WO2018228587A1 - 信息传输的方法、终端设备和网络设备 - Google Patents

信息传输的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2018228587A1
WO2018228587A1 PCT/CN2018/091823 CN2018091823W WO2018228587A1 WO 2018228587 A1 WO2018228587 A1 WO 2018228587A1 CN 2018091823 W CN2018091823 W CN 2018091823W WO 2018228587 A1 WO2018228587 A1 WO 2018228587A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
time
regs
frequency
control channel
Prior art date
Application number
PCT/CN2018/091823
Other languages
English (en)
French (fr)
Inventor
王建国
刘建琴
贺传峰
张旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18818933.6A priority Critical patent/EP3627937A4/en
Priority to JP2019569756A priority patent/JP7094995B2/ja
Publication of WO2018228587A1 publication Critical patent/WO2018228587A1/zh
Priority to US16/715,881 priority patent/US20200120659A1/en
Priority to US17/876,248 priority patent/US11700101B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communications, and more particularly to a method, terminal device and network device for information transmission in the field of communication.
  • LTE long term evolution
  • 3GPP 3rd generation partnership project
  • the carrier frequency of the 5th generation wireless access system is likely to be higher than that of the 4th generation wireless access system, and the carrier frequency range to be selected includes 30 GHz, 60 GHz, and the like.
  • the terminal device When the terminal device initially accesses the system, it is required to detect a synchronization signal block (SS block), and the synchronization signal block includes a synchronization signal and a broadcast channel.
  • the terminal device receives the broadcast information carried by the broadcast channel to obtain the time-frequency resource where the control channel is located.
  • the broadcast information carries the system bandwidth information, and the system bandwidth information is used to indicate the frequency domain resource of the control channel resource set.
  • the new generation wireless communication system developed by the 5th generation mobile communication technology (5-Generation, 5G) is called new radio (NR).
  • NR new radio
  • NR supports more bandwidth and more services.
  • system bandwidth information is not included in the broadcast information, so the user equipment cannot obtain access bandwidth information.
  • a related technical solution proposes that the control channel resource set indicated by the broadcast information occupies a continuous frequency domain resource.
  • the present application provides a method for transmitting information, a terminal device, and a network device, and notifies a time-frequency resource of a control channel by using configuration information of a control channel resource set, where the control channel is discontinuous on a time-frequency resource, and the time of the control channel is
  • the frequency resource is composed of a plurality of time-frequency resource blocks, and there are intervals between the plurality of time-frequency resource blocks, and the terminal device can obtain better frequency diversity gain when receiving the control information on the control channel, thereby improving transmission efficiency.
  • a method for information transmission includes: receiving, by a terminal device, configuration information of a control channel resource set, where the configuration information is used to indicate a resource set of a control channel, where the configuration information includes a time frequency of the control channel At least one of a quantity of resource blocks and an interval of two adjacent time-frequency resource blocks; the terminal device determines a time-frequency resource of the control channel according to the configuration information; and the terminal device receives control on a time-frequency resource of the control channel information.
  • the time-frequency resource of the control channel is notified by the configuration information of the control channel resource set, where the control channel is discontinuous on the time-frequency resource, and the time-frequency resource of the control channel is multiple
  • the frequency resource blocks are composed, and there are intervals between the plurality of time-frequency resource blocks, so that even if the channel environment causes more signals, the terminal device can obtain better frequency diversity gain when receiving the control information on the control channel. Improve transmission efficiency.
  • the time-frequency resource block includes at least one resource unit group REG set, where the REG set includes multiple REGs that are consecutive or adjacent in a time domain or a frequency domain.
  • the interval between the two adjacent time-frequency resource blocks includes a frequency domain resource corresponding to an integer number of REGs or an integer number of frequency domain resources corresponding to the REG set.
  • the offset of the frequency domain center position of the resource set relative to the frequency domain center position of the synchronization signal block is predefined, or is indicated by the configuration information, the synchronization signal The block includes the configuration information.
  • At least one of the number of the time-frequency resource blocks and the interval between the two adjacent time-frequency resource blocks is predefined.
  • the number of the REG set included in the time-frequency resource block and the number of REGs included in the REG set are predefined or configured by the configuration information. Instructions.
  • the offset of the frequency domain center position of the resource set relative to the offset of the frequency domain center position of the synchronization signal block is determined according to the cell identifier in the synchronization signal block.
  • a method for information transmission comprising: generating, by a network device, configuration information of a control channel resource set, where the configuration information is used to indicate a resource set of a control channel, where the configuration information includes a time frequency of the control channel At least one of the number of resource blocks and the interval between two adjacent time-frequency resource blocks; the network device transmits the configuration information.
  • the method for transmitting information in the second aspect the network device notifying the time-frequency resource of the control channel by using configuration information of the control channel resource set, where the control channel is discontinuous on the time-frequency resource, and the time-frequency resource of the control channel is
  • the time-frequency resource blocks are composed, and there are intervals between the plurality of time-frequency resource blocks, so that even if the channel environment causes more signal multipath, the terminal device can obtain better frequency diversity when receiving control information on the control channel. Gain, improve transmission efficiency.
  • the time-frequency resource block includes at least one resource unit group REG set, where the REG set includes multiple REGs whose time domain or frequency domain is continuous or adjacent.
  • the interval between the two adjacent time-frequency resource blocks includes a frequency domain resource corresponding to an integer number of REGs or an integer number of frequency domain resources corresponding to the REG set in the frequency domain.
  • the offset between the frequency domain center position of the resource set and the frequency domain center position of the synchronization signal block is predefined, or indicated by the configuration information
  • the synchronization signal block includes the Configuration information
  • At least one of the number of the time-frequency resource blocks and the interval between the two adjacent time-frequency resource blocks is predefined.
  • At least one of the number of the REG set included in the time-frequency resource block and the number of REGs included in the REG set is predefined or configured by the configuration Information indication.
  • the offset of the frequency domain center position of the resource set relative to the offset of the frequency domain center position of the synchronization signal block is determined according to the cell identifier in the synchronization signal block.
  • a terminal device including a processor, a memory, and a transceiver for supporting the terminal device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the first aspect and various implementation manners thereof The method of information transmission.
  • the fourth aspect provides a terminal device, including a processing module, a storage module, and a transceiver module, for supporting the terminal device to perform the functions of the terminal device in any of the foregoing first aspect or the first aspect of the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • a network device including a processor, a memory, and a transceiver for supporting the network device to perform a corresponding function in the above method.
  • the processor, the memory and the transceiver are connected by communication, the memory stores instructions, and the transceiver is configured to perform specific signal transceiving under the driving of the processor, the processor is configured to invoke the instruction to implement the second aspect and various implementations thereof The method of information transmission.
