WO2024016358A1 - 用于无线通信的方法、终端设备和网络设备 - Google Patents

用于无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2024016358A1
WO2024016358A1 PCT/CN2022/107527 CN2022107527W WO2024016358A1 WO 2024016358 A1 WO2024016358 A1 WO 2024016358A1 CN 2022107527 W CN2022107527 W CN 2022107527W WO 2024016358 A1 WO2024016358 A1 WO 2024016358A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
information
reference signal
terminal device
downlink
Prior art date
Application number
PCT/CN2022/107527
Other languages
English (en)
French (fr)
Inventor
曹建飞
尤心
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/107527 priority Critical patent/WO2024016358A1/zh
Publication of WO2024016358A1 publication Critical patent/WO2024016358A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a method, terminal equipment and network equipment for wireless communication.
  • the uplink synchronization information (for example, timing advance (TA)) between the terminal equipment and the transmitting and receiving point (TRP) can be determined at the granularity of the TRP.
  • the terminal device can access the TRP by initiating a random access process to obtain the uplink synchronization information of the TRP.
  • the way in which the terminal device obtains the uplink synchronization information of the TRP through the random access process is not flexible enough, which may result in high uplink resource overhead and prolonged transmission time.
  • This application provides a method, terminal equipment and network equipment for wireless communication. Each aspect involved in this application is introduced below.
  • a method for wireless communication including: when the terminal device maintains uplink synchronization with the first transmission reception point TRP, the terminal device determines the uplink synchronization information of the second TRP; wherein, The uplink synchronization information of the second TRP is determined based on one or more of the following information: the uplink synchronization information of the first TRP; the downlink arrival time difference, the downlink arrival time difference is used to indicate the first TRP The difference between the time when the signal reaches the terminal device and the time when the signal of the second TRP reaches the terminal device; and the difference in transmission time between the first TRP and the second TRP.
  • a method for wireless communication including: when the terminal device maintains uplink synchronization with the first transmission reception point TRP, the terminal device receives first information, and the first information is used to Activating a second TRP located in a different cell than the first TRP; in response to the first information, the terminal device sends an uplink reference signal to the second TRP, and the uplink reference signal is used by the network device to determine the Uplink synchronization information of the second TRP.
  • a method for wireless communication including: when the terminal device maintains uplink synchronization with the first transmission reception point TRP, the network device determines the uplink synchronization information of the second TRP; wherein, the third The uplink synchronization information of the second TRP is determined based on one or more of the following information: the uplink synchronization information of the first TRP; the downlink arrival time difference, the downlink arrival time difference is used to indicate the signal arrival of the first TRP The difference between the time of the terminal device and the time when the signal of the second TRP reaches the terminal device; and the difference in transmission time between the first TRP and the second TRP.
  • a method for wireless communication including: when the terminal device maintains uplink synchronization with the first transmission reception point TRP, the network device sends first information to the terminal device, and the first The information is used to activate a second TRP located in a different cell than the first TRP; the network device determines the uplink synchronization information of the second TRP, and the uplink synchronization information is sent to the second TRP based on the terminal device The uplink reference signal is determined.
  • a terminal device including: a determining module configured to determine the uplink synchronization information of the second TRP when the terminal device maintains uplink synchronization with the first transmission reception point TRP; wherein, the second The uplink synchronization information of the TRP is determined based on one or more of the following information: the uplink synchronization information of the first TRP; the downlink arrival time difference.
  • the downlink arrival time difference is used to indicate where the signal of the first TRP arrives. The difference between the time of the terminal device and the time when the signal of the second TRP reaches the terminal device; and the difference in transmission time between the first TRP and the second TRP.
  • a terminal device including: a receiving module configured to receive first information when the terminal device maintains uplink synchronization with the first transmission reception point TRP, and the first information is used to activate the communication with the first transmission reception point TRP.
  • the first TRP is located in a second TRP in a different cell; a sending module, configured to respond to the first information and send an uplink reference signal to the second TRP, where the uplink reference signal is used by network equipment to determine the second TRP.
  • TRP uplink synchronization information configured to receive first information when the terminal device maintains uplink synchronization with the first transmission reception point TRP, and the first information is used to activate the communication with the first transmission reception point TRP.
  • the first TRP is located in a second TRP in a different cell
  • a sending module configured to respond to the first information and send an uplink reference signal to the second TRP, where the uplink reference signal is used by network equipment to determine the second TRP.
  • a network device including: a determining module configured to determine the uplink synchronization information of the second TRP when the terminal device maintains uplink synchronization with the first transmission reception point TRP; wherein the second The uplink synchronization information of the TRP is determined based on one or more of the following information: the uplink synchronization information of the first TRP; the downlink arrival time difference.
  • the downlink arrival time difference is used to indicate where the signal of the first TRP arrives. The difference between the time of the terminal device and the time when the signal of the second TRP reaches the terminal device; and the difference in transmission time between the first TRP and the second TRP.
  • a network device including: a sending module configured to send first information to the terminal device when the terminal device maintains uplink synchronization with the first transmission reception point TRP. used to activate a second TRP located in a different cell from the first TRP; a determining module used to determine the uplink synchronization information of the second TRP, and the uplink synchronization information is sent to the second TRP based on the terminal device The uplink reference signal is determined.
  • a terminal device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the terminal The device performs some or all of the steps in the method of the first aspect or the second aspect.
  • a network device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the network
  • the device performs some or all of the steps in the method of the third aspect or the fourth aspect.
  • embodiments of the present application provide a communication system, which includes the above-mentioned terminal device and/or network device.
  • the system may also include other devices that interact with the terminal device or network device in the solution provided by the embodiments of the present application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program.
  • the computer program causes a terminal device or a network device to execute part of the methods of the above aspects. or all steps.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a terminal device or The network device performs some or all of the steps in the methods of each of the above aspects.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects. .
  • the terminal device may use the first TRP as a reference when determining the uplink synchronization information of the second TRP and consider one or more of the following information: Uplink synchronization of the first TRP information, the downlink arrival time difference, and the transmission time difference between the first TRP and the second TRP. Based on this, the terminal device can obtain the uplink synchronization information of the second TRP without initiating a random access process to the second TRP, which is beneficial to reducing uplink resource overhead and transmission delay.
  • 1A to 1C are system architecture diagrams of a communication system to which embodiments of the present application can be applied.
  • Figure 2 is an example diagram of the relationship between uplink frames and downlink frames in a TA scenario.
  • Figure 3 is an example diagram of the format of a MAC CE carrying TAC.
  • Figure 4 is another example diagram of the format of a MAC CE carrying TAC.
  • Figure 5 is an example diagram of the format of a MAC RAR carrying TAC.
  • Figure 6 is a schematic flow chart of the four-step random access process.
  • Figure 7 is an example diagram of a multi-TRP scenario applicable to the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for wireless communication provided by an embodiment of the present application.
  • Figure 9 is an example diagram of determining the uplink synchronization information of the second TRP provided by an embodiment of the present application.
  • Figure 10 is an example diagram of determining the uplink synchronization information of the second TRP provided by another embodiment of the present application.
  • Figure 11 is a schematic flowchart of a method for wireless communication provided by another embodiment of the present application.
  • Figure 12 is an example diagram of the format of a MAC CE indicating a transmission time difference provided by an embodiment of the present application.
  • Figure 13 is an example diagram of the format of a MAC CE indicating a transmission time difference provided by another embodiment of the present application.
  • Figure 14 is an example diagram of the format of a MAC CE indicating a transmission time difference provided by another embodiment of the present application.
  • Figure 15 is an example diagram of the format of a MAC CE indicating a transmission time difference provided by yet another embodiment of the present application.
  • Figure 16 is a schematic flowchart of a method for wireless communication provided by yet another embodiment of the present application.
  • Figure 17 is a schematic flowchart of a method for wireless communication provided by yet another embodiment of the present application.
  • Figure 18 is a schematic flowchart of a method for wireless communication provided by yet another embodiment of the present application.
  • Figure 19 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 20 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • Figure 21 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Figure 22 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • Figure 23 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • NR new radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to) on unlicensed spectrum unlicensed spectrum (NR-U) system, non-terrestrial networks (NTN) system, universal mobile telecommunication system (UMTS), wireless local area networks (WLAN), wireless fidelity (wireless fidelity, WiFi), fifth-generation communication (5th-generation, 5G) system or other communication systems, such as future communication systems, such as sixth-generation mobile communication systems, satellite communication systems, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • new radio new
  • D2D device to device
  • M2M machine to machine
  • MTC machine type Communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of the present application can be applied to the unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of the present application can also be applied to the licensed spectrum, where the licensed spectrum can also be Considered dedicated spectrum.
  • NTN systems can be applied to NTN systems and also to terrestrial communication networks (terrestrial networks, TN) systems.
  • TN systems include NR-based NTN systems and IoT-based NTN systems.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station (mobile station). station, MS), mobile terminal (mobile Terminal, MT), remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • the terminal device may be a station (STATION, ST) in WLAN, a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, or a wireless local loop (wireless local loop).
  • WLL station
  • PDA personal digital assistant
  • handheld device with wireless communication capabilities computing device or other processing device connected to a wireless modem
  • vehicle-mounted device wearable device
  • next-generation communication system such as NR network terminal equipment in the public land mobile network (public land mobile network, PLMN) network that will evolve in the future.
  • PLMN public land mobile network
  • a terminal device may refer to a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices, vehicle-mounted devices, etc. with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal device can be used to act as a base station.
  • terminal devices may act as a scheduling entity that provides sidelink signals between terminal devices in V2X or D2D, etc.
  • terminal devices may act as a scheduling entity that provides sidelink signals between terminal devices in V2X or D2D, etc.
  • terminal devices may act as a scheduling entity that provides sidelink signals between terminal devices in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the terminal device may be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction. Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmitting and receiving point (TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access Node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), remote radio unit (RRU), active antenna unit (active antenna) unit, AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • TRP transmitting and receiving point
  • TP main station
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as aircraft, balloons, satellites, etc.). In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • network equipment may be satellites or balloon stations.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, or other locations.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, a cell corresponding to a base station).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: urban cell (metro cell), micro cell (micro cell), pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • FIG. 1A is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 may include a network device 110 , and the network device 110 may be a device that communicates with a terminal device 120 (also known as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1A exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and other numbers of terminals may be included within the coverage of each network device.
  • Equipment the embodiments of this application are not limited to this.
  • FIG. 1B is an architectural schematic diagram of another communication system provided by an embodiment of the present application.
  • the communication system includes a terminal device 120 and a satellite 110a, and wireless communication can be performed between the terminal device 120 and the satellite 110a.
  • the network formed between the terminal device 120 and the satellite 110a may also be called an NTN.
  • the satellite 110a may have the function of a base station, and the terminal device 120 and the satellite 110a may communicate directly. Under this communication system architecture, the satellite 110a can be called a network device.
  • the communication system may include multiple network devices 110a, and the coverage of each network device 110a may include other numbers of terminal devices, which are not limited in the embodiments of this application.
  • FIG. 1C is an architectural schematic diagram of yet another communication system provided by an embodiment of the present application.
  • the communication system includes a terminal device 120, a satellite 130 and a base station 110b. Wireless communication can be performed between the terminal device 120 and the satellite 130, and communication can be performed between the satellite 130 and the base station 110b.
  • the network formed between the terminal device 120, the satellite 130 and the base station 110b may also be called an NTN.
  • the satellite 130 may not have the function of a base station, and the communication between the terminal device 120 and the base station 110 b needs to be relayed through the satellite 130 .
  • the base station 110b can be called a network device.
  • the communication system may include multiple network devices 110b, and the coverage of each network device 110b may include other numbers of terminal devices, which is not limited in the embodiments of the present application.
  • Figures 1A to 1C are only used as examples to illustrate the systems to which this application is applicable.
  • the methods shown in the embodiments of this application can also be applied to other systems, such as 5G communication systems, LTE communication systems, etc. , the embodiments of this application do not specifically limit this.
  • the wireless communication system shown in Figures 1A-1C may also include a mobility management entity (mobility management entity, MME), access and mobility management function (AMF) and other network entities, which are not limited in the embodiments of this application.
  • MME mobility management entity
  • AMF access and mobility management function
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • the “configuration” in the embodiment of this application may include at least one of system messages, radio resource control (radio resource control, RRC) signaling, and media access control control element (media access control control element, MAC CE). configuration.
  • RRC radio resource control
  • MAC CE media access control control element
  • predefined or “preset” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • predefined can refer to what is defined in the protocol.
  • the "protocol or standard” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • Uplink synchronization refers to the process in which the uplink signals of terminal devices in different locations using the same time slot in a serving cell reach the receiving antenna of the network device at the same time. That is, the signals of different terminal devices in the same time slot remain synchronized when they reach the receiving antenna of the network device.
  • the purpose of uplink synchronization is to reduce uplink multi-access interference and multi-path interference between terminal devices in the serving cell.
  • the terminal device can perform uplink synchronization with the network device according to the uplink synchronization information corresponding to the network device.
  • the uplink synchronization information may include TA, for example.
  • TA is usually used for uplink transmission, which can mean that the system frame in which the terminal device sends uplink data must be a certain amount of time earlier than the corresponding downlink frame.
  • the timing advance of the terminal equipment is based on the first path of the downlink channel received by the terminal equipment (that is, the first symbol of the time slot where the channel is located) as the downlink reference, and based on this, early transmission is performed.
  • Figure 2 shows the relationship between uplink frames and downlink frames. Referring to Figure 2, taking the terminal device working in single-TRP (sTRP) mode as an example, the reference point of the terminal device's TA is based on the downlink reception time point of the terminal device as the starting point, and moves forward a certain time. (TA) to send uplink channels or signals.
  • sTRP single-TRP
  • terminal equipment can support different carriers (also known as "serving cells"). Different carriers can have different TAs, therefore, the concept of timing advance group (TA group, TAG) is introduced.
  • TAG may include TAs of one or more serving cells.
  • a TAG containing a special cell (Spcell) can be called a primary timing advance group (PTAG).
  • PTAG primary timing advance group
  • secondary timing advance group secondary timing advance group
  • Spcell can include a primary cell (primary cell, PCell) or a primary secondary cell (primary secondary cell, PSCell).
  • TAG cell group
  • RRC configuration used to configure TAG can be expressed as:
  • RRC configuration can include TAG configuration (represented by "TAG-Config"), TAG information (represented by “TAG”), TAG identification (represented by “TAG-Id”) and TA timer (represented by "TimeAlignmentTimer”) .
  • the TAG configuration may include a release list (represented by "tag-ToReleaseList”) and a TAG addition list (represented by "tag-ToAddModList”).
  • TAG information may include the identification of the TAG (represented by "tag-Id”) and the TA timer (represented by "timeAlignmentTimer”).
  • the corresponding duration of the TA timer can be listed in enumeration, including ⁇ 500ms, 750ms, 1280ms, 1920ms, 2560ms, 5120ms, 10240ms, infinite ⁇ .
  • the validity of TA can be maintained through the TA timer. That is to say, when the terminal device receives the information indicating TA sent by the network device (or TA command (TA command, TAC)), the terminal device can start Or restart the TA timer. When the TA timer has not expired, the TA maintained by the TA timer is valid, and the terminal device can communicate with the network device based on the TA. On the contrary, when the TA timer times out, the TA maintained by the TA timer becomes invalid (or invalid). At this time, the terminal device can no longer communicate with the network device based on the TA.
  • a CG may include multiple serving cells, and each serving cell will be assigned a TAG identifier.
  • each serving cell can be pre-configured with an N TA,offset .
  • N TA may be performed based on a pre-configured offset.
  • N TA can provide differential adjustment by the MAC CE of the network device, that is, this TA adjustment (also called “new TA”, expressed as ) is the previous TA (also known as “old TA”, expressed as ) based on, adjusted forward or backward in time.
  • This TA adjustment also called “new TA”, expressed as
  • the previous TA also known as “old TA”, expressed as
  • the adjustment formula is as follows:
  • T A is determined based on TAC.
  • the granularity of the TA adjustment may be TAG.
  • the MAC CE may include a TAG identification (TAG ID) field and a TAC field.
  • TAG ID field length can be 2 bits, and the identifier of the TAG containing SpCell is 0.
  • the TAC field is used to indicate the TA index value TA (0,1,2...63), which is used to control the amount of timing adjustment that the MAC entity must apply (as specified in TS38.213 [6]).
  • the length of this field can be 6 bits.
  • the TA adjustment method can be adjusted based on the absolute value of TA (also called “absolute TA”), that is, there is no need to consider the previous TA adjustment value.
  • the network device can adjust it through Absolute MAC CE (Absolute MAC CE). ) or the payload of the MAC random access response (MAC RAR) directly gives an absolute TA, which can be represented by "N TA ".
  • N TA the value range of absolute TA can be from 0 to 3846.
  • the above-mentioned absolute TA and T A acquisition methods occur during the random access process.
  • the acquired TA is suitable for the TAG corresponding to the target cell of the random access. Therefore, the signaling carrying TAC may not contain TAG- ID.
  • the absolute MAC CE can be used in the two-step random access process, and the two-step random access can be initiated to SpCell. Therefore, the absolute MAC CE is applicable to the PTAG corresponding to the MAC entity, that is, the PTAG contains SpCell.
  • Figure 4 shows the format of the MAC CE carrying TAC.
  • the length of the MAC CE can be 2 bytes, which is 16 bits.
  • MAC CE can include the TAC field, which can occupy 12 bits. This field is used to indicate the TA index value of the time adjustment amount applied by the MAC entity.
  • the remaining 4 bits in MAC CE can be used as reserved bits (indicated by "R") and can be set to 0.
  • Figure 5 shows the format of a MAC RAR carrying TAC.
  • the length of the MAC RAR can be 7 bytes, which is 56 bits.
  • the TAC field can be included, and the TAC field can occupy 7 bits. This field is used to indicate the TA index value of the time adjustment amount applied by the MAC entity.
  • the remaining 1 bit in Oct 1 can be used as a reserved bit (indicated by "R") and can be set to 0.
