WO2022028171A1 - 定位方法、装置、终端及基站 - Google Patents

定位方法、装置、终端及基站 Download PDF

Info

Publication number
WO2022028171A1
WO2022028171A1 PCT/CN2021/104234 CN2021104234W WO2022028171A1 WO 2022028171 A1 WO2022028171 A1 WO 2022028171A1 CN 2021104234 W CN2021104234 W CN 2021104234W WO 2022028171 A1 WO2022028171 A1 WO 2022028171A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
message
positioning
information
terminal
Prior art date
Application number
PCT/CN2021/104234
Other languages
English (en)
French (fr)
Inventor
任晓涛
任斌
达人
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US18/016,297 priority Critical patent/US20230276396A1/en
Priority to EP21854002.9A priority patent/EP4195788A4/en
Publication of WO2022028171A1 publication Critical patent/WO2022028171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless technologies, and in particular, to a positioning method, device, terminal, and base station.
  • the technical solutions for downlink positioning in New Radio Access mainly include a downlink-time difference of arrival (DL-TDOA) positioning method based on delay and an angle-based downlink departure angle. (Downlink-Angle of Departure, DL-AoD) positioning method and other schemes.
  • DL-TDOA time delay positioning method the position of the terminal is estimated by the relative time delay between the base stations according to the difference of the propagation distance of the terminal relative to each base station.
  • the position of the terminal is determined through multiple angle parameters according to the position direction of the terminal relative to the base station.
  • the terminal User Equipment, UE
  • RRC Radio Resource Control
  • the purpose of the present disclosure is to provide a positioning method, device, terminal and base station, so as to solve the problem that UEs in the RRC idle state or the RRC inactive state in the related art need to be positioned and must first enter the RRC connected state, resulting in increased power consumption and the problem of increased positioning delay.
  • an embodiment of the present disclosure provides a positioning method, which is applied to a terminal, wherein the method includes:
  • At least one of the following information is used to indicate that the target random access process is a random access process for positioning:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the positioning method wherein the method further comprises: the terminal is in a RRC idle state or an RRC inactive state before performing the target random access procedure; and
  • a terminal positioning procedure After indicating that the target random access procedure is a random access procedure for positioning, a terminal positioning procedure is performed, and after the terminal positioning procedure is performed, the RRC idle state or the RRC inactive state is maintained.
  • the positioning method wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the cyclic shift of the preamble root sequence, the physical random access Incoming channel PRACH set, the PRACH sending time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5, the random access process used to indicate the positioning
  • the information is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the first information in the message 3 occupies the first preset bit
  • the second information in the message A indicates that the target random access process is a random access process for positioning, the second information in the message A occupies a second preset bit;
  • the third information in the message 5 indicates that the target random access process is a random access process for positioning, the third information in the message 5 occupies a third preset bit.
  • the positioning method wherein, when the target random access process is indicated by a preconfigured or configured preamble format as a random access process for positioning, the preconfigured or configured preamble format It is preamble long format 4, or preamble short format D1.
  • the positioning method wherein, when the target random access process is indicated by a pre-configured or configured PRACH set as a random access process for positioning, the pre-configured or configured PRACH set is a PRACH restricted set C.
  • the first information in message 3, the second information in message A, or the third information in message 5 indicate that the target random access process is used for positioning During the random access process, the method further includes:
  • the positioning method wherein the performing a terminal positioning process includes:
  • the distance between the base station and the terminal is calculated according to the signal strength information.
  • the present disclosure also provides the positioning method according to another embodiment, which is applied to a base station, wherein the method includes:
  • the receiving terminal uses at least one of the following information to indicate that the target random access procedure is a random access procedure for positioning:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the positioning method wherein the method further comprises:
  • the terminal positioning procedure is performed.
  • the positioning method wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the cyclic shift of the preamble root sequence, the physical random access In the incoming channel PRACH set, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5, the random access used to indicate the positioning
  • the information of the procedure is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the terminal when the terminal indicates through the first information in message 3 that the target random access process is a random access process for positioning, the first information in message 3 a piece of information occupies the first preset bit;
  • the second information in the message A occupies a second preset bit
  • the third information in the message 5 occupies a third preset bit.
  • the positioning method wherein, when the target random access process is indicated by a preconfigured or configured preamble format as a random access process for positioning, the preconfigured or configured preamble format It is preamble long format 4, or preamble short format D1.
  • the positioning method wherein, when the target random access process is indicated by a pre-configured or configured PRACH set as a random access process for positioning, the pre-configured or configured PRACH set is a PRACH restricted set C.
  • the positioning method wherein the terminal indicates that the target random access process is used by the first information in message 3, the second information in message A, or the third information in message 5.
  • performing the terminal positioning process includes:
  • the performing a terminal positioning process includes:
  • An embodiment of the present disclosure further provides a terminal, including: a transceiver, a memory, a processor, and program instructions stored in the memory and executable on the processor; wherein the transceiver is controlled by the processor To receive and transmit data, the processor is used to read program instructions in the memory and perform the following operations:
  • At least one of the following information is used to indicate that the target random access process is a random access process for positioning:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the terminal wherein the processor is further configured to: the terminal is in a radio resource control RRC idle state or an RRC inactive state before executing the target random access procedure; and
  • a terminal positioning procedure After indicating that the target random access procedure is a random access procedure for positioning, a terminal positioning procedure is performed, and after the terminal positioning procedure is performed, the RRC idle state or the RRC inactive state is maintained.
  • the terminal wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble root sequence cyclic shift, the physical random access
  • the channel PRACH set, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5 are used to indicate the random access process of positioning.
  • the information is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the first information in message 3 when the first information in message 3 indicates that the target random access process is a random access process for positioning, the first information in message 3 occupies the first a preset bit;
  • the second information in the message A indicates that the target random access process is a random access process for positioning, the second information in the message A occupies a second preset bit;
  • the third information in the message 5 indicates that the target random access process is a random access process for positioning, the third information in the message 5 occupies a third preset bit.
  • the preconfigured or configured preamble format is:
  • the preamble long format is 4, or the preamble short format D1.
  • the pre-configured or configured PRACH set is PRACH restricted set C .
  • the terminal wherein the first information in message 3, the second information in message A, or the third information in message 5 indicates that the target random access process is a random access procedure for positioning.
  • the processor is further used for:
  • the terminal wherein the processor performs a terminal positioning process, including:
  • the distance between the base station and the terminal is calculated according to the signal strength information.
  • An embodiment of the present disclosure further provides a base station, including: a transceiver, a memory, a processor, and program instructions stored in the memory and executable on the processor; wherein the transceiver is controlled by the processor To receive and transmit data, the processor is used to read program instructions in the memory and perform the following operations:
  • the receiving terminal uses at least one of the following information to indicate that the target random access procedure is a random access procedure for positioning:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the base station wherein the processor is further configured to:
  • the terminal positioning procedure is performed.
  • the base station wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble root sequence cyclic shift, the physical random access In the channel PRACH set, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5, the random access process used to indicate positioning
  • the information is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the first information in message 3 when the terminal indicates through the first information in message 3 that the target random access process is a random access process for positioning, the first information in message 3 The information occupies a first preset bit; when the terminal indicates through the second information in the message A that the target random access process is a random access process for positioning, the second information in the message A occupies the second preset bit;
  • the third information in the message 5 occupies a third preset bit.
  • the preconfigured or configured preamble format is:
  • the preamble long format is 4, or the preamble short format D1.
  • the base station wherein, when the target random access process is indicated by a preconfigured or configured PRACH set as a random access process for positioning, the preconfigured or configured PRACH set is PRACH restricted set C .
  • the base station wherein the terminal indicates that the target random access process is for During the random access process of positioning, the processor performing the terminal positioning process includes:
  • the base station wherein the processor performing the terminal positioning process includes:
  • An embodiment of the present disclosure further provides a positioning apparatus, which is applied to a terminal, wherein the apparatus includes:
  • an indicating unit configured to indicate that the target random access process is a random access process for positioning through at least one of the following information:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • An embodiment of the present disclosure further provides a positioning apparatus, which is applied to a base station, wherein the apparatus includes:
  • a receiving unit configured to receive information indicating that the target random access process is a random access process for positioning by the terminal using at least one of the following:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • An embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to perform the positioning according to any one of the above method.
  • FIG. 1 is a schematic flowchart of a positioning method according to an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a system architecture of a common positioning method
  • FIG. 3 is a schematic diagram of a system architecture using the positioning method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a positioning method according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of the positioning device according to an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of a positioning device according to another embodiment of the disclosure.
  • the term "and/or" describes the association relationship of associated objects, and indicates that there can be three kinds of relationships. For example, A and/or B can indicate that A exists alone, A and B exist at the same time, and B exists alone these three situations.
  • the character “/” generally indicates that the associated objects are an "or" relationship.
  • the term “plurality” refers to two or more than two, and other quantifiers are similar.
  • applicable systems may be global system of mobile communication (GSM) system, code division multiple access (CDMA) system, wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD) system, Long term evolution advanced (LTE-A) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G New Radio (New Radio, NR) system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • general packet Wireless service general packet Radio service
  • GPRS general packet Wireless service
  • LTE long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD time division duplex
  • LTE-A Long term evolution advanced
  • the terminal involved in the embodiments of the present disclosure may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the name of the terminal may be different.
  • the terminal device may be called user equipment (User Equipment, UE).
  • Wireless terminal equipment can communicate with one or more core networks (Core Network, CN) via a radio access network (Radio Access Network, RAN).
  • RAN Radio Access Network
  • "telephone) and computers with mobile terminal equipment eg portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the radio access network.
  • Wireless terminal equipment may also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point , a remote terminal device (remote terminal), an access terminal device (access terminal), a user terminal device (user terminal), a user agent (user agent), and a user device (user device), which are not limited in the embodiments of the present disclosure.
  • the base station involved in the embodiments of the present disclosure may include a plurality of cells providing services for the terminal.
  • the base station may also be called an access point, or may be a device in the access network that communicates with wireless terminal equipment through one or more sectors on the air interface, or other names.
  • the embodiments of the present disclosure provide a positioning method and apparatus, which can enable a UE in an RRC idle state or an RRC inactive state to complete positioning by using a random access procedure, so as to solve the needs of a UE in an RRC idle state or an RRC inactive state in the related art
  • To perform positioning you must first enter the RRC connection state, resulting in increased power consumption and increased positioning delay.
  • the method and the device are conceived based on the same application. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated here.
  • the positioning method described in one of the embodiments of the present disclosure, applied to a terminal includes:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the positioning method described in the embodiments of the present disclosure uses the preamble format, preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, and PRACH sends time-frequency resources, message At least one of the first information in 3, the second information in message A, and the third information in message 5 indicates that the current random access process is used for positioning purposes, so that the base station can cooperate to complete the Terminal positioning process.
  • the method further includes:
  • the random access process for positioning is indicated by the above-mentioned way, and the UE in the RRC idle state or the RRC inactive state can complete the positioning process without having to enter the RRC connected state from the RRC idle state or the RRC inactive state. It can solve the problems of increased power consumption and increased positioning delay caused by UEs in the RRC idle state or RRC inactive state that need to perform positioning and must first enter the RRC connected state in the related art.
  • the positioning method of the conventional technology will be described below with reference to FIG. 2 .
  • the technical solutions for downlink positioning mainly include a delay-based DL-TDOA positioning method and an angle-based DL-AoD positioning method.
  • the DL-TDOA positioning method based on time delay, the position of the terminal is estimated by the relative time delay between the base stations according to the difference of the propagation distance of the terminal relative to each base station.
  • the time delay-based DL-TDOA positioning method includes the following steps:
  • gNB1, gNB2, gNB3 and gNB4 respectively send periodic downlink positioning reference signals (Downlink Positioning Reference Signal, DL-PRS) to the UE;
  • DL-PRS Downlink Positioning Reference Signal
  • the UE learns the configuration information of the downlink positioning reference signal DL-PRS sent by the gNBs around the UE.
  • the UE By receiving the DL-PRS of each gNB, the UE first estimates the The time of arrival (Time Of Arrival, TOA) measurement value between each gNB, and then calculate the reference signal time difference (Reference Signal Time Difference, RSTD) of the downlink positioning reference signal DL-PRS;
  • TOA Time Of Arrival
  • RSTD Reference Signal Time Difference
  • the DL-PRS RSTD and other known information (such as the geographic coordinates of the gNB) obtained by the UE can be used to calculate the location of the UE using a network-based positioning method or a UE-based positioning method:
  • the UE reports the acquired DL-PRS RSTD measurement value to the LMF, and the LMF uses the reported measurement value and other known information (such as the geographic coordinates of the gNB) to calculate the position of the UE;
  • the UE uses the acquired DL-PRS RSTD and other information provided by the network (such as the geographic coordinates of the gNB) to calculate the position of the UE itself.
  • the position of the terminal is determined by multiple angle parameters according to the position direction of the terminal relative to the base station, which specifically includes the following steps:
  • gNB1, gNB2, gNB3 and gNB4 respectively send periodic DL-PRS signals to the UE;
  • the UE sends the DL-PRS configuration information provided by the LMF to the surrounding gNBs, measures each DL-PRS beam signal of each gNB, and reports the DL-PRS RSRP measurement value to the LMF;
