输方法,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,以便用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
对于用户设备,参照图13所示,本发明的实施例提供一种数据帧的同步方法,应用于非授权载波的同步,包括:
601、用户设备接收网络设备发送的第一子帧或所述第一子帧和第二子帧。
所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;第一子帧包括M个正交频分复用(英文全称:Orthogonal Frequency Division Multiplexing,英文缩写OFDM)符号,第二子帧包括N个OFDM符号;其中M和N为正整数,且M>N,第一子帧和第二子帧为非授权载波子帧。示例性的,M=14或12,参照LTE系统的无线帧结构,其中每个数据帧包含若干个子帧(英文:Subframe),其中每个子帧包含两 个时隙(英文:slot)其中这两个时隙通常定义为奇数时隙(英文:even-numbered slots)和偶数时隙(英文:odd-numbered slots),在非授权载波中的数据包括的循环前缀为正常循环前缀(英文全称:Normal cyclic prefix,英文缩写:NCP)时,M=14,每个时隙用来传输7个OFDM符号;在非授权载波中的数据包括的循环前缀为扩展循环前缀(英文全称:Extend cyclic prefix,英文缩写:ECP)时,M=12每个时隙用来传输6个OFDM符号,其中M>N,所以当用户设备接收到第二子帧时,该第二子帧为不完整的子帧。
602、用户设备确定所述第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围。
具体的,在上述实施例中明确记载,网络侧设备主要为依据OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定承载同步信号的正交频分复用OFDM符号,因此步骤602具体包括:
602a、所述用户设备获取第三子帧的起始位置。
其中,所述第三子帧为授权载波子帧,由于授权载波的子帧与非授权载波的子帧结构相同,因此可以直接根据授权载波子帧的起始位置确定第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围。
602b、所述用户设备根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围。
603、所述用户设备根据所述OFDM符号的位置范围获取所述同步信号。
示例性的,同步信号包括粗同步信号和精同步信号,粗同步信号包括以下至少一个:主同步信号PSS和辅同步信号SSS;精同步信号包括:小区参考信号CRS。
604、所述用户设备根据所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
其中,步骤604中具体为根据粗同步信号在非授权载波进行粗 同步,通过检测小区参考信号CRS在非授权载波进行精同步。
上述提供的数据传输方法,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
可选的,当用户设备接收到第二子帧时,该方法还包括:
用户设备检测所述第二子帧的小区参考信号CRS。
用户设备根据所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
上述方案中,当非授权载波上包括位于传输的数据帧前端的不完整子帧(第二子帧时),用户设备检测第二子帧中的CRS,并根据所述CRS获取第二子帧的起始位置,从而在整个非授权载波中实现设备之间传输数据帧的同步。当然,数据帧前端也可以是一个完整子帧,此时整个数据帧的起始位置即步骤602中确定的第一子帧的第一个OFDM符号的位置。
参照图14所示,本发明的实施例提供一种网络设备,用于实现上述的同步方法,包括:
设置单元141,用于在第一子帧中设置同步信号;
发送单元142,用于向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
上述提供的网络设备,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,以便用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
可选的,所述设置单元141,用于在所述第一子帧的预定符号中设置所述同步信号。
进一步可选的,所述第一子帧包括四个小区参考信号CRS;
所述设置单元141,具体用于在所述第一子帧中的第三个符号中设置所述同步信号。
进一步可选的,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;
所述设置单元141,具体用于在所述第一子帧中的第二个符号中设置所述同步信号。
进一步可选的,所述第一子帧不包括小区参考信号CRS;
所述设置单元141,具体用于在所述第一子帧中的第一个符号中设置所述同步信号。
进一步可选的,所述第一子帧包括两个时隙,
所述设置单元141,具体用于在所述第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置所述同步信号。
可选的,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
需要说明的是,本实施例中的发送单元142可以为网络设备的发射机。设置单元141可以为单独设立的处理器,也可以集成在网络设备的某一个处理器中实现,此外,也可以以程序代码的形式存储于基站的存储器中,由网络设备的某一个处理器调用并执行以上设置单元141的功能。这里所述的处理器可以是一个中央处理器(英文全称:Central Processing Unit,英文简称:CPU),或者是特定集成电路(英文全称:Application Specific Integrated Circuit,英文简称:ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路
参照图15所示,本发明的实施例提供一种用户设备,用于实现上述的同步方法,包括:
接收单元151,用于接收网络设备发送的第一子帧或所述第一子 帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
位置确定单元152,用于确定所述接收单元151接收的第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围;