  • the TAC field can continue to be included, and the TAC field can occupy 5 bits.
  • the remaining 3 bits in Oct 2 can carry the uplink grant (UL Grant).
  • the uplink grant (UL Grant) can continue to be carried.
  • the temporary cell-radio network temporary identifier (cell-radio network temporary identifier, C-RNTI) can be carried.
  • the terminal device can establish a connection with the cell and obtain uplink synchronization information by initiating a random access process.
  • Random access may include a four-step random access process and a two-step random access process. The following takes the four-step random access process as an example to briefly introduce the process of the random access process.
  • the four-step random access process may include steps S610 to S640.
  • step S610 the terminal device sends a random access request to the network device, and the random access request may include a random access preamble.
  • the random access request may also be called the first message or message 1 (Msg1) in the random access process.
  • step S620 after detecting the random access preamble sent by the terminal device, the network device sends a RAR to the terminal device.
  • the RAR message may also be called the second message or message 2 (Msg2) in the random access process.
  • a TAC field may be included in the RAR to indicate uplink synchronization information between the terminal device and the network device. In this way, the terminal device can obtain an initial TA value through the RAR message during the initial access process.
  • step S630 the terminal device sends message 3 (Msg3) to the network device.
  • Message 3 can be used to notify the network device of events that trigger the random access process. For example, if the event is an initial access random process, message 3 will carry the terminal device identification and establishment cause; if the event is RRC reestablishment, the connected terminal equipment identification and establishment cause will be carried.
  • step S640 the network device sends message 4 (Msg4) to the terminal device.
  • Message 4 can be used for conflict resolution. Therefore, message 4 can also be called a contention resolution message.
  • each TRP can schedule its physical downlink shared channel through its own downlink control information (DCI). (physical downlink shared channel, PDSCH) transmission. That is, TRP1 can schedule the transmission of PDSCH1 through the DCI carried by the physical downlink control channel (physical downlink control channel, PDCCH) 1, and TRP2 can schedule the transmission of PDSCH2 through the DCI carried by PDCCH2.
  • DCI downlink control information
  • each TRP may also schedule its own PUSCH transmission.
  • TRP1 can schedule the transmission of PUSCH1 through the DCI carried by PDCCH1
  • TRP2 can schedule the transmission of PUSCH2 through the DCI carried by PDCCH2.
  • CORESET can be grouped by its corresponding RRC parameter "Control Resource Set Pool Index (CORESETPoolIndex)", that is, the control resource sets with CORESETPoolIndex of "0" can be grouped into one group, corresponding to TRP1.
  • the control resource sets whose CORESETPoolIndex is "1" can be divided into one group, corresponding to TRP2.
  • CORESETPoolIndex can be set to "0" by default.
  • the reference point of the terminal device's timing advance is calculated from the downstream reception time point.
  • the terminal device can still use one of the two TRPs as a reference point for downlink reception to adjust the TA.
  • the terminal device can still use one of the two TRPs as a reference point for downlink reception to adjust the TA.
  • the terminal device can configure a specific TRP as a reference point for downlink reception. This premise based on a single downlink reference point may be that the terminal device has only one set of downlink reception timelines, which depends on the capabilities of the terminal device.
  • two different downlink reception reference points can also be used.
  • two TRPs can correspond to different downlink reference points, so the two TA values indicated by the network device are adjusted according to their respective reference points.
  • the repeated transmission of uplink PUCCH/PUSCH based on multiple TRPs is supported, with the purpose of enhancing uplink coverage and transmission reliability.
  • the terminal equipment needs to send physical uplink control channel (PUCCH)/physical uplink shared channel (PUSCH) carrying the same content to different TRPs.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the current standard only supports repeated transmission of PUSCH based on sDCI, using a TA with timing advance to sequentially send PUSCH to different TRPs.
  • PUSCH repeated transmission based on mDCI since there may not be an ideal enough backhaul as a connection between multiple TRPs, independent scheduling of terminal equipment by multiple TRPs may cause different PUSCH/PUCCHs to overlap in time.
  • 3GPP is currently developing a mechanism for multiple antenna panels of terminal equipment to transmit PUCCH/PUSCH to multiple TRPs at the same time.
  • the terminal equipment can only use the same uplink synchronization information (for example, using the same TA value) to perform PUSCH/PUCCH (no matter whether it is Whether to launch towards one TRP or towards two TRPs) is sent in advance.
  • the traditional uplink synchronization information between terminal equipment and TRP is granular based on the serving cell.
  • This method of determining the uplink synchronization information of the TRP based on the granularity of the serving cell may be too rough, which may still cause interference when the terminal device communicates with the TRP based on the uplink synchronization information corresponding to the serving cell to which the TRP belongs.
  • a serving cell includes multiple TRPs
  • different TRPs may have different distances from the terminal equipment.
  • the terminal equipment still sends uplink synchronization information to multiple TRPs in the serving cell based on the uplink synchronization information corresponding to the serving cell, signal, which may cause interference to remain after the uplink signal reaches the TRP.
  • the terminal equipment may send uplink signals to the different TRPs based on the same uplink synchronization information. As a result, interference still exists after the uplink signal reaches the TRP.
  • the uplink synchronization information between the terminal device and the TRP can be determined with the TRP as the granularity.
  • the terminal device may need to determine the uplink synchronization information of each TRP separately for different TRPs.
  • use the TRP as the granularity to determine (for example, configure or adjust) the TA corresponding to each TRP (TRP-specific TA).
  • TRP-specific TA the TRP-specific TA
  • the terminal device can access the TRP by initiating a random access process and obtain the uplink synchronization information of the TRP.
  • the way in which the terminal device obtains the uplink synchronization information of the TRP through the random access process is not flexible enough, which may result in high uplink resource overhead and prolonged transmission time.
  • this application proposes two embodiments. Both embodiments can obtain the uplink synchronization information of the TRP without initiating a random access process to the TRP, which is beneficial to reducing uplink resource overhead and transmission delay.
  • Embodiment 1 and Embodiment 2 respectively.
  • the first TRP and the uplink synchronization information of the TRP are first introduced.
  • the first TRP refers to the TRP that maintains uplink synchronization with the terminal device.
  • it may be the TRP that the terminal device accesses when it initially accesses the serving cell.
  • the terminal device may maintain uplink synchronization with one or more TRPs at the same time.
  • the first TRP may be any one of the one or multiple TRPs that maintain uplink synchronization with the terminal device.
  • the network side may add one or more new ones according to the needs of uplink and downlink transmission (for example, to improve transmission reliability or spectrum efficiency).
  • the TRP (for example, the second TRP below) provides services for the terminal device.
  • the newly added TRP may be located in the same cell as the first TRP. In some embodiments, the newly added TRP may be located in a different cell than the first TRP.
  • the terminal device accesses the TRP when it initially accesses the serving cell. After the terminal device initially accesses the serving cell, it enters the single-TRP operation mode and completes uplink synchronization with the first TRP. After the terminal device completes uplink synchronization with the first TRP, the first TRP can serve as a serving TRP (equivalent to a base station) that sends a channel to the terminal device to communicate with the terminal device.
  • a serving TRP equivalent to a base station
  • the network side can configure the terminal equipment to the multi-TRP operating mode as needed to add a new TRP to provide services for the terminal equipment, for example, add one or more TRPs in the same cell to provide services to terminal devices.
  • multiple TRPs connected to the terminal device can provide services to the terminal device at the same time.
  • the multiple TRPs can communicate with each other, for example, through wired connection or wireless connection.
  • the network side may configure the terminal device to operate in a multi-TRP mode through RRC signaling.
  • the terminal equipment Before the terminal equipment needs to communicate uplink with the TRP (send uplink signaling or uplink data), the terminal equipment should perform uplink synchronization with the TRP to avoid interference between uplink signals sent by different terminal equipment to the TRP. Therefore, the terminal device needs to perform uplink synchronization with the TRP based on the acquired uplink synchronization information of the TRP.
  • the uplink synchronization information of the TRP can be understood as the uplink synchronization information between the terminal device and the TRP, or as the uplink synchronization information corresponding to the terminal device and the TRP.
  • the uplink synchronization of the terminal device based on the TRP's uplink synchronization information with the TRP can be understood as the system frame in which the terminal device sends uplink data must be a certain time earlier than the corresponding downlink frame. For example, this can be ensured by adjusting the uplink transmission time of the terminal device.
  • Upstream synchronization It should be understood that the terminal device’s adjustment of the uplink transmission time is aimed at the network side’s reception time alignment. The alignment here includes that multiple terminal devices should try to arrive at the network side at the same time, and also includes the network side’s downlink transmission time slot and Alignment of boundaries between upstream receive slots.
  • the embodiment of the present application does not limit the type of uplink synchronization information of TRP.
  • the uplink synchronization information of the TRP may refer to the TA corresponding to the TRP (or the TA between the TRP and the terminal device).
  • the uplink synchronization information of the first TRP may refer to the TA corresponding to the first TRP.
  • the uplink synchronization information of the TRP may refer to the one-way transmission delay from the TRP to the terminal device (or the one-way transmission delay between the terminal device and the TRP).
  • the uplink synchronization information of the first TRP may refer to One-way transmission delay from the first TRP to the terminal device.
  • the one-way transmission delay may also be called one-way propagation delay, which is not limited in the embodiments of the present application.
  • the TA corresponding to the TRP can be understood as twice the one-way transmission delay from the TRP to the terminal device.
  • Embodiment 1 and Embodiment 2 will be introduced in sequence below.
  • Embodiment 1 aims to use the first TRP as a reference to determine the uplink synchronization information of other TRPs other than the first TRP, so that there is no need to initiate a random access process to other TRPs to obtain the uplink synchronization information of other TRPs.
  • a solution that does not use a random access process to obtain uplink synchronization information may also be called a RACH-less uplink synchronization information acquisition solution.
  • FIG. 8 is a schematic flowchart of a method for wireless communication provided by an embodiment of the present application.
  • the method shown in Figure 8 can be executed by a terminal device or a network device, and the embodiments of the present application are not limited to this.
  • the terminal device and the network device may be, for example, the terminal device 120 and the network device 110 shown in Figure 1 (for example, the network device 110 in Figure 1A, the satellite 110a in Figure 1B, and the base station 110b in Figure 1C).
  • the method shown in Figure 8 includes step S810, which step will be described in detail below.
  • step S810 when the terminal device maintains uplink synchronization with the first TRP, determine the uplink synchronization information of the second TRP.
  • the second TRP can be understood as a new TRP configured for the terminal device on the network side so that it can provide services for the terminal device together with the first TRP.
  • the second TRP and the first TRP may be located in the same cell or in different cells, which is not limited in the embodiment of the present application.
  • the terminal device has not yet accessed the second TRP, or the terminal device has not yet performed uplink synchronization with the second TRP.
  • the embodiments of the present application are not limited to this.
  • the terminal equipment has accessed the second TRP (or in other words, the terminal equipment needs to update the uplink synchronization information of the second TRP after accessing the second TRP)
  • the third TRP can also be used.
  • One TRP is used as a reference to determine the uplink synchronization information of the second TRP.
  • the first TRP and the second TRP are synchronized with respect to the downlink transmission of the terminal device.
  • the transmission timing difference (transmission timing difference) between the first TRP and the second TRP is 0 (or there is no transmission timing difference between the first TRP and the second TRP).
  • the first TRP and the second TRP are asynchronous with respect to the downlink transmission of the terminal device.
  • the transmission time difference between the first TRP and the second TRP is a non-zero value. This is because there may be a clock deviation between the first TRP and the second TRP (for example, a clock deviation caused by an unideal backhaul line or a hardware limitation of the network equipment between the first TRP and the second TRP), causing the There is a certain unpredictable error in the downlink time synchronization between the first TRP and the second TRP.
  • the existence of a clock deviation between the first TRP and the second TRP is referred to as the existence of a transmission time difference between the first TRP and the second TRP.
  • the transmission time difference can also be replaced by other names, such as synchronization time difference, downlink transmission time gap (DL Tx time gap), downlink transmission time gap, etc. This application does not limit this, as long as it indicates the existence of clocks between different TRPs Just the deviation.
  • using the first TRP as a reference to determine the uplink synchronization information of the second TRP may mean that information related to the first TRP may be considered when determining the uplink synchronization information of the second TRP.
  • the uplink synchronization information of the second TRP may be determined according to one or more of the following information.
  • the uplink synchronization information of the first TRP may refer to the TA corresponding to the first TRP, or may refer to the one-way transmission delay from the first TRP to the terminal device.
  • the type of uplink synchronization information of the first TRP and the type of uplink synchronization information of the second TRP may be the same.
  • the uplink synchronization information of the first TRP refers to the TA corresponding to the first TRP
  • the type of uplink synchronization information of the second TRP refers to the TA corresponding to the second TRP.
  • the type of uplink synchronization information of the first TRP and the type of uplink synchronization information of the second TRP may be different.
  • the uplink synchronization information of the first TRP refers to the TA corresponding to the first TRP, and the type of uplink synchronization information of the second TRP.
  • the uplink synchronization information of TRP refers to the one-way transmission delay from the second TRP to the terminal device.
  • the downlink arrival time difference is used to indicate the difference between the time when the signal of the first TRP reaches the terminal device and the time when the signal of the second TRP reaches the terminal device.
  • the downlink arrival time difference represents the difference between the downlink arrival time of the first TRP to the terminal device (the time when the signal sent by the first TRP reaches the terminal device) and the downlink arrival time of the second TRP to the terminal device.
  • the downlink arrival time difference can also be represented by the downlink reception time of the terminal device, that is, the difference between the time when the terminal device receives the signal sent by the first TRP and the time when the terminal device receives the signal sent by the second TRP. value.
  • the downlink arrival time difference may be determined based on the measurement of the reference signal by the terminal device. Details will be provided later and will not be described here.
  • the downlink arrival time of the TRP to the terminal device is associated with the distance of the TRP to the terminal device. For example, when the distance between the first TRP and the terminal device is the same as the distance between the second TRP and the terminal device, it can be considered that the downlink arrival time difference is 0. Or, when the distance between the first TRP and the terminal device is different from the distance between the second TRP and the terminal device, it can be considered that the downlink arrival time difference is a non-zero value.
  • the transmission time difference between the first TRP and the second TRP is used to indicate synchronization information (or clock offset information between the first TRP and the second TRP) of the downlink transmission of the first TRP and the second TRP relative to the terminal device. For example, when the transmission time difference between the first TRP and the second TRP is 0, it can be understood that the first TRP and the second TRP are synchronized with respect to the downlink transmission of the terminal device, or that the clock information between the first TRP and the second TRP are consistent.
  • the transmission time difference between the first TRP and the second TRP is non-zero, it can be understood that the first TRP and the second TRP are asynchronous with respect to the downlink transmission of the terminal device, or that the first TRP and the second TRP are not synchronized. The clock information between them is inconsistent.
  • the transmission time difference between the first TRP and the second TRP may refer to the difference between the time reference information of the first TRP and the time reference information of the second TRP.
  • the time reference information of the first TRP may be indicated by the downlink sending time of the first TRP
  • the time reference information of the second TRP may be indicated by the downlink sending time of the second TRP.
  • the transmission time difference between the first TRP and the second TRP may be determined based on the system information of the first TRP and the second TRP or time reference information contained in dedicated signaling.
  • This application does not limit the system information of TRP.
  • the system information may refer to system information block (SIB).
  • the terminal device when the terminal device maintains uplink synchronization with the first TRP, the terminal device can use the first TRP as a reference to determine the uplink synchronization information of the second TRP. Specifically, determine the uplink synchronization information of the second TRP. One or more of the above information 1 to information 3 can be considered. Based on this, the terminal device can obtain the uplink synchronization information of the second TRP without initiating a random access process to the second TRP, which is beneficial to reducing uplink resource overhead and transmission delay.
  • the uplink synchronization information of the second TRP may be determined based on the above information 1 and information 2. For example, in the case where the first TRP and the second TRP are synchronized with respect to the downlink transmission of the terminal device, the uplink synchronization information of the second TRP can be determined directly based on information 1 and information 2.
  • the uplink synchronization information of the second TRP may be jointly determined based on the above information 1, information 2, and information 3, that is, the uplink synchronization information of the second TRP is based on the uplink synchronization information of the first TRP, and the downlink The arrival time difference and the transmission time difference between the first TRP and the second TRP are determined. For example, when the first TRP and the second TRP are synchronized with the downlink transmission of the terminal device, the transmission time difference between the first TRP and the second TRP can be considered to be 0, and the second TRP is jointly determined based on information 1, information 2, and information 3. upstream synchronization information.
  • the transmission time difference between the first TRP and the second TRP can be considered to be a non-zero value, which is jointly determined based on information 1, information 2 and information 3.
  • Uplink synchronization information of the second TRP is jointly determined based on information 1, information 2 and information 3.
  • the second The uplink synchronization information of the TRP can be expressed as twice the target value, where the target value is equal to the difference between the one-way transmission delay (the one-way transmission delay from the first TRP to the terminal device) and the transmission time difference (the first TRP and the first TRP). The sum of the TRP transmission time difference) and the downlink arrival time difference.
  • the transmission time difference between the first TRP and the second TRP and the downlink arrival time difference are relative concepts. Therefore, the subtraction operation or addition operation mentioned above is not absolute. For example, the subtraction operation can be understood as being related to a negative value. Sum.
  • the transmission time difference between the first TRP and the second TRP may refer to the reference time of the second TRP minus the reference time of the first TRP. If the reference time of the second TRP is later than the reference time of the first TRP, then The transmission time difference between the first TRP and the second TRP can be expressed as a positive value.
  • the difference between the one-way transmission delay and the transmission time difference above can refer to the value obtained by subtracting the transmission time difference from the one-way transmission delay; if the second TRP The reference time is ahead of the reference time of the first TRP, then the transmission time difference between the first TRP and the second TRP can be expressed as a negative value.
  • the difference between the one-way transmission delay and the transmission time difference above can refer to the one-way transmission time.
  • the value obtained by subtracting the transmission time difference in this case, subtracting the negative value can be understood as the sum of the positive value).