  • the LMF uses the DL-PRS RSRP reported by the UE and other known information (such as the transmission direction of each DL-PRS beam of each gNB) to determine the angle of the UE relative to each gNB, that is, DL-AoD;
  • the LMF uses the obtained DL-AoD and the geographic coordinates of each gNB to calculate the location of the UE.
  • the above-mentioned delay-based DL-TDOA positioning method and angle-based DL-AoD positioning method both require the terminal to be in the RRC connected state to perform the corresponding positioning process.
  • the terminal When the technology is in the RRC idle state or the RRC inactive state, the terminal must be in the RRC connected state.
  • the positioning process can be performed only after entering the RRC connected state, which will bring additional UE power consumption and increase the positioning delay.
  • an embodiment of the present disclosure provides a positioning method, which uses a preamble format, a preamble root sequence type, a preamble root sequence index number, a cyclic shift of the preamble root sequence, and a physical random access channel PRACH set, PRACH sends at least one of the time-frequency resources, the first information in message 3, the second information in message A, and the third information in message 5, indicating that the current random access procedure is for positioning purposes, and the terminal and /or the base station completes the positioning process according to the indication information.
  • the method further includes: the terminal is in a radio resource control RRC idle state or an RRC inactive state before executing the target random access procedure;
  • the method further includes:
  • the terminal can remain in the current RRC idle state or RRC inactive state during and after the positioning process, without entering the RRC connected state.
  • the "random access procedure for positioning” is indicated by at least one of the above information, and the "random access procedure for positioning” is a Access procedure” and “non-contention-based random access procedure” are different random access procedures.
  • the random access process includes the following purposes:
  • UE will go from RRC inactive state to RRC connected state;
  • RRC connection re-establishment The UE re-establishes the wireless connection after the wireless link fails and enters the RRC connection state;
  • the UE is in the RRC connected state, and the UE needs a new cell to establish uplink synchronization;
  • the data arrives when the physical uplink control channel (Physical Uplink Control Channel, PUCCH) resource is available: In the RRC connected state, the uplink data arrives, and the UE does not have PUCCH resources for SR at this time.
  • PUCCH Physical Uplink Control Channel
  • the random access procedure has two different modes:
  • Contention-based random access process When multiple UEs use the same Physical Random Access Channel (PRACH) preamble to arrive at the base station at the same time, the base station will use the contention resolution process to resolve these conflicts.
  • PRACH Physical Random Access Channel
  • Non-contention-based random access process Before random access, the base station will allocate some Preambles to the UE in advance so that no collision occurs. This random access procedure is called a non-contention-based random access procedure. In order to initiate the non-contention random access procedure, the terminal should be in connected mode before the random access procedure. The non-contention-based random access procedure is mostly used in the handover procedure.
  • the UE can only initiate in the primary cell PCell, while for the non-contention-based random access procedure, the UE can initiate either in the primary cell PCell or in the secondary cell SCell.
  • Random access procedure is a random access procedure different from “contention-based random access procedure” and “non-contention-based random access procedure”.
  • the random access process in NR may include the following three modes:
  • the random access process used for positioning has the following differences:
  • All random access procedures in the general technology are to make the UE enter the RRC connected state from the RRC_idle state or the RRC inactive state, and the random access procedure for positioning defined in this disclosure is only to make the UE idle in the RRC state.
  • the positioning process is completed in the RRC idle state or the RRC inactive state, and the UE is not required to enter the RRC connected state from the RRC idle state or the RRC inactive state.
  • the random access process for positioning is illustrated as an example.
  • the random access process for positioning may be Include the following steps:
  • the UE receives the downlink positioning reference signal DL-PRS from gNB1-gNB4;
  • gNB3 reports the positioning measurement results to the LMF, and the LMF completes the positioning calculation and obtains the positioning results;
  • LMF sends the positioning result to gNB3
  • the gNB3 then sends the positioning result to the UE through the MSG4 in the random access process for positioning, thereby completing the entire process of positioning through the random access process for positioning.
  • step S110 after using the preamble format, preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, PRACH set or physical random access channel PRACH Sending time-frequency resources, indicating that the target random access process is a random access process for positioning, the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble The cyclic shift of the code root sequence, the PRACH set of the physical random access channel, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third information in the message 5
  • the information for indicating the random access procedure for positioning is pre-configured or configured, and is different from the corresponding information for the random access procedure for terminal access.
  • the random access procedure for terminal access includes a contention-based random access procedure and a non-contention-based random access procedure.
  • the preconfigured or configured preamble format is to use a new and specific preamble format to indicate "random access process for positioning";
  • the preconfigured or configured preamble format indicates that the target random access process is a random access process for positioning
  • the preconfigured or configured preamble format is preamble long format 4 or preamble short format D1.
  • the preconfigured or configured preamble root sequence that is, a new and specific preamble root sequence, is used to indicate "random access process for positioning";
  • the preconfigured or configured preamble root sequence index number that is, a new and specific preamble sequence index number, used to indicate "random access process for positioning"
  • Preconfigured or configured preamble root sequence cyclic shift that is, a new and specific preamble root sequence cyclic shift, used to indicate "random access procedure for positioning"
  • a preconfigured or configured PRACH set that is, a new and specific PRACH set, is used to indicate the "random access procedure for positioning"; optionally, the preconfigured or configured PRACH set indicates the When the target random access process is a random access process for positioning, the preconfigured or configured PRACH set is PRACH restriction set C;
  • the preconfigured or configured PRACH transmission time-frequency resource that is, the time-frequency resource occupied by the new and specific transmission PRACH, is used to indicate the "random access procedure for positioning".
  • the first information in message 3 indicates that the target random access process is a random access process for positioning
  • message 3 The first information in message A occupies a first preset bit
  • the second information in message A occupies a second preset bit
  • the third information in message 5 occupies a third preset bit.
  • the first information, the second information and the third information occupy at least one bit respectively, that is, the first preset bit, the second preset bit and the third preset bit are at least one bit respectively.
  • the first information in message 3, the second information in message A, or the third information in message 5 indicate that the target random access process is used.
  • the method further includes:
  • the first information in message 3, the second information in message A, or the third information in message 5 indicate that the target random access procedure is for positioning
  • the base station in response to the message 3, the message A or the message 5 used for positioning, the base station sends the message 4 based on the message 3, or the message B sent based on the message A, Include positioning results. If message 3, message A and message 5 are messages in the normal random access process, then message 4 and message B are the contents including the normal random access process.
  • the positioning method according to the embodiment of the present disclosure performs a terminal positioning process, including:
  • the distance between the base station and the terminal is calculated according to the signal strength information.
  • the base station includes a serving base station of the terminal and a neighboring base station of the terminal.
  • the first PRACH signal includes at least one of message 2, message 4 and message B.
  • the terminal can perform positioning calculation through the signal strength information of the first PRACH signal including the above message sent by the base station.
  • step S110 during the execution of the target random access process, a preamble format is used to indicate that the target random access process is used for locating the target, and on this basis, the terminal and/or The base station completes the terminal positioning process.
  • the target random access process is indicated to be used for locating the target through the preamble length format.
  • the PRACH preamble is used for the uplink synchronization process of initial access.
  • the PRACH long format preamble with a length of 839, four formats of 0 to 3 are supported, as shown in Table 1.
  • the preconfigured or configured random access process for positioning is PRACH long format preamble format 4, that is, compared with the usual long format preambles of four formats of 0 to 3, the long format preamble is added. code format 4.
  • different PRACH preamble formats are composed of preamble duration Nu and different cyclic prefix (CP) lengths occupying one or more PRACH orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols to define.
  • CP cyclic prefix
  • OFDM Orthogonal Frequency Division Multiplexing
  • the CP length depends on the cell radius, which is used to offset twice the transmission delay and multipath channel delay between the terminal and the base station, and avoid the interference of other user signals to the PRACH preamble sequence.
  • the sequence length L RA of the newly defined preamble length format 4 for positioning in Table 1 is 839
  • the subcarrier spacing ⁇ f RA is 5 kHz
  • the preamble sequence duration Nu is 4 ⁇ 24576 ⁇
  • the corresponding cyclic prefix For 21024 ⁇ using this configuration parameter can ensure that the preamble long format 4 used for positioning has good coverage performance, and can be received by neighboring base stations, thereby completing the positioning process.
  • Table 1 PRACH preamble long format with length 839
  • the pre-configured or configured preamble length format can indicate that the random access process is used for the positioning target, so that the terminal in the RRC idle state or the RRC inactive state can also directly complete the positioning process, thereby reducing the cost of The terminal positioning delay is reduced, and the terminal energy consumption is reduced.
  • step S110 during the execution of the target random access process, a preamble format is used to indicate that the target random access process is used for locating the target, and on this basis, the terminal and/or The base station completes the positioning process.
  • the target random access procedure is indicated by a short preamble format as being used for locating the target.
  • the PRACH preamble is used for the uplink synchronization process of initial access.
  • 10 formats are supported: A1, A2, A3, B1, B4, A1/B1, A2/B2 , A3/B3, C0 and C2, as shown in Table 2, the preset random access process for positioning is PRACH short format preamble format D1, that is, compared with the usual 10 formats of short format preambles , add the short format preamble format D1.
  • the PRACH short format preamble format D1 in Table 2 is also used to locate the target.
  • the preset sequence length L RA used to locate the preamble short format D1 is 139
  • the subcarrier spacing ⁇ f RA is 15 ⁇ 2 ⁇ kHz
  • the preamble sequence duration Nu is 12 ⁇ 2048 ⁇ ⁇ 2- ⁇
  • the corresponding cyclic prefix It is 2048 ⁇ 2- ⁇
  • the preset short preamble format can indicate that the random access process is used for the positioning target, so that the terminal in the RRC idle state or the RRC inactive state can also directly complete the positioning process, thereby reducing the cost of Terminal positioning delay, reducing terminal energy consumption.
  • the preamble root sequence information indicates that the target random access process is used for positioning purposes.
  • the terminal and/or Or the base station completes the terminal positioning process.
  • the preamble root sequence information includes at least one item of information among root sequence type, root sequence index number, and root sequence cyclic shift.
  • the "random access procedure for positioning" is indicated by a preconfigured or configured preamble root sequence type, that is, whether the target random access procedure is used for the positioning process is indicated by a specific preamble root sequence type.
  • the "random access process for positioning" is indicated by a preconfigured or configured preamble root sequence index number, that is, whether the target random access process is used for the positioning process is indicated by a specific preamble root sequence index number.
  • the "random access procedure for positioning" is indicated by a preconfigured or configured cyclic shift of the preamble root sequence, that is, whether the random access procedure is used for the positioning procedure is indicated by a specific cyclic shift of the preamble root sequence .
  • the NR random access preamble adopts the Zadoff-Chu (ZC) sequence, and different preambles are represented by different cyclic shifts of the ZC sequence.
  • the terminal needs to generate 64 preambles, that is, 64 sequences, according to the configuration parameters. There are two ways to generate different sequences, one is to generate based on different root sequence index numbers, and the other is to generate cyclic shift based on the same root sequence index number.
  • different root sequence index numbers can be allocated to different cells to avoid PRACH preamble interference between cells.
  • different root sequence types, different root sequence index numbers, or different root sequence cyclic shifts can be assigned to the random access procedure for positioning purposes, so as to be different from the normal random access procedure. differentiate.
  • a PRACH set indicates that the current random access process is for positioning purposes, and on this basis, the terminal and/or the base station completes the terminal positioning process.
  • PRACH unrestricted set PRACH restricted set A and restricted set B are defined.
  • PRACH restricted set A and B are used when the terminal moves at high speed. the random access process.
  • PRACH restriction set C is a dedicated PRACH sequence set used for a random access procedure of positioning.
  • the target random access process is indicated by the PRACH restriction set C to be used for positioning the target, so that the terminal in the RRC idle state or the RRC inactive state can also directly complete the positioning process, which reduces the terminal positioning delay and reduces the end energy consumption.
  • step S110 the current random access process is indicated by the PRACH time-frequency resource for positioning purposes, and on this basis, the terminal and/or the base station completes the terminal positioning process.
  • the resource occupied by PRACH transmission is PRACH Occasion (RO).
  • the base station preconfigures or configures a part of the time-frequency resources occupied by PRACH transmission for normal random access.
  • the other part of the time-frequency resources occupied by PRACH transmission is used for the random access process of positioning.
  • the two parts of time-frequency resources are orthogonal in the time domain or frequency domain, so on the one hand, they can be used to distinguish the random access process used for positioning from the normal random access process, and on the other hand, it can also avoid the random access process used for positioning.
  • Mutual interference between random access procedure and normal random access procedure are possible to avoid the random access process used for positioning.
  • the time-frequency resources occupied by the pre-configured or configured PRACH indicate that the target random access process is used to locate the target, so that the terminal in the RRC idle state or the RRC inactive state can also directly complete the positioning process.
  • the terminal positioning delay is reduced, and the terminal energy consumption is reduced.
  • step S110 during the execution of the target random access process, the current random access process is indicated by the first information in MSG3, the second information in MSGA or the third information in MSG5 is used for positioning purposes. On this basis, the terminal and/or the base station completes the terminal positioning process.
  • the first information in MSG3, the second information in MSGA, or the third information in MSG5 is a bit, and this bit is used to indicate the "random access procedure for positioning", that is, this bit is used to indicate the Whether the random access procedure is used for the positioning procedure.
  • MSG4, MSGB and MSG5 will also be different according to this bit: if it is for positioning purpose, it will be the positioning result, and if it is random access, it will be the content of normal MSG4/MSGB.
  • the first information in MSG3, the second information in MSGA, or the third information in MSG5 indicate that the target random access procedure is used for locating the target, and the RRC idle state or RRC inactive state can be
  • the terminal can also directly complete the positioning process, which reduces the terminal positioning delay and reduces the terminal energy consumption.
  • Another aspect of the embodiments of the present disclosure further provides a positioning method, which is applied to a base station. As shown in FIG. 4 , the method includes:
  • S410 Receive information indicating that the target random access process is a random access process used for positioning by the terminal through at least one of the following:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the PRACH sends time-frequency resources, messages, and time-frequency resources through the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble root sequence cyclic shift, and the PRACH set of physical random access channels.
  • At least one of the first information in 3, the second information in message A, and the third information in message 5 indicates that the current random access procedure is used for positioning purposes, and the terminal and/or base station according to the indication information , complete the positioning process, so that the UE in the RRC idle state or the RRC inactive state can use the random access process to complete the positioning, and solve the problem of the related technology.