获取单元153,用于根据所述位置确定单元152确定的所述OFDM符号的位置范围获取所述同步信号;
同步单元154,用于根据所述获取单元153获取的所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
上述提供的用户设备,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
可选的,所述位置确定单元152,具体用于获取第三子帧的起始位置;根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围;其中,所述第三子帧为授权载波子帧。
进一步的,所述用户设备还包括:
检测单元155,用于检测所述第二子帧的小区参考信号CRS;
所述位置确定单元152,还用于根据所述检测单元155检测的所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
可选的,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
需要说明的是,本实施例中的接收单元151可以为用户设备的接收机。位置确定单元152可以为单独设立的处理器,也可以集成在用户设备的某一个处理器中实现,此外,也可以以程序代码的形式存储于用户设备的存储器中,由用户设备的某一个处理器调用并执行以上位置确定单元152的功能。、获取单元153、同步单元154 和检测单元155的实现同位置确定单元152类似,且可以与位置确定单元152集成在一起,也可以独立实现。这里所述的处理器可以是一个中央处理器CPU,或者是特定集成电路ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路。
参照图16所示,本发明的实施例提供一种网络设备,用于实现上述的同步方法,包括:处理器161、接口电路162、存储器163和总线164;所述处理器161、接口电路162、存储器163通过所述总线164连接并完成相互间的通信;
需要说明的是,这里的处理器161可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是中央处理器CPU,也可以是特定集成电路ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(英文全称:digital singnal processor,英文简称:DSP),或,一个或者多个现场可编程门阵列(英文全称:Field Programmable Gate Array,英文简称:FPGA)。
存储器163可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或接入网管理设备运行所需要参数、数据等。且存储器163可以包括随机存储器(英文全称:Random-Access Memory,英文简称:RAM),也可以包括非易失性存储器(英文全称:non-volatile memory,英文简称:NVRAM),例如磁盘存储器,闪存(Flash)等。
总线164可以是工业标准体系结构(英文全称:Industry Standard Architecture,英文简称:ISA)总线、外部设备互连(英文全称:Peripheral Component,英文简称:PCI)总线或扩展工业标准体系结构(英文全称:Extended Industry Standard Architecture,英文简称:EISA)总线等。该总线164可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
示例性的,当网络设备与用户设备之间采用无线通信方式时, 接口电路162可以配置为具有信号发射功能的发射机。
其中,所述处理器161用于在第一子帧中设置同步信号;
所述接口电路162,用于向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
上述提供的网络设备,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,以便用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
可选的,所述处理器,用于在所述第一子帧的预定符号中设置所述同步信号。
进一步可选的,所述第一子帧包括四个小区参考信号CRS;
所述处理器161,具体用于在所述第一子帧中的第三个符号中设置所述同步信号。
进一步可选的,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;
所述处理器161,具体用于在所述第一子帧中的第二个符号中设置所述同步信号。
进一步可选的,所述第一子帧不包括小区参考信号CRS;
所述处理器161,具体用于在所述第一子帧中的第一个符号中设置所述同步信号。
进一步可选的,所述第一子帧包括两个时隙,
所述处理器161,具体用于在所述第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置所述同步信号。
可选的,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
参照图17所示,本发明的实施例提供一种用户设备,用于实现 上述的同步方法,包括:处理器171、接口电路172、存储器173和总线174;所述处理器171、接口电路172、存储器173通过所述总线174连接并完成相互间的通信;
需要说明的是,这里的处理器171可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是中央处理器CPU,也可以是特定集成电路ASIC,或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(英文全称:digital singnal processor,英文简称:DSP),或,一个或者多个现场可编程门阵列(英文全称:Field Programmable Gate Array,英文简称:FPGA)。
存储器173可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或接入网管理设备运行所需要参数、数据等。且存储器173可以包括随机存储器(英文全称:Random-Access Memory,英文简称:RAM),也可以包括非易失性存储器(英文全称:non-volatile memory,英文简称:NVRAM),例如磁盘存储器,闪存(Flash)等。