  • a network device including a processing module, a storage module, and a transceiver module, is configured to support the terminal device to perform the functions of the terminal device in any of the foregoing second aspect or the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware, and the hardware or software includes one or more modules corresponding to the above functions.
  • a communication system comprising the terminal device provided in the third or fourth aspect, and the network device provided in the fifth or sixth aspect.
  • the communication system can perform the method of determining a reference signal sequence provided by the first aspect and the second aspect above.
  • a computer readable storage medium for storing a computer program comprising instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a ninth aspect a computer readable storage medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or the second aspect of the second aspect.
  • 1 is a schematic diagram of a structure of a sync signal block.
  • FIG. 2 is a schematic diagram of time-frequency resources of a common search space in the prior art.
  • FIG. 3 is a schematic diagram of a communication system of a method and apparatus for information transmission of the present application.
  • FIG. 4 is a schematic flowchart of a method for information transmission according to an embodiment of the present application.
  • Figure 5 is a schematic illustration of an REG of one embodiment of the present application.
  • FIG. 6 is a schematic diagram of an REG of another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a REG set according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a REG set of another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a REG set of another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a control channel resource set according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a frequency domain center position offset of a different cell control channel resource set according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a frequency domain offset of a control channel resource set of different cells according to another embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a method for information transmission according to another embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 16 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a network device according to another embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • LTE/LTE-A LTE/LTE-A frequency division duplex (FDD) system
  • LTE/LTE-A time division double Time division duplex (TDD) system LTE/LTE-A time division double Time division duplex (TDD) system
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • Wi-Fi wireless local area networks
  • WLAN wireless local area networks
  • future 5G communication systems such as: LTE/LTE-A system, LTE/LTE-A frequency division duplex (FDD) system, LTE/LTE-A time division double Time division duplex (TDD) system, universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, public land mobile network (public land mobile network, PLMN) system, device to device (D2D) network system or machine to machine (M2M) network system, wireless fidelity (W
  • the terminal device may also be referred to as a user equipment (UE), a mobile station (MS), a mobile terminal, etc., and the terminal device may be connected by using a wireless device.
  • a radio access network (RAN) communicates with one or more core network devices, for example, the terminal device may include various handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, or connected to a wireless modem. Other processing equipment. It may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a wireless modem, and a handheld device.
  • PDA personal digital assistant
  • WLAN wireless local area networks
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PLMN Public Land Mobile Network
  • the base station may also be referred to as a network side device or an access network device
  • the network side device may be a device for communicating with the terminal device
  • the network device may be an evolved base station (evolutional Node B, eNB) in the LTE system.
  • eNodeB evolved base station
  • gNB evolved base station
  • gNB access point in NR
  • base transceiver station transceiver node
  • in-vehicle device wearable device
  • network device in future 5G network or network side device in future evolved PLMN system
  • the network side device may be an access point (AP) in the WLAN, or may be a global system for mobile communication (GSM) or code dvision multiple access (CDMA).
  • GSM global system for mobile communication
  • CDMA code dvision multiple access
  • BTS Base Transceiver Station
  • eNB evolved NodeB
  • eNodeB evolved NodeB
  • LTE Long Term Evolution
  • the network device may also be a Node B of a 3rd Generation (3G) system.
  • the network device may also be a relay station or an access point, or an in-vehicle device, a wearable device, and a future 5G network.
  • the embodiments of the present application are not limited herein. For convenience of description, in all embodiments of the present application, the foregoing devices for providing wireless communication functions to the MS are collectively referred to as network devices.
  • OFDM orthogonal frequency division multiplexing
  • SCMA sparse code division access
  • filtered orthogonal frequency division (filtered orthogonal frequency division) Multiplexing F-OFDM symbols
  • NOMA non-orthogonal multiple access
  • Subframe A time-frequency resource that occupies the entire system bandwidth in the frequency domain and a time-frequency resource unit in the time domain that is a fixed time length, for example, 1 ms.
  • Time slot refers to a basic time-frequency resource unit that occupies consecutive 7 symbols in the time domain.
  • the embodiments of the present application are not limited herein.
  • Subcarrier width The smallest granularity in the frequency domain.
  • the subcarrier width of one subcarrier is 15 kHz, and in a 5G system, one subcarrier width may be 15 kHz, 30 kHz, or 60 kHz, or the like.
  • the embodiments of the present application are not limited herein.
  • a physical resource block P consecutive subcarriers occupied in the frequency domain, and resources occupied in the time domain are consecutive Q OFDM symbols.
  • P and Q are natural numbers greater than one.
  • the embodiments of the present application are not limited herein.
  • Resource element group P consecutive subcarriers occupied in the frequency domain, and resources occupied in the time domain are consecutive Q OFDM symbols.
  • P is a natural number greater than one.
  • the embodiments of the present application are not limited herein.
  • Control channel element corresponds to a plurality of resource unit groups, and the number of resource unit groups corresponding to one control channel unit is fixed, for example, 6.
  • the embodiments of the present application are not limited herein.
  • FIG. 1 is a schematic diagram of the structure of the synchronization signal block.
  • the synchronization signal block includes a synchronization signal and a broadcast channel.
  • the synchronization signal includes a primary synchronization signal (PSS) and a secondary synchronization signal (SSS), and the synchronization signal is transmitted in a format of a synchronization signal sequence, and different synchronization signal sequences correspond to different cell identifiers.
  • the broadcast channel occupies 24 PRBs
  • the primary synchronization signal and the secondary synchronization signal occupy 12 PRBs
  • the synchronization signal block occupies 4 symbol lengths in the time domain.
  • the terminal device receives the broadcast information carried by the broadcast channel to obtain the time-frequency resource where the control channel is located, and the time-frequency resource where the control channel is located includes at least a common search space, where the common search space is the serving cell, and the terminal device receives the time-frequency resource of the broadcast signaling.
  • the broadcast signaling includes at least one of control information for scheduling paging information and control information indicating random access response information.
  • the broadcast information carries the system bandwidth information, and the system bandwidth information is used to indicate the frequency domain resources of the control channel resource set.
  • the broadcast information includes 3-bit information, and the corresponding system bandwidth includes ⁇ 6, 15, 25 respectively. , 50, 75, 100 ⁇ physical resource blocks, or corresponding to ⁇ 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz ⁇ bandwidth values.
  • FIG. 2 is a schematic diagram of a time-frequency resource of a common search space in the prior art, and in FIG.
  • the horizontal axis is the frequency domain
  • the common search space (CSS) of each cell is composed of multiple CCEs, for example, eight, wherein each CCE includes six PRBs in the frequency domain, and the control channel is 2 OFDM symbols are occupied in the time domain, and 2, 1, 0, -1, and -2 in FIG.