  • the UE in the RRC idle state or the RRC inactive state needs to perform positioning and must first enter the RRC connection state, resulting in increased power consumption and increased positioning delay.
  • the positioning method wherein the method further comprises:
  • the terminal positioning procedure is performed.
  • the positioning method wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the cyclic shift of the preamble root sequence, the physical random access In the incoming channel PRACH set, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5, the random access used to indicate the positioning
  • the information of the procedure is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the random access procedure for terminal access includes a contention-based random access procedure and a non-contention-based random access procedure.
  • the terminal when the terminal indicates through the first information in message 3 that the target random access process is a random access process for positioning, the first information in message 3 A message occupies the first preset bit.
  • the terminal when the terminal indicates through the second information in the message A that the target random access process is a random access process for positioning, the first The second information occupies the second preset bit.
  • the terminal when the terminal indicates through the third information in message 5 that the target random access process is a random access process for positioning, the third information in message 5 The third information occupies the third preset bit.
  • the first preset bit, the second preset bit, and the third preset bit each occupy at least one bit, for example, each occupy one bit, or occupy at least two Bit etc.
  • the bits respectively occupied by the first preset bit, the second preset bit and the third preset bit may be the same or different.
  • the positioning method wherein, when the target random access process is indicated by a preconfigured or configured preamble format as a random access process for positioning, the preconfigured or configured preamble format It is preamble long format 4, or preamble short format D1.
  • the positioning method wherein, when the target random access process is indicated by a pre-configured or configured PRACH set as a random access process for positioning, the pre-configured or configured PRACH set is a PRACH restricted set C.
  • the positioning method wherein the terminal indicates that the target random access process is used by the first information in message 3, the second information in message A, or the third information in message 5.
  • performing the terminal positioning process includes:
  • the performing a terminal positioning process includes:
  • the second PRACH signal includes at least one of a preamble, message 3, message 5 and message A.
  • the base station includes a serving base station of the terminal and a neighboring base station of the terminal.
  • An embodiment of the present disclosure further provides a terminal, as shown in FIG. 5 , including a memory 520, a transceiver 510, a processor 500, and a user interface 530; wherein, in FIG. 5, the bus architecture may include any number of interconnected buses and A bridge, specifically one or more processors represented by processor 500 and various circuits of memory represented by memory 520 are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 510 may be a number of elements, including a transmitter and a receiver, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like Transmission medium.
  • the user interface 530 may also be an interface capable of externally connecting the required equipment, and the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 500 in performing operations.
  • the processor 500 may be a CPU (central processor), an ASIC (Application Specific Integrated Circuit, an application-specific integrated circuit), an FPGA (Field-Programmable Gate Array, a field programmable gate array) or a CPLD (Complex Programmable Logic Device) , complex programmable logic devices), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • complex programmable logic devices complex programmable logic devices
  • the processor is configured to execute any one of the methods provided by the embodiments of the present disclosure according to the obtained executable instructions by invoking the computer program stored in the memory.
  • the processor and memory may also be physically separated.
  • the memory 520 is used to store computer programs; the transceiver 510 is used to send and receive data under the control of the processor 500; the processor 500 is used to read the computer program in the memory 520 and perform the following operations :
  • At least one of the following information is used to indicate that the target random access process is a random access process for positioning:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the processor 500 is further configured to:
  • the processor 500 is further configured to: the terminal is in a radio resource control RRC idle state or an RRC inactive state before executing the target random access procedure;
  • the processor 500 is further configured to:
  • the terminal wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble root sequence cyclic shift, the physical random access
  • the channel PRACH set, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5 are used to indicate the random access process of positioning.
  • the information is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the terminal wherein the random access procedure for terminal access includes a contention-based random access procedure and a non-contention-based random access procedure.
  • the first information in message 3 when the first information in message 3 indicates that the target random access process is a random access process for positioning, the first information in message 3 occupies the first a preset bit.
  • the second information in the message A indicates that the target random access process is a random access process for positioning
  • the second information in the message A occupies the first Two preset bits.
  • the third information in the message 5 indicates that the target random access process is a random access process for positioning
  • the third information in the message 5 occupies the first Three preset bits.
  • the preconfigured or configured preamble format is:
  • the preamble long format is 4, or the preamble short format D1.
  • the pre-configured or configured PRACH set is PRACH restricted set C .
  • the terminal wherein the first information in message 3, the second information in message A, or the third information in message 5 indicates that the target random access process is a random access procedure for positioning.
  • the processor is further used for:
  • the processor 500 performs a terminal positioning process, including:
  • the distance between the base station and the terminal is calculated according to the signal strength information.
  • the terminal wherein the base station includes a serving base station of the terminal and a neighboring base station of the terminal.
  • the first PRACH signal includes at least one of message 2, message 4 and message B.
  • an embodiment of the present disclosure further provides a base station, including a memory 620, a transceiver 610, and a processor 600; wherein, in FIG. 6, the bus architecture may include any number of interconnected buses and bridges, specifically consisting of One or more processors, represented by processor 600, and various circuits of memory, represented by memory 620, are linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface.
  • Transceiver 610 may be multiple elements, ie, including transmitters and receivers, providing means for communicating with various other devices over transmission media including wireless channels, wired channels, fiber optic cables, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 may store data used by the processor 600 in performing operations.
  • the processor 600 may be a central processor (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD), the processor can also use a multi-core architecture.
  • CPU central processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD Complex Programmable Logic Device
  • the memory 620 is used to store computer programs; the transceiver 610 is used to send and receive data under the control of the processor; the processor 600 is used to read the computer program in the memory and perform the following operations:
  • the receiving terminal uses at least one of the following information to indicate that the target random access procedure is a random access procedure for positioning:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, physical random access channel PRACH set, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the processor 600 is further configured to:
  • the terminal positioning procedure is performed.
  • the base station wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble root sequence cyclic shift, the physical random access In the channel PRACH set, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5, the random access process used to indicate positioning
  • the information is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the random access procedure for terminal access includes a contention-based random access procedure and a non-contention-based random access procedure.
  • the terminal when the terminal indicates through the first information in message 3 that the target random access process is a random access process for positioning, the first information in message 3 The information occupies the first preset bit.
  • the second information in message A occupies the second preset bit.
  • the third information in message 5 occupies the third preset bit.
  • the preconfigured or configured preamble format is:
  • the preamble long format is 4, or the preamble short format D1.
  • the base station wherein, when the target random access process is indicated by a preconfigured or configured PRACH set as a random access process for positioning, the preconfigured or configured PRACH set is PRACH restricted set C .
  • the base station wherein the terminal indicates that the target random access process is for During the random access process of positioning, the processor 600 performs the terminal positioning process including:
  • the base station, wherein the processor 600 performs the terminal positioning process includes:
  • the second PRACH signal includes at least one of a preamble, a message 3, a message 5 and a message A.
  • the base station wherein the base station includes a serving base station of the terminal and a neighboring base station of the terminal.
  • an embodiment of the present disclosure further provides a positioning apparatus, which is applied to a terminal, wherein the apparatus includes:
  • the positioning device wherein the device further comprises:
  • the processing unit 720 is configured to perform a terminal positioning process.
  • the positioning apparatus wherein the terminal is in a RRC idle state or an RRC inactive state before executing the target random access procedure;
  • the processing unit 720 is further configured to:
  • the positioning apparatus wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble root sequence cyclic shift, the physical random access Incoming channel PRACH set, the PRACH sending time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5, the random access process used to indicate the positioning
  • the information is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the random access procedure for terminal access includes a contention-based random access procedure and a non-contention-based random access procedure.
  • the first information in the message 3 occupies The first preset bit.
  • the positioning apparatus wherein when the target random access process is indicated by the second information in the message A as a random access process for positioning, the second information in the message A occupies The second preset bit.
  • the third information in the message 5 occupies The third preset bit.
  • the positioning apparatus wherein, when the target random access process is indicated by a preconfigured or configured preamble format as a random access process for positioning, the preconfigured or configured preamble format It is preamble long format 4, or preamble short format D1.
  • the positioning apparatus wherein, when the target random access process is indicated as a random access process for positioning through a pre-configured or configured PRACH set, the pre-configured or configured PRACH set is a PRACH restricted set C.
  • the positioning device wherein the first information in message 3, the second information in message A, or the third information in message 5 indicates that the target random access process is used for positioning.
  • the apparatus further includes:
  • the message receiving unit 730 is configured to receive the random access response message of the message 3, the message A or the message 5 sent by the base station, where the random access response message includes positioning result information.
  • the processing unit 720 performs a terminal positioning process, including:
  • the distance between the base station and the terminal is calculated according to the signal strength information.
  • the base station includes a serving base station of the terminal and a neighboring base station of the terminal.
  • the positioning apparatus wherein the first PRACH signal includes at least one of message 2, message 4 and message B.
  • an embodiment of the present disclosure further provides a positioning apparatus, which is applied to a base station, wherein the apparatus includes:
  • a receiving unit 810 configured to receive information indicating that the target random access process is a random access process used for positioning by the terminal through at least one of the following:
  • Preamble format preamble root sequence type, preamble root sequence index number, preamble root sequence cyclic shift, PRACH set of physical random access channels, PRACH transmission time-frequency resources, the first information in message 3, in message A and the third information in message 5.
  • the positioning device wherein the device further comprises:
  • the executing unit 820 is configured to execute the terminal positioning process according to the indicated information.
  • the positioning apparatus wherein the preamble format, the preamble root sequence type, the preamble root sequence index number, the preamble root sequence cyclic shift, the physical random access In the incoming channel PRACH set, the PRACH transmission time-frequency resource, the first information in the message 3, the second information in the message A, and the third message in the message 5, the random access used to indicate the positioning
  • the information of the procedure is pre-configured or configured and is different from the corresponding information for the random access procedure for terminal access.
  • the random access procedure for terminal access includes a contention-based random access procedure and a non-contention-based random access procedure.
  • the terminal when the terminal indicates that the target random access process is a random access process for positioning through the first information in message 3, the first information in message 3 A message occupies the first preset bit.
  • the positioning device wherein, when the terminal indicates through the second information in the message A that the target random access process is a random access process for positioning, the first information in the message A The second information occupies the second preset bit.
  • the terminal when the terminal indicates through the third information in message 5 that the target random access process is a random access process for positioning, the The third information occupies the third preset bit.
  • the positioning apparatus wherein, when the target random access process is indicated by a preconfigured or configured preamble format as a random access process for positioning, the preconfigured or configured preamble format It is preamble long format 4, or preamble short format D1.
  • the positioning apparatus wherein, when the target random access process is indicated as a random access process for positioning through a pre-configured or configured PRACH set, the pre-configured or configured PRACH set is a PRACH restricted set C.
  • the positioning device wherein the terminal indicates that the target random access process is used by the first information in message 3, the second information in message A, or the third information in message 5.
  • the executing unit 820 executes the terminal positioning process including:
  • the executing unit 820 performs the terminal positioning process including:
  • the second PRACH signal includes at least one of a preamble, a message 3, a message 5 and a message A.
  • the base station includes a serving base station of the terminal and a neighboring base station of the terminal.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a processor-readable storage medium.
  • the technical solutions of the present disclosure essentially or the part that contributes to the related technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • An embodiment of the present disclosure further provides a processor-readable storage medium, wherein the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to perform the positioning according to any one of the above method.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, optical storage, and the like.
  • processor-executable instructions may also be stored in a processor-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the processor-readable memory result in the manufacture of means including the instructions product, the instruction means implements the functions specified in the flow or flow of the flowchart and/or the block or blocks of the block diagram.
  • processor-executable instructions can also be loaded onto a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process that Execution of the instructions provides steps for implementing the functions specified in the flowchart or blocks and/or the block or blocks of the block diagrams.
  • modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of calling software through processing elements, and some modules can be implemented in hardware.
  • the determination module may be a separately established processing element, or may be integrated into a certain chip of the above-mentioned device to be implemented, in addition, it may also be stored in the memory of the above-mentioned device in the form of program code, and a certain processing element of the above-mentioned device may Call and execute the function of the above determined module.
  • the implementation of other modules is similar. In addition, all or part of these modules can be integrated together, and can also be implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability. In the implementation process, each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • each module, unit, sub-unit or sub-module may be one or more integrated circuits configured to implement the above methods, such as: one or more Application Specific Integrated Circuit (ASIC), or, one or Multiple microprocessors (digital signal processors, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital signal processors
  • FPGA Field Programmable Gate Array
  • the processing element may be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种定位方法、装置、终端及基站。该定位方法包括:通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。

