WO2024087611A1 - 用于定位的方法、终端设备及网络设备 - Google Patents

用于定位的方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2024087611A1
WO2024087611A1 PCT/CN2023/096560 CN2023096560W WO2024087611A1 WO 2024087611 A1 WO2024087611 A1 WO 2024087611A1 CN 2023096560 W CN2023096560 W CN 2023096560W WO 2024087611 A1 WO2024087611 A1 WO 2024087611A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
base station
information
ssb
neighboring cell
Prior art date
Application number
PCT/CN2023/096560
Other languages
English (en)
French (fr)
Inventor
赵铮
吕玲
杨中志
Original Assignee
上海移远通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移远通信技术股份有限公司 filed Critical 上海移远通信技术股份有限公司
Publication of WO2024087611A1 publication Critical patent/WO2024087611A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/026Services making use of location information using location based information parameters using orientation information, e.g. compass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the present application relates to the field of communication technology, and in particular to a method, terminal equipment and network equipment for positioning.
  • the terminal device can be positioned based on the direction information of the base station relative to the terminal device (such as the angle-of-arrival (AOA) information).
  • AOA angle-of-arrival
  • the method of obtaining the above positioning information requires the terminal device to enter the radio resource control (RRC) connection state, which is not conducive to reducing the positioning delay.
  • RRC radio resource control
  • the embodiments of the present application provide a method, a terminal device and a network device for positioning.
  • the following describes various aspects of the embodiments of the present application respectively.
  • a method for positioning comprising: a terminal device acquires first information during an initial access process, the first information is used to position the terminal device, and the first information is associated with direction information of the terminal device relative to a base station.
  • a method for positioning comprising: a base station sends second information in an initial access process to a terminal device, the second information is used to determine first information, the first information is used to locate the terminal device, and the first information is associated with direction information of the terminal device relative to the base station.
  • a method for positioning including: a positioning device receives an index of a first SSB sent by a terminal device, the index of the first SSB being an SSB index obtained by the terminal device for measuring the serving cell; the positioning device determines a first angle of the terminal device relative to a base station of the serving cell based on the index of the first SSB and the first correspondence, the first correspondence including a correspondence between an SSB index of the serving cell and an SSB beam direction; the positioning device receives an index of a second SSB sent by the terminal device, the index of the second SSB being an SSB index obtained by the terminal device for measuring the neighboring cell, the second correspondence including a correspondence between an SSB index of the neighboring cell and an SSB beam direction; the positioning device determines a second angle of the terminal device relative to the base station of the neighboring cell based on the index of the second SSB and the second correspondence; the positioning device determines the location information of the terminal device based on the
  • a terminal device comprising: an acquisition unit, used to acquire first information during an initial access process, wherein the first information is used to locate the terminal device, and the first information is associated with direction information of the terminal device relative to a base station.
  • a network device which is a base station, and the network device includes: a sending unit, used to send second information in an initial access process to a terminal device, the second information is used to determine first information, the first information is used to locate the terminal device, and the first information is associated with direction information of the terminal device relative to the base station.
  • a positioning device including: a receiving unit, configured to receive an index of a first SSB sent by a terminal device, the index of the first SSB being an SSB index obtained by the terminal device for measuring the serving cell; a determining unit, configured to determine a first angle of the terminal device relative to the base station of the serving cell based on the index of the first SSB and the first correspondence, the first correspondence including a correspondence between the SSB index of the serving cell and the SSB beam direction; the receiving unit, configured to receive an index of a second SSB sent by the terminal device, the index of the second SSB being an SSB index obtained by the terminal device for measuring the neighboring cell, the second correspondence including a correspondence between the SSB index of the neighboring cell and the SSB beam direction; the determining unit, configured to determine a second angle of the terminal device relative to the base station of the neighboring cell based on the index of the second SSB and the second correspondence; the determining unit, configured to determine
  • a terminal device comprising a processor and a memory, wherein the memory is used to store one or more computer programs, and the processor is used to call the computer program in the memory so that the terminal device executes part or all of the steps in the method of the first aspect.
  • a network device comprising a transceiver, a processor and a memory, wherein the memory is used to store one or more computer programs, and the processor is used to call the computer program in the memory so that the network device executes part or all of the steps in the method of the second aspect.
  • a positioning device comprising a transceiver, a processor and a memory, wherein the memory is used to store one or more computer programs, and the processor is used to call the computer program in the memory so that the network device executes part or all of the steps in the method of the third aspect.
  • an embodiment of the present application provides a communication system, which includes the above-mentioned terminal device and/or network device.
  • the system may also include other devices that interact with the terminal device or network device in the solution provided in the embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, which stores a computer program, and the computer program enables a terminal to execute part or all of the steps in the method of any one of the first to third aspects above.
  • an embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a terminal to perform some or all of the steps in the method of any one of the first to third aspects above.
  • the computer program product may be a software installation package.
  • an embodiment of the present application provides a chip, which includes a memory and a processor, and the processor can call and run a computer program from the memory to implement part or all of the steps described in the method of any one of the first to third aspects above.
  • the terminal device can obtain first information associated with the direction information of the terminal device relative to the base station during the initial access process. That is, the terminal device can obtain the first information before entering the RRC connection state, thereby reducing the delay of the terminal device in obtaining the direction information, which is conducive to reducing the positioning delay.
  • FIG1 is a wireless communication system applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a process of contention-based random access.
  • FIG3 is a schematic diagram of a process of non-contention-based random access.
  • FIG4 is a flow chart of a method for positioning provided in an embodiment of the present application.
  • FIG5 is a flow chart of another method for positioning provided in an embodiment of the present application.
  • FIG6 is a schematic block diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a network device provided in an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a positioning device provided in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG1 is a wireless communication system 100 used in an embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120.
  • the network device 110 may provide communication coverage for a specific geographical area, and may communicate with the terminal device 120 located in the coverage area.
  • FIG1 exemplarily shows a network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and each network device may include other number of terminal devices within its coverage area, which is not limited in the embodiments of the present application.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • network entities such as a network controller and a mobility management entity, which is not limited in the embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • future communication systems such as the sixth generation mobile communication system, satellite communication system, etc.
  • the terminal device in the embodiment of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT), remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to the user, and can be used to connect people, objects and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer (Pad), a laptop computer, a PDA, a mobile internet device (MID), a wearable device, a virtual reality (VR) device, an augmented reality (AR) device, etc.
  • the UE may be used to control wireless devices, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the UE may be used to act as a base station.
  • the terminal may include but is not limited to terminal devices used in the Internet of Things, for example, it may be a terminal device connected to NB-IoT (which may be referred to as an "NB-IoT terminal"): smart meter reading equipment, logistics tracking equipment, environmental monitoring equipment, etc.
  • NB-IoT terminal smart meter reading equipment, logistics tracking equipment, environmental monitoring equipment, etc.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may also be referred to as an access network device or a wireless access network device, such as a base station.
  • the network device in the embodiment of the present application may refer to a wireless access network (RAN) node (or device) that connects a terminal device to a wireless network.
  • RAN wireless access network
  • Base station can broadly cover various names as follows, or be replaced with the following names, such as: NodeB, evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting and receiving point (TRP), transmitting point (TP), master station MeNB, auxiliary station SeNB, multi-standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), remote radio unit (RRU), active antenna unit (AAU), remote radio head (RRH), central unit (CU), distributed unit (DU), positioning node, etc.
  • NodeB evolved NodeB (eNB), next generation NodeB (gNB), relay station, access point, transmitting and receiving point (TRP), transmitting point (TP), master station MeNB, auxiliary station SeNB, multi-standard radio (MSR) node, home base station, network controller, access node, wireless node, access point (AP), transmission node, transceiver no
  • the base station can be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • the base station may also refer to a communication module, modem or chip used to be set in the aforementioned device or apparatus.
  • the base station may also be a mobile switching center and a device-to-device (D2D), vehicle-to-everything (V2X), machine-to-machine (M2M) communication device that performs the base station function, a network side device in a 6G network, and a device that performs the base station function in a future communication system.
  • the base station can support networks with the same or different access technologies.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone can be configured to act as a mobile base station, and one or more cells can move based on the location of the mobile base station.
  • a helicopter or drone can be configured to act as a device that communicates with another base station.
  • the network device in the embodiments of the present application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • the gNB may also include an AAU.
  • the network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the scenarios in which the network equipment and terminal equipment are located.
  • the communication devices involved in the present application may be network devices or terminal devices.
  • the first communication device is a network device and the second communication device is a terminal device.
  • the first communication device is a terminal device and the second communication device is a network device.
  • the first communication device and the second communication device are both network devices or both terminal devices.
  • spectrum shifting can be accomplished by signal modulation.
  • the signal generated by the terminal is a low-frequency signal, and the low-frequency signal is not suitable for transmission in the channel. After signal modulation, the low-frequency signal can be converted into a high-frequency signal suitable for transmission in the channel.
  • the terminal device can establish an RRC connection with the base station through initial access.
  • the initial access process may include cell search, uplink synchronization, etc.
  • Cell search can refer to the process of a terminal device achieving downlink time and frequency synchronization with a base station and obtaining a serving cell identity (ID).
  • the terminal device can detect the synchronization signal/physical broadcast channel (SSS/PBCH) (SSB for short).
  • SSS/PBCH synchronization signal/physical broadcast channel
  • the terminal device can obtain uplink synchronization with the base station by random access.
  • FIG2 is a flowchart of a contention-based random access method provided in an embodiment of the present application, the method comprising steps S210 to S240.
  • step S210 the terminal device sends message 1 (message 1, MSG1) in the random access process to the network device, and the message 1 includes a preamble.
  • the terminal device can select a random access channel (RACH) resource and a preamble, and send the selected preamble on the selected resource.
  • RACH random access channel
  • the RACH resource may also be referred to as a physical random access channel (PRACH) resource.
  • PRACH physical random access channel
  • the network device may send the PRACH configuration information to the terminal device in the form of broadcast.
  • the PRACH configuration information may include the configuration information of the PRACH time-frequency resources and the configuration information of the starting preamble root sequence. Based on the PRACH configuration information, the preamble or preamble set corresponding to the network device may be determined.
  • the network device can configure a shared preamble pool for the terminal device.
  • the preambles in the preamble pool are shared by multiple terminal devices.
  • the terminal device can select the preamble based on a certain strategy. Since the preamble is shared by multiple terminal devices, there will be a conflict in which multiple terminal devices select the same preamble. In order to resolve the conflict, the network device can use a subsequent resolution mechanism to handle the conflict.
  • step S220 the network device sends MSG2 to the terminal device, and the MSG2 may also be called a random access response (RAR).
  • the MSG2 may be carried by a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the terminal device After the terminal device sends MSG1, it can open a random access response time window and monitor the PDCCH scrambled by the random access-radio network temporary identifier (RA-RNTI) within the time window.
  • RA-RNTI is related to the time-frequency resources of the RACH used by the terminal device to send MSG1.
  • the terminal device After receiving the PDCCH, the terminal device can use the RA-RNTI to decode the PDCCH.
  • MSG2 may also include a preamble code sent by the terminal device. If the terminal device receives a PDCCH scrambled with RA-RNTI and MSG2 includes the preamble code sent by itself, the terminal device may consider that the random access response has been successfully received.
  • the terminal device can obtain the physical downlink shared channel (PDSCH) scheduled by the PDCCH, where the PDSCH contains the RAR.
  • the RAR can contain multiple information.
  • the subheader of RAR may include a backoff indicator (BI), which can be used to indicate the backoff time for retransmitting MSG1;
  • the random access preamble identification (RAPID) in RAR indicates the preamble index to which the network device responds;
  • the payload in RAR may include a timing advance group (TAG), which can be used to adjust the uplink timing;
  • RAR may also include an uplink grant (UL grant) for scheduling uplink resource indications for MSG3;
  • RAR may also include a temporary cell-radio network temporary identifier (C-RNTI).
  • C-RNTI temporary cell-radio network temporary identifier
  • the terminal device does not receive the RAR within the random access response time window, or fails to verify successfully, it indicates that the response has failed. In this case, if the number of random access attempts of the terminal device is less than the upper limit (such as 10 times), the terminal device can continue to attempt random access. If the number of attempts is greater than the upper limit, it indicates that the random access has failed.