  • the frequency domain resources occupied by the control channel are continuous, that is, there is no interval between the eight CCEs, and the control of five different cells shown in FIG.
  • the frequency domain of the channel is partially overlapped, so that the control information is easily interfered by the neighboring cell, and the control channel is continuous in the frequency domain. If the channel environment causes more signals, the transmitted control information is not easy to obtain the frequency. Diversity gain.
  • the system bandwidth information is not included in the broadcast information, and therefore, the user cannot control the time-frequency resources of the channel, and thus the user cannot obtain the access bandwidth information.
  • the embodiment of the present application provides a method for information transmission, which can notify a terminal device of a time-frequency resource of a control channel by using configuration information of a synchronization signal block, and, in the case of ensuring low interference of a neighboring cell, It is possible to obtain more frequency diversity gains.
  • the communication system 100 includes a network device 102 that can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114. Additionally, network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , encoder, demultiplexer or antenna, etc.).
  • a network device 102 can include multiple antennas, such as antennas 104, 106, 108, 110, 112, and 114.
  • network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer) , encoder, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize a different frequency band than that used by the reverse link 126.
  • forward link 118 and reverse link 120 can use a common frequency band
  • forward link 124 and reverse link 126 can use a common frequency band
  • Each antenna (or set of antennas consisting of multiple antennas) and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antennas of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system 100 may be a PLMN network or a D2D network or an M2M network or other network.
  • FIG. 3 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG. 3.
  • FIG. 4 is a schematic flowchart of a method 200 for information transmission according to an embodiment of the present application.
  • the method 200 can be applied to the scenario shown in FIG. It is also applicable to other communication scenarios, and the embodiments of the present application are not limited herein.
  • the method 200 includes:
  • the terminal device receives configuration information of a control channel resource set, where the configuration information is used to indicate a resource set of the control channel, where the configuration information includes a quantity of the time-frequency resource block of the control channel and an interval between two adjacent time-frequency resource blocks. At least one of them.
  • the terminal device determines a time-frequency resource of the control channel according to the configuration information.
  • the terminal device receives control information on a time-frequency resource of the control channel.
  • the terminal device first determines the time-frequency resource of the control channel in the process of initially accessing the system, and after determining the time-frequency resource of the control channel, it will be on the time-frequency resource of the control channel.
  • the control channel is mainly used for transmitting control information or synchronization data, and is mainly composed of one or more of a common search space channel CSS and a terminal device exclusive search space.
  • the public search space is a serving cell, and the terminal device receives the broadcast control information or the time-frequency resource of the terminal device-specific control information, and the broadcast control information includes at least one of control information for scheduling paging information and control information for indicating random access response information.
  • the synchronization signal block includes broadcast information and a synchronization signal, and the broadcast information includes configuration information of the control channel resource set, and the synchronization signal carries a cell identifier.
  • the terminal device receives the configuration information of the control channel resource set sent by the network device, where the configuration information is used to indicate a resource set of the control channel, where the configuration information includes the number of time-frequency resource blocks of the control channel and two adjacent time-frequency resources.
  • At least one of the intervals of the block for example, when the configuration information includes the number of time-frequency resource blocks of the control channel, the interval between the adjacent two time-frequency resource blocks may be predefined by the system, or when the configuration information When the interval between two adjacent time-frequency resource blocks of the control channel is included, the number of time-frequency resource blocks of the control channel may be predefined by the system.
  • the control channel is discontinuous on the time-frequency resource, and the time-frequency resource of the control channel is composed of a plurality of time-frequency resource blocks, and the time-frequency resource blocks are spaced apart, for example, may have a certain frequency domain.
  • the interval or time domain has a certain interval.
  • the terminal device determines the time-frequency resource of the control channel according to the configuration information, that is, determines the time-frequency resource of the control channel according to the number of the time-frequency resource blocks and the interval information of the adjacent two time-frequency resource blocks.
  • the terminal device After determining the time-frequency resource of the control channel, the terminal device receives the control information on the time-frequency resource of the control channel, and determines the accessed cell and the cell bandwidth according to the received control information, for the subsequent sum.
  • Network devices communicate.
  • configuration information of the control channel resource set may include other information or content about the control channel resource set in addition to the number of time-frequency resource blocks of the control channel and the interval between two adjacent time-frequency resource blocks.
  • the embodiment of the present application is not limited herein.
  • configuration information of the control channel resource set may also include other information of the control channel resource set, for example.
  • Information such as the frequency domain range of the control channel.
  • time-frequency resource block may be any granularity of time-frequency resource blocks specified by the protocol, for example, in units of PRBs.
  • the embodiments of the present application are not limited herein.
  • the information transmission method provided by the embodiment of the present application notifies the time-frequency resource of the control channel by using the configuration information of the control channel resource set, where the control channel is discontinuous on the time-frequency resource, and the time-frequency resource of the control channel is multiple.
  • the time-frequency resource block is composed, and there are intervals between the plurality of time-frequency resource blocks, so that even if the channel environment causes more signal multipath, the terminal device can obtain better frequency diversity gain when receiving the control information on the control channel. Improve transmission efficiency.
  • the time-frequency resource block includes at least one resource unit group REG set, where the REG set includes multiple REGs whose time domain or frequency domain is continuous or adjacent.
  • multiple REGs in the frequency domain or the time domain may be combined into one REG set, or multiple REGs in the frequency domain or the time domain may be bundled together to form a REG bundle (bundle). ).
  • the REG set may be referred to as an REG bundle, and may also be referred to as an REG group.
  • the specific name of the REG set is not limited in this application.
  • the physical downlink control channel (PDCCH) is mapped to the REG through the CCE, and multiple REGs corresponding to each CCE are bound together to form one or more REG sets.
  • the terminal device can utilize the REG set instead of a demodulation reference signal (DMRS) available in a single REG for joint channel estimation, thereby providing channel estimation accuracy.
  • DMRS demodulation reference signal
  • 5 and 6 are schematic views of an REG of an embodiment of the present application.
  • the REG consists of 12 REs, of which 2 REs are used for DMRS, 10 REs are used for downlink control infornation (DCI), and in Figure 6, 4 REs are used for DMRS, 6 REs are used for DCI.
  • the time-frequency resource block includes at least one REG set, and each REG set includes a plurality of REGs whose time domain or frequency domain is continuous or adjacent.
  • the continuous REG in the frequency domain means that the REG number is continuous in the frequency domain, that is, there is no subcarrier spacing between two adjacent REGs, and the subcarriers of two adjacent REGs are continuous, and there is no idle frequency domain. section.
  • the consecutive REGs in the time domain mean that the REG numbers are consecutive in the time domain, that is, there is no OFDM symbol interval between two adjacent REGs, and the OFDM symbols of two adjacent REGs are continuous.