Description

定位方法、装置、终端及基站
相关申请的交叉引用
本申请主张在2020年8月7日在中国提交的中国专利申请号No.202010789728.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线技术领域,尤其涉及一种定位方法、装置、终端及基站。
背景技术
目前在新无线接入技术(New Radio Access,NR)中下行定位的技术方案主要包括基于时延的下行到达时间差(Downlink-Time Difference Of Arrival,DL-TDOA)定位方法和基于角度的下行出发角(Downlink-Angle of Departure,DL-AoD)定位方法等方案。对于DL-TDOA时延定位方法,就是依据终端相对于各个基站的传播距离的不同,通过基站之间的相对时延估算出终端的位置。对于DL-AoD角度定位方法,就是根据终端相对于基站的位置方向,通过多个角度参数确定终端的位置。
对于上面的两种定位技术方案,无论哪种方案,都需要终端(User Equipment,UE)处于无线资源控制(Radio Resource Control,RRC)连接态,才能执行定位流程。如果处于RRC空闲态或者处于RRC非活动态的UE需要进行定位,就必须要先进入RRC连接态,这就会带来额外的UE的耗电量增加以及定位时延的增加。
发明内容
本公开的目的在于提供一种定位方法、装置、终端及基站,以解决相关技术中处于RRC空闲态或者RRC非活动态的UE需要进行定位,必须要先进入RRC连接态,造成耗电量增加及定位时延增加的问题。
为了解决上述技术问题,本公开实施例提供一种定位方法,应用于终端,其中,所述方法包括:
通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的定位方法,其中,所述方法还包括:所述终端在执行所述目标随机接入过程之前处于无线资源控制RRC空闲态或RRC非活动态;以及
指示所述目标随机接入过程为用于定位的随机接入过程之后,执行终端定位过程,并在执行所述终端定位过程之后,保持处于所述RRC空闲态或RRC非活动态。
可选地,所述的定位方法,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的定位方法,其中,在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位;
在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位;
在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的定位方法,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的定位方法,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的 PRACH集合为PRACH限制集C。
可选地,所述的定位方法,其中,在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述方法还包括:
接收基站发送的所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的定位方法,其中,所述执行终端定位过程,包括:
获取基站发送的第一物理随机接入信道PRACH信号的信号强度信息;
根据所述信号强度信息计算所述基站与所述终端之间的距离。
本公开还提供另一实施例所述定位方法,应用于基站,其中,所述方法包括:
接收终端通过以下至少之一指示所述目标随机接入过程为用于定位的随机接入过程的信息:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的定位方法,其中,所述方法还包括:
根据所指示的信息,执行终端定位过程。
可选地,所述的定位方法,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中的第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的定位方法,其中,所述终端在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位;
所述终端在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位;
所述终端在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的定位方法,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的定位方法,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的定位方法,其中,所述终端在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,执行终端定位过程包括:
发送所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的定位方法,其中,所述执行终端定位过程包括:
获取第二PRACH信号的信号强度信息,计算所述基站与所述终端之间的距离。
本公开实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序指令;其中,所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序指令,执行下列操作:
通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的终端,其中,所述处理器还用于:所述终端在执行所述目标随机接入过程之前处于无线资源控制RRC空闲态或RRC非活动态;以及
指示所述目标随机接入过程为用于定位的随机接入过程之后,执行终端定位过程,并在执行所述终端定位过程之后,保持处于所述RRC空闲态或 RRC非活动态。
可选地,所述的终端,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的终端,其中,在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位;
在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位;
在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的终端,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的终端,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的终端,其中,在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述处理器还用于:
接收基站发送的所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的终端,其中,所述处理器执行终端定位过程,包括:
获取基站发送的第一物理随机接入信道PRACH信号的信号强度信息;
根据所述信号强度信息计算所述基站与所述终端之间的距离。
本公开实施例还提供一种基站,包括:收发机、存储器、处理器及存储在 所述存储器上并可在所述处理器上运行的程序指令;其中,所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序指令,执行下列操作:
接收终端通过以下至少之一指示所述目标随机接入过程为用于定位的随机接入过程的信息:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的基站,其中,所述处理器还用于:
根据所指示的信息,执行终端定位过程。
可选地,所述的基站,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中的第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的基站,其中,所述终端在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位;所述终端在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位;
所述终端在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的基站,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的基站,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的基站,其中,所述终端在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述处理器执行终端定位过程包括:
发送所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的基站,其中,所述处理器执行终端定位过程包括:
获取第二PRACH信号的信号强度信息,计算所述基站与所述终端之间的距离。
本公开实施例还提供一种定位装置,应用于终端,其中,所述装置包括:
指示单元,用于通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
本公开实施例还提供一种定位装置,应用于基站,其中,所述装置包括:
接收单元,用于接收终端通过以下至少之一指示所述目标随机接入过程为用于定位的随机接入过程的信息:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
本公开实施例还提供一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上任一项所述的定位方法。
本公开的上述技术方案的有益效果如下:
上述方案中,通过前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合,PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息和消息5中的第三信息中的至少之一信息,指示当前随机接入过程为用于定位目的,终端和/或基站依据该指示信息,完成定位过程,以能够使处于RRC空闲态或者RRC非 活动态的UE利用随机接入过程完成定位,解决相关技术处于RRC空闲态或者RRC非活动态的UE需要进行定位,必须先进入RRC连接态,造成耗电量增加及定位时延增加的问题。
附图说明
图1为本公开其中一实施例所述定位方法的流程示意图;
图2为通常定位方法的系统架构示意图;
图3采用本公开实施例所述定位方法的系统架构示意图;
图4为本公开另一实施例所述定位方法的流程示意图;
图5为本公开实施例所述终端的结构示意图;
图6为本公开实施例所述基站的结构示意图;
图7为本公开其中一实施例所述定位装置的结构示意图;
图8为本公开另一实施例所述定位装置的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时 分双工(time division duplex,TDD)系统、高级长期演进(long term evolution advanced,LTE-A)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G新空口(New Radio,NR)系统等。这多种系统中均包括终端设备和网络设备。系统中还可以包括核心网部分,例如演进的分组系统(Evolved Packet System,EPS)、5G系统(5GS)等。
本公开实施例涉及的终端,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。在不同的系统中,终端的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(User Equipment,UE)。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网(Core Network,CN)进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiated Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本公开实施例中并不限定。
本公开实施例涉及的基站可以包括多个为终端提供服务的小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
本公开实施例提供了一种定位方法及装置,能够使处于RRC空闲态或者RRC非活动态的UE利用随机接入过程完成定位,以解决相关技术处于RRC空闲态或者RRC非活动态的UE需要进行定位,必须先进入RRC连接态,造成耗电量增加及定位时延增加的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1所示,本公开其中一实施例所述定位方法,应用于终端,包括:
S110,通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
本公开实施例所述定位方法,通过前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合,PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息和消息5中的第三信息中的至少之一,指示当前随机接入过程为用于定位目的,使基站能够根据该指示信息,配合完成终端定位过程。
可选地,所述方法还包括:
执行终端定位过程。
采用该方式,利用上述方式指示用于定位的随机接入过程,处于RRC空闲态或者RRC非活动态的UE能够完成定位过程,无需必须从RRC空闲态或者RRC非活动态进入RRC连接态,因此能够解决相关技术处于RRC空闲态或者RRC非活动态的UE需要进行定位,必须先进入RRC连接态,造成耗电量增加及定位时延增加的问题。
为清楚说明本公开实施例所述定位方法与通常技术定位方法的不同,以下结合图2,对通常技术的定位方法进行说明。
下行定位的技术方案主要包括基于时延的DL-TDOA定位方法和基于角度的DL-AoD定位方法等。对于基于时延的DL-TDOA定位方法,就是依据终端相对于各个基站的传播距离的不同,通过基站之间的相对时延估算出终端的位置。结合图2所示,该基于时延的DL-TDOA定位方法,包括以下步骤:
gNB1、gNB2、gNB3和gNB4分别发送周期性下行定位参考信号(Downlink Positioning Reference Signal,DL-PRS)给UE;
UE根据定位管理功能单元(Location Management Function,LMF)提供的DL-TDOA辅助数据,得知UE周围gNB发送下行定位参考信号DL-PRS的配置信息,通过接收各gNB的DL-PRS,首先估计出与每个gNB之间的到达时间(Time Of Arrival,TOA)测量值,然后计算获得下行定位参考信号DL-PRS的参考信号时间差(Reference Signal Time Difference,RSTD);
由UE获取的DL-PRS RSTD和其他已知信息(例如gNB的地理坐标),可用基于网络的定位方式或基于UE的定位方式来计算UE的位置:
若采用基于网络的定位方式,UE将获取的DL-PRS RSTD测量值上报给LMF,由LMF利用上报的测量值以及其他已知信息(例如gNB的地理坐标)来计算UE的位置;
若采用基于UE的定位方式,则由UE利用获取的DL-PRS RSTD以及其他由网络提供的信息(例如gNB的地理坐标)来计算UE自身的位置。
对于基于角度的DL-AoD定位方法,就是依据终端相对于基站的位置方向,通过多个角度参数确定终端的位置,具体包括以下步骤:
gNB1、gNB2、gNB3和gNB4分别发送周期性DL-PRS信号给UE;
UE根据LMF提供的周围gNB发送DL-PRS的配置信息,测量由各gNB的各个DL-PRS波束信号,并将DL-PRS RSRP测量值上报给LMF;
LMF利用UE上报的DL-PRS RSRP以及其他已知信息(例如各gNB的各个DL-PRS波束的发送方向)来确定UE相对各gNB的角度,即DL-AoD;
LMF利用所得的DL-AoD以及各gNB的地理坐标来计算UE的位置。
