WO2024060089A1 - 无线定位方法、装置、设备及存储介质 - Google Patents

无线定位方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024060089A1
WO2024060089A1 PCT/CN2022/120331 CN2022120331W WO2024060089A1 WO 2024060089 A1 WO2024060089 A1 WO 2024060089A1 CN 2022120331 W CN2022120331 W CN 2022120331W WO 2024060089 A1 WO2024060089 A1 WO 2024060089A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
terminal
message
random access
signal
Prior art date
Application number
PCT/CN2022/120331
Other languages
English (en)
French (fr)
Inventor
刘洋
于新磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/120331 priority Critical patent/WO2024060089A1/zh
Publication of WO2024060089A1 publication Critical patent/WO2024060089A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • This application relates to the field of communication technology, and in particular to wireless positioning methods, devices, equipment and storage media.
  • the Time Difference of Arrival (TDOA) positioning method can be used to achieve the positioning of the terminal.
  • the basic principle of the TDOA positioning method is to estimate the location of the terminal based on the transmission time deviation of the signal sent by the terminal to multiple network devices and the known positions of multiple network devices.
  • the TDOA positioning method requires the establishment of a Radio Resource Control (RRC) connection between the terminal and multiple network devices to realize the transmission of the measurement signal.
  • RRC Radio Resource Control
  • Embodiments of the present application provide a wireless positioning method, device, equipment and storage medium. After performing a random access process with a first network device, the terminal sends signals to multiple network devices to achieve positioning.
  • the technical solutions are as follows:
  • a wireless positioning method is provided.
  • the method is executed by a terminal.
  • the method includes:
  • a signal is sent to the first network device and at least one second network device.
  • a wireless positioning method is provided.
  • the method is executed by a first network device.
  • the method includes:
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • a wireless positioning method is provided.
  • the method is performed by a second network device.
  • the method includes:
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • a wireless positioning method is provided.
  • the method is performed by the access and mobility management function.
  • the method includes:
  • the paging message is used to trigger the terminal to perform positioning based on the signal.
  • a wireless positioning method is provided.
  • the method is executed by a positioning management function.
  • the method includes:
  • the signal is configured by the first network device for the terminal.
  • a wireless positioning device which device includes:
  • a sending module configured for the terminal to send a signal to the first network device and at least one second network device after performing a random access process with the first network device.
  • a wireless positioning device which device includes:
  • the receiving module is used to receive signals sent by the terminal;
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • a wireless positioning device which device includes:
  • the receiving module is used to receive signals sent by the terminal;
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • a wireless positioning device which device includes:
  • Sending module used to send paging messages to the terminal
  • the paging message is used to trigger the terminal to perform positioning based on the signal.
  • a wireless positioning device which device includes:
  • a receiving module configured to receive the configuration information of the signal sent by the first network device
  • the signal is configured by the first network device for the terminal.
  • a terminal including a memory and a processor
  • At least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the wireless positioning method as described above.
  • a first network device including a memory and a processor
  • At least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the wireless positioning method as described above.
  • a second network device including a memory and a processor
  • At least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the wireless positioning method as described above.
  • an access and mobility management function AMF is provided, where the AMF includes a memory and a processor;
  • At least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the wireless positioning method as described above.
  • a location management function LMF is provided, where the LMF includes a memory and a processor;
  • At least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the wireless positioning method as described above.
  • a computer-readable storage medium is provided.
  • a computer program is stored in the storage medium, and the computer program is used to be executed by a processor to implement the wireless positioning method as described above.
  • a chip is provided.
  • the chip includes programmable logic circuits and/or program instructions, and is used to implement the wireless positioning method as described above when the electronic device installed with the chip is running.
  • a computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor reads and executes the computer instructions from the computer-readable storage medium to implement Wireless positioning method as described above.
  • the terminal After performing a random access process with the first network device, the terminal sends a signal for achieving positioning to the first network device and at least one second network device. Based on this, the terminal and multiple network devices do not need to establish a Radio Resource Control (RRC) connection to achieve wireless positioning in idle state.
  • RRC Radio Resource Control
  • Figure 1 is a schematic diagram of a terminal performing positioning provided by an exemplary embodiment of the present application
  • Figure 2 is a schematic diagram of an information block of a random access response provided by an exemplary embodiment of the present application
  • Figure 3 is a schematic diagram of another information block of a random access response provided by an exemplary embodiment of the present application.
  • Figure 4 is a frequency domain schematic diagram of a sounding reference signal provided by an exemplary embodiment of the present application.
  • Figure 5 is a frequency domain schematic diagram of a sounding reference signal provided by an exemplary embodiment of the present application.
  • Figure 6 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • FIG7 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • Figure 8 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • Figure 9 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • Figure 10 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • Figure 11 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • Figure 12 is a flow chart of a wireless positioning method based on two-step random access execution provided by an exemplary embodiment of the present application
  • FIG13 is a flowchart of a wireless positioning method based on four-step random access execution provided by an exemplary embodiment of the present application.
  • Figure 14 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • Figure 15 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • Figure 16 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • Figure 17 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • Figure 18 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • Figure 19 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • Figure 20 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed spectrum LTE-U
  • NR-U Non-Terrestrial Networks
  • NTN Universal Mobile Telecommunication System
  • UMT Universal Mobile Telecommunication System
  • mobile communication systems will not only support traditional communications, but also support Internet of Things (IoT) communications, etc.
  • IoT Internet of Things
  • the embodiments of the present application can be applied to Internet of Things communication systems.
  • the IoT communication system includes multiple terminals, and information exchange and communication can be realized between each two terminals.
  • the terminal can also be called user equipment (User Equipment, UE).
  • the terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (Personal Digital Assistant, PDA) device, or a device with wireless communication capabilities Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future evolved Public Land Mobile Networks (PLMN) ) terminal equipment in the network, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • the terminal can be deployed on land, including indoors or outdoors, handheld, worn or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) wait).
  • the terminal may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal device.
  • wireless terminal equipment in industrial control wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can also mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • TDOA Time Difference of Arrival
  • supported positioning methods include Downlink Time Difference of Arrival (DL-TDOA) positioning method, Uplink Time Difference of Arrival (UL-TDOA) positioning method and Multi- Round Trip Time, Multi-RTT) positioning methods, etc.
  • DL-TDOA Downlink Time Difference of Arrival
  • UL-TDOA Uplink Time Difference of Arrival
  • Multi-RTT Multi- Round Trip Time
  • the propagation time of a signal is directly related to the propagation distance. Therefore, the basic principle of the TDOA positioning method is to estimate the position of the terminal based on the transmission time deviation of signals sent by the terminal to multiple network devices and the known positions of multiple network devices. Among them, the signal sent by the terminal reaches the network device, which can be understood as the signal sent by the terminal reaches multiple network nodes, and the network node can be a Transmitter Receiver Point (TRP).
  • TRP Transmitter Receiver Point
  • the TDOA positioning method requires the establishment of Radio Resource Control (RRC) connections between the terminal and multiple network devices to realize the transmission of measurement signals.
  • RRC Radio Resource Control
  • the TDOA positioning method is based on the one-way transmission of measurement signals between the terminal and the TRP, that is, the terminal sends the signal and the TRP performs the measurement.
  • the terminal may send the same uplink reference signal or downlink reference signal to different TRPs, or it may be different uplink reference signals or downlink reference signals, depending on the network configuration.
  • the following uses the UL-TDOA positioning method as an example to introduce.
  • the UL TDOA positioning method requires time synchronization between multiple network devices participating in positioning.
  • the terminal sends an uplink sounding reference signal (Sounding Reference Signal, SRS).
  • SRS Sounding Reference Signal
  • each network device needs to measure the reference signal sent by the terminal to determine the distance difference between the terminal and the signal of different network devices.
  • the result of more than two irrelevant distance differences constitutes the intersection point of the hyperbola, and the resulting intersection point That is the result of positioning.
  • the calculation result of the signal distance difference between the terminal and the two network devices will have a factor that is proportional to the degree of time asynchronous between the two network devices. Proportional value, causing deviation in positioning results.
  • the terminal when performing downlink positioning, the terminal receives the downlink positioning reference signal (Positioning Reference Singnal, PRS), and each network device also needs to send the PRS under the premise of time synchronization, so that the terminal can measure the distance estimated by the PRS. The difference can reflect the actual situation.
  • PRS Positioning Reference Singnal
  • Figure 1 shows a schematic diagram of a terminal performing positioning provided by an exemplary embodiment of the present application.
  • d4-d1, d4-d3, d3-d2, and d2-d1 correspond to different hyperbolas, and the intersection of at least two hyperbolas is the terminal position.
  • positioning is performed between the terminal and four network nodes.
  • the four network nodes are recorded as TRP 1, TRP 2, TRP 3 and TRP 4 respectively.
  • the three-dimensional coordinates corresponding to the terminal and the transmission timing error of the uplink positioning signal sent to the network node TRP i are respectively recorded as (x UE , y UE , z UE ) and
  • the distance between the network node TRP i and the terminal is recorded as di , then the TOA is calculated as follows (where c represents the speed of light):
  • network nodes can generally achieve relatively good synchronization accuracy. Even if there is a small synchronization error, it generally will not significantly affect the positioning accuracy. Therefore, in general, we can assume Within a period of time, the timing error of the same terminal changes very little, so it can be considered that in the above formula,
  • TRP 1 is used as a reference (at this time, TRP 1 is called the reference TRP) to calculate the TOA difference corresponding to different TRPs
  • M-1 constraint equations can be obtained, as follows:
  • the network device configures the uplink SRS resource for the terminal through RRC signaling. Subsequently, the network node performs measurements based on the uplink SRS signal sent by the terminal. The corresponding measurement is called the uplink relative time of arrival (UL Relative Time of Arrival, UL RTOA) in the NR protocol.
  • UL Relative Time of Arrival UL Relative Time of Arrival
  • the behavior of the terminal is mainly to send SRS signals according to the configuration of the network device, the corresponding measurement is completed by the network node, and the estimation of the terminal position is completed by the Location Management Function (LMF).
  • LMF Location Management Function
  • the terminal uses the timing advance (Timing Advance, TA) value of the serving cell.
  • the terminal can determine the downlink path loss based on the Synchronization Signal and PBCH Block (SSB) of the serving cell configured by the network equipment, the SSB or PRS of the neighboring cell, and then determine the transmit power of the SRS signal.
  • SSB Synchronization Signal and PBCH Block
  • the network device configures the SSB of the neighboring cell, it can configure the cell identification ID and SSB index of the neighboring cell.
  • the terminal can also use the spatial filter information of the serving cell configured by the network device (or the beam information of the serving cell, such as the SSB index associated with SRS transmission or the channel state information measurement reference signal index or SRS resource index, etc.), neighboring cells SSB or PRS to determine the spatial filter information sent by SRS (or the beam information sent by SRS).
  • the UL RTOA is defined as the starting position of the subframe i containing the SRS received relative to the reception point (RP) of the RTOA reference time.
  • the RTOA reference time is defined as T 0 +t SRS
  • T 0 is the nominal starting time of SFN 0 provided by the SFN initialization time (Initialization Time);
  • t SRS (10n f +n sf ) ⁇ 10 -3
  • n f and n sf are the system frame number and subframe number of the subframe containing SRS respectively.
  • the network node may use multiple SRS resources to determine the starting position of subframe i containing the SRS received by the RP.
  • the random access process refers to the process from when the terminal sends a random access preamble and attempts to access the network to when a basic signaling connection is established with the network. It can also be understood that the random access process is used to establish data communication between the terminal and the network side.
  • two types of random access processes are mainly supported, namely the four-step random access process (or type 1 random access process) and the two-step random access process (or type 1 random access process). into the process).
  • the four-step random access process mainly includes the following steps:
  • Step 1 The terminal sends message 1 (msg1): random access preamble (preamble) to the network device.
  • message 1 msg1: random access preamble (preamble)
  • the terminal sends the selected random access preamble on the time-frequency resource of the selected Physical Random Access Channel (Physical Random Access Channel, PRACH).
  • the network equipment can estimate the uplink delay (Timing) based on the random access preamble, and the terminal The grant size required to transmit message 3.
  • Step 2 The network device sends message 2 (msg2) to the terminal: Random Access Response (RAR).
  • RAR Random Access Response
  • the terminal After the terminal sends message 1 (msg1), it opens a random access response window (RAR window) and monitors the physical downlink control channel (Physical Downlink Control Channel, PDCCH) within the random access response window.
  • RAR window a random access response window
  • PDCCH Physical Downlink Control Channel
  • the PDCCH is a PDCCH scrambled with a Random Access Radio Network Temporary Identifier (RA-RNTI).
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • the terminal After successfully monitoring the RA-RNTI scrambled PDCCH, the terminal can obtain the physical downlink shared channel (Physical Downlink Share Channel, PDSCH) scheduled by the PDCCH, and the PDSCH contains RAR.
  • Physical Downlink Share Channel Physical Downlink Share Channel
  • the RAR contains: Backoff Indicator (BI), used to indicate the backoff time of retransmitting message 1; Random Access Preamble Identifier (RAPID), used to indicate the random access preamble; timing Advance group (Time Advance Group, TAG), used to adjust uplink timing; uplink grant (UL grant), used to schedule the uplink resource indication of message 3; Temporary Cell-Radio Network Temporary Identity, Temporary C -RNTI), used to scramble the PDCCH (initial access) of message 4.
  • BI Backoff Indicator
  • RAPID Random Access Preamble Identifier
  • TAG Time Advance Group
  • uplink grant UL grant
  • Temporary Cell-Radio Network Temporary Identity Temporary C -RNTI
  • Figure 2 shows a schematic diagram of information blocks of RAR in the four-step random access process provided by an exemplary embodiment of the present application.
  • Step 3 The terminal sends message 3 (msg3) to the network device: schedule transmission.
  • Message 3 is mainly used to notify the network device of the event that triggers the random access process. For example, if the event is the initial access random process, the UE ID and establishment cause (establishment cause) will be carried in message 3; if the event is RRC reconstruction, the connected UE identifier and establishment cause (establishment cause) will be carried.
  • Step 4 The network device sends message 4 (msg4): contention resolution message to the terminal.
  • Message 4 is used for conflict resolution.
  • Step 5 The terminal sends message 5 (msg5) to the network device: connection establishment is complete (complete).
  • Message 5 is mainly used to notify the network device that the random access connection is established.
  • a 4-step random access process can be combined into a 2-step random access process.
  • the combined 2-step random access process includes message A and message B.
  • the relevant steps include:
  • Step 1 The terminal sends message A (msgA) to the network device.
  • Step 2 After receiving message A sent by the terminal, the network device sends message B (msgB) to the terminal.
  • message B msgB
  • message A includes the contents of message 1 and message 3, that is, message A includes: random access preamble and UE ID.
  • UE ID can be: C-RNTI, temporary C-RNTI, RA-RNTI, contactless One of the non-Access Stratum (NAS) UE IDs.
  • message B includes the contents of message 2 and message 4, that is, message B includes: a random access response and a contention resolution message.
  • Figure 3 shows a schematic diagram of information blocks of RAR in a two-step random access process provided by an exemplary embodiment of the present application.
  • the TA command (Timing Advance Command) contained in the RAR information block is used to achieve clock synchronization when multiple terminals send uplink information.
  • the network device needs to estimate the distance between the terminal and the network device based on the random access preamble sent by the terminal, and then send the TA command to the terminal, so that the terminal can send the uplink information at different times in advance, so that multiple network devices can receive it at the same time.
  • multiple network devices can apply the preamble to perform distance estimation from the terminal to the network device.
  • the SRS configurations of different users can be distinguished in the time domain, frequency domain or code domain to ensure zero interference between each other.
  • the slot appearance periods of SRS of different users may be different.
  • the slot offsets can be different, and the symbols occupied in the same time slot can also be different.
  • different users' SRS can apply different offsets (comb offset), that is, the SRS configurations of different users can alternately occupy different frequency positions on the same symbol, and frequency hopping can also be used to avoid collisions.