  • the adjacent REG in the frequency domain means that the REG number is discontinuous in the frequency domain, that is, there is a subcarrier spacing between two adjacent REGs, and the subcarrier spacing can be used to communicate with other terminal devices or transmit other signals. Therefore, the subcarriers of two adjacent REGs are not contiguous.
  • the adjacent REGs in the time domain mean that the REG numbers are discontinuous in the time domain, that is, there is an OFDM symbol interval between two adjacent REGs, and the OFDM symbols of two adjacent REGs are discontinuous.
  • FIG. 7 is a schematic diagram of a REG set according to an embodiment of the present application.
  • the REG set can be in four different formats.
  • the REG set shown in the format 1 includes one REG
  • the REG set shown in the format 2 includes two consecutive REGs in the frequency domain
  • the REG set shown in the format 3 includes three consecutive REGs in the frequency domain, as shown in the format 4
  • the REG set includes six consecutive REGs in the frequency domain.
  • FIG. 8 is a schematic diagram of a REG set of another embodiment of the present application.
  • the REG collection can be in 2 different formats.
  • the REG set shown in the format 5 includes two consecutive REGs in the time domain
  • the REG set shown in the format 6 includes 6 REGs, wherein the three REGs whose REG numbers are 0, 1, and 2 are consecutive in the frequency domain, and the REG number is The three REGs of 7, 8 and 9 are consecutive in the frequency domain, the REGs with REG numbers 0 and 7 are consecutive in the time domain, the REGs with REG numbers 1 and 8 are consecutive in the time domain, and the REG numbers are 2 and 9.
  • REG is continuous in the time domain.
  • the REG collection can be in 2 different formats.
  • the REG set shown in the format 7 includes three consecutive REGs in the time domain, and the REG set shown in the format 8 includes 6REGs, wherein the three REGs whose REG numbers are 10, 11, and 12 are consecutive in the time domain, and the REG number
  • the three REGs for 13, 14 and 15 are continuous in the time domain.
  • REGs with REG numbers 10 and 13 are continuous in the frequency domain.
  • the number of consecutive or adjacent REGs in the frequency domain or time domain can be obtained from the format of the REG set.
  • the REG binding size or the format of the REG binding may be predefined based on the control resource set or the search space, so the terminal device god and the network device are well known.
  • the format of the REG binding or the format of the REG binding may also be notified to the terminal device by the network device, for example, by high-level signaling, such as radio resource control (RRC) signaling to the terminal device.
  • RRC radio resource control
  • the terminal device can be notified based on the control resource set or the search space configuration information.
  • Any one of the at least one REG set satisfies at least one of the following conditions: m consecutive or adjacent m PRBs in the frequency domain, m is a positive integer, or n symbols consecutive or adjacent in the time domain, n is a positive integer .
  • n can take values of 1, 2, 3, and the like.
  • the proximity in the frequency domain here means that a plurality of RBs configured in the control resource set may be discontinuous in the frequency domain, but the indexes may be consecutive after being arranged in ascending or descending order of the frequency domain.
  • the proximity in the time domain means that a plurality of RBs configured in the control resource set may be discontinuous in the time domain, but after the time domain is sorted in ascending or descending order, the indexes may be continuous.
  • the time-frequency resource block includes at least one REG set.
  • the control channel includes multiple REG sets in the frequency domain, and there are intervals between two adjacent REG sets in the multiple REG sets, and the interval includes at least one value that is not 0. That is, for a cell, the control channel is discontinuous in the frequency domain, and multiple REG sets constituting the time-frequency resource of the control channel are spaced apart, and the value of the interval may be predefined, or may be different according to different The situation is configured to a different value.
  • the value of the interval includes at least one value that is not 0. If the value of the interval is 0, the time-frequency resource corresponding to the control channel is continuous in the frequency domain.
  • the value of the interval may include multiple, and the values of the multiple intervals may be the same or different.
  • FIG. 10 is a schematic diagram of a control channel resource set according to an embodiment of the present application.
  • the control channel resource set includes only one in the time domain. OFDM symbol, and occupying 48 REGs in the entire frequency domain, that is, the REG number is from 0 to 47, but the control channel is not continuous in the frequency domain, and the control channel includes a total of 4 REG sets in the frequency domain, adjacent
  • the two REG sets are spaced apart, that is, there are 4 intervals, each interval includes 6 REGs, and each REG set also includes 6 consecutive REGs in the frequency domain, that is, the terminal device is in the 4 REG sets.
  • the receiving frequency control information is received in the frequency domain.
  • the schematic diagram of the frequency domain of the control channel shown in FIG. 10 is only a specific example of the embodiment of the present application, and should not impose any limitation on the embodiments of the present application.
  • the control channel may occupy other numbers of REGs in the entire frequency domain, and the control channel may include other numbers of REG sets and the like in the frequency domain, and the multiple intervals may also be different.
  • the frequency domain of the interval may be greater than the frequency domain corresponding to the REG set, and may be equal to the frequency domain corresponding to the REG set, or may be smaller than the frequency domain corresponding to the REG set.
  • the embodiments of the present application are not limited herein.
  • the unit of the frequency domain resource occupied by the control channel in the frequency domain is a REG set or a REG.
  • the unit of the frequency domain resource occupied by the control channel in the frequency domain may also be It is a PRB or PRB set, or a CCE, etc., and the embodiment of the present application is not limited herein.
  • the REG set includes N REGs, wherein the value of N is any one of positive integer multiples of 1, 2, 3, 2, or 3.
  • the REG set is composed of REGs, which include one OFDM symbol in the time domain and 12 subcarriers in the frequency domain.
  • the REG set may include N REGs, and the value of N is any one of positive integer multiples of 1, 2, 3, 2, or 3. That is, the REG set may be composed of two REGs, consisting of three REGs, or consisting of six REGs, etc., as long as the number of REGs constituting the REG set is a positive integer multiple of 1, 2, 3, 2 or 3.
  • REG set may also include other numbers of REGs, which are not limited herein.
  • the interval of the adjacent time-frequency resource block includes a frequency domain resource corresponding to an integer number of REGs or an integer number of frequency domain resources corresponding to the REG set in the frequency domain.
  • the granularity of the frequency domain interval of the adjacent time-frequency resource block may be in units of REG, that is, the frequency domain interval may include a frequency domain resource corresponding to an integer number of REGs, for example, the frequency domain interval is five.
  • the frequency domain resource corresponding to the REG because the frequency domain interval includes a plurality of different values, the frequency domain interval may also be different according to the frequency domain resource.
  • the frequency domain interval may be greater than a frequency domain corresponding to one REG set, and may be equal to a frequency domain corresponding to one REG set, or may be smaller than a frequency domain corresponding to one REG set.