  • the upper limit such as 10 times
  • Step S230 The terminal device sends MSG3 to the network device.
  • the terminal device may send MSG3 on the uplink grant scheduled by the network device.
  • the MSG3 may also be called an RRC connection establishment request message.
  • the MSG3 is mainly used to inform the network device of what event triggered the random access process.
  • the MSG3 includes the C-RNTI of the terminal device.
  • the MSG3 sent by the terminal device will be different. The following are some examples of scenarios.
  • the terminal device can send an RRC connection establishment request message through MSG3, and the RRC connection establishment request message can carry the non-access stratum (NAS) UE_ID.
  • the RRC connection establishment request message can be transmitted through the common control channel (CCCH) in the radio link control (RLC) layer transmission (TM). The message is not segmented.
  • the terminal device may send an RRC reestablishment request message through MSG3, the RRC reestablishment request message does not carry a NAS message, and the RRC reestablishment request message may be transmitted through the CCCH of the RLC layer using TM. The message is not segmented.
  • contention-based random access can be triggered.
  • the terminal device can send an RRC handover confirmation message and C-RNTI via MSG3.
  • the RRC handover confirmation message and C-RNTI can be transmitted via a dedicated control channel (DCCH).
  • DCCH dedicated control channel
  • MSG3 can also carry a buffer status report (BSR).
  • Step S240 The network device sends MSG4 to the terminal device.
  • the MSG4 has two functions, one is for contention conflict resolution, and the other is to send an RRC configuration message to the terminal device. If the terminal device carries C-RNTI in MSG3, such as the RRC reconstruction process, MSG4 uses the PDCCH scrambled by the C-RNTI for scheduling. Accordingly, the terminal device can use the C-RNTI in MSG3 to decode the PDCCH to obtain MSG4. If the terminal device does not carry C-RNTI in MSG3, such as initial access, MSG4 can use the PDCCH scrambled by the temporary C-RNTI for scheduling. Accordingly, the terminal device can use the temporary C-RNTI in MSG2 to decode the PDCCH to obtain MSG4.
  • the terminal device After successfully decoding the PDCCH, the terminal device obtains the PDSCH carrying MSG4.
  • the terminal device can compare the common control channel (CCCH) service data unit (SDU) in the PDSCH with the CCCH SDU in MSG3. If the two are the same, it means that the contention resolution is successful.
  • the temporary C-RNTI After the contention is resolved, the temporary C-RNTI is converted to positive.
  • the Temporary C-RNTI is promoted to C-RNTI for a UE which detects RA success and does not already have a C-RNTI; it is dropped by others.
  • the terminal device can notify the network device of C-RNTI. Therefore, the base station can use the PDCCH scrambled by C-RNTI to schedule MSG4 instead of using the MSG4 scheduled by temporary C-RNTI (The C-RNTI on PDCCH for UE in RRC_CONNECTED).
  • the terminal device decodes the PDCCH scheduling command, it indicates that the contention resolution is completed, and the specific content in MSG4 is no longer related to contention resolution.
  • MSG4 does not include the UE contention resolution identifier.
  • Fig. 3 is a flow chart of a non-contention-based random access method provided in an embodiment of the present application. The method includes steps S310 to S330.
  • the network device sends preamble configuration information to the terminal device, and the configuration information includes the preamble and PRACH resources required in the random access process.
  • the preamble is a dedicated preamble allocated by the network device to the terminal device.
  • the dedicated preamble can be notified to the terminal device through RRC signaling or physical layer (physical, PHY) signaling (such as DCI in PDCCH).
  • RRC signaling or physical layer (physical, PHY) signaling (such as DCI in PDCCH).
  • PHY physical layer
  • the terminal device may send the MSGA to the network device according to the preamble configuration information, that is, the terminal device may send the preamble to the network device on the RACH resource.
  • step S330 the network device sends a MSGB to the terminal device, and the MSGB may include a RAR. After the terminal device receives the RAR, it indicates that the random access process is finished.
  • terminal devices need to be positioned, such as logistics monitoring, vehicle management, public safety, weather forecast, and assisted navigation.
  • the positioning method may include coarse positioning and fine positioning.
  • the embodiment of the present application mainly introduces the coarse positioning method.
  • Common coarse positioning methods may include positioning methods based on cell-id, and the technology based on cell-id positioning may also be called CID positioning.
  • the implementation principle may be: the positioning platform sends a signal to the core network to query the ID of the cell where the terminal device is located. The positioning platform can then determine the approximate location of the terminal device based on the data stored in the base station almanac (BSA).
  • BSA base station almanac
  • the positioning accuracy of this positioning method depends on the size of the base station or cell, which is generally around hundreds to thousands of meters. Compared with high-precision positioning, the complexity of coarse positioning services is lower.
  • the cell-id based positioning technology requires the terminal device to support positioning operations.
  • the terminal device needs to enter the positioning operation process, and the positioning operation process requires the terminal device to enter the RRC connection state.
  • the terminal device can receive positioning service requests and report positioning capabilities.
  • the terminal device can perform positioning measurements based on the instructions of the positioning server and send the measurement results to the positioning server, which estimates the position.
  • the positioning process is relatively complex and has high latency.
  • E-CID enhanced CID
  • AOA angle-of-arrival
  • TA timing advance
  • E-CID positioning technology can include: cell-id+AOA, cell-id+TA, cell-id+AOA+TA, etc. The following mainly introduces the positioning method based on AOA.
  • AOA-based positioning can be supported.
  • AOA can represent the direction information of the base station relative to the terminal device. This positioning method means that the location of the terminal device can be determined by using the incident angle of the signal sent by the terminal device to the base station.
  • the terminal device needs to have the positioning function and start positioning-related operations and signaling.
  • the terminal device needs to enter the RRC connected state and perform positioning according to a process similar to CID positioning, which increases the complexity and latency of positioning.
  • the terminal device in order to obtain AOA information, the terminal device needs to enter the RRC connected state. Only the terminal device in the RRC connected state or the RRC inactive state can obtain the relevant configuration information of the positioning pilot (such as the sounding reference signal (SRS)), so that the terminal device can be located.
  • the relevant configuration information of the positioning pilot such as the sounding reference signal (SRS)
  • the direction information of the base station relative to the terminal device (such as AOA) can be further determined.
  • the current method of determining the above direction information has the problem of large delay and complicated process, which is not conducive to reducing the positioning delay of the terminal device.
  • an embodiment of the present application provides a method for positioning, in which a terminal device can obtain first information associated with the direction information of the terminal device relative to the base station during the initial access process, that is, the ...
  • the first information is obtained before the RRC is in an inactive state (connected) or RRC is in an inactive state (inactive), thereby reducing the delay for the terminal device to obtain the direction information, which is beneficial to reducing the positioning delay.
  • the terminal device obtains first information during the initial access process, where the first information is used to locate the terminal device, and the first information is associated with direction information of the terminal device relative to the base station.
  • the base station sends second information in the initial access process to the terminal device.
  • the second information is used to determine the first information
  • the first information is used to locate the terminal device.
  • the first information is associated with the direction information of the terminal device relative to the base station.
  • the first information is determined based on the second information.
  • the second information is the same as the first information. In other embodiments, the second information may be different from the first information.
  • the base station in the embodiment of the present application may refer to the base station corresponding to the cell selected by the terminal device during the initial access process.
  • the terminal device in the embodiment of the present application may be a terminal device in an RRC idle state, or the terminal device may be a terminal device performing initial access.
  • the first information may include direction information of the terminal device relative to the base station.
  • the first information may also include direction information of the base station relative to the terminal device.
  • the direction information of the terminal device relative to the base station corresponds to the direction information of the base station relative to the terminal device.
  • the other direction information can be calculated. For example, if the direction information of the terminal device relative to the base station is known, the direction information of the base station relative to the terminal device can also be determined. For another example, if the direction information of the base station relative to the terminal device is known, the direction information of the terminal device relative to the base station can also be determined.
  • FDD frequency duplex division
  • the direction information of the terminal device relative to the base station can be obtained by the base station sending a signal to the terminal device and the terminal device determining the direction information of the signal.
  • the direction information of the base station relative to the terminal device can be obtained by the terminal device sending a signal to the base station and the base station determining the direction information of the signal.
  • the direction information of the base station relative to the terminal device may be, for example, AOA information.
  • the terminal device may send a signal to the base station, and the base station may measure the signal to obtain the AOA information.
  • the second information may include the AOA information.
  • the base station may send the AOA information to the terminal device. That is, after obtaining the AOA information based on the signal measurement sent by the terminal device, the base station may send the AOA information to the terminal device.
  • the terminal device may send first indication information to the base station, where the first indication information is used to instruct the base station to perform AOA measurement, or the first indication information is used to instruct the base station to perform AOA feedback.
  • first indication information is used to instruct the base station to perform AOA measurement
  • first indication information is used to instruct the base station to perform AOA feedback.
  • the first indication information may be carried in a message during the random access process.
  • the terminal device instructs the base station to perform AOA measurement, which is beneficial for the terminal device to obtain AOA information during the random access process, thereby reducing positioning delay.
  • the embodiment of the present application does not specifically limit the manner in which the base station performs AOA measurement.
  • the base station may perform AOA measurement based on a signal carrying the first indication information.
  • the base station may also perform AOA measurement based on other signals (such as a signal that does not carry the first indication information).
  • the random access method in the embodiment of the present application may be a contention-based random access method (also called a four-step random access) or a non-contention-based random access method (also called a two-step random access).
  • a contention-based random access method also called a four-step random access
  • a non-contention-based random access method also called a two-step random access
  • the embodiment of the present application does not specifically limit the indication method of the first indication information.
  • the first indication information can be carried by MSG1 in the random access process, or the first indication information can be carried by MSG3 in the random access process.
  • the first indication information can be carried by MSGA in the random access process.
  • the first indication information in the embodiments of the present application may be associated with a preamble. That is, the first indication information may be indicated by information associated with the preamble.
  • the preamble may be a preamble in MSG1 or a preamble in MSGA.
  • the first indication information may be associated with one or more of the following information: an index of the preamble, scrambling information of the preamble, and a preamble sequence.
  • the index of the preamble may also be referred to as a sequence number of the preamble.
  • the first indication information may be associated with an index of a preamble, that is, the terminal device may indicate the first indication information by the index of the preamble.
  • the first indication information may be indicated by a specific preamble index. If the terminal device requires the base station to perform AOA measurement, the terminal device may send a preamble indexed by the specific index to the base station.
  • the base station After receiving the preamble sent by the terminal device, the base station can determine whether to perform AOA measurement according to the index of the preamble. If the index of the preamble is a specific index, the base station performs AOA measurement; if the index of the preamble is not a specific index, the base station may not perform AOA measurement.
  • the embodiment of the present application does not specifically limit the value of the first index.
  • the value of the first index may be an even number.
  • the value of the first index may be an odd number.
  • the value of the first index may be a value within a certain range.
  • the value of the first index may be greater than or equal to the first value, and/or, the value of the first index may be less than or equal to the second value.
  • the embodiment of the present application does not specifically limit the numbering method of the preamble code index.
  • the preamble codes in the preamble code set can be numbered in sequence, and the indexes of different preamble codes are different.
  • the preamble codes in the preamble code set can be divided into multiple groups, and the preamble codes in each group are numbered independently.
  • the preamble codes can be grouped according to the corresponding relationship between the SSB and the preamble code, and the preamble code corresponding to one SSB is a preamble code group, and the preamble codes in each preamble code group can be numbered independently.
  • the terminal device can read high-level parameters to obtain the mapping relationship between SSB and RO, thereby obtaining two parameters N and R.
  • N represents the number of SSBs associated with a random access opportunity (RACH occasion, RO)
  • R represents the number of preamble codes corresponding to an SSB. If N ⁇ 1, for the nth SSB, the index of its preamble code starts from n*N total /N, where N total represents the total number of preamble codes used for random access.
  • the R preamble codes corresponding to an SSB can be numbered. Assuming that the sequence number of the first preamble code is 0, the subsequent preamble codes can be numbered in sequence.