  • Figures 4 and 5 respectively show frequency domain schematic diagrams of two detection reference signals.
  • this application provides a wireless positioning method, in which the terminal sends signals to multiple network devices after performing a random access process with the first network device to achieve wireless positioning in the idle state of the terminal.
  • FIG6 is a flowchart of a wireless positioning method provided by an exemplary embodiment of the present application. The method is executed by a terminal and includes the following steps:
  • Step 102 After performing a random access procedure with a first network device, sending a signal to the first network device and at least one second network device.
  • the second network device is a network device that does not perform a random access procedure with the terminal.
  • the signal sent by the terminal to the first network device and at least one second network device is used for the terminal to implement positioning.
  • the signal can also be called one of positioning signals, reference signals, positioning information, positioning reference information, and positioning reference signals.
  • the signal sent by the terminal to the first network device and at least one second network device is used by the terminal to implement idle state positioning.
  • the idle state positioning is used to indicate that, without entering the connected state, the terminal implements positioning by sending signals to the first network device and at least one second network device.
  • the terminal implements positioning using the TDOA positioning method. Among them, the relevant description of the TDOA positioning method can be referred to the foregoing content and will not be described again.
  • the signal used to implement positioning involved in this application is configured by the first network device during the process of performing random access with the terminal.
  • the first network device sends the configuration information of the signal used to implement positioning to the terminal through message 4 or message B.
  • the signal used to implement positioning includes at least one of the following information: terminal-specific random access preamble; SRS.
  • the terminal when the terminal sends a signal for positioning to the first network device and at least one second network device, the TA amount obtained during the random access process is not used.
  • the terminal may send a signal for achieving positioning to the first network device and at least one second network device. Subsequently, the first network device and the second network device can send the location measurement result information (Location measurement result reporting) based on the signal sent by the terminal to the location management function (Location Management Function, LMF), so that the LMF realizes the location of the terminal Solve to determine the location of the terminal.
  • LMF Location Management Function
  • the random access process involved in the embodiment of the present application may be a four-step random access process or a two-step random access process.
  • the random access process please refer to the foregoing content and will not be described again.
  • the first network device may configure the configuration information of the signal used to implement positioning for the terminal, so that the terminal determines the signal used.
  • the terminal receives message 4 and message B sent by the first network device.
  • Message 4 or message B carries configuration information of the signal used to implement positioning.
  • the random access process may succeed (that is, the random access process is completed), or it may fail (that is, the random access process is not completed).
  • the terminal sends a signal for positioning to the first network device and at least one second network device.
  • message 4 or message B is the first RRC signaling that causes the terminal to enter the connected state; or message 4 or message B is carried in the first RRC signaling; or message 4 or message B is the first RRC signaling that does not cause the terminal to enter the connected state.
  • Second RRC signaling in the connected state alternatively, message 4 or message B is carried in the second RRC signaling.
  • message 4 or message B is the first RRC signaling, or is carried in the first RRC signaling. In other embodiments, if the terminal has not completed the random access process with the first network device, message 4 or message B is the second RRC signaling, or is carried in the second RRC signaling.
  • the second RRC signaling is RRC Connection Reject signaling.
  • message 4 or message B is RRC signaling that does not cause the terminal to enter a connected state; or, message 4 or message B is carried in RRC signaling, and the RRC signaling is RRC connection rejection signaling.
  • the terminal and the first network device perform two-step random access.
  • the terminal sends message A to the network device.
  • the message A carries positioning indication information.
  • the positioning indication information is used to indicate that the purpose of the random access is positioning. or idle state positioning; or, the random access preamble used in message A is used to indicate that the purpose of random access is positioning or idle state positioning.
  • the first network device configures the configuration information of the signal used to implement positioning for the terminal through message B.
  • the terminal and the first network device perform four-step random access, and the terminal sends message 1 to the network device.
  • the random access preamble used in message 1 is used to indicate that the purpose of the random access is positioning or Idle state positioning; or, the terminal sends message 3 to the network device.
  • Message 3 carries positioning indication information.
  • the positioning indication information is used to indicate that the purpose of random access is positioning or idle state positioning.
  • the first network device configures the configuration information of the signal used to implement positioning for the terminal through message 4.
  • the terminal before performing the random access process with the first network device, receives a paging (paging) message from the Access and Mobility Management Function (AMF), and the paging message is used to trigger The terminal performs positioning based on the signal.
  • paging paging
  • AMF Access and Mobility Management Function
  • the paging message is forwarded through the first network device to trigger the terminal to perform positioning or idle positioning.
  • the AMF sends the paging message to the first network device, and the first network device sends the paging message to the terminal.
  • the terminal After the terminal receives the paging message, the terminal performs a two-step random access process or a four-step random access process with the first network device, and then sends a signal for positioning to the first network device and at least one second network. equipment.
  • the first network device sends a broadcast message, and the broadcast message is configured with random access resources.
  • the random access resources include random access preambles and/or time-frequency domain resources.
  • the terminal can select the resources to use according to actual needs. For example, after determining that positioning needs to be performed, the terminal can select a dedicated random access preamble used to achieve positioning to perform the random access process; or, the terminal uses random access time-frequency domain resources indicating that the purpose of random access is positioning, Send message A or message 1 in the random access process.
  • positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • the terminal actively initiates positioning or idle positioning.
  • the terminal determines that positioning needs to be performed. After receiving the broadcast message sent by the first network device, the terminal selects a dedicated random access preamble for positioning to perform the random access process, and carries the preamble in message 1 or message A to indicate this random access.
  • the purpose of the access is positioning or idle state positioning, so that the first network device configures the configuration information of the signal for realizing positioning for the terminal.
  • the terminal determines that positioning needs to be performed.
  • the random access preamble carried by the terminal in message 1 or message A does not indicate that the purpose of this random access is positioning or idle state positioning, but carries positioning indication information used to indicate that the purpose of this random access is positioning or idle state positioning in message 3 or message A, so that the first network device configures the terminal with configuration information of a signal for implementing positioning.
  • the terminal passively initiates positioning or idle positioning.
  • the terminal receives a paging message from the AMF, and the paging message is used to trigger the terminal to perform positioning based on the signal. Subsequently, when performing a random access process with the first network device, the terminal may interact with the first network device through message 1 or message 3 or message A, so that the first network device configures the signal for realizing positioning for the terminal. Configuration information.
  • the terminal after performing a random access process with the first network device, the terminal sends a signal for positioning to the first network device and at least one second network device. Based on this, the terminal and multiple network devices do not need to establish RRC connections to achieve wireless positioning in idle state.
  • Figure 7 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application. The method is executed by the first network device. The method includes the following steps:
  • Step 202 Receive the signal sent by the terminal.
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • the signal sent by the terminal to the first network device is used by the terminal to implement positioning.
  • the signal can also be called one of positioning signals, reference signals, positioning information, positioning reference information, and positioning reference signals.
  • the signal sent by the terminal to the first network device is used by the terminal to implement idle state positioning.
  • the idle state positioning is used to indicate that, without entering the connected state, the terminal implements positioning by sending signals to the first network device and at least one second network device.
  • positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • the signal used to implement positioning involved in this application is configured by the first network device during the process of performing random access with the terminal.
  • the first network device sends the configuration information of the signal used to implement positioning to the terminal through message 4 or message B.
  • the signal used to implement positioning includes at least one of the following information: terminal-specific random access preamble; SRS.
  • the terminal regardless of whether the random access process is completed or not, after executing the random access process, the terminal sends a signal for positioning to the first network device and at least one second network device.
  • message 4 or message B is the first RRC signaling that causes the terminal to enter the connected state; or message 4 or message B is carried in the first RRC signaling; or message 4 or message B is the first RRC signaling that does not cause the terminal to enter the connected state.
  • Second RRC signaling in the connected state alternatively, message 4 or message B is carried in the second RRC signaling.
  • the second RRC signaling is RRC connection rejection signaling.
  • the terminal when the terminal sends a signal for achieving positioning to the first network device, the TA amount obtained during the random access process is not used.
  • the terminal may send a signal for achieving positioning to the first network device and at least one second network device. Subsequently, the first network device and the second network device may send the positioning measurement result information obtained based on the signal sent by the terminal to the LMF, so that the LMF implements position calculation of the terminal, thereby determining the position of the terminal.
  • the first network device sends positioning measurement result information to the LMF, and the positioning information is used by the LAM to perform terminal position solution.
  • the random access process involved in the embodiments of this application may be a four-step random access process or a two-step random access process.
  • the random access process involved in the embodiments of this application may be a four-step random access process or a two-step random access process.
  • the first network device may configure the configuration information of the signal used to implement positioning for the terminal, so that the terminal determines the signal used.
  • the terminal receives message 4 and message B sent by the first network device.
  • Message 4 or message B carries configuration information of the signal used to implement positioning.
  • the first network device forwards a paging message from the AMF to the terminal, and the paging message is used to trigger the terminal to perform positioning based on the signal.
  • the relevant description of the paging message can refer to the above content and will not be repeated.
  • the first network device sends a broadcast message, and the broadcast message is configured with random access resources.
  • the terminal can select the resources to use according to actual needs. For example, after determining that positioning needs to be performed, the terminal can select a dedicated random access preamble used to achieve positioning to perform the random access process; or, the terminal uses random access time-frequency domain resources indicating that the purpose of random access is positioning, Send message A or message 1 in the random access process.
  • the first network device sends a broadcast message, where the broadcast message is used to configure the terminal to determine the random access resources used to perform positioning.
  • the random access resources include random access preambles and/or time-frequency domain resources.
  • the first network device also needs to send configuration information of the signal used to implement positioning to the LMF.
  • the first network device may also send a positioning message request to at least one second network device.
  • the positioning message request carries configuration information of the signal used to implement positioning, so that the second network device Able to identify specific signals sent by the terminal.
  • the terminal after performing a random access process with the first network device, the terminal sends a signal for positioning to the first network device and at least one second network device. Based on this, multiple network devices of the terminal do not need to establish RRC connections to achieve wireless positioning in idle state.
  • FIG8 is a flowchart of a wireless positioning method provided by an exemplary embodiment of the present application. The method is executed by a second network device and includes the following steps:
  • Step 302 Receive the signal sent by the terminal.
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • the second network device is a network device that does not perform a random access procedure with the terminal.
  • the signal sent by the terminal to the second network device is used by the terminal to implement positioning.
  • the signal can also be called one of positioning signals, reference signals, positioning information, positioning reference information, and positioning reference signals.
  • the signal sent by the terminal to the second network device is used by the terminal to implement idle state positioning.
  • the idle state positioning is used to indicate that, without entering the connected state, the terminal implements positioning by sending signals to the first network device and at least one second network device.
  • positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • the signal used to implement positioning involved in the present application is configured by the first network device during random access with the terminal.
  • the first network device sends configuration information of the signal used to implement positioning to the terminal through message 4 or message B.
  • the signal used to implement positioning includes at least one of the following information: a random access preamble code dedicated to the terminal; SRS.
  • the terminal when the terminal sends a signal for positioning to the second network device, the TA amount obtained during the random access process is not used.
  • the terminal may send a signal for achieving positioning to the first network device and at least one second network device. Subsequently, the first network device and the second network device may send the positioning measurement result information obtained based on the signal sent by the terminal to the LMF, so that the LMF implements position calculation of the terminal, thereby determining the position of the terminal.
  • the second network device sends positioning measurement result information to the LMF, and the information is used for the LAM to perform position calculation of the terminal.
  • the random access process involved in the embodiments of this application may be a four-step random access process or a two-step random access process.
  • the random access process involved in the embodiments of this application may be a four-step random access process or a two-step random access process.
  • the first network device also needs to send configuration information of the signal used to implement positioning to the LMF.
  • the LMF may send the configuration information of the signal used to implement positioning to at least one second network device, so that the second network device can identify the specific signal sent by the terminal.
  • the first network device may also carry the configuration information of the signal used to implement positioning in the positioning message request, and send the positioning message request to at least one second network device through the Xn interface.
  • the terminal after performing a random access process with the first network device, the terminal sends a signal for positioning to the first network device and at least one second network device. Based on this, the terminal and multiple network devices do not need to establish RRC connections to achieve wireless positioning in idle state.
  • Figure 9 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • the method is executed by AMF.
  • the method includes the following steps:
  • Step 402 Send a paging message to the terminal.
  • the paging message is used to trigger the terminal to perform positioning based on the signal.
  • the signal sent by the terminal is used for the terminal to achieve positioning.
  • the signal may also be referred to as one of a positioning signal, a reference signal, positioning information, positioning reference information, and a positioning reference signal.
  • the signal sent by the terminal to the first network device and at least one second network device is used by the terminal to implement idle state positioning.
  • the idle state positioning is used to indicate that, without entering the connected state, the terminal implements positioning by sending signals to the first network device and at least one second network device.
  • the signal used to implement positioning involved in this application is configured by the first network device during the process of performing random access with the terminal.
  • the first network device sends the configuration information of the signal used to implement positioning to the terminal through message 4 or message B.
  • the signal used to implement positioning includes at least one of the following information: terminal-specific random access preamble; SRS.
  • the positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • the terminal passively initiates positioning or idle positioning.
  • the terminal Before performing a random access process with the first network device, the terminal receives a paging message from the AMF, and the paging message is used to trigger the terminal to perform positioning based on the signal.
  • the paging message is forwarded through the first network device to trigger the terminal to perform positioning or idle positioning.
  • the AMF sends the paging message to the first network device, and the first network device sends the paging message to the terminal.
  • the terminal may interact with the first network device through message 1, message 3, or message A, so that the first network device configures the configuration information of the signal used to implement positioning for the terminal.
  • the terminal may send a signal for positioning to the first network device and at least one second network device to achieve positioning.
  • the paging cause (pagingCause) in the paging record (pagingRecord) is positioning (positioning), so that the terminal passively initiates positioning.
  • sending a paging message through the AMF can trigger the terminal to perform positioning based on the signal.
  • the terminal After performing a random access process with the first network device, the terminal sends a signal used to implement positioning to the first network device and at least one second network device to implement positioning.
  • Figure 10 is a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • the method is executed by LMF.
  • the method includes the following steps:
  • Step 502 Receive the configuration information of the signal sent by the first network device.
  • the signal is configured by the first network device for the terminal.
  • the signal sent by the terminal is used for the terminal to achieve positioning after performing a random access process with the first network device.
  • the signal may also be referred to as one of a positioning signal, a reference signal, positioning information, positioning reference information, and a positioning reference signal.
  • the signal sent by the terminal to the first network device and at least one second network device is used by the terminal to implement idle state positioning.
  • the idle state positioning is used to indicate that, without entering the connected state, the terminal implements positioning by sending signals to the first network device and at least one second network device.
  • the signal used to implement positioning involved in this application is configured by the first network device during the process of performing random access with the terminal.
  • the first network device sends the configuration information of the signal used to implement positioning to the terminal through message 4 or message B.
  • the signal used to implement positioning includes at least one of the following information: terminal-specific random access preamble; SRS.
  • positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • the LMF receives configuration information from a signal sent by the first network device.
  • the LMF sends the signal configuration information to at least one second network device, so that the at least one second network device can identify the specific signal sent by the terminal.
  • the signal configuration information is sent through New Radio Positioning Protocol (NRPPa) signaling.
  • NRPPa New Radio Positioning Protocol
  • the configuration information of this model is sent to at least one second network device through a location information request (Location Information Request) on the NRPPa interface.
  • Location Information Request Location Information Request
  • the LMF receives positioning measurement result information sent by the first network device and/or at least one second network device; and performs terminal position solution according to the positioning measurement result information.
  • the process of position solution can refer to the relevant description of the aforementioned TDOA positioning method.
  • the LMF receives the configuration information of the signal sent by the first network device, so as to identify the positioning obtained by the first network device and at least one second network device based on the signal. Measurement result information is used to calculate the position of the terminal to realize the positioning of the terminal and determine the position of the terminal.
  • FIG. 11 is a flowchart of a wireless positioning method provided by an exemplary embodiment of the present application, the method comprising the following steps:
  • Step 601 AMF sends a paging message to the terminal.