  • the granularity of the frequency domain interval may also be in the frequency domain of the PRB or other frequency domain units, which is not limited herein.
  • the interval of the adjacent time-frequency resource block includes a frequency domain resource corresponding to an integer number of REG sets in the frequency domain.
  • the granularity of the frequency domain interval of the adjacent time-frequency resource block may be in units of REG sets, that is, the frequency domain interval may include a frequency domain resource corresponding to an integer number of REG sets, for example, the frequency domain interval is
  • the frequency domain corresponding to the frequency domain of the five REGs is the same as the frequency domain corresponding to the REG set, that is, the frequency domain corresponding to the REG set is the same as that shown in FIG.
  • the resources of the control channel may be in units of REG sets, that is, the frequency domain interval may include a frequency domain resource corresponding to an integer number of REG sets, for example, the frequency domain interval is
  • the frequency domain corresponding to the frequency domain of the five REGs is the same as the frequency domain corresponding to the REG set, that is, the frequency domain corresponding to the REG set is the same as that shown in FIG.
  • the resources of the control channel is the same as that shown in FIG.
  • the granularity of the frequency domain interval may also be in the PRB set or other frequency domain unit set, which is not limited herein.
  • the terminal device determines access bandwidth information of the terminal device according to the interval of the adjacent time-frequency resource block and/or the at least one REG set.
  • the bandwidth information of the terminal device accessing the system may be determined by the resources of the control channel in the frequency domain. Since the control channel is spaced in the frequency domain, the interval and the at least one time-frequency resource block may be used.
  • the terminal device determines, according to the interval, the bandwidth information of the terminal device to access the system, for example, determining that the K times of the frequency domain resource corresponding to the interval is the bandwidth of the terminal device accessing the system according to the predefined, and, for example, may be
  • the bandwidth information of the terminal device accessing the system is determined by an equation related to the frequency domain resource corresponding to the interval, which is not limited herein.
  • the bandwidth information of the terminal device accessing the system according to the at least one time-frequency resource block determining that the K-time of the frequency domain resource corresponding to the at least one time-frequency resource block is the terminal device access system according to the predefined
  • the bandwidth may be determined by using an equation related to a frequency domain resource corresponding to the at least one time-frequency resource block to determine the bandwidth information of the terminal device to access the system, and the like.
  • an offset of a frequency domain center position of the resource set and an offset of a frequency domain center position of the synchronization signal block is predefined, or indicated by the configuration information, where the synchronization signal block includes The configuration information.
  • the frequency domain center position of the control channel of each cell is offset with respect to the frequency domain center position of the broadcast information, and the offset values of different cells are different. That is, the frequency domain center position of the resource set is offset from the frequency domain center position of the synchronization signal block, and the offset offset corresponds to the cell identity.
  • the synchronization signal block includes broadcast information and a synchronization signal, and the broadcast information includes configuration information of the control channel resource set, and the synchronization signal carries a cell identifier.
  • the terminal device determines the offset of the offset according to the cell identifier in the synchronization signal, and can determine the time-frequency resource of the control channel.
  • the identity of the cell is carried on the synchronization signal block sent by the network device.
  • the offset of the frequency domain center position of the resource set relative to the offset of the frequency domain center position of the sync signal block is determined based on the cell identity in the sync signal block. In this way, the frequency domains of the control channels of different cells do not overlap or overlap less, and the interference of neighboring cells is easily reduced when different cells receive control information on respective control channels.
  • the offset value of the offset may be predefined by the system, that is, specified by the protocol, or may be indicated by the configuration information. The embodiments of the present application are not limited herein.
  • the number of offsets of the offset between the frequency domain center position of the control channel resource set and the frequency domain center position of the synchronization signal block may be performed by the time-frequency resource block and two adjacent time-frequency resources.
  • the interval of the blocks is determined.
  • determining, according to the interval between the time-frequency resource block and the adjacent two time-frequency resource blocks, an access bandwidth of the terminal device, and the number of control channel resource sets relative to the frequency offset may be derived according to the access bandwidth.
  • the control channel resource set of the cell 1 is 20 MHz, and the corresponding time domain offset number is 4; the access bandwidth of the cell 2 is 10 MHz, corresponding time.
  • the domain offset is 2.
  • FIG. 11 is a schematic diagram of frequency domain offset of a control channel resource set of different cells according to an embodiment of the present application.
  • the control channel resource set of cell 1 is 20 MHz
  • the control channel resource set of cell 2 is 10 MHz
  • the control channel resource set of the cell 2 is discontinuous in the frequency domain
  • the control channel resource set of the cell 1 and the frequency domain center of the control channel resource set of the cell 2 respectively exist with respect to the frequency domain center position of the synchronization signal block.
  • the frequency domain center of the control channel resource set of the cell 1 is shifted to the left by the frequency domain corresponding to the frequency domain center position of the synchronization signal block, and the frequency of the control channel resource set of the cell 2
  • the domain center is offset to the right by the frequency domain center position of the synchronization signal block by a frequency domain corresponding to one REG set.
  • the control channel resource set of the cell 1 and the control channel resource set of the cell 2 are in the frequency domain. There is less overlap or no overlap. It is possible to reduce interference of neighboring cells when different cells receive control information on respective control channel resource sets.
  • the control channel resource set of the cell 1 is also discontinuous in the frequency domain, and has an interval.
  • the cell 2 may be configured to receive control information in a frequency domain interval portion of the control channel resource set of the cell 1. That is, the frequency domain interval portion of the control channel resource set of the cell 1 is the control channel resource set frequency domain portion of the cell 2.
  • the frequency domain of the control channel resource set of the cell 1 and the frequency domain of the control channel resource set of the cell 2 do not overlap, and the neighboring cells of the different cells are easily received when receiving control information on the respective control channel resource sets. interference.
  • FIG. 11 and FIG. 12 only illustrate that the control channels of different cells do not overlap in the frequency domain by using the frequency domain non-overlapping of the control channel resource sets of the two cells as an example, but the embodiment of the present application does not For example, the control channels of the more cells may not overlap in the frequency domain, that is, different offset values are present in the frequency domain center position of the broadcast information, which is not limited herein.
  • the method for transmitting information provided by the embodiment of the present application is that the control channel of a cell is discontinuous in the entire frequency domain, and has a frequency domain interval, and the terminal device can receive the control information on the control channel of the format, and can also obtain better.
  • the frequency diversity gain improves transmission efficiency.
  • the frequency domain center position of the control channel of the different cell has different offset values from the frequency domain center position of the resource set of the control channel, that is, the frequency domain of the control channel of different cells does not overlap, and different cells can be reduced. Neighbor cell interference received when receiving control information on respective control channels.