上述基于时延的DL-TDOA定位方法和基于角度的DL-AoD定位方法,均需要终端处于RRC连接态,才能执行相应的定位流程,通常技术处于RRC空闲态或者RRC非活动态时,终端必须先进入RRC连接态后,才能够执行定位流程,因此会带来额外的UE耗电以及定位时延的增加。
为解决上述技术问题,本公开实施例提供一种定位方法,通过前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合,PRACH发送时频资源、消息3中的第一信息、 消息A中的第二信息和消息5中的第三信息中的至少之一信息,指示当前随机接入过程为用于定位目的,终端和/或基站依据该指示信息,完成定位过程。
本公开实施例中,可选地,所述方法还包括:所述终端在执行所述目标随机接入过程之前处于无线资源控制RRC空闲态或RRC非活动态;
其中,在执行终端定位过程之后,所述方法还包括:
保持处于所述RRC空闲态或RRC非活动态。
也即,具体地,采用本公开实施例所述用于定位的随机接入过程,终端执行定位过程中和执行定位过程之后,可以仍保持处于当前的RRC空闲态或RRC非活动态,无需进入RRC连接态。
需要说明的是,本公开实施例中,通过上述至少之一信息指示“用于定位的随机接入过程”,该“用于定位的随机接入过程”为一种与“基于竞争的随机接入过程”以及“基于非竞争的随机接入过程”不同的随机接入过程。
目前在新无线接入(New Radio Access,NR)技术中,随机接入过程包括有以下目的:
初始接入:UE从RRC空闲态到RRC连接态;
RRC非连接态下的接入:UE会从RRC非活动态到RRC连接态;
RRC连接重建:UE在无线链路失败后重新建立无线连接,进入到RRC连接态;
切换:UE处于RRC连接态,此时UE需要新的小区建立上行同步;
失步情况下数据到达:RRC连接态下,上行或下行数据到达时,此时UE上行处于失步状态;
无调度请求(Scheduling Request,SR)可用物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源情况下数据到达:RRC连接态下,上行数据到达,此时UE没有用于SR的PUCCH资源时。
并且,随机接入过程有两种不同的模式:
基于竞争的随机接入过程:当有多个UE使用了相同物理随机接入信道(Physical Random Access Channel,PRACH)前导码Preamble同时到达基站后,基站将使用竞争解决的过程来解决这些冲突。
基于非竞争的随机接入过程:在随机接入之前,基站将事先分配一些 Preamble给UE,以便不发生冲突。这种随机接入过程称为基于非竞争的随机接入过程。为了启动非竞争随机接入过程,终端应该在该随机接入过程之前就处于连接态模式。基于非竞争的随机接入过程多使用在切换过程中。
对于相关技术中NR基于竞争的随机接入过程,UE只能在主小区PCell发起,而基于非竞争的随机接入过程,UE即可以在主小区PCell发起也可以在辅小区SCell发起。
在本实施例中,提出了在NR中新定义一种“用于定位的随机接入过程”,并且使用“用于定位的随机接入过程”携带定位信息,该“用于定位的随机接入过程”是一种与“基于竞争的随机接入过程”以及“基于非竞争的随机接入过程”不同的随机接入过程。
基于此,采用本公开实施例所述方法,NR中的随机接入过程可以包括以下三种模式:
基于竞争的随机接入过程;
基于非竞争的随机接入过程;
用于定位的随机接入过程。
相较于通常技术的基于竞争的随机接入过程和基于非竞争的随机接入过程,采用本公开实施例所述方法,用于定位的随机接入过程具有以下不同:
通常技术的所有随机接入过程都是为了使得UE从RRC_空闲态或RRC非活动态进入到RRC连接态,而本公开所定义的用于定位的随机接入过程仅仅是使得UE在RRC空闲态或RRC非活动态完成定位过程,并不会要求UE一定要从RRC空闲态或RRC非活动态进入到RRC连接态。
举例说明,结合图3所示,以UE处于空闲态,服务基站为gNB3为例,对用于定位的随机接入过程进行举例说明,其中一实施方式,该用于定位的随机接入过程可以包括以下步骤:
UE接收来自于gNB1~gNB4的下行定位参考信号DL-PRS;
将基于DL-PRS的定位测量结果通过用于定位的随机接入过程中的MSG3上报给UE的服务基站gNB3;
gNB3将定位测量结果上报给LMF,由LMF完成定位解算,获得定位结果;
LMF将定位结果发送给gNB3;
gNB3再通过用于定位的随机接入过程中的MSG4将定位结果发送给UE,从而通过用于定位的随机接入过程完成了定位的整个流程。
需要说明的是,上述用于定位的随机接入过程仅为举例说明,具体并不限于仅能够包括上述的步骤。
本公开实施例中,可选地,在步骤S110,在通过前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、PRACH集合或物理随机接入信道PRACH发送时频资源,指示所述目标随机接入过程为用于定位的随机接入过程时,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
其中,用于终端接入的随机接入过程包括基于竞争的随机接入过程和基于非竞争的随机接入过程。
本公开实施例所述定位方法中,预配置或配置的前导码格式也即为采用一种新的、特定的前导码格式指示“用于定位的随机接入过程”;可选地,在通过预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
本公开实施例所述定位方法中,预配置或配置的前导码根序列,也即为一种新的、特定的前导码根序列,用于指示“用于定位的随机接入过程”;
预配置或配置的前导码根序列索引号,也即为一种新的、特定的前导码序列索引号,用于指示“用于定位的随机接入过程”;
预配置或配置的前导码根序列循环移位,也即为一种新的、特定的前导码根序列循环移位,用于指示“用于定位的随机接入过程”;
预配置或配置的PRACH集合,也即为一种新的、特定的PRACH集合,用于指示“用于定位的随机接入过程”;可选地,在通过预配置或配置的 PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C;
预配置或配置的PRACH发送时频资源,也即为新的、特定的发送PRACH所占用的时频资源,用于指示“用于定位的随机接入过程”。
可选地,在通过消息3中的第一信息、消息A中的第二信息或消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位,消息A中的所述第二信息占用第二预设比特位,消息5中的所述第三信息占用第三预设比特位。
例如,第一信息、第二信息和第三信息分别至少占用一个比特位,也即第一预设比特位、第二预设比特位和第三预设比特位分别为至少一个比特位。
可选地,本公开另一实施例所述定位方法,在通过消息3中的第一信息、消息A中的第二信息或消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述方法还包括:
接收基站发送的所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
具体地,在用于定位的随机接入过程中,通过消息3中的第一信息、消息A中的第二信息或消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,与通常技术的随机接入过程不同,响应于用于定位的消息3、消息A或消息5,基站基于消息3发送的消息4,或基于消息A发送的消息B,包括定位结果。若消息3、消息A和消息5为通常随机接入过程中的消息,则消息4、消息B为包括通常随机接入过程的内容。
本公开实施例所述定位方法,执行终端定位过程,包括:
获取基站发送的第一PRACH信号的信号强度信息;
根据所述信号强度信息计算所述基站与所述终端之间的距离。
可选地,所述的定位方法,其中,所述基站包括所述终端的服务基站以及所述终端的邻基站。
可选地,所述的定位方法,其中,所述第一PRACH信号包括消息2、消息4和消息B中的至少之一。
具体地,终端在指示目标随机接入过程为用于定位的随机接入过程后, 通过基站发送的包括上述消息的第一PRACH信号的信号强度信息,终端能够进行定位计算。
以下对本公开实施例所述定位方法的实施方式进行举例说明。
实施方式一
该实施方式中,结合图1所示,在步骤S110,在执行目标随机接入过程中,通过前导码格式指示该目标随机接入过程为用于定位目标,在此基础上,终端和/或基站完成终端定位过程。
可选地,该实施方式中,通过前导码长格式指示该目标随机接入过程为用于定位目标。
在NR中,PRACH前导码用于初始接入的上行同步过程,通常对于长度为839的PRACH长格式前导码,支持0~3四种格式,如表1所示。而本实施例中,预配置或配置用于定位的随机接入过程为PRACH长格式前导码格式4,也即相较于通常的0~3四种格式的长格式前导码,增加长格式前导码格式4。
其中,不同的PRACH前导码格式是由占用一个或多个PRACH正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号的前导码持续时长N u、不同的循环前缀(CP)长度
Figure PCTCN2021104234-appb-000001
来定义的。其中,CP长度取决于小区半径,用于抵消终端和基站之间的两倍传输时延和多径信道时延,避免其它用户信号针对PRACH前导码序列的干扰。
表1中的本实施例新定义的用于定位的前导码长格式4的序列长度L RA为839,子载波间隔Δf RA为5kHz,前导码序列持续时长N u为4·24576κ,而对应的循环前缀
Figure PCTCN2021104234-appb-000002
为21024κ,采用这种配置参数,可以保证用于定位的前导码长格式4具有较好的覆盖性能,可以被邻基站接收,从而完成定位流程。
表1:长度为839的PRACH前导码长格式
Figure PCTCN2021104234-appb-000003
Figure PCTCN2021104234-appb-000004
其中:κ=Ts/Tc=64。
采用该实施方式,通过预配置或配置的前导码长格式能够指示随机接入过程为用于定位目标,从而可以让处于RRC空闲态或RRC非活动态的终端也能够直接完成定位流程,从而降低了终端定位时延,降低了终端能耗。
实施方式二
该实施方式中,结合图1所示,在步骤S110,在执行目标随机接入过程中,通过前导码格式指示该目标随机接入过程为用于定位目标,在此基础上,终端和/或基站完成定位过程。
可选地,该实施方式中,通过前导码短格式指示该目标随机接入过程为用于定位目标。
在NR中,PRACH前导码用于初始接入的上行同步过程,对于长度为139的PRACH短格式前导码,支持10种格式:A1、A2、A3、B1、B4、A1/B1、A2/B2、A3/B3、C0和C2,如表2所示,预先设定用于定位的随机接入过程为PRACH短格式前导码格式D1,也即相较于通常的10种格式的短格式前导码,增加短格式前导码格式D1。如表2中PRACH短格式前导码格式D1也即为用于定位目标。
其中,表2中,预先设定的用于定位前导码短格式D1的序列长度L RA为139,子载波间隔Δf RA为15·2 μkHz,前导码序列持续时长N u为12·2048κ·2 ,而对应的循环前缀
Figure PCTCN2021104234-appb-000005
为2048κ·2 ,采用这种配置参数,可以保证用于定位的前导码短格式D1具有较好的覆盖性能,可以被邻基站接收,从而完成定位流程。
表2:长度为139的PRACH前导码短格式
Figure PCTCN2021104234-appb-000006
Figure PCTCN2021104234-appb-000007
表2中:Δf RA=15·2 μkHz,μ∈{0,1,2,3},κ=Ts/Tc=64.
采用该实施方式,通过预先设定的前导码短格式能够指示随机接入过程为用于定位目标,从而可以让处于RRC空闲态或RRC非活动态的终端也能够直接完成定位流程,从而降低了终端定位时延,降低了终端能耗。
实施方式三
该实施方式中,结合图1所示,在步骤S110,在执行目标随机接入过程中,通过前导码根序列信息指示目标随机接入过程是用于定位目的,在此基础上,终端和/或基站完成终端定位过程。该实施方式中,前导码根序列信息包括有根序列类型、根序列索引号以及根序列循环移位中的至少一项信息。
通过预配置或配置的前导码根序列类型指示“用于定位的随机接入过程”,即:通过特定的前导码根序列类型来指示该目标随机接入过程是否用于定位过程。
通过预配置或配置的前导码根序列索引号指示“用于定位的随机接入过程”,即:通过特定的前导码根序列索引号来指示该目标随机接入过程是否用于定位过程。
通过预配置或配置的前导码根序列循环移位来指示“用于定位的随机接入过程”,即:通过特定的前导码根序列循环移位来指示该随机接入过程是否用于定位过程。
NR随机接入前导码采用Zadoff-Chu(ZC)序列,通过ZC序列的不同循环移位来表示不同的前导码。终端要根据配置参数生成64个前导码,也就是64个序列。产生不同的序列有两种方法,一种是根据不同的根序列索引号生成,另外一种是基于同一个根序列索引号做循环移位生成。
并且,在网络部署时,可以为不同的小区分配不同的根序列索引号,以避免小区间的PRACH前导码的干扰。
而对于用于定位的随机接入过程,可以为定位目的的随机接入过程分配不同的根序列类型、不同的根序列索引号或者不同的根序列循环移位,以与正常的随机接入过程区分开来。
采用该实施方式,通过使用不同的根序列类型、不同的根序列索引号或者不同的根序列循环移位指示一种“用于定位的随机接入过程”的模式,从而可以让处于RRC空闲态或RRC非活动态的终端也能够直接完成定位流程,降低了终端定位时延,降低了终端能耗。
实施方式四
该实施方式,结合图1所示,在步骤S110,通过PRACH集合指示当前随机接入过程是用于定位目的,在此基础上,终端和/或基站完成终端定位过程。
NR相关技术中为了支持终端在高速移动时的随机接入性能,针对循环移位,定义了PRACH非限制集、PRACH限制集A和限制集B,PRACH限制集A和B用于终端高速移动时的随机接入过程。而为了支持定位,本实施方式定义了PRACH限制集C,该限制集C是用于定位的随机接入过程的专用PRACH序列集合。
采用该实施方式,通过PRACH限制集C指示目标随机接入过程为用于定位目标,可以让处于RRC空闲态或RRC非活动态的终端也能够直接完成定位流程,降低了终端定位时延,降低了终端能耗。
实施方式五
该实施方式,结合图1所示,在步骤S110,通过PRACH时频资源指示当前随机接入过程为用于定位目的,在此基础上,终端和/或基站完成终端定位过程。
PRACH发送占用的资源为PRACH Occasion(RO),为了区分用于定位的随机接入过程与正常的随机接入过程,基站预配置或配置一部分PRACH发送占用的时频资源用于正常的随机接入过程,另外一部分PRACH发送占用的时频资源用于定位的随机接入过程。该两部分时频资源在时域或频域是正交的,这样一方面可以用来区分用于定位的随机接入过程与正常的随机接入过程,另一方面还可以避免用于定位的随机接入过程和正常的随机接入过程 之间的互相干扰。
采用该实施方式,通过预配置或配置的PRACH所占用的时频资源指示目标随机接入过程为用于定位目标,可以让处于RRC空闲态或RRC非活动态的终端也能够直接完成定位流程,降低了终端定位时延,降低了终端能耗。
实施方式六
该实施方式,结合图1所示,在步骤S110,在执行目标随机接入过程中,通过MSG3中的第一信息、MSGA中的第二信息或MSG5中的第三信息指示当前随机接入过程是用于定位目的。在此基础上,终端和/或基站完成终端定位过程。
其中,MSG3中的第一信息、MSGA中的第二信息或MSG5中的第三信息为一个比特,使用该比特来指示“用于定位的随机接入过程”,即:通过该比特来指示该随机接入过程是否用于定位过程。
MSG4、MSGB与MSG5的内容也会根据该比特有所不同:如果是定位目的,就会是定位结果,如果是随机接入,就会是正常的MSG4/MSGB的内容。
采用该实施方式,通过MSG3中的第一信息、MSGA中的第二信息或MSG5中的第三信息指示目标随机接入过程为用于定位目标,可以让处于RRC空闲态或RRC非活动态的终端也能够直接完成定位流程,降低了终端定位时延,降低了终端能耗。
本公开实施例另一方面还提供一种定位方法,应用于基站,如图4所示,所述方法包括:
S410,接收终端通过以下至少之一指示所述目标随机接入过程为用于定位的随机接入过程的信息:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