  • the paging message is used to trigger the terminal to perform positioning based on the signal.
  • the signal sent by the terminal is used by the terminal to achieve positioning.
  • the signal can also be called one of positioning signals, reference signals, positioning information, positioning reference information, and positioning reference signals.
  • the signal sent by the terminal to the first network device and at least one second network device is used by the terminal to implement idle state positioning.
  • the idle state positioning is used to indicate that, without entering the connected state, the terminal implements positioning by sending signals to the first network device and at least one second network device.
  • the signal used to implement positioning involved in this application is configured by the first network device during the process of performing random access with the terminal.
  • the first network device sends the configuration information of the signal used to implement positioning to the terminal through message 4 or message B.
  • the signal used to implement positioning includes at least one of the following information: terminal-specific random access preamble; SRS.
  • the positioning or idle positioning performed by the terminal may be initiated actively or passively.
  • the terminal passively initiates positioning or idle positioning.
  • the terminal Before performing a random access process with the first network device, the terminal receives a paging message from the AMF, and the paging message is used to trigger the terminal to perform positioning based on the signal.
  • the paging reason in the paging record is positioning, so that the terminal passively initiates positioning.
  • the paging message is forwarded through the first network device to trigger the terminal to perform positioning or idle positioning.
  • the AMF sends the paging message to the first network device, and the first network device sends the paging message to the terminal.
  • Step 602 After performing a random access process with the first network device, the terminal sends a signal to the first network device and at least one second network device.
  • the second network device is a network device that does not perform a random access procedure with the terminal.
  • the terminal may interact with the first network device through message 1, message 3, or message A, so that the first network device configures the configuration information of the signal used to implement positioning for the terminal. Subsequently, after performing a random access procedure with the first network device, the terminal may send a signal for positioning to the first network device and at least one second network device.
  • Step 603 The first network device sends the signal configuration information to the LMF.
  • the signal is configured by the first network device for the terminal.
  • the signal For relevant description of the signal, please refer to the foregoing content and will not be described again.
  • the LMF After receiving the configuration information of the signal, the LMF can identify the positioning measurement result information obtained by the first network device and the second network device based on the specific signal, thereby realizing the positioning of the terminal and determining the location of the terminal through position calculation.
  • the steps on the terminal side, the first network device side, the second network device side, the AMF side, and the LMF side can all be implemented individually as an embodiment of the wireless positioning method.
  • the steps on the terminal side, the first network device side, the second network device side, the AMF side, and the LMF side can all be implemented individually as an embodiment of the wireless positioning method.
  • the terminal after performing a random access process with the first network device, the terminal sends a signal for positioning to the first network device and at least one second network device. Based on this, the terminal and multiple network devices do not need to establish RRC connections to achieve wireless positioning in idle state.
  • the wireless positioning method provided by the above embodiments is implemented based on the situation that the terminal performs a random access process with the first network device and does not perform a random access process with at least one second network device. Based on this, it can also be understood that this application provides an idle state positioning method.
  • the terminal only needs to perform a random access process with the first network device, and then sends the signal configured in the random access process for positioning to Multiple network devices to achieve positioning. Wherein, the terminal does not establish an RRC connection with at least one network device among the plurality of network devices.
  • the AMF does not send a paging message, or the terminal does not receive a paging message sent from the AMF.
  • the terminal can actively initiate positioning according to actual needs, and during the random access process with the first network device Notify that the access purpose is positioning, so that the first network device configures the configuration information of the signal for realizing positioning for the terminal.
  • the terminal sends a signal for positioning to the first network device and at least one second network device, so that the first network device and the at least one second network device can transmit the positioning measurement result information Reported to LMF so that LMF can perform terminal position calculation.
  • the random access process includes a two-step random access process and a four-step random access process. The following will be described according to different random access processes:
  • FIG. 12 shows a flow chart of a wireless positioning method based on two-step random access provided by an exemplary embodiment of the present application, the method comprising the following steps:
  • Step 701 The terminal sends message A to the first network device.
  • the random access preamble used in message A is used to indicate that the purpose of random access is positioning, or message A carries positioning indication information, and the positioning indication information is used to indicate that the purpose of random access is positioning. .
  • the purpose of random access may also be idle positioning.
  • the random access preamble used in message A can be determined based on the random access resources broadcast by the first network device.
  • the random access resources include a random access preamble used to indicate that the purpose of random access is positioning.
  • the terminal selects the specific random access preamble in the random access resources and carries it in message A for transmission, so that the first network device can indirectly determine that the purpose of this random access is positioning or idle state positioning based on the preamble; or, when positioning needs to be performed, the terminal uses the random access time-frequency domain resources indicating that the purpose of random access is positioning to send message A.
  • the terminal may also select other random access preamble codes that do not indicate that the purpose of random access is positioning.
  • positioning indication information needs to be carried in message A to clearly inform the first network device of the purpose of this random access.
  • the terminal can use a specific random access preamble, or carry a positioning indication in message A. information.
  • the terminal can use a specific random access preamble, or carry positioning indication information in message A.
  • the terminal may use a specific random access preamble and carry positioning indication information in message A.
  • Step 702 The first network device sends message B to the terminal.
  • message B carries signal configuration information.
  • the first network device After receiving message A, based on the specific random access preamble or positioning indication information, the first network device can determine that the purpose of this random access is positioning or idle positioning. Subsequently, the first network device configures the configuration information of the signal used to implement positioning for the terminal, and carries it in message B and sends it to the terminal, so that the terminal determines the signal used to implement positioning.
  • message B is the first RRC signaling that causes the terminal to enter the connected state; or message B is carried in the first RRC signaling; or message B is the second RRC signaling that does not cause the terminal to enter the connected state; Alternatively, message B is carried in the second RRC signaling.
  • the second RRC signaling is RRC connection rejection signaling.
  • Step 703 After performing a random access process with the first network device, the terminal sends a signal to the first network device and at least one second network device.
  • the terminal regardless of whether the random access process is completed or not, after executing the random access process, the terminal sends a signal for positioning to the first network device and at least one second network device.
  • This step is the same as step 202 and can be used as a reference and will not be described again.
  • the steps on the terminal side, the first network device side, and the second network device side can be independently implemented as part or all of the steps in an embodiment of the wireless positioning method. Specifically explained Please refer to the above content and will not repeat them again.
  • Figure 13 shows a flow chart of a wireless positioning method based on four-step random access provided by an exemplary embodiment of the present application. The method includes the following steps:
  • Step 801 The terminal sends message 1 to the first network device.
  • the random access preamble used in message 1 is used to indicate that the purpose of random access is positioning.
  • the purpose of random access can also be idle positioning.
  • the random access preamble used in message 1 may be determined according to the random access resource broadcast by the first network device.
  • the random access resource includes a random access preamble used to indicate that the purpose of random access is positioning.
  • the terminal selects the specific random access preamble in the random access resource and adds the random access preamble to the random access preamble. It is carried in message 1 and sent, so that the first network device can indirectly determine that the purpose of this random access is positioning or idle positioning based on the preamble; or, when positioning needs to be performed, the terminal uses the instruction random access.
  • Message 1 is sent on frequency domain resources during random access with the purpose of positioning.
  • the terminal may use a specific random access preamble. In other embodiments, if the terminal actively determines that positioning needs to be performed, the terminal may use a specific random access preamble.
  • Step 802 The first network device sends message 2 to the terminal.
  • the terminal After the terminal sends message 1, it opens a random access response window and monitors the PDCCH within the random access response window. After successfully monitoring the RA-RNTI scrambled PDCCH, the terminal can obtain the PDSCH scheduled by the PDCCH, and the PDSCH contains RAR.
  • RAR relevant description of RAR can refer to the foregoing content and will not be described again.
  • Step 803 The terminal sends message 3 to the first network device.
  • message 3 carries positioning indication information, and the positioning indication information is used to indicate that the purpose of random access is positioning.
  • the purpose of random access can also be idle positioning.
  • step 801 the random access preamble used in message 1 does not indicate that the random access purpose is positioning. At this time, positioning indication information is carried in message 3 to transfer this random access The purpose of access is clearly informed to the first network device.
  • the terminal can use a specific random access preamble in message 1, or in message 3 It carries positioning instruction information. In other embodiments, if the terminal actively determines that positioning needs to be performed, the terminal can use a specific random access preamble in message 1, or carry positioning indication information in message 3. In other embodiments, whether the terminal actively or passively determines that positioning needs to be performed, the terminal may use a specific random access preamble in message 1 and carry positioning indication information in message 3.
  • Step 804 The first network device sends message 4 to the terminal.
  • message 4 carries signal configuration information.
  • the first network device After receiving message 1 or 3, based on the specific random access preamble or positioning indication information, the first network device can determine that the purpose of this random access is positioning or idle positioning. Subsequently, the first network device configures the configuration information of the signal used to implement positioning for the terminal, and carries it in message 4 and sends it to the terminal, so that the terminal determines the signal used to implement positioning.
  • message 4 is the first RRC signaling that causes the terminal to enter the connected state; or, message 4 is carried in the first RRC signaling; message 4 is the second RRC signaling that does not cause the terminal to enter the connected state; or, Message 4 is carried in the second RRC signaling.
  • the second RRC signaling is RRC connection rejection signaling.
  • Step 805 After performing a random access process with the first network device, the terminal sends a signal to the first network device and at least one second network device.
  • the terminal regardless of whether the random access process is completed or not, after executing the random access process, the terminal sends a signal for positioning to the first network device and at least one second network device.
  • This step is the same as step 202 and can be used as a reference and will not be described again.
  • the steps on the terminal side, the first network device side, and the second network device side can all be independently implemented as part or all of the steps in an embodiment of the wireless positioning method.
  • the steps on the terminal side, the first network device side, and the second network device side can all be independently implemented as part or all of the steps in an embodiment of the wireless positioning method.
  • the above two embodiments respectively provide implementation methods of wireless positioning methods based on two different random access processes.
  • the terminal may directly or indirectly inform the first network device of the purpose of the random access in different ways, so that the first network device configures specific signal configuration information for the terminal. Based on this, after performing a random access process with the first network device, the terminal may send a signal for positioning to the first network device and at least one second network device to realize wireless positioning in the idle state.
  • Figure 14 shows a flow chart of a wireless positioning method provided by an exemplary embodiment of the present application.
  • the method optionally also includes at least one of the following steps:
  • Step 604 The first network device sends a broadcast message.
  • the broadcast message is used to configure the terminal to determine the random access resources used to perform positioning.
  • the random access resources include random access preambles and/or time-frequency domain resources.
  • the broadcast message sent by the first network device is configured with random access resources.
  • the terminal can select the resources used to perform the random access process according to actual needs. For example, after determining that positioning needs to be performed, the terminal can select and use a dedicated random access preamble for positioning. For another example, after the terminal receives the paging message from the AMF and needs to passively perform positioning, it can select and use a dedicated random access preamble for positioning.
  • step 604 and step 601 can be executed simultaneously, sequentially, or out of order.
  • Step 605 The first network device and at least one second network device send positioning measurement result information to the LMF.
  • the positioning measurement result information is used by the LMF to perform position calculation of the terminal.
  • Step 606 LMF performs position calculation of the terminal based on the positioning measurement result information.
  • the positioning measurement result information is determined based on the signal sent by the terminal for positioning.
  • the first network device and at least one second network device may obtain positioning measurement result information based on the signal sent by the terminal. Subsequently, the first network device and at least one second network device send the positioning measurement result information to the LMF, so that the LMF implements position calculation of the terminal, thereby determining the position of the terminal.
  • the steps on the terminal side, the first network device side, the second network device side, the AMF side, and the LMF side can all be implemented individually as an embodiment of the wireless positioning method.
  • the steps on the terminal side, the first network device side, the second network device side, the AMF side, and the LMF side can all be implemented individually as an embodiment of the wireless positioning method.
  • the terminal after performing a random access process with the first network device, the terminal sends a signal for positioning to the first network device and at least one second network device. Based on this, the terminal and multiple network devices do not need to establish RRC connections to achieve wireless positioning in idle state.
  • the steps of different execution subjects in the wireless positioning method are as follows:
  • the random access resource includes a random access preamble used to indicate that the purpose of the random access is positioning or idle state positioning, and the preamble is used in message 1.
  • the positioning indication information is carried in message 3, and the positioning indication information is used to indicate that the purpose of random access is positioning. It should be understood that the preamble used in message 1 and the positioning indication information carried in message 3 can be either one.
  • Message 4 carries configuration information of a signal used to implement positioning.
  • the signal may be a terminal-specific random access preamble or SRS.
  • message 4 carries terminal-specific random access resources (preamble or time domain resources) or SRS configuration information.
  • the terminal uses the random access resources obtained in step 3 to send the preamble again, or sends SRS for positioning.
  • the terminal when sending the preamble, does not use the TA amount obtained during the random access process.
  • message 4 After learning from message 3 or message 1 that the purpose of random access is positioning or idle positioning, message 4 carries the configuration information of the signal used to achieve positioning;
  • step 4 is an optional step.
  • Send a paging message which contains indication information related to positioning or idle positioning.
  • pagingCause in pagingRecord is positioning.
  • the terminal After receiving the paging message, the terminal will carry relevant indication information that the random access purpose is positioning in message 3 or message 1.
  • the indication information may be a specific random access preamble or positioning indication information.
  • NRPPa signaling such as Location Information Request
  • the first network device and at least one second network device send positioning measurement result information (such as the distance between different TRPs and the terminal) to the LMF, so that the LMF completes the terminal's position calculation.
  • positioning measurement result information such as the distance between different TRPs and the terminal
  • the wireless positioning method provided by the embodiment of the present application can be implemented as follows:
  • Step 1 The first network device sends a random access resource for positioning purpose (Broadcasting RACH resource for positioning purpose);
  • Step 2 AMF sends a paging message (Paging UE for triggering positioning) to trigger the terminal to perform positioning;
  • Step 3 The terminal and the first network device perform a random access procedure (RACh procedure for contention resolution and allocation of dedicated RACH resource or SRS);
  • RACh procedure for contention resolution and allocation of dedicated RACH resource or SRS
  • Step 4 The first network device sends the configuration information of the signal used to achieve positioning to LMF (Notification of the dedicated RACH resource or SRS for positioning);
  • Step 5 After performing a random access process with the first network device, the terminal sends signals for positioning (RACH preambles or SRS transmission for positioning) to the first network device and at least one second network device;
  • signals for positioning RACH preambles or SRS transmission for positioning
  • Step 6 The first network device and at least one second network device send location measurement result information (Location measurement result reporting) to the LMF;
  • Step 7 LMF performs location calculation of the terminal based on the positioning measurement result information.
  • Figure 15 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the sending module 1520 is used for the terminal to send a signal to the first network device and at least one second network device after performing a random access process with the first network device.
  • the signal is used by the terminal to achieve positioning.
  • the TA amount obtained during the random access process is not used.
  • the apparatus also includes: a receiving module 1540, configured to receive message 4 or message B sent by the first network device; wherein message 4 or message B carries configuration information of the signal.
  • a receiving module 1540 configured to receive message 4 or message B sent by the first network device; wherein message 4 or message B carries configuration information of the signal.
  • the sending module 1520 is also configured to send message 3 or message A to the first network device; wherein message 3 or message A carries positioning indication information, and the positioning indication information is used to indicate that the purpose of random access is positioning. .
  • the sending module 1520 is also configured to send message 1 or message A to the first network device; wherein the random access preamble used in message 1 or message A is used to indicate that the purpose of the random access is positioning.
  • the apparatus further includes: a receiving module 1540, configured to receive a broadcast message sent by the first network device; wherein the broadcast message is used to configure the terminal to determine random access resources used to perform positioning.
  • a receiving module 1540 configured to receive a broadcast message sent by the first network device; wherein the broadcast message is used to configure the terminal to determine random access resources used to perform positioning.
  • message 4 or message B is RRC signaling that does not cause the terminal to enter a connected state; or, message 4 or message B is carried in the RRC signaling.