  • the time-frequency resource of the control channel is indicated by the configuration information of the control channel resource set, that is, the frequency domain resource of the control channel is determined, and the problem that the time-frequency resource of the control channel cannot be notified in the 5G is solved.
  • At least one of the number of time-frequency resource blocks and the interval of the adjacent two time-frequency resource blocks is predefined.
  • the number of time-frequency resource blocks included in the control channel may be predefined by a protocol.
  • the terminal device may not be notified by signaling. Can save signaling overhead. or.
  • the number of time-frequency resource blocks included in the control channel may also be configured by the network device.
  • the network device configures the number of time-frequency resource blocks, a plurality of different numbers of time-frequency resources may be configured to be fast, and indicated by the configuration information. A certain number of time-frequency resource blocks of the terminal device. This provides flexibility in resource allocation and increases spectrum utilization.
  • the interval between the two adjacent time-frequency resource blocks may also be a protocol pre-defined, or may be configured by the network device, and indicated to the terminal device by the configuration information.
  • the embodiments of the present application are not limited herein.
  • At least one of the number of the REG set included in the time-frequency resource block and the number of REGs included in the REG set is predefined or indicated by the configuration information.
  • the number of the REG set included in the time-frequency resource block may be pre-defined by the protocol, or may be configured by the network device, and indicated to the terminal device by the configuration information.
  • the number of REGs included in the REG set may also be pre-defined by the protocol, or may be configured by the network device, and indicated to the terminal device by the configuration information.
  • the embodiments of the present application are not limited herein.
  • FIG. 13 is a schematic flowchart of a method 300 for information transmission according to an embodiment of the present application, as shown in FIG.
  • the method 300 includes:
  • the network device generates configuration information of a control channel resource set, where the configuration information is used to indicate a resource set of the control channel, where the configuration information includes a quantity of time-frequency resource blocks of the control channel and an interval between two adjacent time-frequency resource blocks. At least one of them.
  • the network device sends the configuration information.
  • the network device notifies the terminal device of the time-frequency resource of the control channel during the initial access of the system, and the terminal device receives the control information on the time-frequency resource, where the control channel is mainly used for transmitting. Signaling or synchronizing data. Since in the 5G system, system bandwidth information is no longer included in the broadcast information. Therefore, in S310, the network device generates configuration information of a control channel resource set, where the configuration information is used to indicate a resource set of the control channel.
  • the control channel includes a common search space CSS, a broadcast channel, and a dedicated control channel, where the configuration information includes at least one of a number of time-frequency resource blocks of the control channel and an interval between two adjacent time-frequency resource blocks, for example, when When the configuration information includes the number of time-frequency resource blocks of the control channel.
  • the interval between the two adjacent time-frequency resource blocks may be predefined by the system, or when the configuration information includes intervals of two adjacent time-frequency resource blocks of the control channel.
  • the number of time-frequency resource blocks of the control channel may be predefined by the system.
  • the control channel is discontinuous on the time-frequency resource, and the time-frequency resource of the control channel is composed of multiple time-frequency resource blocks, and there are intervals between the plurality of time-frequency resource blocks. E.g.
  • the device After the device generates the configuration information of the control channel resource set, the device sends the configuration information to the terminal device. After determining the time-frequency resource of the control channel, the terminal device receives the control information on the time-frequency resource of the control channel. And determining, according to the received control information, the accessed cell and the cell bandwidth, for subsequent communication with the network device.
  • the network device notifies the time-frequency resource of the control channel by using the configuration information of the control channel resource set, where the control channel is discontinuous on the time-frequency resource, and the time-frequency resource of the control channel is Multiple time-frequency resource blocks are formed, and there are intervals between multiple time-frequency resource blocks, so that even if the channel environment causes more signal multipath, the terminal device can obtain better frequency when receiving control information on the control channel. Diversity gain to improve transmission efficiency.
  • the time-frequency resource block includes at least one resource unit group REG set, where the REG set includes multiple REGs whose time domain or frequency domain is continuous or adjacent.
  • the time-frequency resource block includes at least one REG set, and each REG set includes multiple REGs whose time domain or frequency domain is continuous or adjacent.
  • the continuous REG in the frequency domain means that the REG number is continuous in the frequency domain, that is, there is no subcarrier spacing between two adjacent REGs, and the subcarriers of two adjacent REGs are continuous, and there is no idle frequency domain. section.
  • the consecutive REGs in the time domain mean that the REG numbers are consecutive in the time domain, that is, there is no OFDM symbol interval between two adjacent REGs, and the OFDM symbols of two adjacent REGs are continuous, and there is no idle time domain. section.
  • the adjacent REG in the frequency domain means that the REG number is discontinuous in the frequency domain, that is, there is a subcarrier spacing between two adjacent REGs, and the subcarrier spacing can be used to communicate with other terminal devices or transmit other signals. Therefore, the subcarriers of two adjacent REGs are not contiguous.
  • the adjacent REGs in the time domain mean that the REG numbers are discontinuous in the time domain, that is, there is an OFDM symbol interval between two adjacent REGs, and the OFDM symbols of two adjacent REGs are discontinuous.
  • the time-frequency resource block includes at least one resource unit group REG set.
  • the control channel includes multiple REG sets in the frequency domain, and there are intervals between two adjacent REG sets in the multiple REG sets, and the interval includes at least one value that is not 0. That is, for a cell, the control channel is discontinuous in the frequency domain, and the plurality of REG sets constituting the time-frequency resource of the control channel are spaced apart, and the value of the interval may be set according to a system protocol, and may be configured according to Different situations are configured to different values.
  • the value of the interval includes at least one value that is not 0. If the value of the interval is 0, the time-frequency resource corresponding to the control channel is continuous in the frequency domain.
  • the value of the interval may include multiple, and the values of the multiple intervals may be the same or different.
  • time-frequency resource block may further include at least one PRB set, where the PRB set includes multiple PRBs whose time domain or frequency domain is continuous or adjacent, which is not limited herein.
  • the REG set includes N REGs, where the value of N is any one of positive integer multiples of 1, 2, 3, 2, or 3.
  • the REG set is composed of REGs, which include one OFDM symbol in the time domain and 12 subcarriers in the frequency domain.
  • the REG set may include N REGs, and the value of N is any one of positive integer multiples of 1, 2, 3, 2, or 3. That is, the REG set may be composed of two REGs, consisting of three REGs, or consisting of six REGs, etc., as long as the number of REGs constituting the REG set is a positive integer multiple of 1, 2, 3, 2 or 3.
  • the interval of the adjacent time-frequency resource block includes a frequency domain resource corresponding to an integer number of REGs or an integer number of frequency domain resources corresponding to the REG set in the frequency domain.