  • the first indication information may be associated with the scrambling information of the preamble, that is, the terminal device may indicate the first indication information by the scrambling information of the preamble.
  • the terminal device may indicate the first indication information by whether the preamble is scrambled. If the terminal device requires the base station to perform AOA measurement, the terminal device may scramble the preamble, that is, the terminal device sends the scrambled preamble to the base station; if the terminal device does not require the serving cell to perform AOA measurement, the terminal device may not scramble the preamble, that is, the terminal device sends an unscrambled preamble to the base station.
  • the base station After receiving the preamble, the base station can determine whether to perform AOA measurement according to whether the preamble is scrambled. If the received preamble is scrambled, the base station can determine that the AOA measurement is required. If the received preamble is not scrambled, the base station can determine that the AOA measurement is not required.
  • the terminal device may indicate the first indication information through specific scrambling information. If the terminal device requires the base station to perform AOA measurement, the terminal device may scramble the preamble using a specific scrambling code. If the terminal device does not require the base station to perform AOA measurement, the terminal device may scramble the preamble using other scrambling codes.
  • the base station can determine whether to perform AOA measurement based on the scrambling code information of the preamble. If the received preamble is scrambled using a specific scrambling code, the base station determines that the AOA measurement needs to be performed. If the received preamble is not scrambled using a specific scrambling code, the base station determines that the AOA measurement does not need to be performed.
  • the first scrambling code may be a Walsh code
  • the second scrambling code may be an all-one sequence. If the scrambling code of the preamble is a Walsh code, the base station of the serving cell needs to perform AOA measurement. If the first scrambling code is an all-one sequence, the base station of the serving cell does not need to perform AOA measurement. In other embodiments, the first scrambling code may be an all-one sequence, and the second scrambling code may be a Walsh code. If the scrambling code of the preamble is an all-one sequence, the base station of the serving cell needs to perform AOA measurement. If the scrambling code of the preamble is a Walsh code, the base station of the serving cell does not need to perform AOA measurement.
  • the first indication information may be associated with a preamble sequence, that is, the terminal device may indicate the first indication information through the preamble sequence.
  • the terminal device may indicate the first indication information through a specific preamble sequence. If the terminal device requires the base station to perform AOA measurement, the terminal device may send a specific preamble sequence to the base station.
  • the specific preamble sequence may be a newly introduced preamble sequence or a dedicated preamble sequence. For example, some preamble sequences may be newly added to the original preamble set, and these preamble sequences may be used to instruct the base station to perform AOA measurement. If the base station is required to perform AOA measurement, the terminal device may send a dedicated preamble sequence to the base station; if the base station of the serving cell is not required to perform AOA measurement, the terminal device may send other preamble sequences to the base station.
  • the base station can determine whether to perform AOA measurement according to whether the preamble is a dedicated preamble sequence. If the received preamble is a dedicated preamble sequence, the base station determines that the AOA measurement needs to be performed. If the received preamble does not use a dedicated preamble sequence, the base station determines that the AOA measurement does not need to be performed.
  • the dedicated preamble sequence may be a Zadoff-Chu sequence.
  • the base station may also send AOA information to the terminal device through a message in the random access process, so that the terminal device can obtain the AOA information through random access.
  • the base station may send AOA information to the terminal device, and the AOA information is carried in a random access response message.
  • the terminal device can obtain the AOA information as soon as possible, which is conducive to reducing the positioning delay.
  • the first information may include direction information of the terminal device relative to the base station.
  • the embodiment of the present application does not specifically limit the method for determining the first information.
  • the first information may be determined based on the correspondence between the SSB index and the SSB beam transmission direction.
  • the second information may include the correspondence between the SSB index and the SSB beam transmission direction, that is, the base station may send the correspondence between the SSB index and the SSB beam transmission direction to the terminal device.
  • the terminal device before performing random access, the terminal device will detect the SSB and detect the index information of the SSB.
  • the transmission direction of the SSB will be different depending on the SSB index.
  • the terminal device can determine the direction of the SSB beam based on the detected SSB index information and the correspondence between the SSB index and the SSB beam transmission direction. Furthermore, the terminal device can determine the direction information of the terminal device relative to the base station based on the direction of the SSB beam.
  • the correspondence between the SSB index and the SSB beam transmission direction can be sent by the base station to the terminal device.
  • the base station can send the correspondence between the SSB index and the SSB beam transmission direction to the terminal device via a broadcast message, that is, the correspondence between the SSB index and the SSB beam transmission direction is carried in the broadcast message.
  • the terminal device may receive the SSB sent by the base station, and determine the angle of the terminal device relative to the base station based on the index information of the SSB and the correspondence between the index of the SSB and the SSB beam direction. Further, the terminal device may determine the location information of the terminal device based on the angle. For example, the terminal device may determine the location information of the terminal device based on the angle and the location information of the base station.
  • the base station described above may be one base station or multiple base stations.
  • the base station may be a base station of a serving cell or a base station of a neighboring cell.
  • the base station may include a base station of a serving cell and a base station of a neighboring cell.
  • the first information may be determined based on a first correspondence and a second correspondence.
  • the first correspondence may include a correspondence between an SSB index of a serving cell and an SSB beam direction
  • the second correspondence may include a correspondence between an SSB index of a neighboring cell and an SSB beam direction.
  • the first correspondence may be sent by a base station of a serving cell
  • the second correspondence may be sent by a base station of a neighboring cell.
  • the terminal device searches for downlink synchronization signals, it searches for SSB information of multiple cells, that is, the SSB information searched by the terminal device includes not only the SSB information of the serving cell, but also the SSB information of the neighboring cells.
  • the terminal device can determine the direction of the terminal device relative to the serving cell and the neighboring cell based on the correspondence between the SSB index of the serving cell and the SSB beam direction, and the correspondence between the SSB index of the neighboring cell and the SSB beam direction.
  • the terminal device can detect the SSB information of multiple cells. Taking the serving cell and the neighboring cell as an example, the terminal device can receive the first SSB sent by the base station of the serving cell, and determine the first angle of the terminal device relative to the base station of the serving cell based on the index of the first SSB and the first correspondence. The terminal device can receive the second SSB sent by the base station of the neighboring cell, and determine the second angle of the terminal device relative to the base station of the neighboring cell based on the index of the second SSB and the second correspondence. The terminal device can determine the location information of the terminal device based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • the location information of the terminal device can also be determined by a base station or a positioning device.
  • the terminal device can send the detected SSB information to the base station or the positioning device, and then the base station or the positioning device determines the location of the terminal device based on the SSB information.
  • a base station or a positioning device determines the location of a terminal device is similar to the way in which the terminal device determines its own location. For parts not described in detail, please refer to the previous description.
  • the terminal device may send the detected SSB index information to the base station, and the base station may determine the angle of the terminal device relative to the base station based on the SSB index and the correspondence between the SSB index and the SSB beam direction. Further, the base station may determine the location information of the terminal device based on the angle. For example, the base station may determine the location information of the terminal device based on the angle and the location information of the base station.
  • the above-mentioned SSB index may include an index of a first SSB and an index of a second SSB.
  • a base station (such as a base station of a serving cell) may determine a first angle based on the index of the first SSB and the first corresponding relationship; the base station may determine a second angle based on the index of the second SSB and the second corresponding relationship.
  • the base station may determine the location information of the terminal device based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • the base station may receive the index of the first SSB sent by the terminal device, and determine the first angle of the terminal device relative to the base station of the serving cell based on the index of the first SSB and the first corresponding relationship.
  • the base station may receive the index of the second SSB sent by the terminal device, and determine the second angle of the terminal device relative to the base station of the neighboring cell based on the index of the second SSB and the second corresponding relationship.
  • the base station may determine the location information of the terminal device based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • the terminal device may send the detected SSB index information to the positioning device, and the positioning device may determine the angle of the terminal device relative to the base station based on the SSB index and the correspondence between the SSB index and the SSB beam direction. Further, the positioning device may determine the location information of the terminal device based on the angle. For example, the positioning device may determine the location information of the terminal device based on the angle and the location information of the base station.
  • the above-mentioned SSB index may include an index of a first SSB and an index of a second SSB.
  • the positioning device may determine a first angle based on the index of the first SSB and the first correspondence; the positioning device may determine a second angle based on the index of the second SSB and the second correspondence.
  • the positioning device may determine the second angle based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell. Information to determine the location information of the terminal device.
  • the positioning device can receive the index of the first SSB sent by the terminal device, and determine the first angle of the terminal device relative to the base station of the serving cell based on the index of the first SSB and the first correspondence.
  • the positioning device can receive the index of the second SSB sent by the terminal device, and determine the second angle of the terminal device relative to the base station of the neighboring cell based on the index of the second SSB and the second correspondence.
  • the positioning device can determine the location information of the terminal device based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • the following is an example of a scheme for determining the location information of a terminal device based on the first angle, the second angle, the location information of a base station in a serving cell, and the location information of a base station in a neighboring cell.
  • the position of the terminal device can be expressed as:
  • the x-axis and y-axis are perpendicular.
  • ⁇ 1 and ⁇ 2 may be angles in an xy coordinate system.
  • the y-axis is due north
  • the x-axis is due east
  • ⁇ 1 and ⁇ 2 may be angles relative to the due north.
  • the neighboring cell may include multiple cells.
  • the neighboring cell includes a first neighboring cell and a second neighboring cell, and the position of the terminal device may be determined based on the angle of the terminal device relative to the multiple neighboring cells. By positioning the terminal device in conjunction with multiple cells, the positioning accuracy of the terminal device may be improved.
  • the location coordinates of the terminal device can be expressed as:
  • the x-axis and the y-axis are perpendicular, ( xb1 , yb1 ) are the position coordinates of the base station of the service cell, ( xb2 , yb2 ) are the position coordinates of the base station of the first neighboring cell, ( xb3 , yb3 ) are the position coordinates of the base station of the second neighboring cell, ⁇ 1 is the first angle, ⁇ 2 is the angle of the terminal device relative to the first neighboring cell, ⁇ 3 is the angle of the terminal device relative to the second neighboring cell, and ⁇ represents the weight coefficient.
  • the above ⁇ value may be determined based on the signal measurement result of the terminal device for the neighboring cell.
  • the ⁇ value may be determined based on the signal measurement result of the terminal device for the first neighboring cell and the signal measurement result of the terminal device for the second neighboring cell.
  • the ⁇ value can be determined based on the following formula:
  • RSRP 1 represents the RSRP value measured by the terminal device for the base station of the first neighboring cell
  • RSRP 2 represents the RSRP value measured by the terminal device for the base station of the second neighboring cell.
  • RSRP in the above formula can also be replaced by other values in the signal measurement results, such as reference signal receiving quality (RSRQ).
  • RSSQ reference signal receiving quality
  • the above is an example of the calculation formula for the location coordinates of the terminal device, taking the angle of the terminal device relative to the base station as an example. It can be understood that the above formula is also applicable to the angle of the base station relative to the terminal device. Since the angle of the terminal device relative to the base station and the angle of the base station relative to the terminal device are reciprocal, the location coordinates of the terminal device can also be determined based on the angle of the base station relative to the terminal device.
  • the location information of the terminal device can be determined based on the angle of the base station of the serving cell relative to the terminal device, the angle of the base station of the neighboring cell relative to the terminal device, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • the specific determination method can be found in the previous description, which will not be repeated here for the sake of brevity.
  • the above-mentioned neighboring cell may include multiple cells, such as a neighboring cell may include a first neighboring cell and a second neighboring cell.
  • the location information of the above-mentioned base station relative to the terminal device can be measured by the base station.
  • the solution of the embodiment of the present application can be used in combination with other positioning methods.
  • the direction information determined in the embodiment of the present application can be combined with the cell id to jointly locate the terminal device.
  • the direction information determined in the embodiment of the present application can be combined with the TA to jointly locate the terminal device.
  • the direction information determined in the embodiment of the present application can be combined with the cell id and the TA to jointly locate the terminal device.
  • the positioning method of the embodiment of the present application can be combined with other precise positioning methods to achieve precise positioning of the terminal device. Since the embodiment of the present application can reduce the delay in obtaining direction information, precise positioning based on this positioning can reduce the time delay of obtaining direction information. Low complexity in obtaining precise positioning information.