  • the RRC signaling is RRC connection rejection signaling.
  • the device also includes: a receiving module 1540, configured to receive a paging message from the AMF; wherein the paging message is used to trigger the terminal to perform positioning based on the signal.
  • a receiving module 1540 configured to receive a paging message from the AMF; wherein the paging message is used to trigger the terminal to perform positioning based on the signal.
  • the signal includes at least one of the following information: a terminal-specific random access preamble code; SRS.
  • Figure 16 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the receiving module 1620 is used to receive signals sent by the terminal;
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • the signal is used by the terminal to achieve positioning.
  • the terminal when sending signals, the terminal does not use the TA amount obtained during the random access process.
  • the device also includes: a sending module 1640, configured to send message 4 or message B to the terminal; wherein message 4 or message B carries signal configuration information.
  • a sending module 1640 configured to send message 4 or message B to the terminal; wherein message 4 or message B carries signal configuration information.
  • the receiving module 1620 is also configured to receive message 3 or message A sent by the terminal; wherein message 3 or message A carries positioning indication information, and the positioning indication information is used to indicate that the purpose of random access is positioning.
  • the receiving module 1620 is also configured to receive message 1 or message A sent by the terminal; wherein, the random access preamble used in message 1 or message A is used to indicate that the purpose of random access is positioning.
  • the device also includes: a sending module 1640, configured to send a broadcast message; wherein the broadcast message is used to configure the terminal to determine the random access resources used to perform positioning.
  • a sending module 1640 configured to send a broadcast message; wherein the broadcast message is used to configure the terminal to determine the random access resources used to perform positioning.
  • message 4 or message B is RRC signaling that does not cause the terminal to enter the connected state; or message 4 or message B is carried in the RRC signaling.
  • the RRC signaling is RRC connection rejection signaling.
  • the device also includes: a sending module 1640, configured to send signal configuration information to the LMF.
  • a sending module 1640 configured to send signal configuration information to the LMF.
  • the device also includes: a sending module 1640, configured to send a positioning information request to the second network device; wherein the positioning information request carries configuration information of the signal.
  • a sending module 1640 configured to send a positioning information request to the second network device; wherein the positioning information request carries configuration information of the signal.
  • the device also includes: a sending module 1640, configured to send positioning measurement result information to the LMF; wherein the positioning measurement result information is used by the LMF to perform position calculation of the terminal.
  • a sending module 1640 configured to send positioning measurement result information to the LMF; wherein the positioning measurement result information is used by the LMF to perform position calculation of the terminal.
  • the signal includes at least one of the following information: terminal-specific random access preamble; SRS.
  • FIG. 17 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application, the device comprising:
  • the receiving module 1720 is used to receive signals sent by the terminal;
  • the signal is sent by the terminal after performing a random access process with the first network device.
  • the signal is used by the terminal to achieve positioning.
  • the terminal when sending signals, the terminal does not use the TA amount obtained during the random access process.
  • the receiving module 1720 is also used to receive the configuration information of the signal sent by the LMF.
  • the device also includes: a sending module 1740, configured to send positioning measurement result information to the LMF; wherein the positioning measurement result information is used by the LMF to perform position calculation of the terminal.
  • a sending module 1740 configured to send positioning measurement result information to the LMF; wherein the positioning measurement result information is used by the LMF to perform position calculation of the terminal.
  • the signal includes at least one of the following information: terminal-specific random access preamble; SRS.
  • Figure 18 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • the device includes:
  • Sending module 1820 used to send paging messages to the terminal
  • the paging message is used to trigger the terminal to perform positioning based on the signal.
  • the signal is used by the terminal to achieve positioning.
  • the paging reason in the paging record is positioning.
  • the signal includes at least one of the following information: terminal-specific random access preamble; SRS.
  • Figure 19 is a schematic diagram of a wireless positioning device provided by an exemplary embodiment of the present application.
  • the device includes:
  • the receiving module 1920 is used to receive the configuration information of the signal sent by the first network device
  • the signal is configured by the first network device for the terminal.
  • the signal is used for the terminal to achieve positioning after performing a random access process with the first network device.
  • the apparatus also includes: a sending module 1940, configured to send the signal configuration information to at least one second network device.
  • a sending module 1940 configured to send the signal configuration information to at least one second network device.
  • the signal configuration information is sent through NRPPa signaling.
  • the apparatus also includes: a position calculation module 1960, configured to receive positioning measurement result information sent by the first network device and/or at least one second network device; and perform position calculation of the terminal according to the positioning measurement result information.
  • a position calculation module 1960 configured to receive positioning measurement result information sent by the first network device and/or at least one second network device; and perform position calculation of the terminal according to the positioning measurement result information.
  • the signal includes at least one of the following information: terminal-specific random access preamble; SRS.
  • Figure 20 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 1201, a receiver 2002, a transmitter 2003, a memory 2004 and a bus 2005.
  • the processor 2001 includes one or more processing cores.
  • the processor 2001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 2002 and the transmitter 2003 can be implemented as a communication component, and the communication component can be a communication chip.
  • the memory 2004 is connected to the processor 2001 through a bus 2005.
  • the memory 2004 may be used to store at least one instruction, and the processor 2001 is used to execute the at least one instruction to implement each step of the method for determining the RAR reception window mentioned in the above method embodiment.
  • memory 2004 may be implemented by any type of volatile or non-volatile storage device, or combination thereof, including but not limited to: magnetic or optical disks, electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • magnetic or optical disks electrically erasable programmable Read-only memory (Electrically-Erasable Programmable Read Only Memory, EEPROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), static random access memory (Static Random Access Memory, SRAM), read-only memory (Read-Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (
  • This application also provides a terminal, which includes a memory and a processor; at least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the aforementioned wireless positioning method.
  • the first network device includes a memory and a processor; at least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the aforementioned wireless positioning method.
  • the second network device includes a memory and a processor; at least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the aforementioned wireless positioning method.
  • the AMF includes a memory and a processor; at least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the aforementioned wireless positioning method.
  • the LMF includes a memory and a processor; at least one program code is stored in the memory, and the program code is loaded and executed by the processor to implement the aforementioned wireless positioning method.
  • This application also provides a computer-readable storage medium.
  • a computer program is stored in the storage medium.
  • the computer program is used to be executed by a processor to implement the aforementioned wireless positioning method.