  • the relevant calculation process of the transmission time difference between the first TRP and the second TRP is similar and will not be described again here.
  • the downlink transmission of the first TRP and the second TRP relative to the terminal device may be synchronous or asynchronous.
  • the following is an exemplary introduction to how to determine the uplink synchronization information of the second TRP for these two situations respectively.
  • Case 1 The first TRP and the second TRP are synchronized with respect to the downlink transmission of the terminal device.
  • Figure 9 shows an example of determining the uplink synchronization information of the second TRP.
  • the first TRP and the second TRP are synchronized with respect to the downlink transmission of the terminal device (that is, DL Tx1 and DL Tx2 in Figure 9 are aligned, where DL Tx represents downlink transmission and DL RX represents downlink reception ).
  • DL Tx1 and DL Tx2 in Figure 9 are aligned, where DL Tx represents downlink transmission and DL RX represents downlink reception ).
  • the uplink synchronization information of the first TRP is different from the uplink synchronization information of the second TRP, it may be because the propagation delay from the terminal device to the first TRP is different from the propagation delay from the terminal device to the second TRP. .
  • the TA corresponding to the first TRP and the TA corresponding to the second TRP The values of should be 2 ⁇ 0 and 2 ⁇ 1 respectively to compensate for the round-trip transmission delay.
  • the terminal device can determine (such as , which can be calculated or indicated by the network device) the uplink synchronization information of the first TRP (for example, the single-line propagation delay ⁇ 0 from the first TRP to the terminal device). In this way, as long as the terminal device can determine the downlink arrival time difference, the terminal device can determine the uplink synchronization information of the second TRP according to the following formula.
  • ⁇ 0 represents the one-way transmission delay from the first TRP to the terminal device
  • DL timing difference represents the downlink arrival time difference
  • Case 2 The first TRP and the second TRP are asynchronous with respect to the downlink transmission of the terminal device.
  • Figure 10 shows an example of determining the uplink synchronization information of the second TRP.
  • the first TRP and the second TRP are asynchronous with respect to the downlink transmission of the terminal device, that is, there is a transmission time difference between the first TRP and the second TRP, and the transmission time difference is a non-zero value.
  • the uplink synchronization information of the first TRP is different from the uplink synchronization information of the second TRP, it may be due to one or more of the following reasons: Propagation delay from the terminal device to the first TRP It is different from the propagation delay from the terminal device to the second TRP; the first TRP and the second TRP are not synchronized with respect to the downlink transmission of the terminal device.
  • the terminal device can determine the uplink synchronization information of the first TRP.
  • the terminal device also needs to determine the downlink arrival time difference and the transmission of the first TRP and the second TRP. Based on the time difference, the terminal device can determine the uplink synchronization information of the second TRP according to the following formula.
  • the uplink synchronization information of the second TRP is the TA corresponding to the second TRP
  • TA3 2 ( ⁇ 0 -DL time gap+DL timing difference).
  • ⁇ 0 represents the one-way transmission delay from the first TRP to the terminal device
  • DL time gap represents the transmission time difference between the first TRP and the second TRP
  • DL timing difference represents the downlink arrival time difference
  • both the terminal device and the network device can determine the uplink synchronization information of the second TRP based on the above information 1 to information 3.
  • the following describes the process of how the terminal device and the network device determine the uplink synchronization information of the second TRP based on the above information.
  • Figure 11 is a schematic flowchart of a method for wireless communication provided by another embodiment of the present application. This process is used to introduce how the terminal device determines the uplink synchronization information of the second TRP based on the above information. The method shown in Figure 11 is introduced from the perspective of interaction between terminal equipment and network equipment.
  • the terminal device determines the uplink synchronization information of the second TRP based on the above information
  • the terminal device itself can determine the uplink synchronization information of the first TRP and the downlink arrival time difference, and the transmission time difference between the first TRP and the second TRP can be indicated by the network device.
  • step S1110 the network device sends first information to the terminal device, where the first information is used to indicate the transmission time difference between the first TRP and the second TRP.
  • the first information may be carried in higher layer signaling, such as RRC signaling. In some embodiments, the first information may be carried in low-layer signaling, such as MAC CE.
  • the indication method of the first information may be configured as a semi-static configuration method.
  • the semi-static configuration may be performed through high-layer signaling.
  • the indication method of the first information may be configured as a dynamic configuration method.
  • dynamic configuration may be performed through low-layer signaling.
  • the embodiment of the present application does not limit the manner in which the first information indicates the transmission time difference between the first TRP and the second TRP.
  • the first information may be indicated in an absolute time manner. Taking the time reference information of the TRP as indicating the downlink transmission time of the TRP as an example, the first information may include the downlink transmission time of the first TRP and the downlink transmission time of the second TRP.
  • the terminal device can calculate the transmission time difference between the first TRP and the second TRP based on the downlink transmission time of the first TRP and the downlink transmission time of the second TRP.
  • the transmission time difference is equal to the downlink transmission time of the first TRP.
  • the first information may be indicated in the form of a relative time difference. Still taking the time reference information of the TRP to indicate the downlink transmission time of the TRP as an example, the first information can directly include the difference between the downlink transmission time of the first TRP and the downlink transmission time of the second TRP. That is, the first information can directly include Contains the transmission time difference between the first TRP and the second TRP.
  • the first information may be used to indicate a transmission time difference between a first TRP (reference TRP) and multiple target TRPs (the second TRP is one of the multiple target TRPs).
  • the identifier of the TRP can be used to distinguish different TRPs.
  • the identifier of the TRP may refer to the physical cell identifier (PCI) of the TRP.
  • PCI physical cell identifier
  • each TRP has a corresponding PCI.
  • the PCIs corresponding to the multiple TRPs are the same; for multiple TRPs between cells (inter-cell) In this scenario, the PCIs corresponding to the multiple TRPs are different. Based on this, in the scenario of multiple TRPs between cells, PCI can be used to distinguish different TRPs.
  • Figure 12 shows the format of a MAC CE indicating the transmission time difference.
  • the example in Figure 12 can be applied to the scenario of multiple TRPs between cells.
  • the transmission time difference between the reference TRP and the target TRP is indicated in absolute time.
  • Each TRP (including the reference TRP and the target TRP) has a corresponding PCI. Different TRPs can be passed through the PCI of each TRP. to distinguish.
  • Figure 13 shows another format of MAC CE indicating the transmission time difference.
  • the example in Figure 13 can be applied to the scenario of multiple TRPs between cells.
  • the transmission time difference between the reference TRP and the target TRP is indicated in the form of relative time difference.
  • Each TRP (including the reference TRP and the target TRP) has a corresponding PCI. Different TRPs can pass the PCI of each TRP. to distinguish.
  • the identification of the TRP may refer to the identification of the CORESET associated with the TRP.
  • each TRP is associated with a set of CORESETs. Therefore, the identification of CORESETs can be used to indirectly distinguish different TRPs. Based on this, in the scenario of multiple TRPs in a cell, the CORESET identifier can be used to distinguish different TRPs.
  • the identifier of CORESET refers to the RRC parameter "CORESETPoolIndex" corresponding to CORESET, that is, the parameter CORESETPoolIndex can be used to distinguish different TRPs. Considering that CORESETPoolIndex can only take the value 0 or 1, corresponding to two different TRPs respectively. Therefore, CORESETPoolIndex can be used to differentiate between two different TRPs.
  • Figure 14 shows yet another format of MAC CE indicating the transmission time difference.
  • the example in Figure 14 can be applied to the scenario of multiple TRPs in a cell.
  • the transmission time difference between the reference TRP and the target TRP is indicated in absolute time.
  • the reference TRP and the target TRP can be distinguished by the CORESETPoolIndex associated with each TRP.
  • Figure 15 shows yet another format of MAC CE indicating the transmission time difference.
  • the example in Figure 15 can be applied to the scenario of multiple TRPs in a cell.
  • the transmission time difference between the reference TRP and the target TRP is indicated in the form of relative time difference.
  • the reference TRP and the target TRP can be distinguished by the CORESETPoolIndex associated with each TRP.
  • step S1120 the terminal device determines the uplink synchronization information of the second TRP.
  • step S1120 please refer to the previous description of step S810, which will not be described again here.
  • Figure 16 is a schematic flowchart of a method for wireless communication provided by yet another embodiment of the present application. This process is used to introduce how the network device determines the uplink synchronization information of the second TRP based on the above information. The method shown in Figure 16 is introduced from the perspective of interaction between network equipment and terminal equipment.
  • the network device determines the uplink synchronization information of the second TRP based on the above information
  • the network device itself can determine the uplink synchronization information of the first TRP and the transmission time difference between the first TRP and the second TRP, and the downlink arrival time difference can be indicated by the terminal device.
  • step S1610 the terminal device sends second information to the network device, and the second information is used to indicate the downlink arrival time difference.
  • the second information is also used to indicate the cell corresponding to the second TRP.
  • the second information may include the PCI of the second TRP to indicate the cell corresponding to the second TRP.
  • the second information may be carried in low-layer signaling, for example, in MAC CE.
  • the terminal device may separately send (or report) the second information to the network device, for example, the second information may be separately carried in the MAC CE for sending.
  • the terminal device may combine the second information and other information in the same signaling and send it to the network device. For example, the terminal device may merge the second information into channel state information (CSI) reporting content (such as channel quality indication (CQI), rank indication (RI), precoding matrix indication ( precoding matrix indicator, PMI), etc.) are jointly sent to the network device.
  • CSI channel state information
  • CQI channel quality indication
  • RI rank indication
  • PMI precoding matrix indication
  • step S1620 the network device determines the uplink synchronization information of the second TRP.
  • step S1620 please refer to the previous description of step S810, which will not be described again here.
  • the method may further include step S1630.
  • step S1630 the network device sends third information to the terminal device, where the third information is used to indicate the uplink synchronization information of the second TRP.
  • the network device may notify the terminal device of the uplink synchronization information of the second TRP.
  • the third information may be carried in low-layer signaling, such as MAC CE.
  • both the terminal device and the network device can determine the uplink synchronization information of the second TRP by themselves, which increases the possibility that the terminal device independently corrects the uplink synchronization information of the TRP.
  • the terminal device can determine the downlink arrival time difference based on the measurement of the reference signal, which is introduced below.
  • the first TRP and the second TRP can respectively send downlink reference signals to the terminal equipment, and the terminal equipment measures the downlink reference signal from the first TRP and the downlink reference signal from the second TRP, and determines based on the measurement results. Downstream arrival time difference.
  • the embodiment of the present application does not limit the type of the downlink reference signal (for example, the first downlink reference signal and/or the second downlink reference signal described below).
  • the downlink reference signal may be a synchronization signal block (SS/PBCH block, SSB), or may also be a channel state information reference signal (channel state information reference signal, CSI-RS).
  • the downlink arrival time difference is determined based on the measurement of the first downlink reference signal and the second downlink reference signal, and the first downlink reference signal corresponds to the first TRP, and the second downlink reference signal corresponds to the second TRP.
  • the first downlink reference signal corresponding to the first TRP may mean that the first downlink reference signal is sent by the first TRP
  • the second downlink reference signal corresponding to the second TRP may mean that the second downlink reference signal is sent by the first TRP. Two TRPs are sent.
  • the terminal equipment determines the downlink arrival time difference based on the measurement of the downlink reference signal
  • the terminal equipment needs to know the correspondence between the downlink reference signal and the TRP. That is, the terminal equipment needs to know that the first downlink reference signal is sent by the first TRP, and the second downlink reference signal is sent by the first TRP.
  • the reference signal is sent by the second TRP.
  • the terminal device may determine the correspondence between the downlink reference signal and the TRP through the identification information of the TRP.
  • the PCI corresponding to different TRPs can be different.
  • the PCI of the TRP can be used as the identifier of the TRP to determine the correspondence between the downlink reference signal and the TRP.
  • each TRP is associated with a group of CORESETs.
  • the CORESET groups associated with different TRPs can be different. Therefore, the downlink reference signal can be associated with the CORESET group, and the downlink reference signal can be associated with the CORESET group.
  • the correlation relationship indirectly determines the correspondence relationship between the downlink reference signal and the TRP. That is to say, both the TRP and the downlink reference signal can be associated with the CORESET group, so that the correlation between the CORESET group and the downlink reference signal can be used to indirectly determine the corresponding relationship between the downlink reference signal and the TRP.
  • both the first TRP and the first downlink reference signal can be associated with the first group of CORESET, and the second TRP and the second downlink reference signal can both be associated with the second group of CORESET.
  • the terminal device can determine the CORESET by group to distinguish which TRP sends the downlink reference signal.
  • the identification information of the TRP may refer to the identification information of the CORESET associated with the TRP, such as the RRC parameter "CORESETPoolIndex" of the CORESET.
  • the network device may directly indicate the corresponding relationship between the downlink reference signal and the TRP to the terminal device.
  • the network device will configure a certain number of SSBs for each TRP as the downlink reference signal. For example, SSBs with SSB identifiers 0 to 31 (32 in total) can be sent from the first TRP, and SSBs with SSB identifiers 32 to 63 (32 in total) can be sent from the second TRP.
  • the network device can directly indicate the corresponding relationship between the SSB and the TRP to the terminal equipment, for example, indicate the corresponding relationship between the SSB identifier and the TRP to the terminal equipment, so that the terminal equipment can distinguish which TRP the downlink reference signal is sent from.
  • the downlink reference signal is CSI-RS is similar to the case where the downlink reference signal is SSB, which will not be described again here.
  • the terminal device can reset the first timer.
  • the controller is used to maintain the validity of the uplink synchronization information of the second TRP.
  • the first timer may refer to the TA timer of the terminal device (represented by TimeAlignmentTimer). The terminal equipment resets the first timer to avoid unnecessary uplink desynchronization.
  • Embodiment 2 aims to use the process of activating a TRP to provide services for terminal devices to determine the uplink synchronization information of the activated TRP, without initiating a random access process to the TRP to obtain the uplink synchronization information of the TRP.
  • the terminal device first establishes uplink synchronization with the TRP of the serving cell. Uplink synchronization is not established for TRP of non-serving cells.
  • the second embodiment will be introduced by taking the example that the terminal equipment has established uplink synchronization with the first TRP (that is, the terminal equipment maintains uplink synchronization with the first TRP) and the second TRP has not established uplink synchronization.
  • the first TRP and the second TRP are located in different cells.
  • Figure 17 is a schematic flowchart of a method for wireless communication provided by yet another embodiment of the present application.
  • the method shown in Figure 17 includes step S1710 and step S1720, and these steps will be described in detail below.
  • step S1710 the network device sends first information to the terminal device, and the first information is used to activate the second TRP.
  • the first information is determined based on the terminal device's measurement of the downlink reference signal of the second TRP.
  • the downlink reference signal of the second TRP may include multiple types, for example, SSB or CSI-RS.
  • the CSI-RS may be CSI-RS used for beam management or CSI-RS used for mobility management.
  • the embodiment of this application is This is not limiting.
  • the downlink reference signal may be pre-configured by the network device, for example, the network device may be pre-configured through RRC signaling.
  • the first information may be a unified transmission configuration indicator (TCI) status.
  • TCI transmission configuration indicator
  • the first information may be carried on MAC CE.
  • the network device activates the unified TCI state through MAC CE signaling.
  • the first information may be carried in DCI.
  • the network device configures a unified TCI state through MAC CE signaling and activates the unified TCI state through DCI signaling.
  • the first information may include resources for transmitting downlink reference signals, and the resources correspond to the second TRP. That is to say, the downlink reference signal resources included in the first information may come from a TRP with a different PCI from the serving cell TRP (for example, the first TRP).
  • step S1720 in response to the first information, the terminal device sends an uplink reference signal to the second TRP.
  • the uplink reference signal is used by the network device to determine the uplink synchronization information of the second TRP.
  • the uplink reference signal in addition to being used by the network device to determine the uplink synchronization information of the second TRP, can also be used by the network device to measure the channel of the terminal device relative to the second TRP, thereby estimating the relationship between the terminal device and the second TRP.
  • CSI between uplink and downlink in addition to being used by the network device to determine the uplink synchronization information of the second TRP, the uplink reference signal can also be used by the network device to measure the channel of the terminal device relative to the second TRP, thereby estimating the relationship between the terminal device and the second TRP.
  • the uplink reference signal may be SRS, such as aperiodic SRS.
  • the transmit beam of the uplink reference signal corresponds to the receive beam of the downlink reference signal to ensure beam symmetry of uplink and downlink transmission. That is to say, the transmission beam of the uplink reference signal may be the beam corresponding to the terminal device receiving the downlink reference signal.
  • the transmit beam of the SRS is the beam corresponding to the terminal device receiving the downlink reference signal SSB/CSI-RS.
  • the sending time of the uplink reference signal is determined based on the receiving time of the downlink reference signal.
  • the uplink reference signal is sent at the reception time of the downlink reference signal, for example, at the reception time of the first multipath of the downlink reference signal. In other words, there may be no TA at the sending time of the uplink reference signal, so that the network device determines the uplink synchronization information of the second TRP through the arrival time of the uplink reference signal.
  • the reception time of the downlink reference signal can be used as the reference time, and the transmission time of the uplink reference signal can be determined based on the reference time.
  • the uplink reference signal is sent a certain time in advance of the reception time of the downlink reference signal. In other words, the transmission time of the uplink reference signal can be configured with a corresponding TA.
  • the terminal device uses the reception time of the downlink reference signal as a reference point and sends the uplink reference signal in advance by the corresponding TA value.
  • the embodiment of the present application does not limit the acquisition method of the TA corresponding to the transmission time of the uplink reference signal.
  • the TA may use the value of the TA corresponding to the first TRP; or, the network device may configure the TA corresponding to the transmission time of the uplink reference signal for the terminal device in advance, for example, through RRC signaling.
  • the terminal device may send an uplink reference signal to the second TRP, so that the network device determines the uplink synchronization information of the second TRP based on the uplink reference signal.