  • Fig. 6 is a schematic block diagram of a terminal device provided in an embodiment of the present application.
  • the terminal device 600 shown in Fig. 6 can be any terminal device described above.
  • the terminal device 600 can include an acquisition unit 610.
  • the acquisition unit 610 is used to acquire first information during the initial access process, where the first information is used to locate the terminal device, and the first information is associated with the direction information of the terminal device relative to the base station.
  • the first information includes arrival angle AOA information
  • the terminal device also includes: a sending unit 610, used to send first indication information to the base station, the first indication information is used to instruct the base station to perform AOA measurement, and the first indication information is carried in a message of the random access process.
  • the first indication information is associated with a preamble code in a random access process.
  • the first indication information is associated with one or more of the following information: an index of a preamble code, scrambling information of a preamble code sequence, and a preamble code sequence.
  • the terminal device further includes: a receiving unit 630, configured to receive AOA information sent by the base station, wherein the AOA information is carried in a message of a random access process.
  • a receiving unit 630 configured to receive AOA information sent by the base station, wherein the AOA information is carried in a message of a random access process.
  • the AOA information is carried in a random access response message.
  • the first information includes direction information of the terminal device relative to the base station, and the first information is determined based on the correspondence between the SSB index and the SSB beam transmission direction.
  • the correspondence between the SSB index and the SSB beam transmission direction is carried in the broadcast message.
  • the base station includes a base station of a serving cell and a base station of a neighboring cell
  • the first information is determined based on a first correspondence relationship and a second correspondence relationship, the first correspondence relationship including the correspondence between the SSB index of the serving cell and the SSB beam direction, and the second correspondence relationship including the correspondence between the SSB index of the neighboring cell and the SSB beam direction.
  • the terminal device also includes: a receiving unit 630, used to receive a first SSB sent by the base station of the serving cell; a determining unit, used to determine a first angle of the terminal device relative to the base station of the serving cell based on an index of the first SSB and the first correspondence; a receiving unit 630, used for the terminal device to receive a second SSB sent by the base station of the neighboring cell; a determining unit, used to determine a second angle of the terminal device relative to the base station of the neighboring cell based on an index of the second SSB and the second correspondence; a determining unit, used to determine the location information of the terminal device based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • the location coordinates (x, y) of the terminal device are:
  • the x-axis and the y-axis are perpendicular, (x b1 , y b1 ) are the position coordinates of the base station of the serving cell, (x b2 , y b2 ) are the position coordinates of the base station of the neighboring cell, ⁇ 1 is the first angle, and ⁇ 2 is the second angle.
  • the neighboring cell includes a first neighboring cell and a second neighboring cell
  • the location coordinates (x, y) of the terminal device are:
  • the x-axis and the y-axis are perpendicular, ( xb1 , yb1 ) are the position coordinates of the base station of the service cell, ( xb2 , yb2 ) are the position coordinates of the base station of the first neighboring cell, ( xb3 , yb3 ) are the position coordinates of the base station of the second neighboring cell, ⁇ 1 is the first angle, ⁇ 2 is the angle of the terminal device relative to the first neighboring cell, ⁇ 3 is the angle of the terminal device relative to the second neighboring cell, and ⁇ represents the weight coefficient.
  • is determined based on the following formula:
  • RSRP 1 represents the RSRP value measured by the terminal device for the base station of the first neighboring cell
  • RSRP 2 represents the RSRP value measured by the terminal device for the base station of the second neighboring cell.
  • Fig. 7 is a schematic block diagram of a network device provided in an embodiment of the present application.
  • the network device 700 shown in Fig. 7 can be any of the network devices described above.
  • the network device 700 can include a sending unit 710.
  • the sending unit 710 is used to send second information in the initial access process to the terminal device, where the second information is used to determine first information, the first information is used to locate the terminal device, and the first information is associated with the direction information of the terminal device relative to the base station.
  • the first information includes arrival angle AOA information
  • the network device further includes: a receiving unit 720, used to receive first indication information sent by the terminal device, the first indication information is used to instruct the base station to perform AOA measurement, and the first indication information is carried in a message of the random access process.
  • the first indication information is associated with a preamble code in a random access process.
  • the first indication information is associated with one or more of the following information: an index of a preamble code, scrambling information of a preamble code sequence, and a preamble code sequence.
  • the second information includes AOA information
  • the AOA information is carried in a message of a random access process.
  • the AOA information is carried in a random access response message.
  • the first information includes direction information of the terminal device relative to the base station
  • the second information includes the correspondence between the SSB index and the SSB beam transmission direction.
  • the correspondence between the SSB index and the SSB beam transmission direction is carried in the broadcast message.
  • the base station includes a base station of a serving cell and a base station of a neighboring cell
  • the first information is determined based on a first correspondence relationship and a second correspondence relationship, the first correspondence relationship including the correspondence between the SSB index of the serving cell and the SSB beam direction, and the second correspondence relationship including the correspondence between the SSB index of the neighboring cell and the SSB beam direction.
  • the network device also includes: a receiving unit 720, used to receive an index of a first SSB sent by the terminal device, the index of the first SSB being an SSB index obtained by the terminal device for measuring the serving cell; a determination unit, used to determine a first angle of the terminal device relative to the base station of the serving cell based on the index of the first SSB and the first correspondence; the receiving unit 720, used to receive an index of a second SSB sent by the terminal device, the index of the second SSB being an SSB index obtained by the terminal device for measuring the neighboring cell; a determination unit, used to determine a second angle of the terminal device relative to the base station of the neighboring cell based on the index of the second SSB and the second correspondence; a determination unit, used to determine the location information of the terminal device based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • a receiving unit 720 used to receive an index
  • the location coordinates (x, y) of the terminal device are:
  • the x-axis and the y-axis are perpendicular, (x b1 , y b1 ) are the position coordinates of the base station of the serving cell, (x b2 , y b2 ) are the position coordinates of the base station of the neighboring cell, ⁇ 1 is the first angle, and ⁇ 2 is the second angle.
  • the neighboring cell includes a first neighboring cell and a second neighboring cell
  • the location coordinates (x, y) of the terminal device are:
  • the x-axis and the y-axis are perpendicular, ( xb1 , yb1 ) are the position coordinates of the base station of the service cell, ( xb2 , yb2 ) are the position coordinates of the base station of the first neighboring cell, ( xb3 , yb3 ) are the position coordinates of the base station of the second neighboring cell, ⁇ 1 is the first angle, ⁇ 2 is the angle of the terminal device relative to the first neighboring cell, ⁇ 3 is the angle of the terminal device relative to the second neighboring cell, and ⁇ represents the weight coefficient.
  • is determined based on the following formula:
  • RSRP 1 represents the RSRP value measured by the terminal device for the base station of the first neighboring cell
  • RSRP 2 represents the RSRP value measured by the terminal device for the base station of the second neighboring cell.
  • FIG8 is a schematic block diagram of a positioning device provided in an embodiment of the present application.
  • the positioning device 800 shown in FIG8 may be the positioning device described above.
  • the positioning device 800 may include a receiving unit 810 and a determining unit 820.
  • the receiving unit 810 is used to receive the index of the first SSB sent by the terminal device, where the index of the first SSB is the SSB index obtained by the terminal device measuring the serving cell.
  • the determination unit 820 is used to determine the first angle of the terminal device relative to the base station of the serving cell based on the index of the first SSB and a first correspondence relationship, wherein the first correspondence relationship includes a correspondence between the SSB index of the serving cell and the SSB beam direction.
  • the receiving unit 810 is used to receive the index of the second SSB sent by the terminal device, where the index of the second SSB is the SSB index obtained by the terminal device for measuring the neighboring cell.
  • the determination unit 820 is used to determine the second angle of the terminal device relative to the base station of the neighboring cell based on the index of the second SSB and the second correspondence relationship, wherein the second correspondence relationship includes the correspondence between the SSB index of the neighboring cell and the SSB beam direction.
  • the determination unit 820 is used to determine the location information of the terminal device based on the first angle, the second angle, the location information of the base station of the serving cell, and the location information of the base station of the neighboring cell.
  • the location coordinates (x, y) of the terminal device are:
  • the x-axis and the y-axis are perpendicular, (x b1 , y b1 ) are the position coordinates of the base station of the serving cell, (x b2 , y b2 ) are the position coordinates of the base station of the neighboring cell, ⁇ 1 is the first angle, and ⁇ 2 is the second angle.
  • the neighboring cell includes a first neighboring cell and a second neighboring cell
  • the location coordinates (x, y) of the terminal device are:
  • the x-axis and the y-axis are perpendicular, ( xb1 , yb1 ) are the position coordinates of the base station of the service cell, ( xb2 , yb2 ) are the position coordinates of the base station of the first neighboring cell, ( xb3 , yb3 ) are the position coordinates of the base station of the second neighboring cell, ⁇ 1 is the first angle, ⁇ 2 is the angle of the terminal device relative to the first neighboring cell, ⁇ 3 is the angle of the terminal device relative to the second neighboring cell, and ⁇ represents the weight coefficient.
  • is determined based on the following formula:
  • RSRP 1 represents the RSRP value measured by the terminal device for the base station of the first neighboring cell
  • RSRP 2 represents the RSRP value measured by the terminal device for the base station of the second neighboring cell.
  • FIG9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dotted lines in FIG9 indicate that the unit or module is optional.
  • the device 900 may be used to implement the method described in the above method embodiment.
  • the device 900 may be a chip, a terminal device, a network device, or a positioning device.
  • the device 900 may be a base station.
  • the device 900 may include one or more processors 910.
  • the processor 910 may support the device 900 to implement the method described in the above method embodiment.
  • the processor 910 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor may also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the apparatus 900 may further include one or more memories 920.
  • the memory 920 stores a program, which can be executed by the processor 910, so that the processor 910 executes the method described in the above method embodiment.
  • the memory 920 may be independent of the processor 910 or integrated in the processor 910.
  • the apparatus 900 may further include a transceiver 930.
  • the processor 910 may communicate with other devices or chips through the transceiver 930.
  • the processor 910 may transmit and receive data with other devices or chips through the transceiver 930.
  • the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied to a terminal or network device provided in the present application, and the program enables a computer to execute the method performed by the terminal or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied to the terminal or network device provided in the embodiment of the present application, and the program enables the computer to execute the method performed by the terminal or network device in each embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided in the embodiment of the present application, and the computer program enables a computer to execute the method executed by the terminal or network device in each embodiment of the present application.
  • the "indication" mentioned can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or an association relationship between the two, or a relationship of indication and being indicated, configuration and being configured, etc.
  • pre-definition or “pre-configuration” can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • pre-definition can refer to what is defined in the protocol.
  • the “protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, and the present application does not limit this.