  • the chip includes programmable logic circuits and/or program instructions, and is used to implement the aforementioned wireless positioning method when the electronic device installed with the chip is running.
  • the computer program product includes computer instructions.
  • the computer instructions are stored in a computer-readable storage medium.
  • the processor reads and executes the computer instructions from the computer-readable storage medium to achieve the aforementioned wireless positioning. method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线定位方法、装置、设备及存储介质,涉及通信技术领域。所述方法由终端执行,该方法包括:在与第一网络设备执行随机接入过程后,向第一网络设备和至少一个第二网络设备发送信号。

Description

无线定位方法、装置、设备及存储介质 技术领域
本申请涉及通信技术领域,特别涉及无线定位方法、装置、设备及存储介质。
背景技术
新空口(New Radio,NR)系统中,为实现对终端的定位,可采用到达时间差(Time Difference of Arrival,TDOA)定位方法实现。TDOA定位方法的基本原理是,基于终端发送的信号到达多个网络设备的传输时间偏差,以及多个网络设备的已知位置来估计终端的位置。其中,TDOA定位方法需要终端与多个网络设备之间建立无线资源控制(Radio Resource Control,RRC)连接,以实现测量信号的传输。
发明内容
本申请实施例提供了一种无线定位方法、装置、设备及存储介质,在与第一网络设备执行随机接入过程后,终端向多个网络设备发送信号以实现定位。所述技术方案如下:
根据本申请的一个方面,提供了一种无线定位方法,该方法由终端执行,该方法包括:
在与第一网络设备执行随机接入过程后,向第一网络设备和至少一个第二网络设备发送信号。
根据本申请的一个方面,提供了一种无线定位方法,该方法由第一网络设备执行,该方法包括:
接收终端发送的信号;
其中,信号由终端在与第一网络设备执行随机接入过程后发送。
根据本申请的一个方面,提供了一种无线定位方法,该方法由第二网络设备执行,该方法包括:
接收终端发送的信号;
其中,信号由终端在与第一网络设备执行随机接入过程后发送。
根据本申请的一个方面,提供了一种无线定位方法,该方法由接入和移动性管理功能执行,该方法包括:
向终端发送寻呼消息;
其中,寻呼消息用于触发终端基于信号执行定位。
根据本申请的一个方面,提供了一种无线定位方法,该方法由定位管理功能执行,该方法包括:
接收第一网络设备发送的信号的配置信息;
其中,信号是第一网络设备为终端配置的。
根据本申请的一个方面,提供了一种无线定位装置,该装置包括:
发送模块,用于终端在与第一网络设备执行随机接入过程后,向第一网络设备和至少一个第二网络设备发送信号。
根据本申请的一个方面,提供了一种无线定位装置,该装置包括:
接收模块,用于接收终端发送的信号;
其中,信号由终端在与第一网络设备执行随机接入过程后发送。
根据本申请的一个方面,提供了一种无线定位装置,该装置包括:
接收模块,用于接收终端发送的信号;
其中,信号由终端在与第一网络设备执行随机接入过程后发送。
根据本申请的一个方面,提供了一种无线定位装置,该装置包括:
发送模块,用于向终端发送寻呼消息;
其中,寻呼消息用于触发终端基于信号执行定位。
根据本申请的一个方面,提供了一种无线定位装置,该装置包括:
接收模块,用于接收第一网络设备发送的信号的配置信息;
其中,信号是第一网络设备为终端配置的。
根据本申请的一个方面,提供了一种终端,该终端包括存储器和处理器;
存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如上所述的无线定位方法。
根据本申请的一个方面,提供了一种第一网络设备,该第一网络设备包括存储器和处理器;
存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如上所述的无线定位方法。
根据本申请的一个方面,提供了一种第二网络设备,该第二网络设备包括存储器和处理器;
存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如上所述的无线定位方法。
根据本申请的一个方面,提供了一种接入和移动性管理功能AMF,该AMF包括存储器和处理器;
存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如上所述的无线定位方法。
根据本申请的一个方面,提供了一种定位管理功能LMF,该LMF包括存储器和处理器;
存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现如上所述的无线定位方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如上所述的无线定位方法。
根据本申请的一个方面,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当安装有芯片的电子设备运行时,用于实现如上所述的无线定位方法。
根据本申请的一个方面,提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现如上所述的无线定位方法。
本申请实施例提供的技术方案至少包括如下有益效果:
在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。基于此,终端和多个网络设备不需要建立无线资源控制(Radio Resource Control,RRC)连接,即可实现空闲态下的无线定位。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的终端执行定位的示意图;
图2是本申请一个示例性实施例提供的一种随机接入响应的信息块的示意图;
图3是本申请一个示例性实施例提供的另一种随机接入响应的信息块的示意图;
图4是本申请一个示例性实施例提供的探测参考信号的频域示意图;
图5是本申请一个示例性实施例提供的探测参考信号的频域示意图;
图6是本申请一个示例性实施例提供的无线定位方法的流程图;
图7是本申请一个示例性实施例提供的无线定位方法的流程图;
图8是本申请一个示例性实施例提供的无线定位方法的流程图;
图9是本申请一个示例性实施例提供的无线定位方法的流程图;
图10是本申请一个示例性实施例提供的无线定位方法的流程图;
图11是本申请一个示例性实施例提供的无线定位方法的流程图;
图12是本申请一个示例性实施例提供的基于两步随机接入执行的无线定位方法的流程图;
图13是本申请一个示例性实施例提供的基于四步随机接入执行的无线定位方法的流程图;
图14是本申请一个示例性实施例提供的无线定位方法的流程图;
图15是本申请一个示例性实施例提供的无线定位装置的示意图;
图16是本申请一个示例性实施例提供的无线定位装置的示意图;
图17是本申请一个示例性实施例提供的无线定位装置的示意图;
图18是本申请一个示例性实施例提供的无线定位装置的示意图;
图19是本申请一个示例性实施例提供的无线定位装置的示意图;
图20是本申请一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication  System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如物联网(Internet of Things,IoT)通信等,本申请实施例可应用于物联网通信系统中。
IoT通信系统中包括多个终端,每两个终端之间可实现信息交换和通信。
其中,终端也可以称为用户设备(User Equipment,UE)。终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
以下将对本申请涉及的技术内容进行描述:
到达时间差(Time Difference of Arrival,TDOA)定位:
在NR系统中,支持的定位方法包括下行到达时间差(Downlink Time Difference of Arrival,DL-TDOA)定位方法、上行到达时间差(Uplink Time Difference of Arrival,UL-TDOA)定位方法和多往返时间(Multi-Round Trip Time,Multi-RTT)定位方法等,本申请主要考虑TDOA定位方法。
信号的传播时间与传播距离直接相关。因此,TDOA定位方法的基本原理是,基于终端发送的信号到达多个网络设备的传输时间偏差,以及多个网络设备的已知位置来估计终端的位置。其中,终端发送的信号到达网络设备,可理解为终端发送的信号到达多个网络节点,网络节点可以是发送接收点(Transmitter Receiver Point,TRP)。
示意性的,TDOA定位方法需要终端与多个网络设备之间建立无线资源控制(Radio Resource Control,RRC)连接,以实现测量信号的传输。其中,TDOA定位方法是基于终端和TRP之间的测量信号的单向传输,即终端发送信号,TRP进行测量。可选的,终端发送给不同TRP的可能是同一个上行参考信号或下行参考信号,也可能是不同的上行参考信号或下行参考信号,该信号取决于网络的配置。
下面以UL-TDOA定位方法为例进行介绍。
其中,UL TDOA定位方法需要参与定位的多个网络设备之间是时间同步的。在应用上行定位时,终端发送上行探测参考信号(Sounding Reference Signal,SRS)。随后,各个网络设备需要对终端发送的参考信号进行测量,确定终端到不同网络设备的信号的路程差,多于两个不相关的路程差结果构成双曲线的相交点,而得出的相交点即为定位的结果。
在一些实施场景下,若两个网络设备之间不是时间同步的,那么终端到两个网络设备之间的信号路程差的计算结果中会存在一个与两个网络设备之间时间不同步程度成正比的数值,从而造成定位结果出现偏差。
示意性的,在执行下行定位的情况下,终端接收下行定位参考信号(Positioning Reference Singnal,PRS),各个网络设备也需要在时间同步的前提下发送PRS,从而使得终端在测量PRS估计出的路程差能够反映实际情况。
图1示出了本申请一个示例性实施例提供的终端执行定位的示意图。其中,d4-d1、d4-d3、d3-d2、d2-d1对应不同的双曲线,而至少两个双曲线的交点即为终端位置。
以下将对TDOA定位方法展开具体介绍:
参考图1,终端与四个网络节点之间执行定位,四个网络节点分别记为TRP 1、TRP 2、TRP 3和TRP 4。网络节点TRP i(i=1,2,…,M)对应的三维坐标和接收定时误差分别记为(x i,y i,z i)和
Figure PCTCN2022120331-appb-000001
终端对应的三维坐标和向网络节点TRP i发送上行定位信号的发送定时误差分别记为(x UE,y UE,z UE)和
Figure PCTCN2022120331-appb-000002
示意性的,网络节点TRP i与终端之间的距离记为d i,则TOA计算如下(其中c表示光速):
Figure PCTCN2022120331-appb-000003
在实际场景中,通过采用高精度的器件、恰当的部署等方式,网络节点之间一般可以达到比较好的同步精度,即使存在很小的同步误差,一般也不会明显影响定位精度。因此,一般情况下,我们可以假设
Figure PCTCN2022120331-appb-000004
Figure PCTCN2022120331-appb-000005
在一段时间之内,同一个终端的定时误差变化很小,故可认为上面公式中,
Figure PCTCN2022120331-appb-000006
参考上述公式,TDOA定位方法的基本原理是通过在两个估计得到的TOA之间取差值来把
Figure PCTCN2022120331-appb-000007
相关的项抵消掉。假设采用TRP 1作为参考(此时,TRP 1称为参考TRP),来计算不同TRP对应的TOA差值,可以得到M-1个约束方程,具体如下:
Figure PCTCN2022120331-appb-000008
等效地,如果UE侧定时与网络侧定时之间存在误差,通过上式可以看到这个误差也被消除了。为了能够得到较为可靠求解含有K个(例如3个)未知变量的位置信息,至少需要M≥K+1个(例如4个)网络节点。
方程组(2)中的每个等式可以看出是以TRP i和TRP 1为焦点的双曲线。因此TDOA定位方法的物理含义可参考图1来直观理解:
以每个网络节点对(TRP i,TRP 1)为焦点画上对应的双曲线,这些双曲线交叉的位置就是TDOA定位方法估计出来的终端位置。因为存在估计误差n i等因素影响,因此这些双曲线通常不会完美地交叉在一个点上,而是会在一个较小范围内交叉。
示意性的,以UL-TDOA定位方法为例,网络设备通过RRC信令给终端配置上行SRS资源。随后,网络节点基于终端发送的上行SRS信号来进行测量,对应的测量在NR协议中称为上行相对到达时间(UL Relative Time of Arrival,UL RTOA)。
终端的行为主要是根据网络设备的配置发送SRS信号,对应的测量由网络节点完成,终端位置的估计由定位管理功能(Location Management Function,LMF)完成。其中,终端在发送SRS信号时,使用的是服务小区的定时提前(Timing Advance,TA)值。
终端可以根据网络设备配置的服务小区的同步信号块(Synchronization Signal and PBCH Block,SSB)、邻区的SSB或PRS来确定下行路损,进而确定SRS信号的发射功率。其中,网络设备配置邻区的SSB时,可以配置邻小区的小区标识ID和SSB索引。另外,终端也可以根据网络设备配置的服务小区的空间滤波器信息(或者说服务小区的波束信息,例如SRS发送关联的SSB索引或信道状态信息测量参考信号索引或SRS资源索引等)、邻区的SSB或PRS,来确定SRS发送的空间滤波器信息(或者说SRS发送的波束信息)。
示意性的,UL RTOA的定义为相对于RTOA参考时间的接收点(Reception Point,RP)接收到的包含SRS的子帧i的起始位置。其中,RTOA参考时间的定义为T 0+t SRS,T 0是SFN初始化时间(Initialization Time)提供的SFN 0的名义起始时间;t SRS=(10n f+n sf)×10 -3,n f和n sf分别是包含SRS的子帧的系统帧号和子帧号。其中,网络节点可以使用多个SRS资源来确定RP接收到的包含SRS的子帧i的起始位置。
随机接入过程及TA确定:
示意性的,随机接入过程是指从终端发送随机接入前导码开始尝试接入网络到与网络间建立起基本的信令连接之前的过程。也可以理解为,随机接入过程用于使终端与网络侧建立数据通信。在NR系统中,主要支持两种类型的随机接入过程,分别是四步随机接入过程(或称类型1的随机接入过程)和两步随机接入过程(或称类型1的随机接入过程)。
一、四步随机接入过程。
示意性的,四步随机接入过程主要包括如下步骤:
步骤1,终端向网络设备发送消息1(msg1):随机接入前导码(preamble)。
终端在选择的物理随机接入信道(Physical Random Access Channel,PRACH)的时频资源上发送选择的随机接入前导码,网络设备基于随机接入前导码可以估计上行时延(Timing),和终端传输消息3所需要的授权(grant)大小。
步骤2,网络设备向终端发送消息2(msg2):随机接入响应(Random Access Response,RAR)。
终端发送消息1(msg1)之后,开启一个随机接入响应窗口(RAR window),在该随机接入响应窗口内监测物理下行控制信道(Physical Downlink Control Channel,PDCCH)。该PDCCH是用随机接入无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)加扰的PDCCH。
成功监测到RA-RNTI加扰的PDCCH之后,终端能够获得该PDCCH调度的物理下行共享信道(Physical Downlink Share Channel,PDSCH),PDSCH中包含RAR。
RAR中包含:回退指示(Backoff Indicator,BI),用于指示重传消息1的回退时间;随机接入前导标识(Radom Access Preamble Identifier,RAPID),用于指示随机接入前导码;定时提前组(Time Advance Group,TAG),用于调整上行时序;上行授权(UL grant),用于调度消息3的上行资源指示;临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identity,Temporary C-RNTI),用于加扰消息4的PDCCH(初始接入)。
图2示出了本申请一个示例性实施例提供的四步随机接入过程中的RAR的信息块的示意图。
步骤3,终端向网络设备发送消息3(msg3):调度传输。
消息3主要用于通知网络设备触发该随机接入过程的事件。示例性的,如果事件是初始接入随机过程,则在消息3中会携带UE ID和建立原因(establishment cause);如果事件是RRC重建,则会携带连接态UE标识和建立原因(establishment cause)。
步骤4,网络设备向终端发送消息4(msg4):竞争解决消息。消息4用于冲突解决。
步骤5,终端向网络设备发送消息5(msg5):连接建立完成(complete)。
消息5主要用于通知网络设备随机接入的连接建立完成。
二、两步随机接入过程。
示意性的,在基于竞争的随机接入过程中,可以将4步(4-step)的随机接入过程合并成2步(2-step)的随机接入过程。合并后的2步随机接入过程包括消息A和消息B,相关步骤包括:
步骤1,终端向网络设备发送消息A(msgA)。
步骤2,网络设备接收到终端发送的消息A后,向终端发送消息B(msgB)。
可选地,消息A包括消息1和消息3的内容,也即消息A包括:随机接入前导码和UE ID,UE ID可以是:C-RNTI、临时C-RNTI、RA-RNTI、非接入层(Non-Access Stratum,NAS)UE ID中的一种。可选地,消息B包括消息2和消息4的内容,也即消息B包括:随机接入响应和竞争解决消息。
图3示出了本申请一个示例性实施例提供的两步随机接入过程中的RAR的信息块的示意图。
示意性的,在两种随机接入过程中,RAR的信息块中包含的TA命令(Timing Advance Command)用于多个终端发送上行信息时做到时钟同步。其中,由于不同的终端到网络设备的距离不同,如果终端同时发送上行信息给网络设备,那么上行信息到达网络设备的时间会有差异性。基于此,网络设备需要根据终端发送的随机接入前导码估计终端与网络设备之间的距离,继而将TA命令发送至终端,使得终端可以提前不同的时间将上行信息发送出去,以至于多个网络设备可以做到同时接收。
可见,多个网络设备可以应用前导码执行终端到网络设备的距离估计。
SRS多用户正交传输:
不同用户的SRS配置可以是在时间域、频域或者码域区分开,以做到互相之间的干扰为零。
在时域上,不同用户的SRS的时隙(slot)出现周期可以是不同的。其中,slot偏置可以是不同的,同一时隙中占用的符号(symbol)也可以是不同。
在频域上,不同用户的SRS可以应用不同的偏移(comb offset),即不同用户的SRS配置可以在同一个符号上交替占用不同的频率位置,也可使用跳频来规避碰撞。
图4和图5分别示出了两种探测参考信号的频域示意图。
基于上述内容,本申请提供了一种无线定位方法,通过终端在与第一网络设备执行随机接入过程后向多个网络设备发送信号,以实现终端处于空闲态下的无线定位。
图6是本申请一个示例性实施例提供的无线定位方法的流程图,该方法由终端执行,该方法包括如下步骤:
步骤102:在与第一网络设备执行随机接入过程后,向第一网络设备和至少一个第二网络设备发送信号。
在一些实施例中,第二网络设备是未与终端执行随机接入过程的网络设备。
可选的,终端向第一网络设备和至少一个第二网络设备发送的信号,用于终端实现定位。其中,信号还可称之为定位信号、参考信号、定位信息、定位参考信息、定位参考信号中的一种。
在一些实施例中,终端向第一网络设备和至少一个第二网络设备发送的信号,用于终端实现空闲态定位。其中,空闲态定位用于指示,在未进入连接态的情况下,终端通过向第一网络设备和至少一个第二网络设备发送信号以实现定位。可选的,终端实现定位采用TDOA定位方法。其中,TDOA定位方法的相关描述可参考前述内容,不再赘述。
在一些实施例中,本申请涉及的用于实现定位的信号,是第一网络设备在与终端执行随机接入的过程中配置的。示例性的,第一网络设备通过消息4或消息B向终端发送用于实现定位的信号的配置信息。可选的,用于实现定位的信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
可选的,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号时,不采用随机接入过程中获得的TA量。