总线174可以是工业标准体系结构(英文全称:Industry Standard Architecture,英文简称:ISA)总线、外部设备互连(英文全称:Peripheral Component,英文简称:PCI)总线或扩展工业标准体系结构(英文全称:Extended Industry Standard Architecture,英文简称:EISA)总线等。该总线174可以分为地址总线、数据总线、控制总线等。为便于表示,图17中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
示例性的,当网络设备与用户设备之间采用无线通信方式时,接口电路172可以配置为具有信号接收功能的接收机。
接口电路172,用于接收网络设备发送的第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
处理器171,用于确定所述接口电路接收的第一子帧中承载同步 信号的正交频分复用OFDM符号的位置范围;根据所述OFDM符号的位置范围获取所述同步信号;根据所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
上述提供的用户设备,在非授权载波的子帧中,网络设备通过在第一子帧中设置同步信号,将携带同步信号的第一子帧发送至用户设备,用户设备在接收的第一子帧中获取同步信号并进行同步,从而实现了在非授权载波中实现设备之间传输数据帧的同步。
可选的,所述处理器171,具体用于获取第三子帧的起始位置;根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围,
其中,所述第三子帧为授权载波子帧。
进一步的,所述处理器171还用于检测所述第二子帧的小区参考信号CRS;根据所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
可选的,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
此外,还提供一种计算可读媒体(或介质),包括在被执行时进行以下操作的计算机可读指令:执行上述实施例中的方法的101至102、201至203、301至303、401至403、501至503或601至604的操作。
另外,还提供一种计算机程序产品,包括上述计算机可读介质。
需要说明的是:全文中提及的信令包括但不限于:指示,信息,信号或消息等,此处不做限定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销 售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种同步方法,其特征在于,包括:
    网络设备在第一子帧中设置同步信号;
    所述网络设备向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
    其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备在第一子帧中设置同步信号,包括:
    所述网络设备在所述第一子帧的预定符号中设置所述同步信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一子帧包括四个小区参考信号CRS;所述网络设备在第一子帧中设置同步信号,包括:
    所述网络设备在所述第一子帧中的第三个符号中设置所述同步信号。
  4. 根据权利要求2所述的方法,其特征在于,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;所述网络设备在第一子帧中设置同步信号,包括:
    所述网络设备在所述第一子帧中的第二个符号中设置所述同步信号。
  5. 根据权利要求2所述的方法,其特征在于,所述第一子帧不包括小区参考信号CRS;所述网络设备在第一子帧中设置同步信号,包括:
    所述网络设备在所述第一子帧中的第一个符号中设置所述同步信号。
  6. 根据权利要求2所述的方法,其特征在于,所述第一子帧包括两个时隙,所述网络设备在第一子帧中设置同步信号,包括:所述网络设备在所述第一子帧中第一个时隙的倒数第一个符号或倒数第 二个符号设置所述同步信号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
  8. 一种同步方法,其特征在于,包括:
    用户设备接收网络设备发送的第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
    所述用户设备确定所述第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围;
    所述用户设备根据所述OFDM符号的位置范围获取所述同步信号;
    所述用户设备根据所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
  9. 根据权利要求8所述的方法,其特征在于,所述用户设备确定所述第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围,包括:
    所述用户设备获取第三子帧的起始位置;
    所述用户设备根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围,
    其中,所述第三子帧为授权载波子帧。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述用户设备检测所述第二子帧的小区参考信号CRS;
    所述用户设备根据所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述同步信号至少包括以下各项中的一个:主同步信号PSS和辅同步信号SSS。
  12. 一种网络设备,其特征在于,包括:
    设置单元,用于在第一子帧中设置同步信号;
    发送单元,用于向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
    其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
  13. 根据权利要求12所述的网络设备,其特征在于,所述设置单元,用于在所述第一子帧的预定符号中设置所述同步信号。
  14. 根据权利要求13所述的网络设备,其特征在于,所述第一子帧包括四个小区参考信号CRS;
    所述设置单元,具体用于在所述第一子帧中的第三个符号中设置所述同步信号。
  15. 根据权利要求13所述的网络设备,其特征在于,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;