  • the term "and/or" is only a description of the association relationship of the associated objects, indicating that there can be three relationships.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be read by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于定位的方法、终端设备及网络设备。该方法包括:终端设备在初始接入过程中获取第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对基站的方向信息相关联。基于上述技术方案,终端设备可以在初始接入的过程中获取与终端设备相对基站的方向信息相关联的第一信息,也就是说,终端设备可以在进入RRC连接态之前获取该第一信息,从而能够降低终端设备获取方向信息的时延,有利于降低定位时延。

Description

用于定位的方法、终端设备及网络设备
本申请要求于2022年10月28日提交中国专利局、申请号为2022113383266、申请名称为“用于定位的方法、终端设备及网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种用于定位的方法、终端设备及网络设备。
背景技术
目前,可以基于基站相对终端设备的方向信息(如到达角(angle-of-arrival,AOA)信息),对终端设备进行定位。但是,获取上述定位信息的方式需要终端设备进入无线资源控制(radio resource control,RRC)连接态,不利于降低定位时延。
发明内容
本申请实施例提供了一种用于定位的方法、终端设备及网络设备。下面对本申请实施例涉及的各个方面分别进行介绍。
第一方面,提供一种用于定位的方法,包括:终端设备在初始接入过程中获取第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对基站的方向信息相关联。
第二方面,提供一种用于定位的方法,包括:基站向终端设备发送初始接入过程中的第二信息,所述第二信息用于确定第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对所述基站的方向信息相关联。
第三方面,提供一种用于定位的方法,包括:定位设备接收终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对所述服务小区测量得到的SSB索引;所述定位设备基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系;所述定位设备接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对所述邻小区测量得到的SSB索引,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;所述定位设备基于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;所述定位设备基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息。
第四方面,提供一种终端设备,包括:获取单元,用于在初始接入过程中获取第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对基站的方向信息相关联。
第五方面,提供一种网络设备,所述网络设备为基站,所述网络设备包括:发送单元,用于向终端设备发送初始接入过程中的第二信息,所述第二信息用于确定第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对所述基站的方向信息相关联。
第六方面,提供一种定位设备,包括:接收单元,用于接收终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对所述服务小区测量得到的SSB索引;确定单元,用于基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系;所述接收单元,用于接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对所述邻小区测量得到的SSB索引,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;所述确定单元,用于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;所述确定单元,用于基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息。
第七方面,提供一种终端设备,包括处理器、存储器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第八方面,提供一种网络设备,包括收发器、处理器和存储器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第二方面的方法中的部分或全部步骤。
第九方面,提供一种定位设备,包括收发器、处理器和存储器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第三方面的方法中的部分或全部步骤。
第十方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该终端设备或网络设备进行交互的其他设备。
第十一方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得终端执行上述第一方面至第三方面中任一方面的方法中的部分或全部步骤。
第十二方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端执行上述第一方面至第三方面中任一方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十三方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述第一方面至第三方面中任一方面的方法中所描述的部分或全部步骤。
基于上述技术方案,终端设备可以在初始接入的过程中获取与终端设备相对基站的方向信息相关联的第一信息,也就是说,终端设备可以在进入RRC连接态之前获取该第一信息,从而能够降低终端设备获取方向信息的时延,有利于降低定位时延。
附图说明
图1是本申请实施例应用的无线通信系统。
图2是一种基于竞争的随机接入的流程示意图。
图3是一种基于非竞争的随机接入的流程示意图。
图4是本申请实施例提供的一种用于定位的方法的流程示意图。
图5是本申请实施例提供的另一种用于定位的方法的流程示意图。
图6是本申请实施例提供的一种终端设备的示意性框图。
图7是本申请实施例提供的一种网络设备的示意性框图。
图8是本申请实施例提供的一种定位设备的示意性框图。
图9是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile Terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设 备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。
还应理解,在本申请实施例中,终端可以包括但不限于应用于物联网中的终端设备,例如,可以是接入NB-IoT中的终端设备(可以称为“NB-IoT终端”):智能抄表设备、物流追踪设备、环境监测设备等。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access piont,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中涉及到的通信设备,可以为网络设备,或者也可以为终端设备。例如,第一通信设备为网络设备,第二通信设备为终端设备。又如,第一通信设备为终端设备,第二通信设备为网络设备。又如,第一通信设备和第二通信设备均为网络设备,或者均为终端设备。
还应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。在无线通信中,可以通过信号调制的方式完成频谱搬移。例如,终端产生的信号为低频信号,而低频信号不适合在信道中传输,经过信号调制后,可以将低频信号转换为适合在信道中传输的高频信号。
对于处于无线资源控制(radio resource control,RRC)空闲态的终端设备而言,终端设备可以通过初始接入的方式与基站建立RRC连接。初始接入的过程可以包括小区搜索、上行同步等。
小区搜索可以指终端设备实现与基站下行时频同步并获取服务小区标识(identity,ID)的过程。在小区搜索过程中,终端设备可以检测同步信号/物理广播信道(synchronization signal/physical broadcast channel,SSS/PBCH)(简称为SSB)。而对于上行同步,终端设备可以通过随机接入的方式获得与基站的上行同步。
随机接入的方式有两种,一种是基于竞争的随机接入,另一种是基于非竞争的随机接入。下面结合图2和图3对这两种随机接入方式进行描述。
图2是本申请实施例提供的一种基于竞争的随机接入方法的流程图,该方法包括步骤S210~步骤S240。
在步骤S210中、终端设备向网络设备发送随机接入过程中的消息1(message 1,MSG1),该消息1中包括前导码(preamble)。
终端设备可以选择随机接入信道(random access channel,RACH)资源和前导码,并在选择的资源上发送选择的前导码。该RACH资源也可以称为物理随机接入信道(physical random access channel,PRACH)资源。
网络设备可以通过广播的形式向终端设备发送PRACH的配置信息。PRACH的配置信息可以包括PRACH的时频资源的配置信息以及起始的前导码根序列的配置信息。基于PRACH的配置信息可以确定与该网络设备对应的前导码或前导码集合。
网络设备可以为终端设备配置一个共享的前导码池。该前导码池中的前导码由多个终端设备共享。终端设备可以基于一定的策略选择前导码。由于前导码为多个终端设备共享,因此,会存在多个终端设备选择相同的前导码的冲突情况。为了解决该冲突,网络设备可以使用后续的解决机制来处理这种冲突。
在步骤S220中、网络设备向终端设备发送MSG2,该MSG2也可以称为随机接入响应(random access response,RAR)。该MSG2可以通过物理下行控制信道(physical downlink control channel,PDCCH)承载。
终端设备发送MSG1后,可以开启一个随机接入响应时间窗,并在该时间窗内监测随机接入无线网络临时标识(random access-radio network temporary identifier,RA-RNTI)加扰的PDCCH。RA-RNTI与终端设备发送MSG1所使用的RACH的时频资源有关。终端设备接收到PDCCH后,可以使用RA-RNTI对该PDCCH进行解码。
MSG2中还可以包括终端设备发送的前导码,如果终端设备接收到用RA-RNTI加扰的PDCCH,并且MSG2中包含自己发送的前导码,则终端设备可以认为成功接收到随机接入响应。
终端设备成功接收到PDCCH后,终端设备能够获得该PDCCH调度的物理下行共享信道(physical downlink shared channel,PDSCH),其中,该PDSCH中包含了RAR。该RAR可以包含多个信息。例如,RAR的子头(subheader)中可以包含回退指示(backoff indicator,BI),该BI可用于指示重传MSG1的回退时间;RAR中的随机接入前导码标识符(random access preamble identification,RAPID)指示网络设备响应收到的前导码索引;RAR中的负载(payload)中可以包含定时提前组(timing advance group,TAG),该TAG可用于调整上行定时;RAR中还可以包括上行授权(UL grant),用于调度MSG3的上行资源指示;RAR中还可以包括临时小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI),对于初始接入的终端设备来说,终端设备可以使用该临时C-RNTI解码MSG4的PDCCH。
如果终端设备在随机接入响应时间窗内未接收到RAR,或者未能验证成功,则表示响应失败。在该情况下,如果终端设备随机接入的尝试次数小于上限值(如10次),则终端设备可以继续尝试进行随机接入。如果尝试次数大于上限值,则表示随机接入失败。
步骤S230、终端设备向网络设备发送MSG3。终端设备可以在网络设备调度的上行授权上发送MSG3。该MSG3也可以称为RRC连接建立请求消息。
该MSG3主要用于通知网络设备该随机接入过程是由什么事件触发的。MSG3中包括终端设备的C-RNTI。在不同的场景中,终端设备发送的MSG3会有所不同。下面对一些场景进行举例说明。
例如,对于RRC连接建立场景,终端设备可以通过MSG3发送RRC连接建立请求消息,该RRC连接建立请求消息可以携带非接入层(non-access stratum,NAS)UE_ID。该RRC连接建立请求消息可以通过无线链路控制(radio link control,RLC)层传输(transmitting,TM)中的公共控制信道(common control channel,CCCH)传输。该消息没有分段。
又例如,对于RRC连接重建请求,终端设备可以通过MSG3发送RRC重建请求消息,该RRC重建请求消息不携带NAS消息,该RRC重建请求消息可以通过RLC层的CCCH用TM传输。该消息没有分段。
再例如,对于小区切换场景,如果终端设备接入目标小区,并且在切换过程中没有专用的前导码,则可以触发基于竞争的随机接入。终端设备可以通过MSG3发送RRC切换确认消息和C-RNTI。RRC切换确认消息和C-RNTI可以通过专用控制信道(dedicated control channel,DCCH)传输。在一些实施例中,MSG3还可以携带缓冲区状态报告(buffer status report,BSR)。
步骤S240、网络设备向终端设备发送MSG4。
该MSG4具有两个作用,一个是用于竞争冲突解决,另一个是向终端设备发送RRC配置消息。如果终端设备在MSG3中携带了C-RNTI,如RRC重建过程,则MSG4采用该C-RNTI加扰的PDCCH调度,相应地,终端设备可以使用MSG3中的C-RNTI对PDCCH进行解码,得到MSG4。如果终端设备在MSG3中没有携带C-RNTI,如初始接入,则MSG4可以采用临时C-RNTI加扰的PDCCH调度,相应地,终端设备可以使用MSG2中的临时C-RNTI对PDCCH进行解码,得到MSG4。终端设备在解码PDCCH成功后,得到承载MSG4的PDSCH。终端设备可以将该PDSCH中的公共控制信道(common control channel,CCCH)服务数据单元(service data unit,SDU)与MSG3中的CCCH SDU进行比较,如果两者相同,则表示竞争解决成功。竞争解决后,临时C-RNTI转正 为C-RNTI(The Temporary C-RNTI is promoted to C-RNTI for a UE which detects RA success and does not already have a C-RNTI;it is dropped by others)。
对于切换、上/下行失步状态下的数据传输等随机接入场景,此时因为终端设备已经分配了C-RNTI,在MSG3中的MAC CE中,终端设备可以向网络设备通知C-RNTI,因此,基站可以使用C-RNTI加扰的PDCCH调度MSG4,而不使用临时C-RNTI调度的MSG4(The C-RNTI on PDCCH for UE in RRC_CONNECTED)。终端设备解码出PDCCH调度命令的时候表示完成竞争解决,MSG4中的具体内容已经与竞争解决无关。这时,MSG2中由基站分配的TC-RNTI失效,后续由基站继续分配给其它UE使用(A UE which detects RA success and already has a C-RNTI,resumes using its C-RNTI)。因此,此种场景MSG4中不包括UE竞争解决标识。