  • the existing multi-TRP operation between cells can be used to determine the uplink synchronization information of the second TRP, reducing the unnecessary random access process of the terminal equipment, thereby reducing the signaling overhead of the system and the time of the random access process. time delay.
  • the process of activating the second TRP to provide services for the terminal device may refer to a beam management process between the terminal device and the second TRP.
  • the following takes the beam management process between the terminal device and the second TRP as an example to introduce the implementation steps of Embodiment 2.
  • the network device configures the downlink reference signal, such as SSB or CSI-RS, used for inter-cell multi-TRP transmission to the terminal device.
  • the downlink reference signal such as SSB or CSI-RS
  • the network device may configure the downlink reference signal to the terminal device through RRC signaling.
  • step S1820 the terminal device measures the downlink reference signal of the second TRP (different from the PCI of the first TRP).
  • the terminal device performs beam reporting.
  • the beam reporting content of the terminal equipment may include the identification information of the downlink reference signal, and/or the layer one reference signal receiving power (L1 reference signal receiving power, L1-RSRP) corresponding to the downlink reference signal.
  • L1 reference signal receiving power L1-RSRP
  • step S1840 the network device indicates the unified TCI status to the terminal device.
  • the downlink reference signal resources included in the unified TCI state are from the second TRP.
  • the network device may activate the unified TCI state through MAC CE signaling, or may indicate the unified TCI state through MAC CE+DCI signaling.
  • step S1850 the terminal device sends an uplink reference signal to the second TRP, for example, sending an aperiodic SRS.
  • the transmission beam of the uplink reference signal is a beam corresponding to the terminal device receiving the downlink reference signal.
  • the sending time of the uplink reference signal may not be sent in advance, that is, the terminal device sends the uplink reference signal at the reception time of the reported downlink reference signal.
  • the sending time of the uplink reference signal may use the TA value corresponding to the first TRP or the TA value configured in advance by the network device for the terminal device.
  • step S1860 the network device determines the uplink synchronization information of the second TRP, that is, the network device determines the uplink synchronization information corresponding to the terminal device under the second TRP, for example, the TA corresponding to the terminal device under the second TRP.
  • the network device after the network device determines the uplink synchronization information of the second TRP, it can update the uplink synchronization information of the terminal device and the second TRP through the MAC CE.
  • Figure 19 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 1900 shown in FIG. 19 may include a determination module 1910.
  • the determination module 1910 may determine the uplink synchronization information of the second TRP when the terminal device maintains uplink synchronization with the first transmission reception point TRP; wherein the uplink synchronization information of the second TRP is based on one of the following information: One or more items are determined: the uplink synchronization information of the first TRP; the downlink arrival time difference.
  • the downlink arrival time difference is used to indicate the time when the signal of the first TRP reaches the terminal device and the time when the signal of the second TRP arrives. The difference in time when signals arrive at the terminal device; and the difference in transmission time between the first TRP and the second TRP.
  • the uplink synchronization information of the second TRP is determined based on the uplink synchronization information of the first TRP, the downlink arrival time difference, and the transmission time difference.
  • the uplink synchronization information of the first TRP is the one-way transmission delay from the first TRP to the terminal device
  • the uplink synchronization information of the second TRP is the timing advance TA corresponding to the second TRP
  • the TA corresponding to the second TRP is twice the target value, where the target value is equal to the sum of the difference between the one-way transmission delay and the transmission time difference and the downlink arrival time difference.
  • the terminal device 1900 also includes a receiving module 1920.
  • the receiving module 1920 may be configured to receive first information from a network device, where the first information is used to indicate the transmission time difference.
  • the first information is carried in radio resource control RRC signaling or media access control control element MAC CE.
  • the first information includes: the downlink sending time of the first TRP and the downlink sending time of the second TRP; and/or the downlink sending time of the first TRP and the downlink sending time of the second TRP. The difference in sending time.
  • the terminal device 1900 further includes a sending module, configured to send second information to the network device, where the second information is used to indicate the downlink arrival time difference.
  • a sending module configured to send second information to the network device, where the second information is used to indicate the downlink arrival time difference.
  • the second information is also used to indicate the cell corresponding to the second TRP.
  • the downlink arrival time difference is determined based on the measurement of a first downlink reference signal and a second downlink reference signal, wherein the first downlink reference signal corresponds to the first TRP, and the second downlink reference signal The signal corresponds to said second TRP.
  • the first TRP and the first downlink reference signal are both associated with a first group of control resource sets CORESET; and the second TRP and the second downlink reference signal are both associated with a second group of CORESET.
  • the first downlink reference signal and the second downlink reference signal are one of the following reference signals: synchronization signal block SSB, channel state information reference signal CSI-RS.
  • the terminal device 1900 further includes a reset module, configured to reset a first timer, where the first timer is used to maintain the validity of the uplink synchronization information of the second TRP.
  • a reset module configured to reset a first timer, where the first timer is used to maintain the validity of the uplink synchronization information of the second TRP.
  • the uplink synchronization information includes one or more of the following information: TA, and one-way transmission delay.
  • FIG. 20 is a schematic structural diagram of a terminal device provided by another embodiment of the present application.
  • the terminal device 2000 shown in FIG. 20 may include a receiving module 2010 and a sending module 2020.
  • the receiving module 2010 may be configured to receive first information when the terminal equipment maintains uplink synchronization with the first transmission reception point TRP, where the first information is used to activate a second TRP located in a different cell from the first TRP.
  • the sending module 2020 may be configured to respond to the first information and send an uplink reference signal to the second TRP, where the uplink reference signal is used by a network device to determine uplink synchronization information of the second TRP.
  • the first information is determined based on the terminal device's measurement of the downlink reference signal of the second TRP, and the transmit beam of the uplink reference signal corresponds to the receive beam of the downlink reference signal.
  • the sending time of the uplink reference signal is determined based on the receiving time of the downlink reference signal.
  • the first information indicates a TCI status for unified transmission configuration.
  • the uplink synchronization information includes one or more of the following information: timing advance TA, and one-way transmission delay.
  • the uplink reference signal is an aperiodic channel sounding reference signal SRS.
  • FIG. 21 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Network device 2100 shown in FIG. 21 may include a determination module 2110.
  • the determining module 2110 may be used to determine the uplink synchronization information of the second TRP when the terminal device maintains uplink synchronization with the first transmission reception point TRP; wherein the uplink synchronization information of the second TRP is based on one of the following information: One or more items are determined: the uplink synchronization information of the first TRP; the downlink arrival time difference.
  • the downlink arrival time difference is used to indicate the time when the signal of the first TRP reaches the terminal device and the time when the signal of the second TRP arrives. The difference in time when signals arrive at the terminal device; and the difference in transmission time between the first TRP and the second TRP.
  • the uplink synchronization information of the second TRP is determined based on the uplink synchronization information of the first TRP, the downlink arrival time difference, and the transmission time difference.
  • the uplink synchronization information of the first TRP is the one-way transmission delay from the first TRP to the terminal device
  • the uplink synchronization information of the second TRP is the timing advance TA corresponding to the second TRP
  • the TA corresponding to the second TRP is twice the target value, where the target value is equal to the sum of the difference between the one-way transmission delay and the transmission time difference and the downlink arrival time difference.
  • the network device 2100 also includes a sending module 2120.
  • the sending module 2120 may be configured to send first information to the terminal device, where the first information is used to indicate the transmission time difference.
  • the first information is carried in radio resource control RRC signaling or media access control control element MAC CE.
  • the first information includes: the downlink sending time of the first TRP and the downlink sending time of the second TRP; and/or the downlink sending time of the first TRP and the downlink sending time of the second TRP. The difference in sending time.
  • the network device 2120 further includes: a receiving module, configured to receive second information sent by the terminal device, where the second information is used to indicate the downlink arrival time difference.
  • the second information is also used to indicate the cell corresponding to the second TRP.