采用该实施例所述定位方法,通过前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合,PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息和 消息5中的第三信息中的至少之一信息,指示当前随机接入过程为用于定位目的,终端和/或基站依据该指示信息,完成定位过程,以能够使处于RRC空闲态或者RRC非活动态的UE利用随机接入过程完成定位,解决相关技术处于RRC空闲态或者RRC非活动态的UE需要进行定位,必须先进入RRC连接态,造成耗电量增加及定位时延增加的问题。
可选地,所述的定位方法,其中,所述方法还包括:
根据所指示的信息,执行终端定位过程。
可选地,所述的定位方法,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中的第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的定位方法,其中,所述用于终端接入的随机接入过程包括基于竞争的随机接入过程和基于非竞争的随机接入过程。
可选地,所述的定位方法,其中,所述终端在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位。
可选地,所述的定位方法,其中,所述终端在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位。
可选地,所述的定位方法,其中,所述终端在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
需要说明的是,本公开实施例中,第一预设比特位、第二预设比特位和第三预设比特位分别各自占用至少一个比特,如分别占用一个比特,或者分别占用至少两个比特等。可选地,第一预设比特位、第二预设比特位和第三预设比特位所分别占用的比特可以相同,也可以不同。
可选地,所述的定位方法,其中,在通过经预配置或配置的前导码格式 指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的定位方法,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的定位方法,其中,所述终端在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,执行终端定位过程包括:
发送所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的定位方法,其中,所述执行终端定位过程包括:
获取第二PRACH信号的信号强度信息,计算所述基站与所述终端之间的距离。
可选地,所述的定位方法,其中,所述第二PRACH信号包括前导码、消息3、消息5和消息A中的至少之一。
可选地,所述的定位方法,其中,所述基站包括所述终端的服务基站以及所述终端的邻基站。
本公开实施例还提供一种终端,如图5所示,包括存储器520,收发机510,处理器500以及用户接口530;其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括,这些传输介质包括无线信道、有线信道、光缆等传输介质。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理 器500在执行操作时所使用的数据。
可选的,处理器500可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件),处理器也可以采用多核架构。
处理器通过调用存储器存储的计算机程序,用于按照获得的可执行指令执行本公开实施例提供的任一所述方法。处理器与存储器也可以物理上分开布置。
具体的,存储器520,用于存储计算机程序;收发机510,用于在所述处理器500的控制下收发数据;处理器500,用于读取所述存储器520中的计算机程序并执行以下操作:
通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的终端,其中,所述处理器500还用于:
执行终端定位过程。
可选地,所述的终端,其中,所述处理器500还用于:所述终端在执行所述目标随机接入过程之前处于无线资源控制RRC空闲态或RRC非活动态;
其中,在执行终端定位过程之后,所述处理器500还用于:
保持处于所述RRC空闲态或RRC非活动态。
可选地,所述的终端,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的终端,其中,所述用于终端接入的随机接入过程包括基 于竞争的随机接入过程和基于非竞争的随机接入过程。
可选地,所述的终端,其中,在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位。
可选地,所述的终端,其中,在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位。
可选地,所述的终端,其中,在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的终端,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的终端,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的终端,其中,在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述处理器还用于:
接收基站发送的所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的终端,其中,所述处理器500执行终端定位过程,包括:
获取基站发送的第一物理随机接入信道PRACH信号的信号强度信息;
根据所述信号强度信息计算所述基站与所述终端之间的距离。
可选地,所述的终端,其中,所述基站包括所述终端的服务基站以及所述终端的邻基站。
可选地,所述的终端,其中,所述第一PRACH信号包括消息2、消息4和消息B中的至少之一。
如图6所示,本公开实施例还提供一种基站,包括存储器620,收发机 610,处理器600;其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元,这些传输介质包括无线信道、有线信道、光缆等传输介质。处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
处理器600可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),处理器也可以采用多核架构。
具体的,存储器620,用于存储计算机程序;收发机610,用于在所述处理器的控制下收发数据;处理器600,用于读取所述存储器中的计算机程序并执行以下操作:
接收终端通过以下至少之一指示所述目标随机接入过程为用于定位的随机接入过程的信息:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的基站,其中,所述处理器600还用于:
根据所指示的信息,执行终端定位过程。
可选地,所述的基站,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中的第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的基站,其中,所述用于终端接入的随机接入过程包括基于竞争的随机接入过程和基于非竞争的随机接入过程。
可选地,所述的基站,其中,所述终端在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位。
可选地,所述的基站,其中,所述终端在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位。
可选地,所述的基站,其中,所述终端在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的基站,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的基站,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的基站,其中,所述终端在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述处理器600执行终端定位过程包括:
发送所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的基站,其中,所述处理器600执行终端定位过程包括:
获取第二PRACH信号的信号强度信息,计算所述基站与所述终端之间的距离。
可选地,所述的基站,其中,所述第二PRACH信号包括前导码、消息3、消息5和消息A中的至少之一。
可选地,所述的基站,其中,所述基站包括所述终端的服务基站以及所述终端的邻基站。
在此需要说明的是,本公开实施例提供的上述终端或基站,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
如图7所示,本公开实施例还提供一种定位装置,应用于终端,其中,所述装置包括:
指示单元710,用于通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的定位装置,其中,所述装置还包括:
处理单元720,用于执行终端定位过程。
可选地,所述的定位装置,其中,所述终端在执行所述目标随机接入过程之前处于无线资源控制RRC空闲态或RRC非活动态;
其中,在执行终端定位过程之后,处理单元720还用于:
保持处于所述RRC空闲态或RRC非活动态。
可选地,所述的定位装置,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的定位装置,其中,所述用于终端接入的随机接入过程包括基于竞争的随机接入过程和基于非竞争的随机接入过程。
可选地,所述的定位装置,其中,在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位。
可选地,所述的定位装置,其中,在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息 占用第二预设比特位。
可选地,所述的定位装置,其中,在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的定位装置,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的定位装置,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的定位装置,其中,在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述装置还包括:
消息接收单元730,用于接收基站发送的所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的定位装置,其中,所述处理单元720执行终端定位过程,包括:
获取基站发送的第一物理随机接入信道PRACH信号的信号强度信息;
根据所述信号强度信息计算所述基站与所述终端之间的距离。
可选地,所述的定位装置,其中,所述基站包括所述终端的服务基站以及所述终端的邻基站。
1可选地,所述的定位装置,其中,所述第一PRACH信号包括消息2、消息4和消息B中的至少之一。
如图8所示,本公开实施例还提供一种定位装置,应用于基站,其中,所述装置包括:
接收单元810,用于接收终端通过以下至少之一指示所述目标随机接入过程为用于定位的随机接入过程的信息:
前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3 中的第一信息、消息A中的第二信息以及消息5中的第三信息。
可选地,所述的定位装置,其中,所述装置还包括:
执行单元820,用于根据所指示的信息,执行终端定位过程。
可选地,所述的定位装置,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中的第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
可选地,所述的定位装置,其中,所述用于终端接入的随机接入过程包括基于竞争的随机接入过程和基于非竞争的随机接入过程。
可选地,所述的定位装置,其中,所述终端在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位。
可选地,所述的定位装置,其中,所述终端在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位。
可选地,所述的定位装置,其中,所述终端在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
可选地,所述的定位装置,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
可选地,所述的定位装置,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
可选地,所述的定位装置,其中,所述终端在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,执行单元820执行终端定位过程包括:
发送所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
可选地,所述的定位装置,其中,所述执行单元820执行终端定位过程包括:
获取第二PRACH信号的信号强度信息,计算所述基站与所述终端之间的距离。
可选地,所述的定位装置,其中,所述第二PRACH信号包括前导码、消息3、消息5和消息A中的至少之一。
可选地,所述的定位装置,其中,所述基站包括所述终端的服务基站以及所述终端的邻基站。
需要说明的是,本公开实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在此需要说明的是,本公开实施例提供的上述装置,能够实现上述方法实施例所实现的所有方法步骤,且能够达到相同的技术效果,在此不再对本实施例中与方法实施例相同的部分及有益效果进行具体赘述。
本公开实施例还提供一种处理器可读存储介质,其中,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行如上任 一项所述的定位方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机可执行指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机可执行指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些处理器可执行指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的处理器可读存储器中,使得存储在该处理器可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些处理器可执行指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
需要说明的是,应理解以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定 模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,各个模块、单元、子单元或子模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
本公开的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例,例如除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B和/或C,表示包含单独A,单独B,单独C,以及A和B都存在,B和C都存在,A和C都存在,以及A、B和C都存在的7种情况。类似地,本说明书以及权利要求中使用“A和B中的至少一个”应理解为“单独A,单独B,或A和B都存在”。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (19)