  • the interval of the adjacent time-frequency resource block includes a frequency domain resource corresponding to an integer number of REGs or an integer number of frequency domain resources corresponding to the REG set in the frequency domain.
  • the granularity of the interval of the adjacent time-frequency resource block may be in units of REG, that is, the frequency domain interval may include an integer number of REGs, for example, the frequency domain interval is a frequency domain resource corresponding to 5 REGs. Since the frequency domain interval includes a plurality of different values, the frequency domain resources of the frequency domain interval may also be different.
  • the frequency domain of the interval may be greater than a frequency domain corresponding to one REG set, and may be equal to a frequency domain corresponding to one REG set, or may be smaller than a frequency domain corresponding to one REG set.
  • the granularity of the frequency domain interval may also be a unit of a PRB or other frequency domain unit, which is not limited herein.
  • the interval of the adjacent time-frequency resource block includes a frequency domain resource corresponding to an integer number of REG sets in the frequency domain.
  • the granularity of the frequency domain interval of the adjacent time-frequency resource block may be in units of REG sets, that is, the frequency domain interval may include a frequency domain resource corresponding to an integer number of REG sets, for example, the frequency domain interval is The frequency domain corresponding to the five REG sets, when the frequency domain interval is a frequency domain resource corresponding to one REG set, that is, the frequency domain of the interval and the frequency domain corresponding to the REG set are the same, that is, the control shown in FIG.
  • the frequency domain resource of the channel when the frequency domain interval is a frequency domain resource corresponding to one REG set, that is, the frequency domain of the interval and the frequency domain corresponding to the REG set are the same, that is, the control shown in FIG.
  • the frequency domain resource of the channel when the frequency domain interval is a frequency domain resource corresponding to one REG set, that is, the frequency domain of the interval and the frequency domain corresponding to the REG set are the same, that is, the control shown in FIG.
  • the granularity of the frequency domain interval may also be in the PRB set or other frequency domain unit set, which is not limited herein.
  • an offset of a frequency domain center position of the resource set and an offset of a frequency domain center position of the synchronization signal block is predefined, or indicated by the configuration information, where the synchronization signal block includes The configuration information.
  • the frequency domain center position of the control channel of each cell is offset with respect to the frequency domain center position of the broadcast information, and the offset values of different cells are different. That is, the frequency domain center position of the resource set is offset from the frequency domain center position of the synchronization signal block, and the offset offset corresponds to the cell identity.
  • the synchronization signal block includes broadcast information and a synchronization signal, and the broadcast information includes configuration information of the control channel resource set, and the synchronization signal carries a cell identifier.
  • the terminal device determines the offset of the offset according to the cell identifier in the synchronization signal block.
  • the offset of the frequency domain center position of the resource set relative to the offset of the frequency domain center position of the synchronization signal block is determined according to the cell identity in the synchronization signal block. In this way, the frequency domains of the control channels of different cells do not overlap or overlap less, and the interference of neighboring cells is easily reduced when different cells receive control information on respective control channels.
  • the offset value of the offset may be predefined by the system, that is, specified by the protocol, or may be indicated by the configuration information. The embodiments of the present application are not limited herein.
  • At least one of the number of time-frequency resource blocks and the interval of the adjacent two time-frequency resource blocks is predefined.
  • the number of time-frequency resource blocks included in the control channel may be pre-defined by the protocol.
  • the signaling may not be notified to the terminal device. In this way, signaling overhead can be saved.
  • the number of time-frequency resource blocks included in the control channel may also be configured by the network device.
  • the network device configures the number of time-frequency resource blocks, a plurality of different numbers of time-frequency resources may be configured to be fast, and the configuration information is adopted. A certain number of time-frequency resource blocks are indicated to the terminal device. This provides flexibility in resource allocation and increases spectrum utilization.
  • the interval between the two adjacent time-frequency resource blocks may also be a protocol pre-defined, or may be configured by the network device, and indicated to the terminal device by the configuration information.
  • the embodiments of the present application are not limited herein.
  • At least one of the number of REG sets included in the time-frequency resource block and the number of REGs included in the REG set is predefined or indicated by the configuration information.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be addressed by the present application.
  • the implementation of the embodiments imposes any limitations.
  • the number of REG sets included in the time-frequency resource block may be pre-defined by the protocol, or may be configured by the network device, and indicated to the terminal device by the configuration information.
  • the number of REGs included in the REG set may also be pre-defined by the protocol, or may be configured by the network device, and indicated to the terminal device by the configuration information.
  • the embodiments of the present application are not limited herein.
  • the method for transmitting information provided by the embodiment of the present application is that the control channel of a cell is discontinuous in the entire frequency domain and has a frequency domain interval.
  • the frequency domain center position of the control channel of the different cell has different offset values from the frequency domain center position of the resource set of the control channel, that is, the frequency domain of the control channel of different cells does not overlap, and the different cells can be reduced. Neighbor cell interference received when receiving control information on respective control channels.
  • the time-frequency resource of the control channel is indicated by the configuration information of the control channel resource set, that is, the frequency domain resource of the control channel is determined, and the problem that the time-frequency resource of the control channel cannot be notified in the 5G is solved.
  • the method for transmitting information in the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 13.
  • the terminal device and the network device in the embodiments of the present application are described in detail below with reference to FIG. 14 to FIG.
  • FIG. 14 is a schematic block diagram of a terminal device according to an embodiment of the present application. It should be understood that the terminal device embodiment and the method embodiment correspond to each other. A similar description may refer to the method embodiment, and the terminal device 400 shown in FIG. 14 may be used to perform the steps corresponding to the terminal device in FIG.
  • the terminal device 400 includes a processor 410, a memory 420 and a transceiver 430.
  • the processor 410, the memory 420 and the transceiver 430 are connected by communication, the memory 420 stores instructions, and the processor 410 is configured to execute instructions stored in the memory 420, the transceiver
  • the 430 is configured to perform specific signal transceiving under the driving of the processor 410.
  • the transceiver 430 is configured to receive configuration information of a control channel resource set, where the configuration information is used to indicate a resource set of the control channel, where the configuration information includes the number of time-frequency resource blocks of the control channel and two adjacent time-frequency resources. At least one of the intervals of the blocks.
  • the processor 410 is configured to determine a time-frequency resource of the control channel according to the configuration information.
  • the transceiver 430 is further configured to receive control information on a time-frequency resource of the control channel.
  • the terminal device provided by the embodiment of the present application obtains the time-frequency resource of the control channel by using the configuration information of the control channel resource set, where the control channel is discontinuous on the time-frequency resource, and the time-frequency resource of the control channel is composed of multiple time-frequency resources.