  • the downlink arrival time difference is determined based on the measurement of a first downlink reference signal and a second downlink reference signal, where the first downlink reference signal corresponds to the first TRP, and the second downlink reference signal The signal corresponds to said second TRP.
  • the first TRP and the first downlink reference signal are both associated with a first group of control resource sets CORESET; and the second TRP and the second downlink reference signal are both associated with a second group of CORESET.
  • the first downlink reference signal and the second downlink reference signal are one of the following reference signals: synchronization signal block SSB, channel state information reference signal CSI-RS.
  • the uplink synchronization information includes one or more of the following information: TA, and one-way transmission delay.
  • FIG. 22 is a schematic structural diagram of a network device provided by another embodiment of the present application.
  • the network device 2200 shown in FIG. 22 may include a sending module 2210 and a determining module 2220.
  • the sending module 2210 may be configured to send the first information to the terminal device when the terminal device maintains uplink synchronization with the first transmission reception point TRP.
  • the first information is used to activate a cell located in a different cell than the first TRP.
  • the second TRP is used to send the first information to the terminal device when the terminal device maintains uplink synchronization with the first transmission reception point TRP.
  • the determining module 2220 may be configured to determine uplink synchronization information of the second TRP, where the uplink synchronization information is determined based on the uplink reference signal sent by the terminal device to the second TRP.
  • the first information is determined based on the terminal device's measurement of the downlink reference signal of the second TRP, and the transmit beam of the uplink reference signal corresponds to the receive beam of the downlink reference signal.
  • the sending time of the uplink reference signal is determined based on the receiving time of the downlink reference signal.
  • the first information indicates a TCI status for unified transmission configuration.
  • the uplink synchronization information includes one or more of the following information: timing advance TA, and one-way transmission delay.
  • the uplink reference signal is an aperiodic channel sounding reference signal SRS.
  • Figure 23 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 23 indicates that the unit or module is optional.
  • the device 2300 can be used to implement the method described in the above method embodiment.
  • Device 2300 may be a chip, terminal device or network device.
  • Apparatus 2300 may include one or more processors 2310.
  • the processor 2310 can support the device 2300 to implement the method described in the foregoing method embodiments.
  • the processor 2310 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 2300 may also include one or more memories 2320.
  • the memory 1820 stores a program, which can be executed by the processor 2310, so that the processor 2310 executes the method described in the foregoing method embodiment.
  • the memory 2320 may be independent of the processor 2310 or integrated in the processor 2310.
  • Apparatus 2300 may also include a transceiver 2330.
  • Processor 2310 may communicate with other devices or chips through transceiver 2330.
  • the processor 2310 can send and receive data with other devices or chips through the transceiver 2330.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种用于无线通信的方法、终端设备和网络设备。该方法包括:在终端设备与第一TRP保持上行同步的情况下,终端设备确定第二TRP的上行同步信息;其中,第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:第一TRP的上行同步信息;下行到达时间差,下行到达时间差用于指示第一TRP的信号到达终端设备的时间与第二TRP的信号到达终端设备的时间的差值;以及第一TRP与第二TRP的传输时间差。在终端设备与第一TRP保持上行同步的情况下,终端设备确定第二TRP的上行同步信息时可以以第一TRP为参考,考虑与第一TRP相关的一种或多种信息,基于此,终端设备无需向第二TRP发起随机接入过程便可以获取第二TRP的上行同步信息,有利于减小上行资源开销,降低传输时延。

Description

用于无线通信的方法、终端设备和网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种用于无线通信的方法、终端设备和网络设备。
背景技术
某些通信系统中,终端设备与传输接收点(transmitting and receiving point,TRP)之间的上行同步信息(例如,定时提前(timing advance,TA))可以以TRP为颗粒度确定。这种情况下,终端设备可以通过发起随机接入过程接入TRP,以获取该TRP的上行同步信息。终端设备通过随机接入过程获取TRP的上行同步信息的方式不够灵活,可能会导致上行资源开销大、传输时延长。
发明内容
本申请提供一种用于无线通信的方法、终端设备和网络设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种用于无线通信的方法,包括:在终端设备与第一传输接收点TRP保持上行同步的情况下,所述终端设备确定第二TRP的上行同步信息;其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:所述第一TRP的上行同步信息;下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及所述第一TRP与所述第二TRP的传输时间差。
第二方面,提供了一种用于无线通信的方法,包括:在终端设备与第一传输接收点TRP保持上行同步的情况下,所述终端设备接收第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;响应于所述第一信息,所述终端设备向所述第二TRP发送上行参考信号,所述上行参考信号用于网络设备确定所述第二TRP的上行同步信息。
第三方面,提供了一种用于无线通信的方法,包括:在终端设备与第一传输接收点TRP保持上行同步的情况下,网络设备确定第二TRP的上行同步信息;其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:所述第一TRP的上行同步信息;下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及所述第一TRP与所述第二TRP的传输时间差。
第四方面,提供了一种用于无线通信的方法,包括:在终端设备与第一传输接收点TRP保持上行同步的情况下,网络设备向所述终端设备发送第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;所述网络设备确定所述第二TRP的上行同步信息,所述上行同步信息基于所述终端设备向所述第二TRP发送的上行参考信号确定。
第五方面,提供了一种终端设备,包括:确定模块,用于在终端设备与第一传输接收点TRP保持上行同步的情况下,确定第二TRP的上行同步信息;其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:所述第一TRP的上行同步信息;下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及所述第一TRP与所述第二TRP的传输时间差。
第六方面,提供了一种终端设备,包括:接收模块,用于在终端设备与第一传输接收点TRP保持上行同步的情况下,接收第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;发送模块,用于响应于所述第一信息,向所述第二TRP发送上行参考信号,所述上行参考信号用于网络设备确定所述第二TRP的上行同步信息。
第七方面,提供了一种网络设备,包括:确定模块,用于在终端设备与第一传输接收点TRP保持上行同步的情况下,确定第二TRP的上行同步信息;其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:所述第一TRP的上行同步信息;下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及所述第一TRP与所述第二TRP的传输时间差。
第八方面,提供了一种网络设备,包括:发送模块,用于在终端设备与第一传输接收点TRP保持上行同步的情况下,向所述终端设备发送第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;确定模块,用于确定所述第二TRP的上行同步信息,所述上行同步信息基于所述终端设备向所述第二TRP发送的上行参考信号确定。
第九方面,提供了一种终端设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或 多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面或第二方面的方法中的部分或全部步骤。
第十方面,提供了一种网络设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第三方面或第四方面的方法中的部分或全部步骤。
第十一方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该终端设备或网络设备进行交互的其他设备。
第十二方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端设备或网络设备执行上述各个方面的方法中的部分或全部步骤。
第十三方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端设备或网络设备执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十四方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
在终端设备与第一TRP保持上行同步的情况下,终端设备确定第二TRP的上行同步信息时可以以第一TRP为参考,考虑以下信息中的一种或多种:第一TRP的上行同步信息,下行到达时间差,以及第一TRP与第二TRP的传输时间差。基于此,终端设备无需向第二TRP发起随机接入过程便可以获取第二TRP的上行同步信息,有利于减小上行资源开销,降低传输时延。
附图说明
图1A~图1C为可应用本申请实施例的通信系统的系统架构图。
图2为TA场景上行帧与下行帧的的关系的示例图。
图3为承载TAC的MAC CE的格式的示例图。
图4为承载TAC的MAC CE的格式的另一示例图。
图5为承载TAC的MAC RAR的格式的示例图。
图6为四步随机接入过程的流程示意图。
图7为本申请实施例适用的多TRP场景的示例图。
图8为本申请一实施例提供的用于无线通信的方法的流程示意图。
图9为本申请一实施例提供的确定第二TRP的上行同步信息的示例图。
图10为本申请另一实施例提供的确定第二TRP的上行同步信息的示例图。
图11为本申请另一实施例提供的用于无线通信的方法的流程示意图。
图12为本申请一实施例提供的指示传输时间差的MAC CE的格式的示例图。
图13为本申请另一实施例提供的指示传输时间差的MAC CE的格式的示例图。
图14为本申请又一实施例提供的指示传输时间差的MAC CE的格式的示例图。
图15为本申请又一实施例提供的指示传输时间差的MAC CE的格式的示例图。
图16为本申请又一实施例提供的用于无线通信的方法的流程示意图。
图17为本申请又一实施例提供的用于无线通信的方法的流程示意图。
图18为本申请又一实施例提供的用于无线通信的方法的流程示意图。
图19为本申请一实施例提供的终端设备的结构示意图。
图20为本申请另一实施例提供的终端设备的结构示意图。
图21为本申请一实施例提供的网络设备的结构示意图。
图22为本申请另一实施例提供的网络设备的结构示意图。
图23为本申请实施例提供的通信装置的示意性结构图。
具体实施方式
通信系统架构
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、新无线(new radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based  access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(non-terrestrial networks,NTN)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、第五代通信(5th-generation,5G)系统或其他通信系统,例如未来的通信系统,如第六代移动通信系统,又如卫星通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现。然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车辆间(vehicle to vehicle,V2V)通信,或车联网(vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例中的通信系统可以应用于载波聚合(carrier aggregation,CA)场景,也可以应用于双连接(dual connectivity,DC)场景,还可以应用于独立(standalone,SA)布网场景。
本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是专用频谱。
本申请实施例可应用于NTN系统,也可应用于地面通信网络(terrestrial networks,TN)系统。作为示例而非限定,NTN系统包括基于NR的NTN系统和基于IoT的NTN系统。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
在本申请实施例中,终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,终端设备可以用于充当基站。例如,终端设备可以充当调度实体,其在V2X或D2D等中的终端设备之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
作为示例而非限定,在本申请实施例中,该终端设备可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基 站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不作限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请实施例中对网络设备和终端设备所处的场景不作限定。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在本申请一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在本申请一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性地,图1A为本申请实施例提供的一种通信系统的架构示意图。如图1A所示,通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1A示例性地示出了一个网络设备和两个终端设备,在本申请一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不作限定。
示例性地,图1B为本申请实施例提供的另一种通信系统的架构示意图。请参见图1B,该通信系统包括终端设备120和卫星110a,终端设备120和卫星110a之间可以进行无线通信。终端设备120和卫星110a之间所形成的网络还可以称为NTN。在图1B所示的通信系统的架构中,卫星110a可以具有基站的功能,终端设备120和卫星110a之间可以直接通信。在该通信系统架构下,可以将卫星110a称为网络设备。在一些实施例中,通信系统中可以包括多个网络设备110a,并且每个网络设备110a的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不作限定。
示例性地,图1C为本申请实施例提供的又一种通信系统的架构示意图。请参见图1C,该通信系统包括终端设备120、卫星130和基站110b,终端设备120和卫星130之间可以进行无线通信,卫星130与基站110b之间可以通信。终端设备120、卫星130和基站110b之间所形成的网络还可以称为NTN。在图1C所示的通信系统的架构中,卫星130可以不具有基站的功能,终端设备120和基站110b之间的通信需要通过卫星130的中转。在这种系统架构下,可以将基站110b称为网络设备。在本申请一些实施例中,通信系统中可以包括多个网络设备110b,并且每个网络设备110b的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不作限定。
需要说明的是,图1A-图1C只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统,例如,5G通信系统、LTE通信系统等,本申请实施例对此不作具体限定。
在本申请一些实施例中,图1A-图1C所示的无线通信系统还可以包括移动性管理实体(mobility management entity,MME)、接入与移动性管理功能(access and mobility management function,AMF)等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1A示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如 网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不作限定。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中的“配置”可以包括通过系统消息、无线资源控制(radio resource control,RRC)信令和媒体接入控制控制元素(media access control control element,MAC CE)中的至少一种来配置。
在本申请一些实施例中,"预定义的"或"预设的"可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不作限定。比如预定义的可以是指协议中定义的。
在本申请一些实施例中,所述"协议或者标准"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不作限定。
为了便于理解,先对本申请实施例涉及的一些相关技术知识进行介绍。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
上行同步
上行同步是指一个服务小区中使用同一时隙的不同位置的终端设备的上行信号同时到达网络设备接收天线的过程,即同一时隙不同终端设备的信号到达网络设备接收天线时保持同步。上行同步的目的是减少服务小区内的终端设备之间的上行多址干扰和多径干扰。
上行同步过程中,终端设备可以根据网络设备对应的上行同步信息与网络设备进行上行同步。该上行同步信息例如可以包括TA。
定时提前(TA)
TA通常用于上行传输,可以指终端设备发送上行数据的系统帧相比对应的下行帧要提前一定的时间。例如,终端设备的定时提前是以终端设备收到下行信道的第一径(即信道所在的时隙的第一个符号)为下行参考,在此基础上进行提前发射。图2示出了上行帧与下行帧之间的关系。参见图2,以终端设备工作在单TRP(single-TRP,sTRP)的模式下为例,终端设备的TA的参考点是以终端设备的下行接收时间点为起算点,向前提前一定的时间(TA)来发送上行信道或信号。
以载波聚合场景为例,终端设备可以支持不同的载波(又称“服务小区”)。不同的载波可以具有不同的TA,因此,引入了定时提前组(TA group,TAG)的概念。通常,一个TAG可以包括一个或多个服务小区的TA。对于包含特殊小区(special cell,Spcell)的TAG可以称为主定时提前组(primary timing advance group,PTAG),相应地,除了PTAG之外的其他TAG可以称为辅定时提前组(secondary timing advance group,STAG)。其中,Spcell可以包括主小区(primary cell,PCell)或主辅小区(primary secondary cell,PSCell)。