  1. 一种定位方法,应用于终端,所述方法包括:
    通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
    前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
  2. 根据权利要求1所述的定位方法,还包括:所述终端在执行所述目标随机接入过程之前处于无线资源控制RRC空闲态或RRC非活动态;以及
    指示所述目标随机接入过程为用于定位的随机接入过程之后,执行终端定位过程,并在执行所述终端定位过程之后,保持处于所述RRC空闲态或RRC非活动态。
  3. 根据权利要求1所述的定位方法,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
  4. 根据权利要求1所述的定位方法,其中,在通过消息3中的第一信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息3中的所述第一信息占用第一预设比特位;
    在通过消息A中的第二信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息A中的所述第二信息占用第二预设比特位;
    在通过消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,消息5中的所述第三信息占用第三预设比特位。
  5. 根据权利要求3所述的定位方法,其中,在通过经预配置或配置的前导码格式指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的前导码格式为前导码长格式4,或者为前导码短格式D1。
  6. 根据权利要求3所述的定位方法,其中,在通过预配置或配置PRACH集合指示所述目标随机接入过程为用于定位的随机接入过程时,预配置或配置的PRACH集合为PRACH限制集C。
  7. 根据权利要求1所述的定位方法,其中,在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,所述方法还包括:
    接收基站发送的所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
  8. 根据权利要求2所述的定位方法,其中,所述执行终端定位过程,包括:
    获取基站发送的第一物理随机接入信道PRACH信号的信号强度信息;
    根据所述信号强度信息计算所述基站与所述终端之间的距离。
  9. 一种定位方法,应用于基站,所述方法包括:
    接收终端通过以下至少之一指示目标随机接入过程为用于定位的随机接入过程的信息:
    前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
  10. 根据权利要求9所述的定位方法,还包括:
    根据所指示的信息,执行终端定位过程。
  11. 根据权利要求9所述的定位方法,其中,所述前导码格式、所述前导码根序列类型、所述前导码根序列索引号、所述前导码根序列循环移位、所述物理随机接入信道PRACH集合、所述PRACH发送时频资源、所述消息3中的第一信息、所述消息A中的第二信息以及消息5中的第三消息中,用于指示定位的随机接入过程的信息为经预配置或配置,且与用于终端接入的随机接入过程的相应信息不同。
  12. 根据权利要求10所述的定位方法,其中,所述终端在通过消息3中的第一信息、消息A中的第二信息或者消息5中的第三信息指示所述目标随机接入过程为用于定位的随机接入过程时,执行终端定位过程包括:
    发送所述消息3、所述消息A或所述消息5的随机接入响应消息,所述随机接入响应消息中包括定位结果信息。
  13. 根据权利要求10所述的定位方法,其中,所述执行终端定位过程包括:
    获取第二PRACH信号的信号强度信息,计算所述基站与所述终端之间的距离。
  14. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序指令;所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序指令,执行下列操作:
    通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
    前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
  15. 根据权利要求14所述的终端,其中,所述处理器还用于:所述终端在执行所述目标随机接入过程之前处于无线资源控制RRC空闲态或RRC非活动态;以及
    指示所述目标随机接入过程为用于定位的随机接入过程之后,执行终端定位过程,并在执行所述终端定位过程之后,保持处于所述RRC空闲态或RRC非活动态。
  16. 一种基站,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序指令;所述收发机在处理器的控制下接收和发送数据,所述处理器用于读取存储器中的程序指令,执行下列操作:
    接收终端通过以下至少之一指示目标随机接入过程为用于定位的随机接入过程的信息:
    前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
  17. 一种定位装置,应用于终端,所述装置包括:
    指示单元,用于通过以下至少之一信息,指示目标随机接入过程为用于定位的随机接入过程:
    前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
  18. 一种定位装置,应用于基站,所述装置包括:
    接收单元,用于接收终端通过以下至少之一指示目标随机接入过程为用于定位的随机接入过程的信息:
    前导码格式、前导码根序列类型、前导码根序列索引号、前导码根序列循环移位、物理随机接入信道PRACH集合、PRACH发送时频资源、消息3中的第一信息、消息A中的第二信息以及消息5中的第三信息。
  19. 一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1至8任一项所述的定位方法,或者使所述处理器执行权利要求9至13任一项所述的定位方法。
PCT/CN2021/104234 2020-08-07 2021-07-02 定位方法、装置、终端及基站 WO2022028171A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/016,297 US20230276396A1 (en) 2020-08-07 2021-07-02 Positioning method, apparatus, terminal and base station
EP21854002.9A EP4195788A4 (en) 2020-08-07 2021-07-02 POSITIONING METHOD AND DEVICE, TERMINAL AND BASE STATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010789728.2A CN114071668B (zh) 2020-08-07 2020-08-07 定位方法、装置、终端及基站
CN202010789728.2 2020-08-07