在与第一网络设备执行随机接入过程后,终端可将用于实现定位的信号发送给第一网络设备和至少一个第二网络设备。随后,第一网络设备和第二网络设备可将基于终端发送的信号得到的定位测量结果信息(Location measurement result reporting)发送给定位管理功能(Location Management Function,LMF),以使得LMF实现终端的位置解算,从而确定终端的位置。
其中,位置解算的过程可参考前述TDOA定位方法的相关描述。
应当理解的是,本申请实施例涉及的随机接入过程可以是四步随机接入过程,也可以是两步随机接入过程。随机接入过程的相关描述可参考前述内容,不再赘述。
在终端与第一网络设备之间执行的随机接入过程中,第一网络设备可为终端配置用于实现定位的信号的配置信息,以使得终端确定所使用的信号。可选的,终端接收第一网络设备发送的消息4和消息B,消息4或消息B中携带有用于实现定位的信号的配置信息。
应当理解的是,随机接入过程可能成功(也即完成随机接入过程),也可能失败(也即未完成随机接入过程)。本申请实施例中,无论随机接入过程是否完成,在执行随机接入过程后,终端均向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。
可选的,消息4或消息B是使得终端进入连接态的第一RRC信令;或者,消息4或消息B携带在第一RRC信令中;或者,消息4或消息B是未使得终端进入连接态的第二RRC信令;或者,消息4或消息B携带在第二RRC信令中。
在一些实施例中,终端与第一网络设备完成随机接入过程,则消息4或消息B是第一RRC信令,或者携带在第一RRC信令中。在另一些实施例中,终端未与第一网络设备完成随机接入过程,则消息4或消息B是第二RRC信令,或者携带在第二RRC信令中。可选的,第二RRC信令为RRC连接拒绝(RRC Connnection Reject)信令。
示例性的,消息4或消息B是未使得终端进入连接态的RRC信令;或者,消息4或消息B携带在RRC信令中,该RRC信令是RRC连接拒绝信令。
在一些实施例中,终端和第一网络设备执行两步随机接入,终端向网络设备发送消息A,消息A中携带有定位指示信息,该定位指示信息用于指示随机接入的目的为定位或空闲态定位;或者,消息A中所使用的随机接入前导码用于指示随机接入的目的为定位或空闲态定位。随后,第一网络设备通过消息B为终端配置用于实现定位的信号的配置信息。
在另一些实施例中,终端和第一网络设备执行四步随机接入,终端向网络设备发送消息1,消息1中所使用的随机接入前导码用于指示随机接入的目的为定位或空闲态定位;或者,终端向网络设备发送消息3,消息3中携带有定位指示信息,该定位指示信息用于指示随机接入的目的为定位或空闲态定位。随后,第一网络设备通过消息4为终端配置用于实现定位的信号的配置信息。
可选的,在与第一网络设备执行随机接入过程之前,终端接收来自接入和移动性管理功能(Access and Mobility Management Function,AMF)的寻呼(paging)消息,寻呼消息用于触发终端基于信号执行定位。
其中,寻呼消息通过第一网络设备进行转发,以触发终端执行定位或空闲态定位。示例性的,AMF将寻呼消息发送给第一网络设备,第一网络设备将寻呼消息发送给终端。在终端接收到寻呼消息后,终端在与第一网络设备执行两步随机接入过程或四步随机接入过程后,将用于定位的信号发送给第一网络设备和至少一个第二网络设备。
可选的,第一网络设备发送广播消息,该广播消息中配置有随机接入资源。可选的,随机接入资源包括随机接入前导码和/或时频域资源。终端在接收到随机接入资源后,可根据实际需要选择所使用的资源。比如,终端在确定需要执行定位后,可选择用于实现定位的专用的随机接入前导码执行随机接入过程;或者,终端使用指示随机接入目的为定位的随机接入时频域资源,发送随机接入过程中的消息A或消息1。
应当理解的是,终端执行定位或空闲态定位可以是主动发起的,也可以是被动发起的。
比如,终端主动发起定位或空闲态定位。
在一些实施例中,终端确定需要执行定位。在接收到第一网络设备发送的广播消息后,终端选择用于实现定位的专用的随机接入前导码执行随机接入过程,在消息1或消息A中携带该前导码,以指示本次随机接入的目的为定位或空闲态定位,从而使得第一网络设备为终端配置用于实现定位的信号的配置信息。
在另一些实施例中,终端确定需要执行定位。在与第一网络设备执行随机接入过程时,终端在消息1或消息A中携带的随机接入前导码并未指示本次随机接入的目的为定位或空闲态定位,而是在消息3或消息A中携带用于指示本次随机接入的目的为定位或空闲态定位的定位指示信息,从而使得第一网络设备为终端配置用于实现定位的信号的配置信息。
又如,终端被动发起定位或空闲态定位。
在一些实施例中,终端接收到来自AMF的寻呼消息,该寻呼消息用于触发终端基于信号执行定位。随后,在与第一网络设备执行随机接入过程时,终端可通过消息1或消息3或消息A与第一网络设备进行交互,以使得第一网络设备为终端配置用于实现定位的信号的配置信息。
综上所述,本申请实施例提供的无线定位方法中,在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。基于此,终端和多个网络设备不需要建立RRC连接,即可实现空闲态下的无线定位。
图7是本申请一个示例性实施例提供的无线定位方法的流程图,该方法由第一网络设备执行,该方法包括如下步骤:
步骤202:接收终端发送的信号。
其中,信号由终端在与第一网络设备执行随机接入过程后发送。
可选的,终端向第一网络设备发送的信号,用于终端实现定位。其中,信号还可称之为定位信号、参考信号、定位信息、定位参考信息、定位参考信号中的一种。
在一些实施例中,终端向第一网络设备发送的信号,用于终端实现空闲态定位。其中,空闲态定位用于指示,在未进入连接态的情况下,终端通过向第一网络设备和至少一个第二网络设备发送信号以实现定位。
应当理解的是,终端执行定位或空闲态定位可以是主动发起的,也可以是被动发起的,相关描述可参考前述内容,不再赘述。
在一些实施例中,本申请涉及的用于实现定位的信号,是第一网络设备在与终端执行随机接入的过程中配置的。示例性的,第一网络设备通过消息4或消息B向终端发送用于实现定位的信号的配置信息。可选的,用于实现定位的信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
本申请实施例中,无论随机接入过程是否完成,在执行随机接入过程后,终端均向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。
可选的,消息4或消息B是使得终端进入连接态的第一RRC信令;或者,消息4或消息B携带在第一RRC信令中;或者,消息4或消息B是未使得终端进入连接态的第二RRC信令;或者,消息4或消息B携带在第二RRC信令中。
可选的,第二RRC信令为RRC连接拒绝信令。
可选的,终端向第一网络设备发送用于实现定位的信号时,不采用随机接入过程中获得的TA量。
参考前述内容,在与第一网络设备执行随机接入过程后,终端可将用于实现定位的信号发送给第一网络设备和至少一个第二网络设备。随后,第一网络设备和第二网络设备可将基于终端发送的信号得到的定位测量结果信息发送给LMF,以使得LMF实现终端的位置解算,从而确定终端的位置。
可选的,第一网络设备向LMF发送定位测量结果信息,定位出来就该信息用于LAM执行终端的位置解算。
其中,位置解算的过程可参考前述TDOA定位方法的相关描述。
应当理解的是,本申请实施例涉及的随机接入过程可以是四步随机接入过程,也可以是两步随机接入过程,相关描述可参考前述内容,不再赘述。
在终端与第一网络设备之间执行的随机接入过程中,第一网络设备可为终端配置用于实现定位的信号的配置信息,以使得终端确定所使用的信号。可选的,终端接收第一网络设备发送的消息4和消息B,消息4或消息B中携带有用于实现定位的信号的配置信息。
终端基于两步随机接入过程或四步随机接入过程来获取配置信息的相关描述,可参考前述内容,不再赘述。
在一些实施例中,第一网络设备向终端转发来自AMF的寻呼消息,寻呼消息用于触发终端基于信号执行定位。寻呼消息的相关描述可参考前述内容,不再赘述。
在一些实施例中,第一网络设备发送广播消息,该广播消息中配置有随机接入资源。终端在接收到随机接入资源后,可根据实际需要选择所使用的资源。比如,终端在确定需要执行定位后,可选择用于实现定位的专用的随机接入前导码执行随机接入过程;或者,终端使用指示随机接入目的为定位的随机接入时频域资源,发送随机接入过程中的消息A或消息1。
可选的,第一网络设备发送广播消息,该广播消息用于配置终端确定执行定位所使用的随机接入资源。可选的,随机接入资源包括随机接入前导码和/或时频域资源。
在一些实施例中,第一网络设备还需要向LMF发送用于实现定位的信号的配置信息。
在一些实施例中,为实现定位,第一网络设备还可以向至少一个第二网络设备发送定位消息请求,该定位消息请求中携带有用于实现定位的信号的配置信息,以使得第二网络设备能够识别到终端发送的特定信号。
综上所述,本申请实施例提供的无线定位方法中,在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。基于此,终端多个网络设备不需要建立RRC连接,即可实现空闲态下的无线定位。
图8是本申请一个示例性实施例提供的无线定位方法的流程图,该方法由第二网络设备执行,该方法包括如下步骤:
步骤302:接收终端发送的信号。
示意性的,信号由终端在与第一网络设备执行随机接入过程后发送。
在一些实施例中,第二网络设备是未与终端执行随机接入过程的网络设备。
可选的,终端向第二网络设备发送的信号,用于终端实现定位。其中,信号还可称之为定位信号、参考信号、定位信息、定位参考信息、定位参考信号中的一种。
在一些实施例中,终端向第二网络设备发送的信号,用于终端实现空闲态定位。其中,空闲态定位用于指示,在未进入连接态的情况下,终端通过向第一网络设备和至少一个第二网络设备发送信号以实现定位。
应当理解的是,终端执行定位或空闲态定位可以是主动发起的,也可以是被动发起的,相关描述可参考前述内容,不再赘述。
在一些实施例中,本申请涉及的用于实现定位的信号,是第一网络设备在与终端执行随机接入的过程中配置的。示例性的,第一网络设备通过消息4或消息B向终端发送用于实现定位的信号的配置信息。可选的,用于实现定位的信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
可选的,终端向第二网络设备发送用于实现定位的信号时,不采用随机接入过程中获得的TA量。
参考前述内容,在与第一网络设备执行随机接入过程后,终端可将用于实现定位的信号发送给第一网络设备和至少一个第二网络设备。随后,第一网络设备和第二网络设备可将基于终端发送的信号得到的定位测量结果信息发送给LMF,以使得LMF实现终端的位置解算,从而确定终端的位置。
可选的,第二网络设备向LMF发送定位测量结果信息,定位出来就该信息用于LAM执行终端的位置解算。
其中,位置解算的过程可参考前述TDOA定位方法的相关描述。
应当理解的是,本申请实施例涉及的随机接入过程可以是四步随机接入过程,也可以是两步随机接入 过程,相关描述可参考前述内容,不再赘述。
参考前述内容,在一些实施例中,第一网络设备还需要向LMF发送用于实现定位的信号的配置信息。基于此,LMF可向至少一个第二网络设备发送用于实现定位的信号的配置信息,以使得第二网络设备能够识别到终端发送的特定信号。
在另一些实施例中,第一网络设备还可将用于实现定位的信号的配置信息携带在定位消息请求中,将定位消息请求通过Xn接口发送给至少一个第二网络设备。
综上所述,本申请实施例提供的无线定位方法中,在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。基于此,终端和多个网络设备不需要建立RRC连接,即可实现空闲态下的无线定位。
图9是本申请一个示例性实施例提供的无线定位方法的流程图,该方法由AMF执行,该方法包括如下步骤:
步骤402:向终端发送寻呼消息。
示意性的,其中,寻呼消息用于触发终端基于信号执行定位。
可选的,终端发送的信号,用于终端实现定位。其中,信号还可称之为定位信号、参考信号、定位信息、定位参考信息、定位参考信号中的一种。
在一些实施例中,终端向第一网络设备和至少一个第二网络设备发送的信号,用于终端实现空闲态定位。其中,空闲态定位用于指示,在未进入连接态的情况下,终端通过向第一网络设备和至少一个第二网络设备发送信号以实现定位。
在一些实施例中,本申请涉及的用于实现定位的信号,是第一网络设备在与终端执行随机接入的过程中配置的。示例性的,第一网络设备通过消息4或消息B向终端发送用于实现定位的信号的配置信息。可选的,用于实现定位的信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
参考前述内容,终端执行定位或空闲态定位可以是主动发起的,也可以是被动发起的。在一些实施例中,终端被动发起定位或空闲态定位。
在与第一网络设备执行随机接入过程之前,终端接收来自AMF的寻呼消息,寻呼消息用于触发终端基于信号执行定位。
其中,寻呼消息通过第一网络设备进行转发,以触发终端执行定位或空闲态定位。示例性的,AMF将寻呼消息发送给第一网络设备,第一网络设备将寻呼消息发送给终端。在终端接收到寻呼消息后,终端可通过消息1或消息3或消息A与第一网络设备进行交互,以使得第一网络设备为终端配置用于实现定位的信号的配置信息。在与第一网络设备执行两步随机接入过程或四步随机接入过程后,终端可将用于定位的信号发送给第一网络设备和至少一个第二网络设备,以实现定位。
可选的,寻呼记录(pagingRecord)中的寻呼原因(pagingCause)是定位(positioning),以使得终端被动发起定位。
综上所述,本申请实施例提供的无线定位方法中,通过AMF发送寻呼消息,能够触发终端基于信号执行定位。其中,在与第一网络设备执行随机接入过程后,终端将用于实现定位的信号发送给第一网络设备和至少一个第二网络设备,以实现定位。
图10是本申请一个示例性实施例提供的无线定位方法的流程图,该方法由LMF执行,该方法包括如下步骤:
步骤502:接收第一网络设备发送的信号的配置信息。
示意性的,信号是第一网络设备为终端配置的。
可选的,终端发送的信号,用于终端在与第一网络设备执行随机接入过程后实现定位。其中,信号还可称之为定位信号、参考信号、定位信息、定位参考信息、定位参考信号中的一种。
在一些实施例中,终端向第一网络设备和至少一个第二网络设备发送的信号,用于终端实现空闲态定位。其中,空闲态定位用于指示,在未进入连接态的情况下,终端通过向第一网络设备和至少一个第二网络设备发送信号以实现定位。
在一些实施例中,本申请涉及的用于实现定位的信号,是第一网络设备在与终端执行随机接入的过程中配置的。示例性的,第一网络设备通过消息4或消息B向终端发送用于实现定位的信号的配置信息。可选的,用于实现定位的信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
应当理解的是,终端执行定位或空闲态定位可以是主动发起的,也可以是被动发起的,相关描述可参考前述内容,不再赘述。
参考前述内容,在一些实施例中,LMF接收来自第一网络设备发送的信号的配置信息。可选的,LMF 将信号的配置信息发送给至少一个第二网络设备,以使得至少一个第二网络设备能够识别到终端发送的特定信号。
可选的,该信号的配置信息通过新空口定位协议(NRPPa)信令发送。示例性的,该型号的配置信息通过NRPPa接口上的定位消息请求(Location Information Request)发送给至少一个第二网络设备。
可选的,为确定终端的位置,LMF接收第一网络设备和/或至少一个第二网络设备发送的定位测量结果信息;根据定位测量结果信息执行终端的位置解算。其中,位置解算的过程可参考前述TDOA定位方法的相关描述。
综上所述,本申请实施例提供的无线定位方法中,LMF接收第一网络设备发送的信号的配置信息,以便于识别到第一网络设备和至少一个第二网络设备基于该信号得到的定位测量结果信息,从而实现终端的位置解算,以实现终端的定位,确定终端的位置。
图11是本申请一个示例性实施例提供的无线定位方法的流程图,该方法包括如下步骤:
步骤601:AMF向终端发送寻呼消息。
示意性的,寻呼消息用于触发终端基于信号执行定位。
可选的,终端发送的信号,用于终端实现定位。其中,信号还可称之为定位信号、参考信号、定位信息、定位参考信息、定位参考信号中的一种。
在一些实施例中,终端向第一网络设备和至少一个第二网络设备发送的信号,用于终端实现空闲态定位。其中,空闲态定位用于指示,在未进入连接态的情况下,终端通过向第一网络设备和至少一个第二网络设备发送信号以实现定位。
在一些实施例中,本申请涉及的用于实现定位的信号,是第一网络设备在与终端执行随机接入的过程中配置的。示例性的,第一网络设备通过消息4或消息B向终端发送用于实现定位的信号的配置信息。可选的,用于实现定位的信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
参考前述内容,终端执行定位或空闲态定位可以是主动发起的,也可以是被动发起的。本申请实施例中,终端被动发起定位或空闲态定位。
在与第一网络设备执行随机接入过程之前,终端接收来自AMF的寻呼消息,寻呼消息用于触发终端基于信号执行定位。可选的,寻呼记录中的寻呼原因是定位,以使得终端被动发起定位。
其中,寻呼消息通过第一网络设备进行转发,以触发终端执行定位或空闲态定位。示例性的,AMF将寻呼消息发送给第一网络设备,第一网络设备将寻呼消息发送给终端。
步骤602:终端在与第一网络设备执行随机接入过程后,向第一网络设备和至少一个第二网络设备发送信号。
在一些实施例中,第二网络设备是未与终端执行随机接入过程的网络设备。
在终端接收到寻呼消息后,终端可通过消息1或消息3或消息A与第一网络设备执行交互,以使得第一网络设备为终端配置用于实现定位的信号的配置信息。随后,在与第一网络设备执行随机接入过程后,终端可将用于定位的信号发送给第一网络设备和至少一个第二网络设备。
其中,关于信号、终端与第一网络设备执行随机接入过程的相关描述可参考前述内容,不再赘述。
步骤603:第一网络设备向LMF发送信号的配置信息。
其中,信号是第一网络设备为终端配置的,关于信号的相关描述可参考前述内容,不再赘述。
在接收到信号的配置信息后,LMF能够识别出第一网络设备和第二网络设备基于特定信号得到的定位测量结果信息,从而实现终端的定位,通过位置解算确定终端所在的位置。
应当理解的是,上述实施例中,终端一侧、第一网络设备一侧、第二网络设备一侧、AMF一侧、LMF一侧的步骤均可单独实现为无线定位方法的一个实施例,具体阐释可参考前述内容,不再赘述。
综上所述,本申请实施例提供的无线定位方法中,在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。基于此,终端和多个网络设备不需要建立RRC连接,即可实现空闲态下的无线定位。
参考前述内容,上述多个实施例提供的无线定位方法,是基于终端在与第一网络设备执行随机接入过程且未与至少一个第二网络设备执行随机接入过程的情况下实现的。基于此,也可理解为,本申请提供了一种空闲态定位方法,终端仅需要与第一网络设备执行随机接入过程,随后将随机接入过程中配置的用于实现定位的信号发送给多个网络设备,以实现定位。其中,终端与多个网络设备中的至少一个网络设备未建立RRC连接。
应当理解的是,上述多个实施例仅为本申请提供的一个示例性实施例,不对本申请造成限定。比如,在一些实施例中,AMF未发送寻呼消息,或者终端未接收到来自AMF发送的寻呼消息,终端可根据实际需要主动发起定位,并在与第一网络设备的随机接入过程中告知接入目的为定位,以使得第一网络设备为 终端配置用于实现定位的信号的配置信息。随后,终端在执行随机接入过程后,向第一网络设备和至少一个第二网络设备发送用于实现定位的信号,以使得第一网络设备和至少一个第二网络设备可将定位测量结果信息上报给LMF,以便于LMF执行终端的位置解算。
根据前述内容,随机接入过程包括两步随机接入过程和四步随机接入过程,以下将根据不同的随机接入过程展开描述:
一、基于两步随机接入执行的无线定位方法
图12示出了本申请一个示例性实施例提供的基于两步随机接入执行的无线定位方法的流程图,该方法包括如下步骤:
步骤701:终端向第一网络设备发送消息A。
示意性的,消息A中所使用的随机接入前导码用于指示随机接入的目的为定位,或者,消息A中携带有定位指示信息,定位指示信息用于指示随机接入的目的为定位。
其中,关于定位、定位指示信息的相关描述可参考前述内容,不再赘述。
参考前述内容,随机接入的目的还可以是空闲态定位。
应当理解的是,消息A中所使用的随机接入前导码可根据第一网络设备广播的随机接入资源确定。示例性的,随机接入资源中包括用于指示随机接入目的为定位的随机接入前导码,在需要执行定位时,终端在随机接入资源中选择该特定的随机接入前导码,将其携带在消息A中进行发送,以使得第一网络设备可根据该前导码间接地确定本次随机接入的目的为定位或空闲态定位;或者,在需要执行定位时,终端使用指示随机接入目的为定位的随机接入时频域资源发送消息A。
或者,终端还可选择其他未指示随机接入目的为定位的随机接入前导码,此时需要在消息A中携带定位指示信息,以将本次随机接入的目的明确告知给第一网络设备。
在一些实施例中,若接收到来自AMF发送的寻呼消息,该寻呼消息用于触发终端基于信号执行定位时,终端可采用特定的随机接入前导码,或者在消息A中携带定位指示信息。在另一些实施例中,若终端主动确定需要执行定位,终端可采用特定的随机接入前导码,或者在消息A中携带定位指示信息。在另一些实施例中,无论终端主动还是被动地确定需要执行定位,终端可采用特定的随机接入前导码,且在消息A中携带定位指示信息。
步骤702:第一网络设备向终端发送消息B。
示意性的,消息B中携带有信号的配置信息。