图3是本申请实施例提供的一种基于非竞争的随机接入方法的流程图。该方法包括步骤S310~S330。
在步骤S310中,网络设备向终端设备发送前导码配置信息,该配置信息中包括随机接入过程中需要的前导码和PRACH资源。该前导码为网络设备为终端设备分配的专用前导码。专用前导码可以通过RRC信令或物理层(physical,PHY)信令(如PDCCH中的DCI)通知给终端设备。使用专用前导码不会存在与其他终端设备发生冲突的问题。
在步骤S320中,终端设备可以根据该前导码配置信息,向网络设备发送MSGA,也就是说,终端设备可以在该RACH资源上向网络设备发送该前导码。
在步骤S330中,网络设备向终端设备发送MSGB,该MSGB中可以包括RAR。终端设备接收到该RAR后,表示该随机接入过程结束。
在一些应用场景下,需要对终端设备进行定位。例如,物流监控、车辆管理、公共安全、天气预报、辅助导航等。
根据定位精度的不同,定位方式可以包括粗定位和精定位。本申请实施例主要介绍粗定位方式。常见的粗定位方式可以包括基于cell-id进行定位的方式,基于cell-id定位的技术也可以称为CID定位。其实现原理可以为:定位平台向核心网发送信令,以查询终端设备所在小区的ID。然后定位平台可以根据存储的基站数据库(base station almanac,BSA)中的数据,确定终端设备的大致位置。这种定位方式的定位精度取决于基站或小区的大小,一般在几百至几千米左右。相对高精度定位而言,粗定位业务复杂度较低。
另外,基于cell-id的定位技术需要终端设备支持定位操作。在进行定位的过程中,终端设备需要进入定位操作流程,且该定位操作流程需要终端设备进入RRC连接态。终端设备可以接收定位服务请求,并针对定位能力进行上报。终端设备可以基于定位服务器的指示进行定位测量,并将测量结果发送给定位服务器,由定位服务器进行位置估计。该定位过程较为复杂,延迟较高。
基于cell-id的定位技术存在定位精度不高的问题。为了提高定位精度,出现了增强CID(enhanced CID,E-CID)的定位技术。E-CID可以指在cell-id的基础上,增加了一些其他的信息(如到达角(angle-of-arrival,AOA)、定时提前量(timing advance,TA)等)进行辅助定位,从而提高定位精度。E-CID定位技术可以包括:cell-id+AOA,cell-id+TA,cell-id+AOA+TA等。下文主要介绍基于AOA的定位方式。
在一些无线通信系统(如NR、LTE等)中,可以支持基于AOA的定位。AOA可以表示基站相对终端设备的方向信息。该定位方式是指可以利用终端设备的信号发送至基站的入射角度,来确定终端设备的位置。基站获取AOA信息,需要终端设备具有定位的功能,并且启动定位相关操作和信令。另外,终端设备需要进入RRC连接态,并且按照与CID定位类似的过程进行定位,这些增加了定位的复杂度和时延。
由上可知,终端设备为了获取AOA信息,需要进入RRC连接态。只有处于RRC连接态或RRC非激活态的终端设备,才能够获得定位导频的相关配置信息(如探测参考信号(sounding reference signal,SRS)),从而才可以对终端设备进行定位。
由上可知,为了提高定位精度,可以进一步确定基站相对终端设备的方向信息(如AOA)。但是,目前确定上述方向信息的方式存在时延较大,流程复杂的问题,不利于降低终端设备的定位时延。
基于此,本申请实施例提供一种用于定位的方法,终端设备可以在初始接入的过程中获取与终端设备相对基站的方向信息相关联的第一信息,也就是说,终端设备可以在进入RRC连接态
(connected)或RRC非激活态(inactive)之前获取该第一信息,从而能够降低终端设备获取方向信息的时延,有利于降低定位时延。
下面结合图4和图5,对本申请实施例的方案进行详细介绍。
参见图4,在步骤S410、终端设备在初始接入过程中获取第一信息,该第一信息用于对终端设备进行定位,该第一信息与终端设备相对基站的方向信息相关联。
参见图5,在步骤S510、基站向终端设备发送初始接入过程中的第二信息。该第二信息用于确定第一信息,该第一信息用于对终端设备进行定位。第一信息与终端设备相对基站的方向信息相关联。第一信息是基于第二信息确定的。在一些实施例中,第二信息与第一信息相同。在另一些实施例中,第二信息与第一信息可以不同。
下文介绍的方式对图4和图5同样适用。
本申请实施例中的基站可以指终端设备在初始接入过程中选择的小区对应的基站。本申请实施例中的终端设备可以为处于RRC空闲态(idle)下的终端设备,或者,该终端设备可以为进行初始接入的终端设备。
本申请实施例对第一信息的内容不做具体限定。作为一个示例,第一信息可以包括终端设备相对基站的方向信息。作为另一个示例,第一信息也可以包括基站相对终端设备的方向信息。
在一些实施例中,终端设备相对基站的方向信息与基站相对终端设备的方向信息是相对应的,只要知道了其中一个方向信息,就可以推算出另一个方向信息。例如,如果已知终端设备相对基站的方向信息,也就可以确定出基站相对终端设备的方向信息。又例如,如果已知基站相对终端设备的方向信息,也同样可以确定出终端设备相对基站的方向信息。在一些实施例中,当系统为频分双工(frequency duplex division,FDD)系统,可以认为系统具有上下行互易性,对于上下行方向信息中,只要知道了其中一个方向信息,就可以推算出另一个方向信息。
终端设备相对基站的方向信息可以通过基站向终端设备发送信号,终端设备确定该信号的方向信息来得到。基站相对终端设备的方向信息可以通过终端设备向基站发送信号,基站确定该信号的方向信息来得到。
在一些实施例中,基站相对终端设备的方向信息例如可以为AOA信息。终端设备可以向基站发送信号,基站可以对该信号进行测量,从而得到AOA信息。在一些实施例中,第二信息可以包括AOA信息。基站可以向终端设备发送AOA信息。也就是说,基站可以在基于终端设备发送的信号测量得到AOA信息后,可以向终端设备发送AOA信息。
在一些实施例中,终端设备可以向基站发送第一指示信息,该第一指示信息用于指示基站进行AOA测量,或,第一指示信息用于指示基站进行AOA反馈。下文以第一指示信息用于指示基站进行AOA测量为例,对本申请实施例的方案进行描述。
该第一指示信息可以承载于随机接入过程中的消息中。通过随机接入过程,终端设备向基站指示进行AOA测量,有利于终端设备在随机接入的过程中获得AOA信息,从而降低定位时延。
本申请实施例对基站进行AOA测量的方式不做具体限定。例如,基站可以基于承载第一指示信息的信号,进行AOA测量。又例如,基站也可以基于其他信号(如没有承载第一指示信息的信号),进行AOA测量。
本申请实施例中的随机接入方式可以为基于竞争的随机接入方式(也称为四步随机接入),也可以为基于非竞争的随机接入方式(也称为两步随机接入)。
本申请实施例对第一指示信息的指示方式不做具体限定。作为一个示例,以基于竞争的随机接入为例,可以通过随机接入过程中的MSG1承载第一指示信息,或者,也可以通过随机接入过程中的MSG3承载第一指示信息。作为另一个示例,以基于非竞争的随机接入为例,可以通过随机接入过程中的MSGA承载第一指示信息。
在一些实施例中,本申请实施例中的第一指示信息可以与前导码关联。也就是说,第一指示信息可以通过与前导码相关联的信息进行指示。该前导码可以为MSG1中的前导码,也可以为MSGA中的前导码。通过复用前导码来指示第一指示信息,可以节省信令开销,有利于降低定位的复杂度。
在一些实施例中,第一指示信息可以与以下信息中的一种或多种关联:前导码的索引、前导码的加扰信息、前导码序列。在一些实施例中,前导码的索引也可以称为前导码的序号。
在一些实施例中,第一指示信息可以与前导码的索引相关联,也就是说,终端设备可以通过前导码的索引来指示第一指示信息。例如,可以通过特定的前导码索引来指示第一指示信息。如果终端设备需要基站进行AOA测量,则终端设备可以向基站发送索引为该特定索引的前导码。
基站接收到终端设备发送的前导码后,可以根据前导码的索引,确定是否进行AOA测量。如果该前导码的索引为特定索引,则基站进行AOA测量;如果前导码的索引不是特定索引,则基站可以不进行AOA测量。
下面以第一索引需要进行AOA测量,第二索引不需要进行AOA测量为例,对本申请实施例的方案进行介绍。
本申请实施例对第一索引的取值不做具体限定。例如,第一索引的取值可以为偶数。又例如,第一索引的取值可以为奇数。再例如,第一索引的取值可以为某一范围内的值。如,第一索引的取值可以大于或等于第一值,和/或,第一索引的取值可以小于或等于第二值。
本申请实施例对前导码索引的编号方式不做具体限定。作为一个示例,可以将前导码集合中的前导码按顺序进行编号,不同前导码的索引不同。作为另一个示例,可以将前导码集合中的前导码分成多个组,每个组中的前导码独立编号。例如,可以根据SSB与前导码的对应关系对前导码进行分组,一个SSB对应的前导码为一个前导码组,每个前导码组中的前导码可以独立进行编号。
举例说明,在初始接入过程中,终端设备可以读取高层参数获得SSB与RO之间的映射关系,从而得到两个参数N和R。其中,N表示一个随机接入机会(RACH occasion,RO)关联的SSB个数,R表示一个SSB对应的前导码的个数。如果N≥1,对于第n个SSB,其前导码的索引从n*Ntotal/N开始,其中,Ntotal表示用于随机接入的前导码的总数。在本申请实施例中,可以对一个SSB对应的R个前导码进行编号,假设第一个前导码的序号为0,后续的前导码可以依次进行编号。
在一些实施例中,第一指示信息可以与前导码的加扰信息相关联,也就是说,终端设备可以通过前导码的加扰信息指示第一指示信息。作为一个示例,终端设备可以通过是否对前导码进行加扰来指示第一指示信息。如果终端设备需要基站进行AOA测量,则终端设备可以对前导码进行加扰,即终端设备向基站发送加扰后的前导码;如果终端设备不需要服务小区进行AOA测量,则终端设备可以不对前导码进行加扰,即终端设备向基站发送未加扰的前导码。
基站接收到前导码后,可以根据前导码是否加扰,确定是否进行AOA测量。如果接收到的前导码进行了加扰,则基站可以确定需要进行AOA测量。如果接收到的前导码未加扰,则基站可以确定不需要进行AOA测量。
作为又一示例,终端设备可以通过特定的加扰信息来指示第一指示信息。如果终端设备需要基站进行AOA测量,则终端设备可以使用特定的扰码对前导码进行加扰。如果终端设备不需要基站进行AOA测量,则终端设备可以使用其他扰码对前导码进行加扰。
基站接收到前导码后,可以根据前导码的扰码信息,确定是否进行AOA测量。如果接收到的前导码采用的是特定的扰码进行的加扰,则基站确定需要进行AOA测量。如果接收到的前导码采用的不是特定的扰码进行的加扰,则基站确定不需要进行AOA测量。
下面以第一扰码需要进行AOA测量,第二扰码不需要进行AOA测量为例,对本申请实施例的方案进行介绍。
在一些实施例中,第一扰码可以为Walsh码,第二扰码可以为全1序列。如果前导码的扰码为Walsh码,则服务小区的基站需要进行AOA测量。如果第一扰码为全1序列,则服务小区的基站不需要进行AOA测量。在另一些实施例中,第一扰码可以为全1序列,第二扰码可以为Walsh码。如果前导码的扰码为全1序列,则服务小区的基站需要进行AOA测量。如果前导码的扰码为Walsh码,则服务小区的基站不需要进行AOA测量。
在一些实施例中,第一指示信息可以与前导码序列相关联,也就是说,终端设备可以通过前导码序列来指示第一指示信息。例如,终端设备可以通过特定的前导码序列来指示第一指示信息。如果终端设备需要基站进行AOA测量,则终端设备可以向基站发送特定的前导码序列。
该特定的前导码序列可以是新引入的前导码序列或专用前导码序列。例如,可以在原来的前导码集合中新增加一些前导码序列,这些前导码序列可用于指示基站进行AOA测量。如果需要基站进行AOA测量,终端设备可以向基站发送专用前导码序列;如果不需要服务小区的基站进行AOA测量,则终端设备可以向基站发送其他前导码序列。
基站接收到前导码后,可以根据前导码是否为专用前导码序列,确定是否进行AOA测量。如果接收到的前导码为专用前导码序列,则基站确定需要进行AOA测量。如果接收到的前导码采用的不是专用前导码序列,则基站确定不需要进行AOA测量。
在一些实施例中,上述专用前导码序列可以为Zadoff-Chu序列。
在一些实施例中,基站也可以通过随机接入过程中的消息向终端设备发送AOA信息,使得终端设备可以通过随机接入获得AOA信息。例如,基站可以向终端设备发送AOA信息,该AOA信息承载于随机接入响应消息中。通过随机接入响应消息承载AOA信息,可以使得终端设备能够尽快获得AOA信息,有利于降低定位时延。
在一些实施例中,如前文所述,第一信息可以包括终端设备相对基站的方向信息。本申请实施例对第一信息的确定方式不做具体限定。例如,第一信息可以基于SSB索引(index)与SSB波束发送方向之间的对应关系确定。在一些实施例中,第二信息可以包括SSB索引与SSB波束发送方向之间的对应关系,也就是说,基站可以向终端设备发送SSB索引与SSB波束发送方向之间的对应关系。
在一些实施例中,终端设备在进行随机接入之前,会进行SSB的检测,并检测出SSB的索引信息。SSB的索引不同,SSB的发送方向也会不同。终端设备在检测出SSB的索引信息后,可以根据检测出的SSB索引信息,以及SSB索引与SSB波束发送方向之间的对应关系,确定出SSB波束的方向。进一步地,终端设备可以基于SSB波束的方向,确定终端设备相对基站的方向信息。
在一些实施例中,SSB索引与SSB波束发送方向之间的对应关系可以由基站发送至终端设备。例如,基站可以通过广播消息向终端设备发送SSB索引与SSB波束发送方向之间的对应关系,即SSB索引与SSB波束发送方向之间的对应关系承载于广播消息中。
在一些实施例中,终端设备可以接收基站发送的SSB,并根据SSB的索引信息以及SSB的索引与SSB波束方向的对应关系,确定终端设备相对基站的角度。进一步地,终端设备可以基于该角度,确定终端设备的位置信息。例如,终端设备可以基于该角度以及基站的位置信息,确定终端设备的位置信息。
上文描述的基站可以为一个基站,也可以为多个基站。例如,上述基站可以为服务小区的基站,也可以为邻小区的基站。又例如,上述基站可以包括服务小区的基站和邻小区的基站。
如果基站包括服务小区的基站和邻小区的基站,则第一信息可以基于第一对应关系以及第二对应关系确定。第一对应关系可以包括服务小区的SSB索引和SSB波束方向之间的对应关系,第二对应关系可以包括邻小区的SSB索引与SSB波束方向之间的对应关系。第一对应关系可以由服务小区的基站发送,第二对应关系可以由邻小区的基站发送。
当终端设备进行下行同步信号搜索时,会搜索到多个小区的SSB信息,也就是说,终端设备搜索到的SSB信息中不仅包括服务小区的SSB信息,也包括邻小区的SSB信息。在一些实施例中,终端设备可以根据服务小区的SSB索引和SSB波束方向的对应关系,以及邻小区的SSB索引和SSB波束方向的对应关系,分别确定终端设备相对服务小区和相邻小区的方向。
在一些实施例中,终端设备可以对多个小区的SSB信息进行检测。以服务小区和邻小区为例,终端设备可以接收服务小区的基站发送的第一SSB,并基于第一SSB的索引以及第一对应关系,确定终端设备相对于服务小区的基站的第一角度。终端设备可以接收邻小区的基站发送的第二SSB,并基于第二SSB的索引以及第二对应关系,确定终端设备相对于邻小区的基站的第二角度。终端设备可以基于第一角度、第二角度、服务小区的基站的位置信息、邻小区的基站的位置信息,确定终端设备的位置信息。
上文介绍了由终端设备确定位置信息的方案,当然,终端设备的位置信息也可以由基站或定位设备来确定。终端设备可以将检测到的SSB信息发送至基站或定位设备,然后由基站或定位设备基于该SSB信息,确定终端设备的位置。
基站或定位设备确定终端设备位置的方式与终端设备自己确定位置的方式类似,未详细描述的部分可以参见前文的描述。
作为一个示例,终端设备可以将检测到的SSB索引信息发送至基站,基站可以基于SSB索引以及SSB的索引与SSB波束方向的对应关系,确定终端设备相对基站的角度。进一步地,基站可以基于该角度,确定终端设备的位置信息。例如,基站可以基于该角度以及基站的位置信息,确定终端设备的位置信息。