当前的通信标准中(包括NR、3GPP Rel.17等)规定,在一个小区组(cell group,CG)中,终端设备可以被配置最多4个TAG。用于配置TAG的RRC配置可以表示为:
Figure PCTCN2022107527-appb-000001
Figure PCTCN2022107527-appb-000002
一般,RRC配置可以包括TAG配置(用“TAG-Config”表示)、TAG信息(用“TAG”表示)、TAG标识(用“TAG-Id”表示)以及TA定时器(用“TimeAlignmentTimer”表示)。其中,TAG配置可以包括释放列表(用“tag-ToReleaseList”表示)以及TAG添加列表(用“tag-ToAddModList”表示)。TAG信息可以包括TAG的标识(用“tag-Id”表示)以及TA定时器(用“timeAlignmentTimer”表示)。TA定时器对应的时长可以以列举的方式列出,包括{500ms,750ms,1280ms,1920ms,2560ms,5120ms,10240ms,无穷}。
通常,TA的有效性可以通过TA定时器来维护,也就是说,当终端设备收到网络设备发送的指示TA的信息(或称,TA命令(TA command,TAC))后,终端设备可以启动或者重启TA定时器。当TA定时器未超时,则TA定时器维护的TA有效,终端设备可以基于TA与网络设备进行通信。相反地,当TA定时器超时,则TA定时器维护的TA失效(或者说无效),此时,终端设备不能再基于TA与网络设备进行通信。
需要说明的是,一个CG可以包括多个服务小区,且每一个服务小区都会被分配一个TAG的标识。
下文介绍TA的计算方式。
在一些实现方式中,TA可以通过公式(N TA+N TA,offset)×T c计算,其中,N TA,offset表示定时提前偏移(TA offset),N TA表示TA调整量,T c表示通信系统(例如,NR系统)中最小时间单位,通常,T c=1/(4096×480kHz)。
通常,在一个CG中,每一个服务小区都可以预先配置一个N TA,offset。另外,N TA可以是在预先配置偏移(offset)的基础上进行的。
在一些实现方式中,N TA可以由网络设备的MAC CE来提供差分式的调整,即本次TA调整(又称“new TA”,表示为
Figure PCTCN2022107527-appb-000003
)是以上次TA(又称“old TA”,表示为
Figure PCTCN2022107527-appb-000004
)为基础,在时间上向前或向后调整的。调整的计算公式如下:
Figure PCTCN2022107527-appb-000005
或者说,
Figure PCTCN2022107527-appb-000006
是收到TAC之前使用的TA调整量,
Figure PCTCN2022107527-appb-000007
是收到TAC后更新后的TA调整量。其中,T A是根据TAC确定的。另外,该TA调整的粒度可以为TAG。
图3示出了承载TAC的MAC CE的格式。参见图3,MAC CE可以包括TAG的标识(TAG ID)字段以及TAC字段。通常,TAG ID字段长度可以为2比特,并且包含SpCell的TAG的标识为0。TAC字段用于指示TA索引值TA(0,1,2…63),用于控制MAC实体必须应用的定时调整量(如TS38.213[6]中规定的)。该字段的长度可以为6比特。
在另一些实现方式中,TA调整方式可以是以TA的绝对值(又称“绝对TA”)为基础调整,即不需要考虑之前的TA调整值,网络设备可以通过绝对MAC CE(Absolute MAC CE)或MAC随机接入响应(random access response,MAC RAR)的载荷(payload)直接给出一个绝对TA,该绝对TA可以用“N TA”表示。通常,绝对TA的取值范围可以是0到3846,相应地,TA可以通过公式:N TA=T A×16×64×2 μ计算,其中,T A是根据TAC确定的。
在一些场景中,上述绝对TA以及T A的获取方式发生在随机接入过程中,所获取的TA适用于随机接入的目标小区对应的TAG,因此,承载TAC的信令可以不包含TAG-ID。例如,绝对MAC CE可以用于两步随机接入过程,且两步随机接入可以向SpCell发起,因此,绝对MAC CE适用于该MAC实体所对应的PTAG,即该PTAG包含SpCell。
图4示出了承载TAC的MAC CE的格式。参见图4,MAC CE的长度可以为2字节,即16比特。MAC CE可以包括TAC字段,TAC字段可以占用12比特。该字段用于指示MAC实体应用的时间调整量的TA索引值。另外,MAC CE中剩余的4比特可以作为保留位(用“R”表示),可以置0。
图5示出了承载TAC的MAC RAR的格式。参见图5,MAC RAR的长度可以为7字节,即56比特。在第一字节(用“Oct 1”表示)中,可以包括TAC字段,TAC字段可以占用7比特。该字段用于指示MAC实体应用的时间调整量的TA索引值。Oct 1中剩余的1比特可以作为保留位(用“R”表示),可以置0。
在第二字节(用“Oct 2”表示)中,可以继续包括TAC字段,TAC字段可以占用5比特。Oct 2中剩余的3比特可以承载上行授权(UL Grant)。
在第三字节到第五字节(用“Oct 3~5”表示)中,可以继续承载上行授权(UL Grant)。在第六字节到第七字节(用“Oct 6~7”表示)中,可以承载临时小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)。
随机接入过程
终端设备可以通过发起随机接入过程与小区建立连接并获取上行同步信息。随机接入可以包括四步随机接入过程和两步随机接入过程。下面以四步随机接入过程为例,对随机接入过程的流程进行简单介绍。
如图6所示,四步随机接入过程可以包括步骤S610至步骤S640。
在步骤S610,终端设备向网络设备发送随机接入请求,随机接入请求可以包括随机接入前导码(preamble)。随机接入请求又可以称为随机接入过程中的第一消息或消息1(Msg1)。
在步骤S620,网络设备在检测到终端设备发送的随机接入前导码后,向终端设备发送RAR。RAR消息又可以称为随机接入过程中的第二消息或消息2(Msg2)。
在一些实施例中,RAR中可以包括TAC字段,以指示终端设备和网络设备之间的上行同步信息。如此一来,终端设备可以在初始接入的过程中,通过RAR消息得到一个初始的TA值。
在步骤S630,终端设备向网络设备发送消息3(Msg3),消息3可以用于通知网络设备触发该随机接入过程的事件。示例性地,如果事件是初始接入随机过程,则在消息3中会携带终端设备标识和建立原因(establishment cause);如果事件是RRC重建,则会携带连接态终端设备标识和建立原因。
在步骤S640,网络设备向终端设备发送消息4(Msg4),消息4可以用于冲突解决,因此,消息4也可以称为竞争解决消息。
多TRP(multi-TRP,mTRP)场景的调度
参见图7,在多DCT-多TRP(multiple dci-multi-TRP,mDCI-mTRP)的场景下,每个TRP可以通过各自的下行控制信息(downlink control information,DCI)来调度其物理下行共享信道(physical downlink shared channel,PDSCH)传输。即,TRP1可以通过物理下行控制信道(physical downlink control channel,PDCCH)1承载的DCI调度PDSCH1的传输,TRP2可以通过PDCCH2承载的DCI调度PDSCH2的传输。
申请人认为,在后续协议的演进过程中,每个TRP也可能调度各自的PUSCH传输。继续参见图7,即TRP1可以通过PDCCH1承载的DCI调度PUSCH1的传输,TRP2可以通过PDCCH2承载的DCI调度PUSCH2的传输。
需要说明的是,mDCI-mTRP的场景中,对于DCI的需求量较大且各个TRP进行独立的调度,因此增加了DCI所关联的控制资源集(control resource set,CORESET)的数量。在一些实现方式中,可以将CORESET通过它对应的RRC参数“控制资源集池索引(CORESETPoolIndex)”进行分组,即CORESETPoolIndex为“0”的控制资源集可以分为一组,对应TRP1。CORESETPoolIndex为“1”的控制资源集可以分为一组,对应TRP2。另外,当网络设备没有为控制资源集配置CORESETPoolIndex的时候,可以默认CORESETPoolIndex为“0”。
另外,如果终端设备工作在sTRP的模式下,那么终端设备的定时提前的参考点是以下行接收时间点算起。在mTRP的场景下,终端设备仍可以使用两个TRP中的一个作为下行接收的参考点来调整TA。比如使用CORESETPoolIndex为0的TRP作为下行接收的参考点。或者网络设备可以配置的某一个特定的TRP作为下行接收的参考点。这种,基于单一下行参考点的前提可以是终端设备仅有一套下行的接收时间线,即取决于终端设备的能力。
当然,对于能力较强的终端设备来说,也可以使用两个不同的下行接收参考点。继续参见图7,两个TRP可以对应不同下行参考点,那么网络设备指示的两个TA值则是根据各自的参考点来进行调整。
上行多TRP操作
在目前通信协议(例如,3GPP Rel.17)中,支持了基于多TRP的上行PUCCH/PUSCH的重复(repetition)传输,其目的是增强上行的覆盖和传输的可靠性。终端设备需要向不同的TRP发送承载相同内容的物理上行控制信道(physical uplink control channel,PUCCH)/物理上行共享信道(physical uplink shared channel,PUSCH)。对于PUSCH的重复传输而言,目前的标准中仅支持基于sDCI的PUSCH重复传输,使用一个定时提前的TA来顺序发送PUSCH到不同的TRP。对于基于mDCI的PUSCH重复传输,由于多个TRP之间可能没有足够理想的回程线路(backhaul)作为连接,多个TRP对终端设备的独立调度有可能引起不同PUSCH/PUCCH在时间上的重叠。
另外,目前3GPP正在制定终端设备的多个天线面板同时向多个TRP传输PUCCH/PUSCH的机制。然而,虽然在多上行发射天线面板和多TRP接收的配置下,终端设备在一个服务小区内也只能使用相同的上行同步信息(例如,使用同一个TA值)来进行PUSCH/PUCCH(不管是朝向一个TRP发射,还是对准两个TRP发射)的提前发送。
如上文所述,传统的终端设备与TRP之间的上行同步信息是以服务小区为颗粒度的。这种以服务小区为颗粒度确定TRP的上行同步信息的方式可能过于粗糙,导致终端设备基于TRP所属服务小区对 应的上行同步信息与TRP进行通信时,可能依然会产生干扰。
例如,若一个服务小区包括多个TRP时,不同的TRP可能与终端设备之间的距离不同,此时,如果终端设备依然基于服务小区对应的上行同步信息向服务小区内的多个TRP发送上行信号,这可能导致上行信号到达TRP之后依然存在干扰。
此外,不同TRP之间可能存在同步误差,这种情况下,即使终端设备到不同的TRP之间的距离是相同的,终端设备基于相同的上行同步信息向该不同的TRP发送上行信号,也可能导致上行信号到达TRP之后依然存在干扰。
基于此,在某些通信系统中,可以以TRP为颗粒度确定终端设备与TRP之间的上行同步信息。换句话说,终端设备可能需要针对不同的TRP来分别确定各TRP的上行同步信息,例如,以TRP为粒度来确定(比如,配置或调整)各TRP对应的TA(TRP-specific TA)。这种情况下,如何确定终端设备与TRP之间的上行同步信息是亟待解决的问题。
作为一种可能的实现方式,终端设备可以通过发起随机接入过程来接入TRP,获取该TRP的上行同步信息。但是,终端设备通过随机接入过程来获取TRP的上行同步信息的方式不够灵活,可能会导致上行资源开销大、传输时延长。
针对上述问题,本申请提出两个实施例,该两个实施例均无需向TRP发起随机接入过程便可以获取该TRP的上行同步信息,有利于减小上行资源开销,降低传输时延。下文分别对实施例一和实施例二进行描述。
为了便于理解,先对第一TRP和TRP的上行同步信息进行介绍。
第一TRP
第一TRP是指与终端设备保持上行同步的TRP,例如,可以是终端设备初始接入服务小区时所接入的TRP。
在多TRP的场景下,终端设备可能与一个或多个TRP同时保持上行同步,这种情况下,第一TRP可以是与终端设备保持上行同步的一个或多个TRP中的任意一个,本申请实施例对此并不限定。
在终端设备与第一TRP保持上行同步的情况下,在某些场景下,网络侧可以根据上下行传输的需要(例如,为提高传输的可靠性或频谱效率),增加一个或多个新的TRP(例如,后文的第二TRP)为终端设备提供服务。
在一些实施例中,新增加的TRP可以与第一TRP位于同一个小区。在一些实施例中,新增加的TRP可以与第一TRP位于不同的小区。
以第一TRP为终端设备初始接入服务小区时所接入的TRP为例,终端设备初始接入服务小区后,进入单TRP的操作模式,并与第一TRP完成上行同步。终端设备与第一TRP完成上行同步后,第一TRP可以作为向终端设备发送信道的服务TRP(相当于基站),与终端设备进行通信。
终端设备进入单TRP的操作模式后,网络侧可以根据需要将终端设备配置为多TRP的操作模式,以增加新的TRP来为终端设备提供服务,例如,增加同一小区内的一个或多个TRP来为终端设备提供服务。
终端设备被配置为多TRP的操作模式时,终端设备接入的多个TRP可以同时为终端设备提供服务。该多个TRP之间可以互相通信,例如,可以通过有线连接或者无线连接的方式进行通信。
在一些实施例中,网络侧可以通过RRC信令将终端设备配置为多TRP的操作模式。
TRP的上行同步信息
终端设备需要和TRP进行上行通信(发送上行信令或上行数据)之前,终端设备应和TRP进行上行同步,以避免不同终端设备发送到该TRP的上行信号之间产生干扰。因此,终端设备需要基于获取的TRP的上行同步信息来与该TRP进行上行同步。TRP的上行同步信息可以理解为是该终端设备与TRP之间的上行同步信息,或者理解为,终端设备与TRP对应的上行同步信息。
终端设备基于TRP的上行同步信息与TRP进行上行同步可以理解为,终端设备发送上行数据的系统帧相比对应的下行帧要提前一定的时间,例如,可以通过调整终端设备的上行发射时间来保证上行同步。应该理解,终端设备对于上行发射时间的调整是以网络侧收到时间对齐为目标的,这里的对齐包括多个终端设备到达网络侧应该尽量保持同时到达,也包括网络侧对于下行发送时隙和上行接收时隙之间边界的对齐。
本申请实施例对TRP的上行同步信息的类型不作限定。例如,TRP的上行同步信息可以是指TRP对应的TA(或称,TRP与终端设备之间的TA),比如第一TRP的上行同步信息可以是指第一TRP对应的TA。或者,TRP的上行同步信息可以是指TRP到终端设备的单向传输时延(或称,终端设备与TRP之间的单向传输时延),比如,第一TRP的上行同步信息可以是指第一TRP到终端设备的单向传输时延。在一些实施例中,单向传输时延也可以称为单向传播时延,本申请实施例对此并不限定。
本申请实施例中,TRP对应的TA可以理解为是TRP到终端设备的单向传输时延的2倍。
在上述相关概念介绍的基础上,下面依次对实施例一和实施例二进行介绍。
实施例一:
实施例一旨在以第一TRP为参考确定第一TRP之外的其他TRP的上行同步信息,从而无需向其他TRP发起随机接入过程来获取其他TRP的上行同步信息。
在一些实施例中,不使用随机接入过程来获取上行同步信息的方案也可以称为RACH-less的上行同步信息获取方案。
下面结合图8对本申请实施例如何以第一TRP为参考确定其他TRP的上行同步信息的过程进行介绍。
图8为本申请一实施例提供的用于无线通信的方法的流程示意图。图8所示的方法可以由终端设备执行,也可以由网络设备执行,本申请实施例对此并不限定。该终端设备和网络设备例如可以是图1中所示的终端设备120和网络设备110(比如,图1A中的网络设备110、图1B中的卫星110a、图1C中的基站110b)。图8所示的方法包括步骤S810,下面对该步骤进行详细描述。
在步骤S810,在终端设备与第一TRP保持上行同步的情况下,确定第二TRP的上行同步信息。
第二TRP可以理解为是网络侧为终端设备配置的新的TRP,以便可以和第一TRP共同为终端设备提供服务。第二TRP和第一TRP可以位于同一小区,也可以位于不同的小区,本申请实施例对此并不限定。
在一些实施例中,终端设备还未接入第二TRP,或者说终端设备还未与第二TRP进行上行同步。不过本申请实施例并不限定于此,在终端设备已经接入第二TRP(或者说,终端设备接入第二TRP后需要更新第二TRP的上行同步信息)的情况下,也可以以第一TRP为参考,确定第二TRP的上行同步信息。
在一些实施例中,第一TRP和第二TRP相对终端设备的下行传输是同步的。换句话说,第一TRP和第二TRP之间的传输时间差(transmission timing difference)为0(或称,第一TRP和第二TRP之间不存在传输时间差)。
在一些实施例中,第一TRP和第二TRP相对终端设备的下行传输是不同步的。换句话说,第一TRP和第二TRP之间的传输时间差为非0值。这是因为,第一TRP和第二TRP之间可能会存在时钟偏差(例如,第一TRP和第二TRP之间的不理想的回程线路或网络设备硬件限制带来的时钟偏差),使得第一TRP与第二TRP之间的下行时间同步存在一定不可预知的误差。在本申请实施例中,将第一TRP和第二TRP之间存在时钟偏差称为第一TRP和第二TRP之间存在传输时间差。在一些实施例中,传输时间差也可以用其他名称替换,例如同步时间差、下行传输时间差(DL Tx time gap)、下行发送时间差等,本申请对此不作限定,只要其表示不同TRP之间存在时钟偏差即可。
在一些实施例中,以第一TRP为参考确定第二TRP的上行同步信息可以是指,在确定第二TRP的上行同步信息时,可以考虑与第一TRP相关的信息。具体地,可以根据以下信息中的一项或多项来确定第二TRP的上行同步信息。
信息1:第一TRP的上行同步信息。
第一TRP的上行同步信息可以是指第一TRP对应的TA,或者可以是指第一TRP到终端设备的单向传输时延。
在一些实施例中,第一TRP的上行同步信息的类型与第二TRP的上行同步信息的类型可以是相同的,例如,第一TRP的上行同步信息是指第一TRP对应的TA,第二TRP的上行同步信息是指第二TRP对应的TA。在一些实施例中,第一TRP的上行同步信息的类型与第二TRP的上行同步信息的类型可以是不同的,例如,第一TRP的上行同步信息是指第一TRP对应的TA,第二TRP的上行同步信息是指第二TRP到终端设备的单向传输时延。
信息2:下行到达时间差(downlink timing difference)
下行到达时间差用于指示第一TRP的信号到达终端设备的时间与第二TRP的信号到达终端设备的时间的差值。或者说,该下行到达时间差表示第一TRP到终端设备的下行到达时间(第一TRP发送的信号到达终端设备的时间)与第二TRP到终端设备的下行到达时间之间的差值。
在一些实施例中,该下行到达时间差也可以通过终端设备的下行接收时间来表示,即终端设备接收第一TRP发送的信号的时间与终端设备接收第二TRP发送的信号的时间之间的差值。
在一些实施例中,下行到达时间差可以基于终端设备对参考信号的测量来确定,详见后文,此处暂不赘述。
在一些实施例中,TRP到终端设备的下行到达时间与TRP到终端设备的距离相关联。例如,第一TRP到终端设备的距离与第二TRP到终端设备的距离相同时,可以认为,下行到达时间差为0。或者, 第一TRP到终端设备的距离与第二TRP到终端设备的距离不同时,可以认为,下行到达时间差为非0值。
信息3:第一TRP与第二TRP的传输时间差。
第一TRP与第二TRP的传输时间差用于指示第一TRP与第二TRP相对终端设备的下行传输的同步信息(或第一TRP与第二TRP之间的时钟偏差信息)。例如,第一TRP与第二TRP的传输时间差为0时,可以理解为第一TRP与第二TRP相对终端设备的下行传输是同步的,或者说第一TRP与第二TRP之间的时钟信息是一致的。又例如,第一TRP与第二TRP的传输时间差为非0值时,可以理解为第一TRP和第二TRP相对终端设备的下行传输是不同步的,或者说第一TRP与第二TRP之间的时钟信息是不一致的。
在一些实施例中,第一TRP与第二TRP的传输时间差可以是指,第一TRP的时间参考信息与第二TRP之间的时间参考信息之间的差值。可选地,第一TRP的时间参考信息可以用第一TRP的下行发送时间指示,第二TRP的时间参考信息可以用第二TRP的下行发送时间指示。
在一些实施例中,第一TRP和第二TRP的传输时间差可以根据第一TRP与第二TRP的系统信息或者专用信令中包含的时间参考信息确定。本申请对TRP的系统信息不作限定,例如,系统信息可以是指系统信息块(system information block,SIB)。
本申请实施例中,在终端设备与第一TRP保持上行同步的情况下,终端设备可以以第一TRP为参考,确定第二TRP的上行同步信息,具体地,确定第二TRP的上行同步信息时可以考虑上述信息1至信息3中的一种或多种。基于此,终端设备无需向第二TRP发起随机接入过程便可以获取第二TRP的上行同步信息,有利于减小上行资源开销,降低传输时延。
在一些实施例中,第二TRP的上行同步信息可以是基于上文的信息1和信息2确定的。例如,在第一TRP与第二TRP相对终端设备的下行传输同步的情况下,可以直接基于信息1和信息2确定第二TRP的上行同步信息。
在一些实施例中,第二TRP的上行同步信息可以是基于上文的信息1、信息2以及信息3共同确定的,即第二TRP的上行同步信息是基于第一TRP的上行同步信息,下行到达时间差,以及第一TRP与第二TRP的传输时间差确定的。例如,在第一TRP与第二TRP相对终端设备的下行传输同步的情况下,可以认为第一TRP与第二TRP的传输时间差为0,基于信息1、信息2和信息3共同确定第二TRP的上行同步信息。或者,在第一TRP与第二TRP相对终端设备的下行传输不同步的情况下,可以认为第一TRP与第二TRP的传输时间差为非0值,基于信息1、信息2和信息3共同确定第二TRP的上行同步信息。
作为一种实现方式,如果第二TRP的上行同步信息是基于上文的信息1、信息2以及信息3共同确定的,且第二TRP的上行同步信息为第二TRP对应的TA时,第二TRP的上行同步信息可以表示为目标值的2倍,其中,目标值等于单向传输时延(第一TRP到终端设备的单向传输时延)与传输时间差的差值(第一TRP与第二TRP的传输时间差)与下行到达时间差之和。
应该理解,第一TRP与第二TRP的传输时间差,下行到达时间差均为相对概念,因此,上文提及的减法运算或加法运算并非绝对的,例如,减法运算可以理解为是与负值的求和。
以第一TRP与第二TRP的传输时间差为例,其可以是指第二TRP的参考时间减第一TRP的参考时间,若第二TRP的参考时间靠后于第一TRP的参考时间,则第一TRP与第二TRP的传输时间差可以表示为正值,上文的单向传输时延与传输时间差的差值可以是指单向传输时延减去传输时间差得到的值;若第二TRP的参考时间提前于第一TRP的参考时间,则第一TRP与第二TRP的传输时间差可以表示为负值,上文的单向传输时延与传输时间差的差值可以是指单向传输时延减去传输时间差得到的值(这种情况下,减去负值便可以理解为是与正值的求和)。当然,第一TRP与第二TRP的传输时间差的相关计算过程类似,此处不再赘述。
如上文所述,第一TRP和第二TRP相对终端设备的下行传输可以是同步的,也可以是不同步的。下面分别针对这两种情况,对如何确定第二TRP的上行同步信息进行示例性介绍。
情况1:第一TRP和第二TRP相对终端设备的下行传输是同步的
图9给出了一种确定第二TRP的上行同步信息的示例。在图9的示例中,第一TRP和第二TRP相对终端设备的下行传输是同步的(即图9中的DL Tx1与DL Tx2是对齐的,其中DL Tx表示下行发送,DL RX表示下行接收)。在这种情况下,如果第一TRP的上行同步信息与第二TRP的上行同步信息不同,则可能是由于终端设备到第一TRP的传播时延与终端设备到第二TRP的传播时延不同。具体来说,假设第一TRP和第二TRP到终端设备的单向传输时延分别是Δ 0和Δ 1,那么对于该终端设备而言,第一TRP对应的TA和第二TRP对应的TA的取值应该分别是2Δ 0和2Δ 1来弥补往返传输时延。
假设终端设备已经和第一TRP进行了上行同步(比如通过初始接入的MAC RAR以及后续的MAC  CE来配置或更新第一TRP的上行同步信息),这种情况下,终端设备可以确定(比如,可以通过计算的方式或者网络设备指示的方式)第一TRP的上行同步信息(例如,第一TRP到终端设备的单行传播时延Δ 0)。如此一来,只要终端设备能够确定下行到达时间差,终端设备便可以按照如下公式来确定第二TRP的上行同步信息。
第二TRP的上行同步信息为第二TRP对应的TA时,TA1=2(Δ 0+DL timing difference)。第二TRP的上行同步信息为第二TRP到终端设备的单向传输时延时,TA2=Δ 0+DL timing difference。
其中,Δ 0表示第一TRP到终端设备的单向传输时延,DL timing difference表示下行到达时间差。
情况2:第一TRP和第二TRP相对终端设备的下行传输是不同步的
图10给出了一种确定第二TRP的上行同步信息的示例。在图10的示例中,第一TRP和第二TRP相对终端设备的下行传输是不同步的,即第一TRP和第二TRP之间存在传输时间差,该传输时间差为非0值。在这种情况下,如果第一TRP的上行同步信息与第二TRP的上行同步信息不同,则可能是由于以下原因中的一种或多种导致的:终端设备到第一TRP的传播时延与终端设备到第二TRP的传播时延不同;第一TRP和第二TRP相对终端设备的下行传输不同步。
假设终端设备已经和第一TRP进行了上行同步,即终端设备可以确定第一TRP的上行同步信息,这种情况下,终端设备还需要确定下行到达时间差,以及第一TRP与第二TRP的传输时间差,基于此,终端设备便可以按照如下公式来确定第二TRP的上行同步信息。