Publications (1)

Publication Number Publication Date
WO2022028171A1 true WO2022028171A1 (zh) 2022-02-10

Family

ID=80116861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104234 WO2022028171A1 (zh) 2020-08-07 2021-07-02 定位方法、装置、终端及基站

Country Status (4)

Country Link
US (1) US20230276396A1 (zh)
EP (1) EP4195788A4 (zh)
CN (1) CN114071668B (zh)
WO (1) WO2022028171A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060089A1 (zh) * 2022-09-21 2024-03-28 Oppo广东移动通信有限公司 无线定位方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714138A (zh) * 2017-10-26 2019-05-03 北京三星通信技术研究有限公司 一种前导码的生成方法,配置方法和设备
CN110381578A (zh) * 2019-07-01 2019-10-25 京信通信系统(中国)有限公司 用户设备定位方法、装置、接入网设备和可读存储介质
CN111294787A (zh) * 2018-12-10 2020-06-16 中兴通讯股份有限公司 一种用户设备ue定位方法及装置
WO2020146739A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Systems and methods of providing new radio positioning

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3500871A1 (en) * 2016-08-16 2019-06-26 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus for positioning of a wireless communication device using timing advance multilateration
EP3711427A1 (en) * 2017-11-18 2020-09-23 Lenovo (Singapore) Pte. Ltd. Random access configuration
CN110933715B (zh) * 2018-09-20 2021-11-05 大唐移动通信设备有限公司 获取及提供定位辅助数据的方法、装置及设备
WO2020065894A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 基地局、端末装置および測位方法
US11330632B2 (en) * 2019-01-18 2022-05-10 Qualcomm Incorporated Positioning using random access channel (RACH)
TWI836031B (zh) * 2019-03-27 2024-03-21 美商內數位專利控股公司 Nr中閒置/不活動模式定位方法、裝置及系統

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714138A (zh) * 2017-10-26 2019-05-03 北京三星通信技术研究有限公司 一种前导码的生成方法,配置方法和设备
CN111294787A (zh) * 2018-12-10 2020-06-16 中兴通讯股份有限公司 一种用户设备ue定位方法及装置
WO2020146739A1 (en) * 2019-01-11 2020-07-16 Apple Inc. Systems and methods of providing new radio positioning
CN110381578A (zh) * 2019-07-01 2019-10-25 京信通信系统(中国)有限公司 用户设备定位方法、装置、接入网设备和可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195788A4 *

Also Published As

Publication number Publication date
EP4195788A4 (en) 2024-01-24
EP4195788A1 (en) 2023-06-14
CN114071668B (zh) 2024-04-09
US20230276396A1 (en) 2023-08-31
CN114071668A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
EP3739933B1 (en) Beam failure recovery method, device, and apparatus
WO2019029323A1 (zh) 发送和接收随机接入前导码的方法和装置
WO2018027591A1 (zh) V2x消息发送方法、装置及系统
WO2020151705A1 (zh) 随机接入资源的选择方法及终端
WO2020029849A1 (zh) 随机接入方法、通信装置、芯片及存储介质
WO2020199037A1 (zh) 一种资源配置方法、设备及存储介质
US20220022251A1 (en) Communication Method, Communication Apparatus, And Device
US20200137703A1 (en) Synchronization method and apparatus
US10764848B2 (en) Inter-base-station synchronization method and device
AU2016414700B2 (en) Information transmission method and device
WO2022007931A1 (zh) 定位测量方法、装置及通信设备
CN113330709B (zh) 终端设备、网络设备及其中的方法
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
CN114513832B (zh) 终端设备定位方法、装置、设备及存储介质
WO2022000506A1 (zh) 一种随机接入资源配置方法、电子设备及存储介质
TW202025838A (zh) 通訊方法、終端設備和網路設備
CN114424666B (zh) 一种通信方法及装置
WO2022028171A1 (zh) 定位方法、装置、终端及基站
EP3911046A1 (en) Communication method and device
WO2020172777A1 (zh) 随机接入的方法和设备
AU2018406790B2 (en) Information transmission method and device
WO2021098717A1 (zh) 获取参考时间的方法、指示参考时间的方法和设备
WO2021217337A1 (zh) 一种通信方法及通信装置
CN116671201A (zh) 一种上行参考信号资源的配置方法及相关装置
WO2022161503A1 (zh) 终端的定位方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021854002

Country of ref document: EP

Effective date: 20230307