上述SSB索引可以包括第一SSB的索引和第二SSB的索引。基站(如服务小区的基站)可以基于第一SSB的索引以及第一对应关系,确定第一角度;基站可以基于第二SSB的索引以及第二对应关系,确定第二角度。基站可以基于第一角度、第二角度、服务小区的基站的位置信息以及邻小区的基站的位置信息,确定终端设备的位置信息。
举例说明,基站可以接收终端设备发送的第一SSB的索引,并基于第一SSB的索引以及第一对应关系,确定终端设备相对于服务小区的基站的第一角度。基站可以接收终端设备发送的第二SSB的索引,并基于第二SSB的索引以及第二对应关系,确定终端设备相对于邻小区的基站的第二角度。基站可以基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息。
作为另一个示例,终端设备可以将检测到的SSB索引信息发送至定位设备,定位设备可以基于SSB索引以及SSB的索引与SSB波束方向的对应关系,确定终端设备相对基站的角度。进一步地,定位设备可以基于该角度,确定终端设备的位置信息。例如,定位设备可以基于该角度以及基站的位置信息,确定终端设备的位置信息。
上述SSB索引可以包括第一SSB的索引和第二SSB的索引。定位设备可以基于第一SSB的索引以及第一对应关系,确定第一角度;定位设备可以基于第二SSB的索引以及第二对应关系,确定第二角度。定位设备可以基于第一角度、第二角度、服务小区的基站的位置信息以及邻小区的基站的位置 信息,确定终端设备的位置信息。
举例说明,定位设备可以接收终端设备发送的第一SSB的索引,并基于第一SSB的索引以及第一对应关系,确定终端设备相对于服务小区的基站的第一角度。定位设备可以接收终端设备发送的第二SSB的索引,并基于第二SSB的索引以及第二对应关系,确定终端设备相对于邻小区的基站的第二角度。定位设备可以基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息。
下面对基于第一角度、第二角度、服务小区的基站的位置信息、邻小区的基站的位置信息,确定终端设备的位置信息的方案进行举例说明。
假设第一角度为θ1,第二角度为θ2,服务小区的基站的位置为(xb1,yb1),邻小区的基站的位置为(xb1,yb1),终端设备的位置为(x,y),终端设备的位置可以表示为:
上述x轴和y轴垂直。θ1和θ2可以为在xy坐标系下的角度。例如,y轴为正北方向,x轴为正东方向,θ1和θ2可以为相对正北方向的角度。
上述邻小区可以包括多个小区。例如,邻小区包括第一邻小区和第二邻小区,终端设备的位置可以基于终端设备相对多个邻区小区的角度来确定。通过联合多个小区对终端设备进行定位,可以提高终端设备的定位精度。
终端设备的位置坐标可以表示为:
其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数。
上述α值可以基于终端设备针对邻小区的信号测量结果确定。例如,α值可以基于终端设备针对第一邻小区的信号测量结果和终端设备针对第二邻小区的信号测量结果确定。
下面以信号测量结果为参考信号接收功率(reference signal receiving power,RSRP)为例,α值可以基于以下公式确定:
RSRP1表示终端设备对第一邻小区的基站进行测量的RSRP值,RSRP2表示终端设备对第二邻小区的基站进行测量的RSRP值。
当然,可以理解的是,上述公式中的RSRP也可以换成信号测量结果中的其他值,如参考信号接收质量(reference signal receiving quality,RSRQ)。
需要说明的是,上文是以终端设备相对基站的角度为例,对终端设备的位置坐标的计算公式进行的举例说明,可以理解的是,上述公式对基站相对终端设备的角度也同样适用。由于终端设备相对基站的角度与基站相对终端设备的角度之间是互易的,因此,也可以基于基站相对终端设备的角度确定终端设备的位置坐标。
例如,可以基于服务小区的基站相对终端设备的角度、邻小区的基站相对终端设备的角度、服务小区的基站的位置信息以及邻小区的基站的位置信息,确定终端设备的位置信息。具体的确定方式可以参见前文的描述,为了简洁,此处不再赘述。上述邻小区可以包括多个小区,如邻小区可以包括第一邻小区和第二邻小区。上述基站相对终端设备的位置信息可以由基站测量得到。
本申请实施例的方案可以与其他定位方式结合使用。例如,本申请实施例确定的方向信息可以与cell id相结合,共同对终端设备进行定位。又例如,本申请实施例确定的方向信息可以与TA相结合,共同对终端设备进行定位。再例如,本申请实施例确定的方向信息可以与cell id以及TA相结合,共同对终端设备进行定位。
在一些实施例中,本申请实施例的定位方式可以与其他精定位方式相结合,实现对终端设备的精定位。由于本申请实施例可以降低获取方向信息的时延,因此,在该定位基础上进行精定位,能够降 低获取精定位信息的复杂度。
上文结合图1至图5,详细描述了本申请的方法实施例,下面结合图6至图9,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图6是本申请实施例提供的一种终端设备的示意性框图。图6所示的终端设备600可以是上文描述的任意一种终端设备。该终端设备600可以包括获取单元610。
获取单元610,用于在初始接入过程中获取第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对基站的方向信息相关联。
可选地,在一些实施例中,所述第一信息包括到达角AOA信息,所述终端设备还包括:发送单元610,用于向所述基站发送第一指示信息,所述第一指示信息用于指示所述基站进行AOA测量,所述第一指示信息承载于随机接入过程的消息中。
可选地,在一些实施例中,所述第一指示信息与随机接入过程中的前导码关联。
可选地,在一些实施例中,所述第一指示信息与以下信息中的一种或多种关联:前导码的索引、前导码序列的加扰信息、前导码序列。
可选地,在一些实施例中,所述终端设备还包括:接收单元630,用于接收所述基站发送的AOA信息,所述AOA信息承载于随机接入过程的消息中。
可选地,在一些实施例中,所述AOA信息承载于随机接入响应消息中。
可选地,在一些实施例中,所述第一信息包括所述终端设备相对所述基站的方向信息,所述第一信息基于SSB索引与SSB波束发送方向之间的对应关系确定。
可选地,在一些实施例中,所述SSB索引与SSB波束发送方向之间的对应关系承载于广播消息中。
可选地,在一些实施例中,所述基站包括服务小区的基站和邻小区的基站,所述第一信息基于第一对应关系和第二对应关系确定,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系。
可选地,在一些实施例中,所述终端设备还包括:接收单元630,用于接收所述服务小区的基站发送的第一SSB;确定单元,用于基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度;接收单元630,用于所述终端设备接收所述邻小区的基站发送的第二SSB;确定单元,用于基于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;确定单元,用于基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息。
可选地,在一些实施例中,所述终端设备的位置坐标(x,y)为:
其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为邻小区的基站的位置坐标,θ1为第一角度,θ2为第二角度。
可选地,在一些实施例中,所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数。
可选地,在一些实施例中,α基于以下公式确定:
其中,RSRP1表示终端设备对所述第一邻小区的基站进行测量的RSRP值,RSRP2表示终端设备对所述第二邻小区的基站进行测量的RSRP值。
图7是本申请实施例提供的一种网络设备的示意性框图。图7所示的网络设备700可以是上文描述的任意一种网络设备。该网络设备700可以包括发送单元710。
发送单元710,用于向终端设备发送初始接入过程中的第二信息,所述第二信息用于确定第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对所述基站的方向信息相关联。
可选地,在一些实施例中,所述第一信息包括到达角AOA信息,所述网络设备还包括:接收单元720,用于接收所述终端设备发送的第一指示信息,所述第一指示信息用于指示所述基站进行AOA测量,所述第一指示信息承载于随机接入过程的消息中。
可选地,在一些实施例中,所述第一指示信息与随机接入过程中的前导码关联。
可选地,在一些实施例中,所述第一指示信息与以下信息中的一种或多种关联:前导码的索引、前导码序列的加扰信息、前导码序列。
可选地,在一些实施例中,所述第二信息包括AOA信息,所述AOA信息承载于随机接入过程的消息中。
可选地,在一些实施例中,所述AOA信息承载于随机接入响应消息中。
可选地,在一些实施例中,所述第一信息包括所述终端设备相对所述基站的方向信息,所述第二信息包括SSB索引与SSB波束发送方向之间的对应关系。
可选地,在一些实施例中,所述SSB索引与SSB波束发送方向之间的对应关系承载于广播消息中。
可选地,在一些实施例中,所述基站包括服务小区的基站和邻小区的基站,所述第一信息基于第一对应关系和第二对应关系确定,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系。
可选地,在一些实施例中,所述网络设备还包括:接收单元720,用于接收所述终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对所述服务小区测量得到的SSB索引;确定单元,用于基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度;接收单元720,用于接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对所述邻小区测量得到的SSB索引;确定单元,用于基于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;确定单元,用于基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息。
可选地,在一些实施例中,所述终端设备的位置坐标(x,y)为:
其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为邻小区的基站的位置坐标,θ1为第一角度,θ2为第二角度。
可选地,在一些实施例中,所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数。
可选地,在一些实施例中,α基于以下公式确定:
其中,RSRP1表示终端设备对所述第一邻小区的基站进行测量的RSRP值,RSRP2表示终端设备对所述第二邻小区的基站进行测量的RSRP值。
图8是本申请实施例提供的一种定位设备的示意性框图。图8所示的定位设备800可以是上文描 述的任意一种定位设备。该定位设备800可以包括接收单元810和确定单元820。
接收单元810,用于接收终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对服务小区测量得到的SSB索引。
确定单元820,用于基于所述第一SSB的索引以及第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系。
接收单元810,用于接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对邻小区测量得到的SSB索引。
确定单元820,用于基于所述第二SSB的索引以及第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系。
确定单元820,用于基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息。
可选地,在一些实施例中,所述终端设备的位置坐标(x,y)为:
其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为邻小区的基站的位置坐标,θ1为第一角度,θ2为第二角度。
可选地,在一些实施例中,所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数。
可选地,在一些实施例中,α基于以下公式确定:
其中,RSRP1表示终端设备对所述第一邻小区的基站进行测量的RSRP值,RSRP2表示终端设备对所述第二邻小区的基站进行测量的RSRP值。
图9是本申请实施例的通信装置的示意性结构图。图9中的虚线表示该单元或模块为可选的。该装置900可用于实现上述方法实施例中描述的方法。装置900可以是芯片、终端设备、网络设备或定位设备。例如,装置900可以为基站。
装置900可以包括一个或多个处理器910。该处理器910可支持装置900实现前文方法实施例所描述的方法。该处理器910可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置900还可以包括一个或多个存储器920。存储器920上存储有程序,该程序可以被处理器910执行,使得处理器910执行前文方法实施例所描述的方法。存储器920可以独立于处理器910也可以集成在处理器910中。
装置900还可以包括收发器930。处理器910可以通过收发器930与其他设备或芯片进行通信。例如,处理器910可以通过收发器930与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种用于定位的方法,其特征在于,包括:
    终端设备在初始接入过程中获取第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对基站的方向信息相关联;
    所述第一信息包括到达角AOA信息或所述终端设备相对所述基站的方向信息,所述基站包括服务小区的基站和邻小区的基站,所述第一信息基于第一对应关系和第二对应关系确定,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;
    所述方法还包括:
    所述终端设备接收所述服务小区的基站发送的第一SSB;
    所述终端设备基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度;
    所述终端设备接收所述邻小区的基站发送的第二SSB;
    所述终端设备基于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;
    所述终端设备基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息;
    所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
    其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数,0≤α≤1。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述基站发送第一指示信息,所述第一指示信息用于指示所述基站进行AOA测量,所述第一指示信息承载于随机接入过程的消息中。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息与随机接入过程中的前导码关联。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息与以下信息中的一种或多种关联:前导码的索引、前导码序列的加扰信息、前导码序列。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述基站发送的AOA信息,所述AOA信息承载于随机接入过程的消息中。
  6. 根据权利要求5所述的方法,其特征在于,所述AOA信息承载于随机接入响应消息中。
  7. 根据权利要求1所述的方法,其特征在于,所述SSB索引与SSB波束方向之间的对应关系承载于广播消息中。
  8. 根据权利要求1所述的方法,其特征在于,α基于以下公式确定:
    其中,RSRP1表示终端设备对所述第一邻小区的基站进行测量的RSRP值,RSRP2表示终端设备对所述第二邻小区的基站进行测量的RSRP值。