    所述设置单元,具体用于在所述第一子帧中的第二个符号中设置所述同步信号。
  16. 根据权利要求13所述的网络设备,其特征在于,所述第一子帧不包括小区参考信号CRS;
    所述设置单元,具体用于在所述第一子帧中的第一个符号中设置所述同步信号。
  17. 根据权利要求13所述的网络设备,其特征在于,所述第一子帧包括两个时隙,
    所述设置单元,具体用于在所述第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置所述同步信号。
  18. 一种用户设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第 二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
    位置确定单元,用于确定所述接收单元接收的第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围;
    获取单元,用于根据所述位置确定单元确定的所述OFDM符号的位置范围获取所述同步信号;
    同步单元,用于根据所述获取单元获取的所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
  19. 根据权利要求18所述的用户设备,其特征在于,所述位置确定单元,具体用于获取第三子帧的起始位置;根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围,
    其中,所述第三子帧为授权载波子帧。
  20. 根据权利要求18所述的用户设备,其特征在于,所述用户设备还包括:
    检测单元,用于检测所述第二子帧的小区参考信号CRS;
    所述位置确定单元,还用于根据所述检测单元检测的所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
  21. 一种网络设备,其特征在于,包括:处理器、接口电路、存储器和总线;所述处理器、接口电路、存储器通过所述总线连接并完成相互间的通信;
    其中,所述处理器用于在第一子帧中设置同步信号;
    所述接口电路,用于向用户设备发送所述第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号;
    其中M和N为正整数,且M>N,所述第一子帧和所述第二子帧为非授权载波子帧。
  22. 根据权利要求21所述的网络设备,其特征在于,所述处理 器,用于在所述第一子帧的预定符号中设置所述同步信号。
  23. 根据权利要求22所述的网络设备,其特征在于,所述第一子帧包括四个小区参考信号CRS;
    所述处理器,具体用于在所述第一子帧中的第三个符号中设置所述同步信号。
  24. 根据权利要求22所述的网络设备,其特征在于,所述第一子帧包括一个小区参考信号CRS端口或者两个小区参考信号CRS端口;
    所述处理器,具体用于在所述第一子帧中的第二个符号中设置所述同步信号。
  25. 根据权利要求22所述的网络设备,其特征在于,所述第一子帧不包括小区参考信号CRS;
    所述处理器,具体用于在所述第一子帧中的第一个符号中设置所述同步信号。
  26. 根据权利要求22所述的网络设备,其特征在于,所述第一子帧包括两个时隙,
    所述处理器,具体用于在所述第一子帧中第一个时隙的倒数第一个符号或倒数第二个符号设置所述同步信号。
  27. 一种用户设备,其特征在于,包括:处理器、接口电路、存储器和总线;所述处理器、接口电路、存储器通过所述总线连接并完成相互间的通信;
    接口电路,用于接收网络设备发送的第一子帧或所述第一子帧和第二子帧,所述第一子帧包括M个正交频分复用OFDM符号,所述第二子帧包括N个OFDM符号,其中M和N为正整数,且M>N;
    处理器,用于确定所述接口电路接收的第一子帧中承载同步信号的正交频分复用OFDM符号的位置范围;根据所述OFDM符号的位置范围获取所述同步信号;根据所述同步信号进行同步,所述第一子帧和所述第二子帧为非授权载波子帧。
  28. 根据权利要求27所述的用户设备,其特征在于,所述处理 器,具体用于获取第三子帧的起始位置;根据所述第三子帧的起始位置、所述OFDM符号的循环前缀CP以及所述第一子帧的小区参考信号CRS的数目确定所述OFDM符号的位置范围,
    其中,所述第三子帧为授权载波子帧。
  29. 根据权利要求27所述的用户设备,其特征在于,所述处理器还用于检测所述第二子帧的小区参考信号CRS;根据所述小区参考信号CRS获取所述第二子帧的起始位置,所述第二子帧的起始位置为所述用户设备接收所述网络设备发送的所述第二子帧的第一个OFDM符号的位置。
  30. 一种通信系统,其特征在于,
    包括权利要求12-17任一项所述的网络设备和权利要求18-20任一项所述的用户设备;
    或者,
    包括权利要求21-26任一项所述的网络设备和权利要求27-29任一项所述的用户设备。
PCT/CN2015/071221 2015-01-21 2015-01-21 一种同步方法、装置及系统 WO2016115695A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15878373.8A EP3242512B1 (en) 2015-01-21 2015-01-21 Synchronization method, apparatus and system
CN201580066976.1A CN107005959B (zh) 2015-01-21 2015-01-21 一种同步方法、装置及系统
PCT/CN2015/071221 WO2016115695A1 (zh) 2015-01-21 2015-01-21 一种同步方法、装置及系统
KR1020177022998A KR102201789B1 (ko) 2015-01-21 2015-01-21 동기화 방법, 장치 및 시스템
US15/545,471 US10567206B2 (en) 2015-01-21 2015-01-21 Synchronization method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071221 WO2016115695A1 (zh) 2015-01-21 2015-01-21 一种同步方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2016115695A1 true WO2016115695A1 (zh) 2016-07-28