第二TRP的上行同步信息为第二TRP对应的TA时,TA3=2(Δ 0-DL time gap+DL timing difference)。第二TRP的上行同步信息为第二TRP到终端设备的单向传输时延时,TA4=Δ 0-DL time gap+DL timing difference。
其中,Δ 0表示第一TRP到终端设备的单向传输时延,DL time gap表示第一TRP与第二TRP的传输时间差,DL timing difference表示下行到达时间差。
如上文所述,终端设备和网络设备均可以基于上文的信息1至信息3确定第二TRP的上行同步信息。下面分别对终端设备和网络设备如何基于上述信息确定第二TRP的上行同步信息的流程进行介绍。
图11为本申请另一实施例提供的用于无线通信的方法的流程示意图。该流程用于介绍终端设备如何基于上述信息确定第二TRP的上行同步信息。图11所示的方法是站在终端设备和网络设备交互的角度进行介绍的。
终端设备基于上述信息确定第二TRP的上行同步信息时,终端设备自己可以确定第一TRP的上行同步信息,以及下行到达时间差,而第一TRP和第二TRP的传输时间差可以由网络设备指示。
在步骤S1110,网络设备向终端设备发送第一信息,第一信息用于指示第一TRP与第二TRP的传输时间差。
在一些实施例中,第一信息可以承载于高层信令,例如承载于RRC信令。在一些实施例中,第一信息可以承载于低层信令,例如承载于MAC CE。
在一些实施例中,考虑到TRP之间的传输时间差变化的频率可能较低,可以将第一信息的指示方式配置为半静态的配置方式,例如,可以通过高层信令进行半静态配置。
在一些实施例中,为了更加动态地进行TRP的传输时间差的调整,可以将第一信息的指示方式配置为动态的配置方式,例如,可以通过低层信令进行动态配置。
本申请实施例对第一信息指示第一TRP和第二TRP的传输时间差的方式不作限定。在一些实施例中,第一信息可以采用绝对时间的方式进行指示。以TRP的时间参考信息用TRP的下行发送时间指示为例,第一信息中可以包含第一TRP的下行发送时间与第二TRP的下行发送时间。终端设备接收到第一信息后,可以根据第一TRP的下行发送时间与第二TRP的下行发送时间,计算得到第一TRP与第二TRP的传输时间差,该传输时间差等于第一TRP的下行发送时间与第二TRP的下行发送时间的差值。在一些实施例中,第一信息可以采用相对时间差的方式进行指示。仍然以TRP的时间参考信息用TRP的下行发送时间指示为例,第一信息中可以直接包含第一TRP的下行发送时间与第二TRP的下行发送时间的差值,即第一信息中可以直接包含第一TRP与第二TRP的传输时间差。
在一些实施例中,第一信息可以用于指示第一TRP(参考TRP)与多个目标TRP(第二TRP为多个目标TRP中的一个)的传输时间差。这种情况下,为了区分不同的目标TRP,可以使用TRP的标识来区分不同的TRP。
在一些实施例中,TRP的标识可以是指TRP的物理小区标识(physical cell identifier,PCI)。对于TRP而言,每个TRP有一个对应的PCI,对于小区内(intra-cell)多TRP的场景而言,该多个TRP对应的PCI是相同的;对于小区间(inter-cell)多TRP的场景而言,该多个TRP对应的PCI则是不同的。基于此,在小区间多TRP的场景下,可以使用PCI来区分不同的TRP。
图12示出了一种指示传输时间差的MAC CE的格式。图12的示例可以应用于小区间多TRP的场 景。如图12所示,参考TRP和目标TRP的传输时间差是以绝对时间的方式进行指示的,每个TRP(包括参考TRP和目标TRP)均有对应的PCI,不同的TRP可以通过各TRP的PCI来区分。
图13示出了另一种指示传输时间差的MAC CE的格式。图13的示例可以应用于小区间多TRP的场景。如图13所示,参考TRP和目标TRP的传输时间差是以相对时间差的方式进行指示的,每个TRP(包括参考TRP和目标TRP)均有对应的PCI,不同的TRP可以通过各TRP的PCI来区分。
在一些实施例中,TRP的标识可以是指TRP关联的CORESET的标识。对于TRP而言,每个TRP与一组CORESET关联,因此,可以使用CORESET的标识来间接区分不同的TRP。基于此,在小区内多TRP的场景下,可以使用CORESET的标识来区分不同的TRP。
在一些实施例中,CORESET的标识是指CORESET对应的RRC参数“CORESETPoolIndex”,即可以使用CORESETPoolIndex这个参数来区分不同的TRP。考虑到CORESETPoolIndex仅可以取值0或1,分别对应两个不同的TRP。因此,可以使用CORESETPoolIndex来区分两个不同的TRP。
图14示出了又一种指示传输时间差的MAC CE的格式。图14的示例可以应用于小区内多TRP的场景。如图14所示,参考TRP和目标TRP的传输时间差是以绝对时间的方式进行指示的,参考TRP和目标TRP可以通过各TRP关联的CORESETPoolIndex来区分。
图15示出了又一种指示传输时间差的MAC CE的格式。图15的示例可以应用于小区内多TRP的场景。如图15所示,参考TRP和目标TRP的传输时间差是以相对时间差的方式进行指示的,参考TRP和目标TRP可以通过各TRP关联的CORESETPoolIndex来区分。
重新参见图11,在步骤S1120,终端设备确定第二TRP的上行同步信息。
关于步骤S1120的描述,可以参见前文步骤S810的相关描述,此处不再赘述。
图16为本申请又一实施例提供的用于无线通信的方法的流程示意图。该流程用于介绍网络设备如何基于上述信息确定的第二TRP的上行同步信息。图16所示的方法是站在网络设备和终端设备交互的角度进行介绍的。
网络设备基于上述信息确定第二TRP的上行同步信息时,网络设备自己可以确定第一TRP的上行同步信息,以及第一TRP和第二TRP的传输时间差,而下行到达时间差可以由终端设备指示。
在步骤S1610,终端设备向网络设备发送第二信息,第二信息用于指示下行到达时间差。
在一些实施例中,如果第一TRP与第二TRP位于不同的小区,第二信息还用于指示第二TRP对应的小区。例如,第二信息中可以包含第二TRP的PCI,以指示第二TRP对应的小区。
在一些实施例中,第二信息可以承载于低层信令,例如,承载于MAC CE中。
在一些实施例中,终端设备可以向网络设备单独发送(或上报)第二信息,例如,将第二信息单独承载于MAC CE中进行发送。
在一些实施例中,终端设备可以将第二信息和其他信息合并在同一信令中发送给网络设备。例如,终端设备可以将第二信息合并进信道状态信息(channel state information,CSI)上报内容(如信道质量指示(channel quality indication,CQI),等级指示(rank indication,RI),预编码矩阵指示(precoding matrix indicator,PMI)等)共同发送给网络设备。
在步骤S1620,网络设备确定第二TRP的上行同步信息。
关于步骤S1620的描述,可以参见前文步骤S810的相关描述,此处不再赘述。
在一些实施例中,该方法还可以包括步骤S1630。在步骤S1630,网络设备向终端设备发送第三信息,第三信息用于指示第二TRP的上行同步信息。
网络设备确定第二TRP的上行同步信息后,可以将第二TRP的上行同步信息告知给终端设备。
在一些实施例中,第三信息可以承载于低层信令,例如MAC CE。
本申请实施例中,终端设备和网络设备均可以自己确定第二TRP的上行同步信息,增加了终端设备自主修正TRP的上行同步信息的可能性。
上文提及,终端设备可以基于参考信号的测量确定下行到达时间差,下面对此进行介绍。
作为一种实现方式,第一TRP和第二TRP可以分别向终端设备发送下行参考信号,由终端设备测量来自第一TRP的下行参考信号和来自第二TRP的下行参考信号,并根据测量结果确定下行到达时间差。
本申请实施例对下行参考信号(例如,后文的第一下行参考信号和/或第二下行参考信号)的类型不作限定。示例性地,下行参考信号可以为同步信号块(SS/PBCH block,SSB),或者也可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)。
假设下行到达时间差是基于第一下行参考信号和第二下行参考信号的测量确定的,且第一下行参考信号与第一TRP对应,第二下行参考信号与第二TRP对应。应该理解,第一下行参考信号与第一TRP对应可以是指第一下行参考信号是第一TRP发送的,第二下行参考信号与第二TRP对应可以是指 第二下行参考信号是第二TRP发送的。
终端设备基于下行参考信号的测量确定下行到达时间差时,终端设备需要知道下行参考信号和TRP之间的对应关系,即终端设备需要知道第一下行参考信号是第一TRP发送的,第二下行参考信号是第二TRP发送的。
在一些实施例中,终端设备可以通过TRP的标识信息确定下行参考信号和TRP之间的对应关系。
以小区间多TRP的场景为例,不同TRP对应的PCI可以是不同的,可以以TRP的PCI作为TRP的标识,确定下行参考信号和TRP之间的对应关系。
以小区内多TRP的场景为例,每个TRP与一组CORESET关联,不同TRP关联的CORESET组可以是不同的,因此,可以将下行参考信号与CORESET组进行关联,通过下行参考信号与CORESET组的关联关系,间接确定下行参考信号和TRP之间的对应关系。也就是说,TRP和下行参考信号均可以与CORESET组关联,从而可以利用CORESET组和下行参考信号的关联关系,间接确定下行参考信号和TRP的对应关系。例如,第一TRP和第一下行参考信号均可以与第一组CORESET关联,第二TRP和第二下行参考信号均可以与第二组CORESET关联,这种情况下,终端设备可以通过确定CORESET组来区分下行参考信号是哪个TRP发送的。在该实现方式中,TRP的标识信息可以是指TRP关联的CORESET的标识信息,例如CORESET的RRC参数“CORESETPoolIndex”。
在一些实施例中,网络设备可以直接向终端设备指示下行参考信号和TRP之间的对应关系。
以下行参考信号为SSB为例,对于两个TRP,网络设备会给每个TRP配置一定数量的SSB作为下行参考信号。举例来说,SSB标识为0~31(共32个)的SSB可以从第一TRP发送,SSB标识为32~63(共32个)的SSB可以从第二TRP发送。网络设备可以直接将SSB与TRP之间的对应关系指示给终端设备,例如将SSB标识与TRP的对应关系指示给终端设备,以便终端设备区分下行参考信号是哪个TRP发送的。
下行参考信号为CSI-RS的情况与下行参考信号为SSB的情况类似,此处不再赘述。
在一些实施例中,终端设备确定第二TRP的上行同步信息(包括终端设备自己计算确定或者是网络设备确定后指示给终端设备)之后,终端设备可以重置第一定时器,该第一定时器用于维护第二TRP的上行同步信息的有效性。第一定时器可以是指终端设备的TA定时器(用TimeAlignmentTimer表示)。终端设备重置第一定时器可以避免不必要的上行失步。
实施例二:
实施例二旨在利用激活TRP为终端设备提供服务的过程来确定该激活的TRP的上行同步信息,无需向TRP发起随机接入过程来获取TRP的上行同步信息。
在小区间多TRP的场景下,终端设备首先只是和服务小区的TRP建立了上行同步。对于非服务小区的TRP则未建立上行同步。下面结合图17,以终端设备和第一TRP建立了上行同步(即终端设备和第一TRP保持上行同步),和第二TRP未建立上行同步为例,对实施例二进行介绍,其中,第一TRP和第二TRP位于不同的小区。
图17为本申请又一实施例提供的用于无线通信的方法的流程示意图。图17所示的方法包括步骤S1710和步骤S1720,下面对这些步骤进行详细描述。
在步骤S1710,网络设备向终端设备发送第一信息,第一信息用于激活第二TRP。
在一些实施例中,第一信息是基于终端设备对第二TRP的下行参考信号的测量确定的。
第二TRP的下行参考信号可以包括多种,例如,SSB或CSI-RS。以第二TRP的下行参考信号为CSI-RS为例,该CSI-RS可以是用来做波束管理的CSI-RS,也可以是用来做移动性管理的CSI-RS,本申请实施例对此并不限定。
在一些实施例中,下行参考信号可以是网络设备预先配置的,例如网络设备通过RRC信令预先配置的。
在一些实施例中,第一信息可以为统一(unified)传输配置指示(transmission configuration indicator,TCI)状态。
在一些实施例中,第一信息可以承载于MAC CE,例如,网络设备通过MAC CE信令激活统一TCI状态。在一些实施例中,第一信息可以承载于DCI,例如,网络设备通过MAC CE信令配置统一TCI状态,并通过DCI信令激活该统一TCI状态。
在一些实施例中,第一信息中可以包含发送下行参考信号的资源,该资源对应于第二TRP。也就是说,第一信息中包含的下行参考信号资源可以来自与服务小区TRP(例如,第一TRP)具有不同PCI的TRP。
在步骤S1720,响应于第一信息,终端设备向第二TRP发送上行参考信号,该上行参考信号用于网络设备确定第二TRP的上行同步信息。
在一些实施例中,上行参考信号除用于网络设备确定第二TRP的上行同步信息之外,还可以用于网络设备测量终端设备相对第二TRP的信道,从而估计终端设备与第二TRP之间的上下行的CSI。
本申请实施例对上行参考信号的类型不作限定。示例性地,上行参考信号可以为SRS,例如非周期SRS。
在一些实施例中,上行参考信号的发射波束与下行参考信号的接收波束相对应,以保证上下行传输的波束对称性。也就是说,上行参考信号的发射波束可以是对应终端设备接收下行参考信号的波束。以上行参考信号为SRS,下行参考信号为SSB/CSI-RS为例,该SRS的发射波束是对应终端设备接收下行参考信号SSB/CSI-RS的波束。
在一些实施例中,上行参考信号的发送时间是基于下行参考信号的接收时间确定的。作为一种实现方式,上行参考信号是在下行参考信号的接收时间上发送的,比如在下行参考信号的第一个多径的接收时间上发送的。换句话说,上行参考信号的发送时间可以没有TA,以便网络设备通过上行参考信号的到达时间来确定第二TRP的上行同步信息。作为另一种实现方式,可以以下行参考信号的接收时间为参考时间,基于该参考时间确定上行参考信号的发送时间,比如在下行参考信号的接收时间提前一定时间发送上行参考信号。换句话说,上行参考信号的发送时间可以配置一个对应的TA,终端设备以下行参考信号的接收时间为参考点,提前对应的TA值来发送上行参考信号。
本申请实施例对上行参考信号的发送时间对应的TA的获取方式不作限定。示例性地,该TA可以使用第一TRP对应的TA的取值;或者,网络设备可以提前为终端设备配置上行参考信号的发送时间对应的TA,比如通过RRC信令来配置。
本申请实施例中,激活第二TRP为终端设备提供服务的过程中,终端设备可以向第二TRP发送上行参考信号,以让网络设备根据该上行参考信号确定第二TRP的上行同步信息。如此一来,可以利用现有的小区间多TRP的操作来确定第二TRP的上行同步信息,减少终端设备不必要的随机接入过程,从而可以减少系统的信令开销和随机接入过程的时延。
在一些实施例中,激活第二TRP为终端设备提供服务的过程可以是指终端设备与第二TRP之间的波束管理过程。下面以终端设备与第二TRP之间的波束管理过程为例,对实施例二的实现步骤进行示例性介绍。
参见图18,在步骤S1810,网络设备向终端设备配置小区间多TRP传输所使用的下行参考信号,比如SSB或CSI-RS。
在一些实施例中,网络设备可以通过RRC信令向终端设备配置下行参考信号。
在步骤S1820,终端设备测量第二TRP(和第一TRP的PCI不同)的下行参考信号。
在步骤S1830,终端设备进行波束上报。终端设备的波束上报内容可以包括下行参考信号的标识信息,和/或,下行参考信号对应的层一参考信号接收功率(L1reference signal receiving power,L1-RSRP)。
在步骤S1840,网络设备向终端设备指示统一TCI状态。该统一TCI状态中包含的下行参考信号资源是来自第二TRP。
在一些实施例中,网络设备可以通过MAC CE信令激活统一TCI状态,或者可以通过MAC CE+DCI信令来指示统一TCI状态。
在步骤S1850,终端设备向第二TRP发送上行参考信号,例如发送一个非周期SRS。
在一些实施例中,该上行参考信号的发射波束是对应终端设备接收下行参考信号的波束。
在一些实施例中,该上行参考信号的发送时间可以没有任何发送提前,即终端设备在所上报下行参考信号的接收时间上发送该上行参考信号。在一些实施例中,该上行参考信号的发送时间可以使用第一TRP对应的TA值或网络设备提前为终端设备配置的TA值。
在步骤S1860,网络设备确定第二TRP的上行同步信息,即网络设备确定终端设备在第二TRP下对应的上行同步信息,例如,终端设备在第二TRP下对应的TA。
在一些实施例中,网络设备确定第二TRP的上行同步信息后,可以通过MAC CE来更新该终端设备与第二TRP的上行同步信息。
上文结合图1至图18,详细描述了本申请的方法实施例,下面结合图19至图23,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图19是本申请一实施例提供的终端设备的结构示意图。图19中所示的终端设备1900可以包括确定模块1910。
确定模块1910可以在所述终端设备与第一传输接收点TRP保持上行同步的情况下,确定第二TRP的上行同步信息;其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:所述第一TRP的上行同步信息;下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达 所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及所述第一TRP与所述第二TRP的传输时间差。
可选地,第二TRP的上行同步信息是基于所述第一TRP的上行同步信息,所述下行到达时间差,以及所述传输时间差确定的。
可选地,第一TRP的上行同步信息为所述第一TRP到所述终端设备的单向传输时延,所述第二TRP的上行同步信息为所述第二TRP对应的定时提前TA,所述第二TRP对应的TA为目标值的2倍,其中,所述目标值等于所述单向传输时延与所述传输时间差的差值与所述下行到达时间差之和。
可选地,终端设备1900还包括接收模块1920。接收模块1920可以用于从网络设备接收第一信息,所述第一信息用于指示所述传输时间差。
可选地,第一信息承载于无线资源控制RRC信令或媒体接入控制控制元素MAC CE。
可选地,第一信息包括:所述第一TRP的下行发送时间与所述第二TRP的下行发送时间;和/或,所述第一TRP的下行发送时间与所述第二TRP的下行发送时间的差值。
可选地,终端设备1900还包括发送模块,用于向网络设备发送第二信息,所述第二信息用于指示所述下行到达时间差。
可选地,如果所述第一TRP与所述第二TRP属于不同的小区,则所述第二信息还用于指示所述第二TRP对应的小区。
可选地,下行到达时间差是基于第一下行参考信号和第二下行参考信号的测量确定的,其中,所述第一下行参考信号与所述第一TRP对应,所述第二下行参考信号与所述第二TRP对应。
可选地,第一TRP和所述第一下行参考信号均与第一组控制资源集CORESET关联;且所述第二TRP与所述第二下行参考信号均与第二组CORESET关联。
可选地,第一下行参考信号和所述第二下行参考信号为以下参考信号中的一种:同步信号块SSB,信道状态信息参考信号CSI-RS。
可选地,终端设备1900还包括重置模块,用于重置第一定时器,所述第一定时器用于维护所述第二TRP的上行同步信息的有效性。
可选地,上行同步信息包括以下信息中的一项或多项:TA,以及单向传输时延。
图20是本申请另一实施例提供的终端设备的结构示意图。图20中所示的终端设备2000可以包括接收模块2010和发送模块2020。
接收模块2010可以用于在终端设备与第一传输接收点TRP保持上行同步的情况下,接收第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP。
发送模块2020可以用于响应于所述第一信息,向所述第二TRP发送上行参考信号,所述上行参考信号用于网络设备确定所述第二TRP的上行同步信息。
可选地,第一信息是基于所述终端设备对所述第二TRP的下行参考信号的测量确定的,所述上行参考信号的发射波束与所述下行参考信号的接收波束相对应。
可选地,上行参考信号的发送时间基于所述下行参考信号的接收时间确定。
可选地,第一信息为统一传输配置指示TCI状态。
可选地,上行同步信息包括以下信息中的一项或多项:定时提前TA,以及单向传输时延。
可选地,上行参考信号为非周期信道探测参考信号SRS。
图21是本申请一实施例提供的网络设备的结构示意图。图21中所示的网络设备2100可以包括确定模块2110。
确定模块2110可以用于在终端设备与第一传输接收点TRP保持上行同步的情况下,确定第二TRP的上行同步信息;其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:所述第一TRP的上行同步信息;下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及所述第一TRP与所述第二TRP的传输时间差。
可选地,第二TRP的上行同步信息是基于所述第一TRP的上行同步信息,所述下行到达时间差,以及所述传输时间差确定的。
可选地,第一TRP的上行同步信息为所述第一TRP到所述终端设备的单向传输时延,所述第二TRP的上行同步信息为所述第二TRP对应的定时提前TA,所述第二TRP对应的TA为目标值的2倍,其中,所述目标值等于所述单向传输时延与所述传输时间差的差值与所述下行到达时间差之和。
可选地,网络设备2100还包括发送模块2120。发送模块2120可以用于向所述终端设备发送第一信息,所述第一信息用于指示所述传输时间差。
可选地,第一信息承载于无线资源控制RRC信令或媒体接入控制控制元素MAC CE。
可选地,第一信息包括:所述第一TRP的下行发送时间与所述第二TRP的下行发送时间;和/或,所述第一TRP的下行发送时间与所述第二TRP的下行发送时间的差值。
可选地,网络设备2120还包括:接收模块,用于接收所述终端设备发送的第二信息,所述第二信息用于指示所述下行到达时间差。
可选地,如果所述第一TRP与所述第二TRP属于不同的小区,则所述第二信息还用于指示所述第二TRP对应的小区。
可选地,下行到达时间差是基于第一下行参考信号和第二下行参考信号的测量确定的,其中,所述第一下行参考信号与所述第一TRP对应,所述第二下行参考信号与所述第二TRP对应。
可选地,第一TRP和所述第一下行参考信号均与第一组控制资源集CORESET关联;且所述第二TRP与所述第二下行参考信号均与第二组CORESET关联。
可选地,第一下行参考信号和所述第二下行参考信号为以下参考信号中的一种:同步信号块SSB,信道状态信息参考信号CSI-RS。
可选地,上行同步信息包括以下信息中的一项或多项:TA,以及单向传输时延。
图22是本申请另一实施例提供的网络设备的结构示意图。图22中所示的网络设备2200可以包括发送模块2210和确定模块2220。
发送模块2210可以用于在终端设备与第一传输接收点TRP保持上行同步的情况下,向所述终端设备发送第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP。
确定模块2220可以用于确定所述第二TRP的上行同步信息,所述上行同步信息基于所述终端设备向所述第二TRP发送的上行参考信号确定。
可选地,第一信息是基于所述终端设备对所述第二TRP的下行参考信号的测量确定的,所述上行参考信号的发射波束与所述下行参考信号的接收波束相对应。
可选地,上行参考信号的发送时间基于所述下行参考信号的接收时间确定。
可选地,第一信息为统一传输配置指示TCI状态。
可选地,上行同步信息包括以下信息中的一项或多项:定时提前TA,以及单向传输时延。
可选地,上行参考信号为非周期信道探测参考信号SRS。
图23是本申请实施例的通信装置的示意性结构图。图23中的虚线表示该单元或模块为可选的。该装置2300可用于实现上述方法实施例中描述的方法。装置2300可以是芯片、终端设备或网络设备。
装置2300可以包括一个或多个处理器2310。该处理器2310可支持装置2300实现前文方法实施例所描述的方法。该处理器2310可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置2300还可以包括一个或多个存储器2320。存储器1820上存储有程序,该程序可以被处理器2310执行,使得处理器2310执行前文方法实施例所描述的方法。存储器2320可以独立于处理器2310也可以集成在处理器2310中。
装置2300还可以包括收发器2330。处理器2310可以通过收发器2330与其他设备或芯片进行通信。例如,处理器2310可以通过收发器2330与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接 指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不作限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不作限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (81)

  1. 一种用于无线通信的方法,其特征在于,包括:
    在终端设备与第一传输接收点TRP保持上行同步的情况下,所述终端设备确定第二TRP的上行同步信息;
    其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:
    所述第一TRP的上行同步信息;