  9. 一种用于定位的方法,其特征在于,包括:
    基站向终端设备发送初始接入过程中的第二信息,所述第二信息用于确定第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对所述基站的方向信息相关联;
    所述第一信息包括到达角AOA信息或所述终端设备相对所述基站的方向信息,所述基站包括服务小区的基站和邻小区的基站,所述第一信息基于第一对应关系和第二对应关系确定,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;
    所述方法还包括:
    所述基站接收所述终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对 所述服务小区测量得到的SSB索引;
    所述基站基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度;
    所述基站接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对所述邻小区测量得到的SSB索引;
    所述基站基于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;
    所述基站基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息;
    所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
    其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数,0≤α≤1。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述基站接收所述终端设备发送的第一指示信息,所述第一指示信息用于指示所述基站进行AOA测量,所述第一指示信息承载于随机接入过程的消息中。
  11. 根据权利要求10所述的方法,其特征在于,所述第一指示信息与随机接入过程中的前导码关联。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息与以下信息中的一种或多种关联:前导码的索引、前导码序列的加扰信息、前导码序列。
  13. 根据权利要求9所述的方法,其特征在于,所述第二信息包括AOA信息,所述AOA信息承载于随机接入过程的消息中。
  14. 根据权利要求13所述的方法,其特征在于,所述AOA信息承载于随机接入响应消息中。
  15. 根据权利要求9所述的方法,其特征在于,所述SSB索引与SSB波束方向之间的对应关系承载于广播消息中。
  16. 根据权利要求9所述的方法,其特征在于,α基于以下公式确定:
    其中,RSRP1表示终端设备对所述第一邻小区的基站进行测量的RSRP值,RSRP2表示终端设备对所述第二邻小区的基站进行测量的RSRP值。
  17. 一种用于定位的方法,其特征在于,包括:
    定位设备接收终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对服务小区测量得到的SSB索引;
    所述定位设备基于所述第一SSB的索引以及第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系;
    所述定位设备接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对邻小区测量得到的SSB索引;
    所述定位设备基于所述第二SSB的索引以及第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;
    所述定位设备基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息;
    所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
    其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数,0≤α≤1。
  18. 根据权利要求17所述的方法,其特征在于,α基于以下公式确定:
    其中,RSRP1表示终端设备对所述第一邻小区的基站进行测量的RSRP值,RSRP2表示终端设备对所述第二邻小区的基站进行测量的RSRP值。
  19. 一种终端设备,其特征在于,包括:
    获取单元,用于在初始接入过程中获取第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对基站的方向信息相关联;
    所述第一信息包括到达角AOA信息或所述终端设备相对所述基站的方向信息,所述基站包括服务小区的基站和邻小区的基站,所述第一信息基于第一对应关系和第二对应关系确定,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;
    接收单元,用于接收所述服务小区的基站发送的第一SSB;
    确定单元,用于基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度;
    所述接收单元,还用于接收所述邻小区的基站发送的第二SSB;
    所述确定单元,还用于基于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息;
    所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
    其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数,0≤α≤1。
  20. 一种网络设备,其特征在于,所述网络设备为基站,所述网络设备包括:
    发送单元,用于向终端设备发送初始接入过程中的第二信息,所述第二信息用于确定第一信息,所述第一信息用于对所述终端设备进行定位,所述第一信息与所述终端设备相对所述基站的方向信息相关联;
    所述第一信息包括到达角AOA信息或所述终端设备相对所述基站的方向信息,所述基站包括服务小区的基站和邻小区的基站,所述第一信息基于第一对应关系和第二对应关系确定,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;
    接收单元,用于接收所述终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对所述服务小区测量得到的SSB索引;
    确定单元,用于基于所述第一SSB的索引以及所述第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度;
    所述接收单元,还用于接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对所述邻小区测量得到的SSB索引;
    所述确定单元,还用于基于所述第二SSB的索引以及所述第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度;基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息;
    所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
    其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数,0≤α≤1。
  21. 一种定位设备,其特征在于,包括:
    接收单元,用于接收终端设备发送的第一SSB的索引,所述第一SSB的索引为所述终端设备针对服务小区测量得到的SSB索引;
    确定单元,用于基于所述第一SSB的索引以及第一对应关系,确定所述终端设备相对于所述服务小区的基站的第一角度,所述第一对应关系包括服务小区的SSB索引和SSB波束方向之间的对应关系;
    所述接收单元,用于接收所述终端设备发送的第二SSB的索引,所述第二SSB的索引为所述终端设备针对邻小区测量得到的SSB索引;
    所述确定单元,用于基于所述第二SSB的索引以及第二对应关系,确定所述终端设备相对于所述邻小区的基站的第二角度,所述第二对应关系包括邻小区的SSB索引和SSB波束方向之间的对应关系;
    所述确定单元,用于基于所述第一角度、所述第二角度、所述服务小区的基站的位置信息以及所述邻小区的基站的位置信息,确定所述终端设备的位置信息;
    所述邻小区包括第一邻小区和第二邻小区,所述终端设备的位置坐标(x,y)为:
    其中,x轴和y轴垂直,(xb1,yb1)为服务小区的基站的位置坐标,(xb2,yb2)为第一邻小区的基站的位置坐标,(xb3,yb3)为第二邻小区的基站的位置坐标,θ1为第一角度,θ2为所述终端设备相对于所述第一邻小区的角度,θ3为所述终端设备相对于所述第二邻小区的角度,α表示权重系数,0≤α≤1。
  22. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端执行如权利要求1-8中任一项所述的方法。
  23. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述网络设备执行如权利要求9-16中任一项所述的方法。
  24. 一种定位设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述网络设备执行如权利要求17-18中任一项所述的方法。
PCT/CN2023/096560 2022-10-28 2023-05-26 用于定位的方法、终端设备及网络设备 WO2024087611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211338326.6 2022-10-28
CN202211338326.6A CN115550840A (zh) 2022-10-28 2022-10-28 用于定位的方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2024087611A1 true WO2024087611A1 (zh) 2024-05-02

Family

ID=84717863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096560 WO2024087611A1 (zh) 2022-10-28 2023-05-26 用于定位的方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN115550840A (zh)
WO (1) WO2024087611A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115550840A (zh) * 2022-10-28 2022-12-30 上海移远通信技术股份有限公司 用于定位的方法、终端设备及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109168174A (zh) * 2018-08-02 2019-01-08 重庆邮电大学 一种利用波束特征进行移动终端定位的方法
WO2021032267A1 (en) * 2019-08-16 2021-02-25 Nokia Technologies Oy Non-line-of-sight path detection for user equipment positioning in wireless networks
CN114080775A (zh) * 2019-07-09 2022-02-22 高通股份有限公司 用于两步随机接入信道过程的定位辅助资源配置和选择
CN115550840A (zh) * 2022-10-28 2022-12-30 上海移远通信技术股份有限公司 用于定位的方法、终端设备及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109168174A (zh) * 2018-08-02 2019-01-08 重庆邮电大学 一种利用波束特征进行移动终端定位的方法
CN114080775A (zh) * 2019-07-09 2022-02-22 高通股份有限公司 用于两步随机接入信道过程的定位辅助资源配置和选择
WO2021032267A1 (en) * 2019-08-16 2021-02-25 Nokia Technologies Oy Non-line-of-sight path detection for user equipment positioning in wireless networks
CN115550840A (zh) * 2022-10-28 2022-12-30 上海移远通信技术股份有限公司 用于定位的方法、终端设备及网络设备

Also Published As

Publication number Publication date
CN115550840A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US20240137897A1 (en) Methods, apparatuses and systems directed to idle/inactive mode positioning in nr
US11470647B2 (en) Method and device for two-step contention based random access
WO2018059339A1 (zh) 通信方法、装置及系统
WO2021159986A1 (zh) 通信方法及通信装置
WO2024087611A1 (zh) 用于定位的方法、终端设备及网络设备
CN111656847A (zh) 早期数据传输
CN110557837A (zh) 通信方法和装置
US20230413099A1 (en) Method and device for wireless communication
WO2024082634A1 (zh) 用于定位的方法、终端设备及网络设备
WO2021077343A1 (zh) 无线通信方法和终端设备
EP3852397A1 (en) Method and apparatus for positioning user equipment, storage medium, and electronic device
US11523438B2 (en) Determining device locations based on random access channel signaling
JPWO2017208408A1 (ja) 基地局、移動局および移動通信システム
WO2021146828A1 (zh) 随机接入的方法及装置
EP4226696A1 (en) Request procedure for positioning reference signals for wireless networks
CN115669104A (zh) 无线通信的方法、终端设备和网络设备
US20230077110A1 (en) Communication Method, Apparatus, and System
WO2023071843A1 (zh) 资源映射方法与装置、终端和网络设备
EP3955685A1 (en) Random access method and apparatus
WO2024060089A1 (zh) 无线定位方法、装置、设备及存储介质
RU2791244C1 (ru) Способ и устройство произвольного доступа
US20240179750A1 (en) Random access method and apparatus
WO2023004619A1 (zh) 信息传输方法、设备及存储介质
WO2024098212A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024026849A1 (zh) 无线通信的方法及装置