Family

ID=56416280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071221 WO2016115695A1 (zh) 2015-01-21 2015-01-21 一种同步方法、装置及系统

Country Status (5)

Country Link
US (1) US10567206B2 (zh)
EP (1) EP3242512B1 (zh)
KR (1) KR102201789B1 (zh)
CN (1) CN107005959B (zh)
WO (1) WO2016115695A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391578B (zh) * 2017-08-11 2022-07-22 华为技术有限公司 信号发送方法、信号接收方法、终端设备及网络设备
US10743371B2 (en) * 2018-01-29 2020-08-11 Apple Inc. Syncrhonization signals for multefire narrowband internet-of-things (MF NB-IoT) operation in unlicensed spectrum
WO2020137072A1 (ja) * 2018-12-28 2020-07-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置、受信装置、送信方法及び受信方法
CN117320046B (zh) * 2023-11-28 2024-03-01 深圳市鼎阳科技股份有限公司 Crs搜索方法、lte时间对齐误差测定方法和用户设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239649A (zh) * 2008-12-02 2011-11-09 Lg电子株式会社 在下行链路多输入多输出系统中发送参考信号的方法
CN102396198A (zh) * 2009-03-17 2012-03-28 三星电子株式会社 用于在多流传输中映射导频信号的方法和系统
CN103686987A (zh) * 2012-09-26 2014-03-26 北京三星通信技术研究有限公司 发送和接收同步信道、广播信道的方法和设备
CN104009784A (zh) * 2008-08-05 2014-08-27 Lg电子株式会社 用于下行多输入多输出系统的基准信号传输方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148236A2 (ko) * 2011-04-28 2012-11-01 엘지전자 주식회사 반송파 집성 시스템에서 동기화 신호 전송 방법 및 장치
CN104411279B (zh) * 2012-06-29 2016-11-09 宝洁公司 用于制造可重复扣紧的制品的方法
CN103686978A (zh) * 2013-12-24 2014-03-26 深圳市双赢伟业科技股份有限公司 无线终端设备发射功率控制方法
US9986373B2 (en) * 2015-01-12 2018-05-29 Intel Corporation LTE-A systems and method of DRS based positioning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009784A (zh) * 2008-08-05 2014-08-27 Lg电子株式会社 用于下行多输入多输出系统的基准信号传输方法
CN102239649A (zh) * 2008-12-02 2011-11-09 Lg电子株式会社 在下行链路多输入多输出系统中发送参考信号的方法
CN102396198A (zh) * 2009-03-17 2012-03-28 三星电子株式会社 用于在多流传输中映射导频信号的方法和系统
CN103686987A (zh) * 2012-09-26 2014-03-26 北京三星通信技术研究有限公司 发送和接收同步信道、广播信道的方法和设备

Also Published As

Publication number Publication date
EP3242512B1 (en) 2020-11-25
EP3242512A1 (en) 2017-11-08
KR102201789B1 (ko) 2021-01-11
CN107005959A (zh) 2017-08-01
CN107005959B (zh) 2020-04-21
EP3242512A4 (en) 2017-11-29
US20180013601A1 (en) 2018-01-11
US10567206B2 (en) 2020-02-18
KR20170106420A (ko) 2017-09-20

Similar Documents

Publication Publication Date Title
US20210014817A1 (en) Synchronization method, user equipment, and base station
WO2018228433A1 (zh) 一种公共下行控制信道的传输方法和相关设备
TWI737844B (zh) 傳輸參考信號的方法和通訊設備
RU2625816C1 (ru) Передатчик, приемник и способы для передачи/приема сигналов синхронизации
WO2018018417A1 (zh) 信息传输方法和信息传输设备
JP2020510349A5 (zh)
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
TWI759560B (zh) 傳輸訊息的方法和設備
WO2018028490A1 (zh) 信息传输方法、终端及网络设备
WO2017128883A1 (zh) 一种导频信号发送、信道估计方法及设备
WO2016115695A1 (zh) 一种同步方法、装置及系统
TW201838466A (zh) 處理量測間距的裝置及方法
TWI746549B (zh) 訊號傳輸的方法、網路設備和終端設備
CN114424666B (zh) 一种通信方法及装置
WO2015139555A1 (zh) 一种信号发送、接收方法及装置
WO2020143432A1 (zh) 一种同步广播信息发送、检测方法及装置
WO2016161985A1 (zh) 信号处理方法、发送机、接收机及信号处理系统
WO2018177216A1 (zh) 传输信号的方法和装置
WO2018028343A1 (zh) 传输信号的方法和装置
WO2022028171A1 (zh) 定位方法、装置、终端及基站
WO2020156024A1 (zh) 用于传输下行控制信道的方法、终端设备和网络设备
WO2020029837A1 (zh) 一种同步广播信息的发送、检测方法及装置
WO2016019529A1 (zh) 同步通信的方法和通信节点
WO2017167001A1 (zh) 资源调度方法、终端设备及系统
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878373

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15545471

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015878373

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177022998

Country of ref document: KR

Kind code of ref document: A