    下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及
    所述第一TRP与所述第二TRP的传输时间差。
  2. 根据权利要求1所述的方法,其特征在于,所述第二TRP的上行同步信息是基于所述第一TRP的上行同步信息,所述下行到达时间差,以及所述传输时间差确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述第一TRP的上行同步信息为所述第一TRP到所述终端设备的单向传输时延,所述第二TRP的上行同步信息为所述第二TRP对应的定时提前TA,所述第二TRP对应的TA为目标值的2倍,其中,所述目标值等于所述单向传输时延与所述传输时间差的差值与所述下行到达时间差之和。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述终端设备确定第二TRP的上行同步信息之前,所述方法还包括:
    所述终端设备从网络设备接收第一信息,所述第一信息用于指示所述传输时间差。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信息承载于无线资源控制RRC信令或媒体接入控制控制元素MAC CE。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一信息包括:
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间;和/或
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间的差值。
  7. 根据权利要求1-3中任一项所述的方法,其特征在于,所述终端设备确定第二TRP的上行同步信息之前,所述方法还包括:
    所述终端设备向网络设备发送第二信息,所述第二信息用于指示所述下行到达时间差。
  8. 根据权利要求7所述的方法,其特征在于,如果所述第一TRP与所述第二TRP属于不同的小区,则所述第二信息还用于指示所述第二TRP对应的小区。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述下行到达时间差是基于第一下行参考信号和第二下行参考信号的测量确定的,其中,所述第一下行参考信号与所述第一TRP对应,所述第二下行参考信号与所述第二TRP对应。
  10. 根据权利要求9所述的方法,其特征在于,所述第一TRP和所述第一下行参考信号均与第一组控制资源集CORESET关联;且所述第二TRP与所述第二下行参考信号均与第二组CORESET关联。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一下行参考信号和所述第二下行参考信号为以下参考信号中的一种:同步信号块SSB,信道状态信息参考信号CSI-RS。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述终端设备确定第二TRP的上行同步信息之后,所述方法还包括:
    所述终端设备重置第一定时器,所述第一定时器用于维护所述第二TRP的上行同步信息的有效性。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述上行同步信息包括以下信息中的一项或多项:TA,以及单向传输时延。
  14. 一种用于无线通信的方法,其特征在于,包括:
    在终端设备与第一传输接收点TRP保持上行同步的情况下,所述终端设备接收第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;
    响应于所述第一信息,所述终端设备向所述第二TRP发送上行参考信号,所述上行参考信号用于网络设备确定所述第二TRP的上行同步信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息是基于所述终端设备对所述第二TRP的下行参考信号的测量确定的,所述上行参考信号的发射波束与所述下行参考信号的接收波束相对应。
  16. 根据权利要求15所述的方法,其特征在于,所述上行参考信号的发送时间基于所述下行参考信号的接收时间确定。
  17. 根据权利要求14-16中任一项所述的方法,其特征在于,所述第一信息为统一传输配置指示TCI状态。
  18. 根据权利要求14-17中任一项所述的方法,其特征在于,所述上行同步信息包括以下信息中的一项或多项:定时提前TA,以及单向传输时延。
  19. 根据权利要求14-18中任一项所述的方法,其特征在于,所述上行参考信号为非周期信道探测参考信号SRS。
  20. 一种用于无线通信的方法,其特征在于,包括:
    在终端设备与第一传输接收点TRP保持上行同步的情况下,网络设备确定第二TRP的上行同步信息;
    其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:
    所述第一TRP的上行同步信息;
    下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及
    所述第一TRP与所述第二TRP的传输时间差。
  21. 根据权利要求20所述的方法,其特征在于,所述第二TRP的上行同步信息是基于所述第一TRP的上行同步信息,所述下行到达时间差,以及所述传输时间差确定的。
  22. 根据权利要求21所述的方法,其特征在于,所述第一TRP的上行同步信息为所述第一TRP到所述终端设备的单向传输时延,所述第二TRP的上行同步信息为所述第二TRP对应的定时提前TA,所述第二TRP对应的TA为目标值的2倍,其中,所述目标值等于所述单向传输时延与所述传输时间差的差值与所述下行到达时间差之和。
  23. 根据权利要求20-22中任一项所述的方法,其特征在于,所述网络设备确定第二TRP的上行同步信息之前,所述方法还包括:
    所述网络设备向所述终端设备发送第一信息,所述第一信息用于指示所述传输时间差。
  24. 根据权利要求23所述的方法,其特征在于,所述第一信息承载于无线资源控制RRC信令或媒体接入控制控制元素MAC CE。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第一信息包括:
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间;和/或
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间的差值。
  26. 根据权利要求20-22中任一项所述的方法,其特征在于,所述网络设备确定第二TRP的上行同步信息之前,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二信息,所述第二信息用于指示所述下行到达时间差。
  27. 根据权利要求26所述的方法,其特征在于,如果所述第一TRP与所述第二TRP属于不同的小区,则所述第二信息还用于指示所述第二TRP对应的小区。
  28. 根据权利要求20-27中任一项所述的方法,其特征在于,所述下行到达时间差是基于第一下行参考信号和第二下行参考信号的测量确定的,其中,所述第一下行参考信号与所述第一TRP对应,所述第二下行参考信号与所述第二TRP对应。
  29. 根据权利要求28所述的方法,其特征在于,所述第一TRP和所述第一下行参考信号均与第一组控制资源集CORESET关联;且所述第二TRP与所述第二下行参考信号均与第二组CORESET关联。
  30. 根据权利要求28或29所述的方法,其特征在于,所述第一下行参考信号和所述第二下行参考信号为以下参考信号中的一种:同步信号块SSB,信道状态信息参考信号CSI-RS。
  31. 根据权利要求20-30中任一项所述的方法,其特征在于,所述上行同步信息包括以下信息中的一项或多项:TA,以及单向传输时延。
  32. 一种用于无线通信的方法,其特征在于,包括:
    在终端设备与第一传输接收点TRP保持上行同步的情况下,网络设备向所述终端设备发送第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;
    所述网络设备确定所述第二TRP的上行同步信息,所述上行同步信息基于所述终端设备向所述第二TRP发送的上行参考信号确定。
  33. 根据权利要求32所述的方法,其特征在于,所述第一信息是基于所述终端设备对所述第二TRP的下行参考信号的测量确定的,所述上行参考信号的发射波束与所述下行参考信号的接收波束相对应。
  34. 根据权利要求33所述的方法,其特征在于,所述上行参考信号的发送时间基于所述下行参考信号的接收时间确定。
  35. 根据权利要求32-34中任一项所述的方法,其特征在于,所述第一信息为统一传输配置指示TCI状态。
  36. 根据权利要求32-35中任一项所述的方法,其特征在于,所述上行同步信息包括以下信息中的 一项或多项:定时提前TA,以及单向传输时延。
  37. 根据权利要求32-36中任一项所述的方法,其特征在于,所述上行参考信号为非周期信道探测参考信号SRS。
  38. 一种终端设备,其特征在于,包括:
    确定模块,用于在所述终端设备与第一传输接收点TRP保持上行同步的情况下,确定第二TRP的上行同步信息;
    其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:
    所述第一TRP的上行同步信息;
    下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及
    所述第一TRP与所述第二TRP的传输时间差。
  39. 根据权利要求38所述的终端设备,其特征在于,所述第二TRP的上行同步信息是基于所述第一TRP的上行同步信息,所述下行到达时间差,以及所述传输时间差确定的。
  40. 根据权利要求39所述的终端设备,其特征在于,所述第一TRP的上行同步信息为所述第一TRP到所述终端设备的单向传输时延,所述第二TRP的上行同步信息为所述第二TRP对应的定时提前TA,所述第二TRP对应的TA为目标值的2倍,其中,所述目标值等于所述单向传输时延与所述传输时间差的差值与所述下行到达时间差之和。
  41. 根据权利要求38-40中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    接收模块,用于从网络设备接收第一信息,所述第一信息用于指示所述传输时间差。
  42. 根据权利要求41所述的终端设备,其特征在于,所述第一信息承载于无线资源控制RRC信令或媒体接入控制控制元素MAC CE。
  43. 根据权利要求41或42所述的终端设备,其特征在于,所述第一信息包括:
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间;和/或
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间的差值。
  44. 根据权利要求38-40中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    发送模块,用于向网络设备发送第二信息,所述第二信息用于指示所述下行到达时间差。
  45. 根据权利要求44所述的终端设备,其特征在于,如果所述第一TRP与所述第二TRP属于不同的小区,则所述第二信息还用于指示所述第二TRP对应的小区。
  46. 根据权利要求38-45中任一项所述的终端设备,其特征在于,所述下行到达时间差是基于第一下行参考信号和第二下行参考信号的测量确定的,其中,所述第一下行参考信号与所述第一TRP对应,所述第二下行参考信号与所述第二TRP对应。
  47. 根据权利要求46所述的终端设备,其特征在于,所述第一TRP和所述第一下行参考信号均与第一组控制资源集CORESET关联;且所述第二TRP与所述第二下行参考信号均与第二组CORESET关联。
  48. 根据权利要求46或47所述的终端设备,其特征在于,所述第一下行参考信号和所述第二下行参考信号为以下参考信号中的一种:同步信号块SSB,信道状态信息参考信号CSI-RS。
  49. 根据权利要求38-48中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    重置模块,用于重置第一定时器,所述第一定时器用于维护所述第二TRP的上行同步信息的有效性。
  50. 根据权利要求38-49中任一项所述的终端设备,其特征在于,所述上行同步信息包括以下信息中的一项或多项:TA,以及单向传输时延。
  51. 一种终端设备,其特征在于,包括:
    接收模块,用于在终端设备与第一传输接收点TRP保持上行同步的情况下,接收第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;
    发送模块,用于响应于所述第一信息,向所述第二TRP发送上行参考信号,所述上行参考信号用于网络设备确定所述第二TRP的上行同步信息。
  52. 根据权利要求51所述的终端设备,其特征在于,所述第一信息是基于所述终端设备对所述第二TRP的下行参考信号的测量确定的,所述上行参考信号的发射波束与所述下行参考信号的接收波束相对应。
  53. 根据权利要求52所述的终端设备,其特征在于,所述上行参考信号的发送时间基于所述下行参考信号的接收时间确定。
  54. 根据权利要求51-53中任一项所述的终端设备,其特征在于,所述第一信息为统一传输配置指 示TCI状态。
  55. 根据权利要求51-54中任一项所述的终端设备,其特征在于,所述上行同步信息包括以下信息中的一项或多项:定时提前TA,以及单向传输时延。
  56. 根据权利要求51-55中任一项所述的终端设备,其特征在于,所述上行参考信号为非周期信道探测参考信号SRS。
  57. 一种网络设备,其特征在于,包括:
    确定模块,用于在终端设备与第一传输接收点TRP保持上行同步的情况下,确定第二TRP的上行同步信息;
    其中,所述第二TRP的上行同步信息是基于以下信息中的一项或多项确定的:
    所述第一TRP的上行同步信息;
    下行到达时间差,所述下行到达时间差用于指示所述第一TRP的信号到达所述终端设备的时间与所述第二TRP的信号到达所述终端设备的时间的差值;以及
    所述第一TRP与所述第二TRP的传输时间差。
  58. 根据权利要求57所述的网络设备,其特征在于,所述第二TRP的上行同步信息是基于所述第一TRP的上行同步信息,所述下行到达时间差,以及所述传输时间差确定的。
  59. 根据权利要求58所述的网络设备,其特征在于,所述第一TRP的上行同步信息为所述第一TRP到所述终端设备的单向传输时延,所述第二TRP的上行同步信息为所述第二TRP对应的定时提前TA,所述第二TRP对应的TA为目标值的2倍,其中,所述目标值等于所述单向传输时延与所述传输时间差的差值与所述下行到达时间差之和。
  60. 根据权利要求57-59中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    发送模块,用于向所述终端设备发送第一信息,所述第一信息用于指示所述传输时间差。
  61. 根据权利要求60所述的网络设备,其特征在于,所述第一信息承载于无线资源控制RRC信令或媒体接入控制控制元素MAC CE。
  62. 根据权利要求60或61所述的网络设备,其特征在于,所述第一信息包括:
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间;和/或
    所述第一TRP的下行发送时间与所述第二TRP的下行发送时间的差值。
  63. 根据权利要求57-59中任一项所述的网络设备,其特征在于,所述网络设备还包括:
    接收模块,用于接收所述终端设备发送的第二信息,所述第二信息用于指示所述下行到达时间差。
  64. 根据权利要求63所述的网络设备,其特征在于,如果所述第一TRP与所述第二TRP属于不同的小区,则所述第二信息还用于指示所述第二TRP对应的小区。
  65. 根据权利要求57-64中任一项所述的网络设备,其特征在于,所述下行到达时间差是基于第一下行参考信号和第二下行参考信号的测量确定的,其中,所述第一下行参考信号与所述第一TRP对应,所述第二下行参考信号与所述第二TRP对应。
  66. 根据权利要求65所述的网络设备,其特征在于,所述第一TRP和所述第一下行参考信号均与第一组控制资源集CORESET关联;且所述第二TRP与所述第二下行参考信号均与第二组CORESET关联。
  67. 根据权利要求65或66所述的网络设备,其特征在于,所述第一下行参考信号和所述第二下行参考信号为以下参考信号中的一种:同步信号块SSB,信道状态信息参考信号CSI-RS。
  68. 根据权利要求57-67中任一项所述的网络设备,其特征在于,所述上行同步信息包括以下信息中的一项或多项:TA,以及单向传输时延。
  69. 一种网络设备,其特征在于,包括:
    发送模块,用于在终端设备与第一传输接收点TRP保持上行同步的情况下,向所述终端设备发送第一信息,所述第一信息用于激活与所述第一TRP位于不同小区的第二TRP;
    确定模块,用于确定所述第二TRP的上行同步信息,所述上行同步信息基于所述终端设备向所述第二TRP发送的上行参考信号确定。
  70. 根据权利要求69所述的网络设备,其特征在于,所述第一信息是基于所述终端设备对所述第二TRP的下行参考信号的测量确定的,所述上行参考信号的发射波束与所述下行参考信号的接收波束相对应。
  71. 根据权利要求70所述的网络设备,其特征在于,所述上行参考信号的发送时间基于所述下行参考信号的接收时间确定。
  72. 根据权利要求69-71中任一项所述的网络设备,其特征在于,所述第一信息为统一传输配置指示TCI状态。
  73. 根据权利要求69-72中任一项所述的网络设备,其特征在于,所述上行同步信息包括以下信息中的一项或多项:定时提前TA,以及单向传输时延。
  74. 根据权利要求69-73中任一项所述的网络设备,其特征在于,所述上行参考信号为非周期信道探测参考信号SRS。
  75. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端设备执行如权利要求1-19中任一项所述的方法。
  76. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述网络设备执行如权利要求20-37中任一项所述的方法。
  77. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-37中任一项所述的方法。
  78. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-37中任一项所述的方法。
  79. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-37中任一项所述的方法。
  80. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-37中任一项所述的方法。
  81. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-37中任一项所述的方法。
PCT/CN2022/107527 2022-07-22 2022-07-22 用于无线通信的方法、终端设备和网络设备 WO2024016358A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107527 WO2024016358A1 (zh) 2022-07-22 2022-07-22 用于无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107527 WO2024016358A1 (zh) 2022-07-22 2022-07-22 用于无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2024016358A1 true WO2024016358A1 (zh) 2024-01-25

Family

ID=89616886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107527 WO2024016358A1 (zh) 2022-07-22 2022-07-22 用于无线通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2024016358A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000162A1 (en) * 2020-06-29 2022-01-06 Zte Corporation Methods and systems for reference signaling in wireless communication networks
WO2022058913A1 (en) * 2020-09-15 2022-03-24 Lenovo (Singapore) Pte. Ltd. Timing and frequency adjustments in non-terrestrial networks
CN114599080A (zh) * 2020-12-03 2022-06-07 海能达通信股份有限公司 上行同步方法及装置、存储介质、终端及信关站
US20220210825A1 (en) * 2020-12-28 2022-06-30 Samsung Electronics Co., Ltd. Method and apparatus of uplink timing adjustment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000162A1 (en) * 2020-06-29 2022-01-06 Zte Corporation Methods and systems for reference signaling in wireless communication networks
WO2022058913A1 (en) * 2020-09-15 2022-03-24 Lenovo (Singapore) Pte. Ltd. Timing and frequency adjustments in non-terrestrial networks
CN114599080A (zh) * 2020-12-03 2022-06-07 海能达通信股份有限公司 上行同步方法及装置、存储介质、终端及信关站
US20220210825A1 (en) * 2020-12-28 2022-06-30 Samsung Electronics Co., Ltd. Method and apparatus of uplink timing adjustment

Similar Documents

Publication Publication Date Title
US20220124652A1 (en) IAB Timing Delta MAC CE Enhancement For Case #6 Timing Support
WO2021168661A1 (zh) 信息传输方法、终端设备和网络设备
WO2022011555A1 (zh) 用于确定上行传输参数的方法和终端设备
JP2023081964A (ja) 方法、送信デバイス、及び受信デバイス
WO2022067547A1 (zh) 无线通信方法、终端设备和网络设备
WO2021258369A1 (zh) 无线通信方法、终端设备和网络设备
WO2021253455A1 (zh) 无线通信方法、终端设备和网络设备
US20230108216A1 (en) Wireless communication method, terminal device and network device
WO2024016358A1 (zh) 用于无线通信的方法、终端设备和网络设备
WO2022067614A1 (zh) 无线通信方法、终端设备和网络设备
WO2022027389A1 (en) Mechanism for cell identity management
CN118104322A (zh) 上行同步中的定时提前量维持方法、终端设备和网络设备
WO2024060164A1 (zh) 通信方法和终端设备
WO2023115416A1 (zh) 切换过程的资源配置方法、装置、设备、芯片及存储介质
WO2024007287A1 (zh) 通信方法、通信设备、及核心网设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023236213A1 (zh) 通信方法、终端设备及网络设备
WO2023236217A1 (zh) 通信方法、终端设备及网络设备
WO2023010545A1 (zh) 通信方法及通信装置
WO2023077321A1 (zh) 通信方法及终端设备
WO2022120842A1 (zh) Ntn网络中定时提前的预补偿方法、终端设备和网络设备
WO2023065130A1 (zh) 上行定时的调整方法以及装置
WO2023004545A1 (zh) 通信方法及通信装置
WO2023130448A1 (zh) 通信方法及通信装置
WO2021217615A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951627

Country of ref document: EP

Kind code of ref document: A1