在接收到消息A后,根据特定的随机接入前导码或定位指示信息,第一网络设备可确定本次随机接入的目的为定位或空闲态定位。随后,第一网络设备为终端配置用于实现定位的信号的配置信息,并将其携带在消息B中发送给终端,以便终端确定用于实现定位的信号。
可选的,消息B是使得终端进入连接态的第一RRC信令;或者,消息B携带在第一RRC信令中;或者,消息B是未使得终端进入连接态的第二RRC信令;或者,消息B携带在第二RRC信令中。可选的,第二RRC信令为RRC连接拒绝信令。
步骤703:在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送信号。
其中,关于信号的相关描述可参考前述内容,不再赘述。
参考前述内容,本申请实施例中,无论随机接入过程是否完成,在执行随机接入过程后,终端均向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。
该步骤与步骤202相同,可作参考,不再赘述。
应当理解的是,上述实施例中,终端一侧、第一网络设备一侧、第二网络设备一侧的步骤均可单独实现为无线定位方法的一个实施例中的部分或全部步骤,具体阐释可参考前述内容,不再赘述。
二、基于四步随机接入执行的无线定位方法
图13示出了本申请一个示例性实施例提供的基于四步随机接入执行的无线定位方法的流程图,该方法包括如下步骤:
步骤801:终端向第一网络设备发送消息1。
示意性的,消息1中所使用的随机接入前导码用于指示随机接入的目的为定位。
其中,关于定位的相关描述可参考前述内容,不再赘述。
参考前述内容,随机接入的目的还可以是空闲态定位。
应当理解的是,消息1中所使用的随机接入前导码可根据第一网络设备广播的随机接入资源确定。示例性的,随机接入资源中包括用于指示随机接入目的为定位的随机接入前导码,在需要执行定位时,终端 在随机接入资源中选择该特定的随机接入前导码,将其携带在消息1中进行发送,以使得第一网络设备可根据该前导码间接地确定本次随机接入的目的为定位或空闲态定位;或者,在需要执行定位时,终端使用指示随机接入目的为定位的随机接入时频域资源发送消息1。
在一些实施例中,若接收到来自AMF发送的寻呼消息,该寻呼消息用于触发终端基于信号执行定位时,终端可采用特定的随机接入前导码。在另一些实施例中,若终端主动确定需要执行定位,终端可采用特定的随机接入前导码。
步骤802:第一网络设备向终端发送消息2。
终端发送消息1之后,开启一个随机接入响应窗口,在该随机接入响应窗口内监测PDCCH。成功监测到RA-RNTI加扰的PDCCH之后,终端能够获得该PDCCH调度的PDSCH,PDSCH中包含RAR。
其中,RAR的相关描述可参考前述内容,不再赘述。
步骤803:终端向第一网络设备发送消息3。
示意性的,消息3中携带有定位指示信息,定位指示信息用于指示随机接入的目的为定位。
其中,定位指示信息的相关描述可参考前述内容,不再赘述。
参考前述内容,随机接入的目的还可以是空闲态定位。
在一种可选的实施场景下,步骤801中,消息1中所使用的随机接入前导码未指示随机接入目的为定位,此时在消息3中携带定位指示信息,以将本次随机接入的目的明确告知给第一网络设备。
在一些实施例中,若接收到来自AMF发送的寻呼消息,该寻呼消息用于触发终端基于信号执行定位时,终端可在消息1中采用特定的随机接入前导码,或者在消息3中携带定位指示信息。在另一些实施例中,若终端主动确定需要执行定位,终端可在消息1中采用特定的随机接入前导码,或者在消息3中携带定位指示信息。在另一些实施例中,无论终端主动还是被动地确定需要执行定位,终端可在消息1中采用特定的随机接入前导码,且在消息3中携带定位指示信息。
步骤804:第一网络设备向终端发送消息4。
示意性的,消息4中携带有信号的配置信息。
在接收到消息1或3后,根据特定的随机接入前导码或定位指示信息,第一网络设备可确定本次随机接入的目的为定位或空闲态定位。随后,第一网络设备为终端配置用于实现定位的信号的配置信息,并将其携带在消息4中发送给终端,以便终端确定用于实现定位的信号。
可选的,消息4是使得终端进入连接态的第一RRC信令;或者,消息4携带在第一RRC信令中;消息4是未使得终端进入连接态的第二RRC信令;或者,消息4携带在第二RRC信令中。可选的,第二RRC信令为RRC连接拒绝信令。
步骤805:在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送信号。
其中,关于信号的相关描述可参考前述内容,不再赘述。
参考前述内容,本申请实施例中,无论随机接入过程是否完成,在执行随机接入过程后,终端均向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。
该步骤与步骤202相同,可作参考,不再赘述。
应当理解的是,上述实施例中,终端一侧、第一网络设备一侧、第二网络设备一侧的步骤均可单独实现为无线定位方法的一个实施例中的部分或全部步骤,具体阐释可参考前述内容,不再赘述。
综上所述,上述两个实施例分别给出了基于两种不同的随机接入过程下的无线定位方法的实现方式。其中,在不同的随机接入过程中,终端可通过不同的方式将随机接入的目的直接或间接地告知第一网络设备,以便于第一网络设备为终端配置特定的信号的配置信息。基于此,在与第一网络设备执行随机接入过程后,终端可向第一网络设备和至少一个第二网络设备发送用于实现定位的信号,以实现空闲态下的无线定位。
参考图11,图14示出了本申请一个示例性实施例提供的无线定位方法的流程图,该方法还可选地包括如下步骤中的至少一个:
步骤604:第一网络设备发送广播消息。
示意性的,广播消息用于配置终端确定执行定位所使用的随机接入资源。可选的,随机接入资源包括随机接入前导码和/或时频域资源。
参考前述内容,第一网络设备发的广播消息中配置有随机接入资源,终端在接收到随机接入资源后,可根据实际需要选择所使用的资源执行随机接入过程。比如,终端在确定需要执行定位后,可选择用于实现定位的专用的随机接入前导码进行使用。又如,终端接收到来自AMF的寻呼消息,需要被动执行定位后,可选择用于实现定位的专用的随机接入前导码进行使用。
其中,步骤604与步骤601可同时执行、或顺序执行、或无序执行。
步骤605:第一网络设备和至少一个第二网络设备向LMF发送定位测量结果信息。
示意性的,定位测量结果信息用于LMF执行终端的位置解算。
步骤606:LMF根据定位测量结果信息执行终端的位置解算。
其中,定位测量结果信息根据终端所发送的用于实现定位的信号确定。
在接收到终端发送的信号后,第一网络设备和至少一个第二网络设备可基于终端发送的信号得到定位测量结果信息。随后,第一网络设备和至少一个第二网络设备将定位测量结果信息发送给LMF,以使得LMF实现终端的位置解算,从而确定终端的位置。
其中,位置解算的过程可参考前述TDOA定位方法的相关描述。
应当理解的是,上述实施例中,终端一侧、第一网络设备一侧、第二网络设备一侧、AMF一侧、LMF一侧的步骤均可单独实现为无线定位方法的一个实施例,具体阐释可参考前述内容,不再赘述。
综上所述,本申请实施例提供的无线定位方法中,在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号。基于此,终端和多个网络设备不需要建立RRC连接,即可实现空闲态下的无线定位。
应当理解的是,上述多个实施例均为本申请提供的示例性实施例,不对本申请造成限定,其他可基于随机接入过程来实现终端定位的组合方式均包含在本申请的保护范围之列,不再一一举例。
以四步随机接入过程为例,不同执行主体在无线定位方法中的步骤如下:
(1)终端侧:
1.使用第一网络设备通过广播消息配置的随机接入资源(前导码或时域资源)开始执行随机接入过程,也即向第一网络设备发送消息1;
其中,随机接入资源中包括用于指示随机接入的目的为定位或空闲态定位的随机接入前导码,消息1中使用该前导码。
2.接收消息2,发送消息3;
其中,在消息3中携带定位指示信息,定位指示信息用于指示随机接入的目的为定位。应当理解的是,消息1中所使用的前导码和消息3中携带的定位指示信息择一即可。
3.接收消息4,判断是否赢得竞争;
其中,消息4中携带有用于实现定位的信号的配置信息,该信号可以是终端专用的随机接入前导码或SRS。示例性的,消息4中携带有终端专用的随机接入资源(前导码或时域资源)或SRS的配置信息。
4.在终端判断结果为赢得竞争(即完成随机接入过程)后,终端用于步骤3中获得的随机接入资源再次发送前导码,或者发送SRS用于定位。
可选的,终端在发送前导码时,不采用随机接入过程中获得的TA量。
(2)第一网络设备侧:
1.发送广播消息,该广播消息中配置有面向定位为目的的随机接入资源(也即用于指示随机接入目的为定位的随机接入资源);
2.在从消息3或消息1中得知随机接入的目的为定位或空闲态定位后,在消息4中携带用于实现定位的信号的配置信息;
3.向LMF报告第一网络设备配置的用于终端执行定位的信号的配置信息;
4.向至少一个第二网络设备(可以是其他TRP)通过Xn接口发送定位消息请求,该定位消息请求中携带有用于实现定位的信号的配置信息。
其中,步骤4为可选步骤。
(3)AMF侧:
发送寻呼消息,该寻呼消息中含有定位或空闲态定位相关的指示信息。
示例性的,pagingRecord中的pagingCause是positioning。在接收到该寻呼消息后,终端会在消息3或消息1中携带有随机接入目的为定位的相关指示信息,该指示信息可以是特定的随机接入前导码或定位指示信息。
(4)LMF侧:
1.在接收到第一网络设备报告的用于终端执行定位的信号的配置信息后,通过NRPPa接口上的NRPPa信令(如Location Information Request)发送至至少一个第二网络设备(即其他TRP);
2.在完成监听后,第一网络设备和至少一个第二网络设备将定位测量结果信息(如不同TRP与终端之间的距离)发送至LMF,以使得LMF完成终端的位置解算。
示例性的,基于上述内容,本申请实施例提供的无线定位方法可实现为如下:
步骤1:第一网络设备发送以定位为目的的随机接入资源(Broadcasting RACH resource for positioning  purpose);
步骤2:AMF发送用于触发终端执行定位的寻呼消息(Paging UE for triggering positioning);
步骤3:终端与第一网络设备执行随机接入过程(RACh procedure for contention resolution and allocation of dedicated RACH resource or SRS);
步骤4:第一网络设备将用于实现定位的信号的配置信息发送给LMF(Notification of the dedicated RACH resource or SRS for positioning);
步骤5:在与第一网络设备执行随机接入过程后,终端向第一网络设备和至少一个第二网络设备发送用于实现定位的信号(RACH preambles or SRS transmission for positioning);
步骤6:第一网络设备和至少一个第二网络设备向LMF发送定位测量结果信息(Location measurement result reporting);
步骤7:LMF根据定位测量结果信息执行终端的位置解算(Location calculation)。
以下为本申请的装置实施例,对于装置实施例中未详细描述的细节,可以结合参考上述方法实施例中相应的记载,本文不再赘述。
图15是本申请一个示例性实施例提供的无线定位装置的示意图,该装置包括:
发送模块1520,用于终端在与第一网络设备执行随机接入过程后,向第一网络设备和至少一个第二网络设备发送信号。
可选的,信号用于终端实现定位。
可选的,在发送信号时,不采用随机接入过程中获得的TA量。
可选的,装置还包括:接收模块1540,用于接收第一网络设备发送的消息4或消息B;其中,消息4或消息B中携带有信号的配置信息。
可选的,发送模块1520,还用于向第一网络设备发送消息3或消息A;其中,消息3或消息A中携带有定位指示信息,定位指示信息用于指示随机接入的目的为定位。
可选的,发送模块1520,还用于向第一网络设备发送消息1或消息A;其中,消息1或消息A中所使用的随机接入前导码用于指示随机接入的目的为定位。
可选的,装置还包括:接收模块1540,用于接收第一网络设备发送的广播消息;其中,广播消息用于配置终端确定执行定位所使用的随机接入资源。
可选的,消息4或消息B是未使得终端进入连接态的RRC信令;或者,消息4或消息B携带在RRC信令中。
可选的,RRC信令为RRC连接拒绝信令。
可选的,装置还包括:接收模块1540,用于接收来自AMF的寻呼消息;其中,寻呼消息用于触发终端基于信号执行定位。
可选的,信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
图16是本申请一个示例性实施例提供的无线定位装置的示意图,该装置包括:
接收模块1620,用于接收终端发送的信号;
其中,信号由终端在与第一网络设备执行随机接入过程后发送。
可选的,信号用于终端实现定位。
可选的,终端在发送信号时,不采用随机接入过程中获得的TA量。
可选的,装置还包括:发送模块1640,用于向终端发送消息4或消息B;其中,消息4或消息B中携带有信号的配置信息。
可选的,接收模块1620,还用于接收终端发送的消息3或消息A;其中,消息3或消息A中携带有定位指示信息,定位指示信息用于指示随机接入的目的为定位。
可选的,接收模块1620,还用于接收终端发送的消息1或消息A;其中,消息1或消息A中所使用的随机接入前导码用于指示随机接入的目的为定位。
可选的,装置还包括:发送模块1640,用于发送广播消息;其中,广播消息用于配置终端确定执行定位所使用的随机接入资源。
可选的,消息4或消息B是未使得终端进入连接态的RRC信令;或者,消息4或消息B携带在RRC信令中。
可选的,RRC信令为RRC连接拒绝信令。
可选的,装置还包括:发送模块1640,用于向LMF发送信号的配置信息。
可选的,装置还包括:发送模块1640,用于向第二网络设备发送定位信息请求;其中,定位信息请求 中携带有信号的配置信息。
可选的,装置还包括:发送模块1640,用于向LMF发送定位测量结果信息;其中,定位测量结果信息用于LMF执行终端的位置解算。
可选的,信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
图17是本申请一个示例性实施例提供的无线定位装置的示意图,该装置包括:
接收模块1720,用于接收终端发送的信号;
其中,信号由终端在与第一网络设备执行随机接入过程后发送。
可选的,信号用于终端实现定位。
可选的,终端在发送信号时,不采用随机接入过程中获得的TA量。
可选的,接收模块1720,还用于接收LMF发送的信号的配置信息。
可选的,装置还包括:发送模块1740,用于向LMF发送定位测量结果信息;其中,定位测量结果信息用于LMF执行终端的位置解算。
可选的,信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
图18是本申请一个示例性实施例提供的无线定位装置的示意图,该装置包括:
发送模块1820,用于向终端发送寻呼消息;
其中,寻呼消息用于触发终端基于信号执行定位。
可选的,信号用于终端实现定位。
可选的,寻呼记录中的寻呼原因是定位。
可选的,信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
图19是本申请一个示例性实施例提供的无线定位装置的示意图,该装置包括:
接收模块1920,用于接收第一网络设备发送的信号的配置信息;
其中,信号是第一网络设备为终端配置的。
可选的,信号用于终端在与第一网络设备执行随机接入过程后实现定位。
可选的,装置还包括:发送模块1940,用于将信号的配置信息发送给至少一个第二网络设备。
可选的,信号的配置信息通过NRPPa信令发送。
可选的,装置还包括:位置解算模块1960,用于接收第一网络设备和/或至少一个第二网络设备发送的定位测量结果信息;根据定位测量结果信息执行终端的位置解算。
可选的,信号包括如下信息中的至少一种:终端专用的随机接入前导码;SRS。
图20是本申请一个示例性实施例提供的通信设备的框图,该通信设备包括:处理器1201、接收器2002、发射器2003、存储器2004和总线2005。
处理器2001包括一个或者一个以上处理核心,处理器2001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器2002和发射器2003可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器2004通过总线2005与处理器2001相连。
存储器2004可用于存储至少一个指令,处理器2001用于执行该至少一个指令,以实现上述方法实施例中提到的RAR接收窗的确定方法的各个步骤。
此外,存储器2004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically-Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
本申请还提供了一种终端,终端包括存储器和处理器;存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现前述的无线定位方法。
本申请还提供了一种第一网络设备,第一网络设备包括存储器和处理器;存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现前述的无线定位方法。
本申请还提供了一种第二网络设备,第二网络设备包括存储器和处理器;存储器中存储有至少一条程 序代码,程序代码由处理器加载并执行以实现前述的无线定位方法。
本申请还提供了一种AMF,AMF包括存储器和处理器;存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现前述的无线定位方法。
本申请还提供了一种LMF,LMF包括存储器和处理器;存储器中存储有至少一条程序代码,程序代码由处理器加载并执行以实现前述的无线定位方法。
本申请还提供了一种计算机可读存储介质,存储介质中存储有计算机程序,计算机程序用于被处理器执行,以实现前述的无线定位方法。
本申请还提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当安装有芯片的电子设备运行时,用于实现前述的无线定位方法。
本申请还提供了一种计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中,处理器从计算机可读存储介质读取并执行计算机指令,以实现前述的无线定位方法。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (88)

  1. 一种无线定位方法,其特征在于,所述方法由终端执行,所述方法包括:
    在与第一网络设备执行随机接入过程后,向所述第一网络设备和至少一个第二网络设备发送信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述信号用于所述终端实现定位。
  3. 根据权利要求1所述的方法,其特征在于,
    在发送所述信号时,不采用所述随机接入过程中获得的定时提前TA量。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    接收所述第一网络设备发送的消息4或消息B;
    其中,所述消息4或所述消息B中携带有所述信号的配置信息。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送消息3或消息A;
    其中,所述消息3或所述消息A中携带有定位指示信息,所述定位指示信息用于指示随机接入的目的为定位。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送消息1或消息A;
    其中,所述消息1或所述消息A中所使用的随机接入前导码用于指示随机接入的目的为定位。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收所述第一网络设备发送的广播消息;
    其中,所述广播消息用于配置所述终端确定执行所述定位所使用的随机接入资源。
  8. 根据权利要求4所述的方法,其特征在于,
    所述消息4或所述消息B是未使得所述终端进入连接态的无线资源控制RRC信令;
    或者,所述消息4或所述消息B携带在所述RRC信令中。
  9. 根据权利要求8所述的方法,其特征在于,
    所述RRC信令为RRC连接拒绝信令。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述方法还包括:
    接收来自接入和移动性管理功能AMF的寻呼消息;
    其中,所述寻呼消息用于触发所述终端基于所述信号执行定位。
  11. 根据权利要求1至9任一所述的方法,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  12. 一种无线定位方法,其特征在于,所述方法由第一网络设备执行,所述方法包括:
    接收终端发送的信号;
    其中,所述信号由所述终端在与所述第一网络设备执行随机接入过程后发送。
  13. 根据权利要求12所述的方法,其特征在于,
    所述信号用于所述终端实现定位。
  14. 根据权利要求12所述的方法,其特征在于,
    所述终端在发送所述信号时,不采用所述随机接入过程中获得的定时提前TA量。
  15. 根据权利要求12至14任一所述的方法,其特征在于,所述方法还包括:
    向所述终端发送消息4或消息B;
    其中,所述消息4或所述消息B中携带有所述信号的配置信息。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的消息3或消息A;
    其中,所述消息3或所述消息A中携带有定位指示信息,所述定位指示信息用于指示随机接入的目的为定位。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收所述终端发送的消息1或消息A;
    其中,所述消息1或所述消息A中所使用的随机接入前导码用于指示随机接入的目的为定位。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送所述广播消息;
    其中,所述广播消息用于配置所述终端确定执行所述定位所使用的随机接入资源。
  19. 根据权利要求15所述的方法,其特征在于,
    所述消息4或所述消息B是未使得所述终端进入连接态的无线资源控制RRC信令;
    或者,所述消息4或所述消息B携带在所述RRC信令中。
  20. 根据权利要求19所述的方法,其特征在于,
    所述RRC信令为RRC连接拒绝信令。
  21. 根据权利要求12至20任一所述的方法,其特征在于,所述方法还包括:
    向定位管理功能LMF发送所述信号的配置信息。
  22. 根据权利要求12至20任一所述的方法,其特征在于,所述方法还包括:
    向第二网络设备发送定位信息请求;
    其中,所述定位信息请求中携带有所述信号的配置信息。
  23. 根据权利要求12至20任一所述的方法,其特征在于,所述方法还包括:
    向定位管理功能LMF发送定位测量结果信息;
    其中,所述定位测量结果信息用于所述LMF执行所述终端的位置解算。
  24. 根据权利要求12至23任一所述的方法,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  25. 一种无线定位方法,其特征在于,所述方法由第二网络设备执行,所述方法包括:
    接收终端发送的信号;
    其中,所述信号由所述终端在与第一网络设备执行随机接入过程后发送。
  26. 根据权利要求25所述的方法,其特征在于,
    所述信号用于所述终端实现定位。
  27. 根据权利要求25所述的方法,其特征在于,
    所述终端在发送所述信号时,不采用所述随机接入过程中获得的定时提前TA量。
  28. 根据权利要求25至27任一所述的方法,其特征在于,所述方法还包括:
    接收定位管理功能LMF发送的所述信号的配置信息。
  29. 根据权利要求25至27任一所述的方法,其特征在于,所述方法还包括:
    向定位管理功能LMF发送定位测量结果信息;
    其中,所述定位测量结果信息用于所述LMF执行所述终端的位置解算。
  30. 根据权利要求25至27任一所述的方法,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  31. 一种无线定位方法,其特征在于,所述方法由接入和移动性管理功能AMF执行,所述方法包括:
    向终端发送寻呼消息;
    其中,所述寻呼消息用于触发所述终端基于信号执行定位。
  32. 根据权利要求31所述的方法,其特征在于,
    所述信号用于所述终端实现定位。
  33. 根据权利要求31或32所述的方法,其特征在于,
    所述寻呼记录中的寻呼原因是定位。
  34. 根据权利要求31至33任一所述的方法,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  35. 一种无线定位方法,其特征在于,所述方法由定位管理功能LMF执行,所述方法包括:
    接收第一网络设备发送的信号的配置信息;
    其中,所述信号是所述第一网络设备为终端配置的。
  36. 根据权利要求35所述的方法,其特征在于,
    所述信号用于所述终端在与所述第一网络设备执行随机接入过程后实现定位。
  37. 根据权利要求35或36所述的方法,其特征在于,所述方法还包括:
    将所述信号的配置信息发送给至少一个第二网络设备。
  38. 根据权利要求37所述的方法,其特征在于,
    所述信号的配置信息通过新空口定位协议NRPPa信令发送。
  39. 根据权利要求35至38任一所述的方法,其特征在于,所述方法还包括:
    接收所述第一网络设备和/或至少一个第二网络设备发送的定位测量结果信息;
    根据所述定位测量结果信息执行所述终端的位置解算。
  40. 根据权利要求35至38任一所述的方法,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  41. 一种无线定位装置,其特征在于,所述装置包括:
    发送模块,用于终端在与第一网络设备执行随机接入过程后,向所述第一网络设备和至少一个第二网络设备发送信号。
  42. 根据权利要求41所述的装置,其特征在于,
    所述信号用于所述终端实现定位。
  43. 根据权利要求41所述的装置,其特征在于,
    在发送所述信号时,不采用所述随机接入过程中获得的定时提前TA量。
  44. 根据权利要求41至43任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述第一网络设备发送的消息4或消息B;
    其中,所述消息4或所述消息B中携带有所述信号的配置信息。
  45. 根据权利要求44所述的装置,其特征在于,
    所述发送模块,还用于向所述第一网络设备发送消息3或消息A;
    其中,所述消息3或所述消息A中携带有定位指示信息,所述定位指示信息用于指示随机接入的目的为定位。
  46. 根据权利要求44所述的装置,其特征在于,
    所述发送模块,还用于向所述第一网络设备发送消息1或消息A;
    其中,所述消息1或所述消息A中所使用的随机接入前导码用于指示随机接入的目的为定位。
  47. 根据权利要求46所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述第一网络设备发送的广播消息;
    其中,所述广播消息用于配置所述终端确定执行所述定位所使用的随机接入资源。
  48. 根据权利要求44所述的装置,其特征在于,
    所述消息4或所述消息B是未使得所述终端进入连接态的无线资源控制RRC信令;
    或者,所述消息4或所述消息B携带在所述RRC信令中。
  49. 根据权利要求48所述的装置,其特征在于,
    所述RRC信令为RRC连接拒绝信令。
  50. 根据权利要求41至49任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自接入和移动性管理功能AMF的寻呼消息;
    其中,所述寻呼消息用于触发所述终端基于所述信号执行定位。
  51. 根据权利要求41至49任一所述的装置,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  52. 一种无线定位装置,其特征在于,所述装置包括:
    接收模块,用于接收终端发送的信号;
    其中,所述信号由所述终端在与所述第一网络设备执行随机接入过程后发送。
  53. 根据权利要求52所述的装置,其特征在于,
    所述信号用于所述终端实现定位。
  54. 根据权利要求52所述的装置,其特征在于,
    所述终端在发送所述信号时,不采用所述随机接入过程中获得的定时提前TA量。
  55. 根据权利要求52至54任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述终端发送消息4或消息B;
    其中,所述消息4或所述消息B中携带有所述信号的配置信息。
  56. 根据权利要求55所述的装置,其特征在于,
    所述接收模块,还用于接收所述终端发送的消息3或消息A;
    其中,所述消息3或所述消息A中携带有定位指示信息,所述定位指示信息用于指示随机接入的目的为定位。
  57. 根据权利要求55所述的装置,其特征在于,
    所述接收模块,还用于接收所述终端发送的消息1或消息A;
    其中,所述消息1或所述消息A中所使用的随机接入前导码用于指示随机接入的目的为定位。
  58. 根据权利要求57所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送所述广播消息;
    其中,所述广播消息用于配置所述终端确定执行所述定位所使用的随机接入资源。
  59. 根据权利要求55所述的装置,其特征在于,
    所述消息4或所述消息B是未使得所述终端进入连接态的无线资源控制RRC信令;
    或者,所述消息4或所述消息B携带在所述RRC信令中。
  60. 根据权利要求59所述的装置,其特征在于,
    所述RRC信令为RRC连接拒绝信令。
  61. 根据权利要求52至60任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向定位管理功能LMF发送所述信号的配置信息。
  62. 根据权利要求52至60任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向第二网络设备发送定位信息请求;
    其中,所述定位信息请求中携带有所述信号的配置信息。
  63. 根据权利要求52至62任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向定位管理功能LMF发送定位测量结果信息;
    其中,所述定位测量结果信息用于所述LMF执行所述终端的位置解算。
  64. 根据权利要求52至63任一所述的装置,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  65. 一种无线定位装置,其特征在于,所述装置包括:
    接收模块,用于接收终端发送的信号;
    其中,所述信号由所述终端在与第一网络设备执行随机接入过程后发送。
  66. 根据权利要求65所述的装置,其特征在于,
    所述信号用于所述终端实现定位。
  67. 根据权利要求65所述的装置,其特征在于,
    所述终端在发送所述信号时,不采用所述随机接入过程中获得的定时提前TA量。
  68. 根据权利要求65至67任一所述的装置,其特征在于,
    所述接收模块,还用于接收定位管理功能LMF发送的所述信号的配置信息。
  69. 根据权利要求65至67任一所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向定位管理功能LMF发送定位测量结果信息;
    其中,所述定位测量结果信息用于所述LMF执行所述终端的位置解算。
  70. 根据权利要求65至69任一所述的装置,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  71. 一种无线定位装置,其特征在于,所述装置包括:
    发送模块,用于向终端发送寻呼消息;
    其中,所述寻呼消息用于触发所述终端基于信号执行定位。
  72. 根据权利要求71所述的装置,其特征在于,
    所述信号用于所述终端实现定位。
  73. 根据权利要求71或72所述的装置,其特征在于,
    所述寻呼记录中的寻呼原因是定位。
  74. 根据权利要求71至73任一所述的装置,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  75. 一种无线定位装置,其特征在于,所述装置包括:
    接收模块,用于接收第一网络设备发送的信号的配置信息;
    其中,所述信号是所述第一网络设备为终端配置的。
  76. 根据权利要求75所述的装置,其特征在于,
    所述信号用于所述终端在与所述第一网络设备执行随机接入过程后实现定位。
  77. 根据权利要求75或76所述的装置,其特征在于,所述装置还包括:
    发送模块,用于将所述信号的配置信息发送给至少一个第二网络设备。
  78. 根据权利要求77所述的装置,其特征在于,
    所述信号的配置信息通过新空口定位协议NRPPa信令发送。
  79. 根据权利要求75至78任一所述的装置,其特征在于,所述装置还包括:
    位置解算模块,用于接收所述第一网络设备和/或至少一个第二网络设备发送的定位测量结果信息;
    根据所述定位测量结果信息执行所述终端的位置解算。
  80. 根据权利要求75至79任一所述的装置,其特征在于,所述信号包括如下信息中的至少一种:
    所述终端专用的随机接入前导码;
    信道探测参考信号SRS。
  81. 一种终端,其特征在于,所述终端包括存储器和处理器;
    所述存储器中存储有至少一条程序代码,所述程序代码由所述处理器加载并执行以实现如权利要求1至11中任一项所述的无线定位方法。
  82. 一种第一网络设备,其特征在于,所述第一网络设备包括存储器和处理器;
    所述存储器中存储有至少一条程序代码,所述程序代码由所述处理器加载并执行以实现如权利要求12至24中任一项所述的无线定位方法。
  83. 一种第二网络设备,其特征在于,所述第二网络设备包括存储器和处理器;
    所述存储器中存储有至少一条程序代码,所述程序代码由所述处理器加载并执行以实现如权利要求25至30中任一项所述的无线定位方法。
  84. 一种接入和移动性管理功能AMF,其特征在于,所述AMF包括存储器和处理器;
    所述存储器中存储有至少一条程序代码,所述程序代码由所述处理器加载并执行以实现如权利要求31至34中任一项所述的无线定位方法。
  85. 一种定位管理功能LMF,其特征在于,所述LMF包括存储器和处理器;
    所述存储器中存储有至少一条程序代码,所述程序代码由所述处理器加载并执行以实现如权利要求35至40中任一项所述的无线定位方法。
  86. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至40中任一项所述的无线定位方法。
  87. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当安装有所述芯片的电子设备运行时,用于实现如权利要求1至40中任一项所述的无线定位方法。
  88. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至40中任一项所述的无线定位方法。
PCT/CN2022/120331 2022-09-21 2022-09-21 无线定位方法、装置、设备及存储介质 WO2024060089A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120331 WO2024060089A1 (zh) 2022-09-21 2022-09-21 无线定位方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120331 WO2024060089A1 (zh) 2022-09-21 2022-09-21 无线定位方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024060089A1 true WO2024060089A1 (zh) 2024-03-28

Family

ID=90453563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120331 WO2024060089A1 (zh) 2022-09-21 2022-09-21 无线定位方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024060089A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350808A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 信号传输的方法与装置
WO2022000366A1 (zh) * 2020-07-01 2022-01-06 北京小米移动软件有限公司 定位方法、装置、终端、网络侧设备和存储介质
WO2022020059A1 (en) * 2020-07-23 2022-01-27 Qualcomm Incorporated Enable user equipment positioning through paging
CN114071672A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 定位方法、装置、终端及基站
CN114071670A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 上行定位方法、装置及存储介质
CN114071668A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 定位方法、装置、终端及基站

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350808A (zh) * 2019-08-06 2021-02-09 华为技术有限公司 信号传输的方法与装置
WO2022000366A1 (zh) * 2020-07-01 2022-01-06 北京小米移动软件有限公司 定位方法、装置、终端、网络侧设备和存储介质
WO2022020059A1 (en) * 2020-07-23 2022-01-27 Qualcomm Incorporated Enable user equipment positioning through paging
CN114071672A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 定位方法、装置、终端及基站
CN114071670A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 上行定位方法、装置及存储介质
CN114071668A (zh) * 2020-08-07 2022-02-18 大唐移动通信设备有限公司 定位方法、装置、终端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONY: "Location report in NTN", 3GPP DRAFT; R2-1817080, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Spokane, USA; 20181112 - 20181116, 1 November 2018 (2018-11-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051481003 *

Similar Documents

Publication Publication Date Title
CN109392188B (zh) 随机接入方法、设备及系统
CN111865388B (zh) 一种上行波束管理方法及装置
US9451544B2 (en) Base station, radio terminal and radio communication system
EP3873161A1 (en) Radio terminal, radio access network node, and method for these
EP3697166B1 (en) Random access method and apparatus
TWI663889B (zh) 隨機接入方法和裝置
CN114600519A (zh) 无线定位方法及装置
US20220322452A1 (en) Communication method and system, and device
CN114246013A (zh) 无线通信方法和终端设备
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
WO2024087611A1 (zh) 用于定位的方法、终端设备及网络设备
CN112566266B (zh) 通信方法、装置、设备、存储介质及程序产品
WO2024082634A1 (zh) 用于定位的方法、终端设备及网络设备
US11523438B2 (en) Determining device locations based on random access channel signaling
WO2022027238A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024060089A1 (zh) 无线定位方法、装置、设备及存储介质
KR20200067730A (ko) 비-트리거-기반 레인징을 위한 절전
JP2023531551A (ja) ランダムアクセス方法、装置及びネットワーク側機器
CN116074977A (zh) 通信方法、装置及系统
WO2022247721A1 (zh) 随机接入的方法和装置
WO2023004619A1 (zh) 信息传输方法、设备及存储介质
WO2023231005A1 (zh) 无线通信的方法及装置
WO2024016358A1 (zh) 用于无线通信的方法、终端设备和网络设备
WO2023207589A1 (zh) 信息传输的方法和通信装置
WO2021217615A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959099

Country of ref document: EP

Kind code of ref document: A1