  • the resource blocks are composed of multiple time-frequency resource blocks, so that even if the channel environment causes multiple signals, the terminal device can obtain better frequency diversity gain when receiving control information on the control channel, thereby improving Transmission efficiency.
  • the various components in terminal device 400 communicate with one another via a communication connection, i.e., processor 410, memory 420, and transceiver 430, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 410, memory 420, and transceiver 430
  • the foregoing method embodiments of the present application may be applied to a processor, or the processor may implement the steps of the foregoing method embodiments.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP, a digital signal processor (DSP), an application specific integrated circuit (application).
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processor
  • application application specific integrated circuit
  • ASIC Specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the time-frequency resource block includes at least one resource unit group REG set, where the REG set includes multiple REGs whose time domain or frequency domain is continuous or adjacent.
  • the interval between the two adjacent time-frequency resource blocks includes a frequency domain resource corresponding to an integer number of REGs or an integer number of frequency domain resources corresponding to the REG set in the frequency domain.
  • the offset between the frequency domain center position of the resource set and the frequency domain center position of the synchronization signal block is predefined, or indicated by the configuration information, where the synchronization signal block includes The configuration information.
  • At least one of the number of the time-frequency resource blocks and the interval between the two adjacent time-frequency resource blocks are predefined.
  • At least one of the number of the REG set included in the time-frequency resource block and the number of REGs included in the REG set is predefined, or is indicated by the configuration information.
  • the processor 410 is further configured to determine an offset of the offset according to the cell identifier in the synchronization signal block.
  • the control channel that receives the control information is discontinuous in the entire frequency domain, and has a frequency domain interval, and the terminal device receives the control information on the control channel of the format, and can obtain a better frequency.
  • the frequency domain center position of the control channel of the different cell has different offset values from the frequency domain center position of the resource set of the control channel, and the terminal device does not overlap in the frequency domain of the control channel without the cell, and the terminal device can be lowered. Neighbor cell interference received by different cells when receiving control information on respective control channels.
  • the processor 410 may be implemented by a processing module
  • the memory 420 may be implemented by a storage module
  • the transceiver 430 may be implemented by a transceiver module.
  • the terminal device 500 may include a processing module 510.
  • the terminal device 400 shown in FIG. 14 or the terminal device 500 shown in FIG. 15 can implement the steps performed by the terminal device in FIG. 4 described above. To avoid repetition, details are not described herein again.
  • FIG. 16 shows a schematic block diagram of a network device 600 of one embodiment of the present application. It should be understood that the network device embodiment and the method embodiment correspond to each other. For a similar description, refer to the method embodiment.
  • the network device 600 includes: a processor 610, a memory 620, and a transceiver 630.
  • the processor 610, The memory 620 and the transceiver 630 are connected by communication, the memory 620 stores instructions, the processor 610 is used to execute instructions stored in the memory 620, and the transceiver 630 is configured to perform specific signal transceiving under the driving of the processor 610.
  • the processor 610 is configured to generate configuration information of a control channel resource set, where the configuration information is used to indicate a resource set of the control channel, where the configuration information includes the number of time-frequency resource blocks of the control channel and two adjacent time-frequency resources. At least one of the intervals of the blocks.
  • the transceiver 620 is configured to send the configuration information.
  • An embodiment of the present application provides a network device, where a network device notifies a time-frequency resource of a control channel by using configuration information of a control channel resource set, where the control channel is discontinuous on a time-frequency resource, and the time-frequency resource of the control channel is multiple.
  • the frequency resource blocks are composed, and there are intervals between the plurality of time-frequency resource blocks, so that even if the channel environment causes more signals, the terminal device can obtain better frequency diversity gain when receiving the control information on the control channel. Improve transmission efficiency.
  • the various components in network device 600 communicate with each other via a communication connection, i.e., processor 610, memory 620, and transceiver 630, through internal connection paths, to communicate control and/or data signals.
  • a communication connection i.e., processor 610, memory 620, and transceiver 630
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a central processing unit CPU, NP or a combination of CPU and NP, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in this application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the present application may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the time-frequency resource block includes at least one resource unit group REG set, where the REG set includes multiple REGs whose time domain or frequency domain is continuous or adjacent.
  • the interval between the two adjacent time-frequency resource blocks includes a frequency domain resource corresponding to an integer number of REGs or an integer number of frequency domain resources corresponding to the REG set in the frequency domain.
  • the offset between the frequency domain center position of the resource set and the frequency domain center position of the synchronization signal block is predefined, or indicated by the configuration information, where the synchronization signal block includes The configuration information.
  • At least one of the number of the time-frequency resource blocks and the interval between the two adjacent time-frequency resource blocks are predefined.
  • At least one of the number of the REG set included in the time-frequency resource block and the number of REGs included in the REG set is predefined, or is indicated by the configuration information.
  • the network device provided by the embodiment of the present application provides a control channel that is discontinuous in the entire frequency domain and has a frequency domain interval.
  • the frequency domain center position of the control channel of the different cell has different offset values from the frequency domain center position of the resource set of the control channel, that is, the frequency domain of the control channel of different cells does not overlap, and the different cells can be reduced. Neighbor cell interference received when receiving control information on respective control channels.
  • the time-frequency resource of the control channel is indicated by the configuration information of the control channel resource set, and the problem that the time-frequency resource of the control channel cannot be notified in the 5G is solved.
  • the processor 610 may be implemented by a processing module
  • the memory 620 may be implemented by a storage module
  • the transceiver 630 may be implemented by a transceiver module.
  • the network device 700 may include a processing module 710.
  • the network device 600 shown in FIG. 16 or the network device 700 shown in FIG. 17 can implement the steps performed by the network device in FIG. 13 described above. To avoid repetition, details are not described herein again.
  • the embodiment of the present application further provides a computer readable medium for storing computer program code, the computer program comprising instructions for performing the method of information transmission implemented by the present application in FIGS. 4 and 8.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in this embodiment of the present application.
  • the embodiment of the present application further provides a communication system, which includes the terminal device provided by the foregoing embodiment of the present application and the network device provided by the foregoing embodiment of the present application.
  • the communication system can complete any information provided by the embodiment of the present application. The method of transmission.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息传输的方法、终端设备和网络设备,该方法包括:终端设备接收控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个;该终端设备根据该配置信息确定该控制信道的时频资源;该终端设备在该控制信道的时频资源上接收控制信息。通过控制信道资源集合的配置信息通知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,终端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。

Description

信息传输的方法、终端设备和网络设备
本申请要求于2017年6月16日提交中国专利局、申请号为201710461711.2、申请名称为“信息传输的方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中信息传输的方法、终端设备和网络设备。
背景技术
由第三代伙伴项目(3rd generation partnership project,3GPP)制定的长期演进(long term evolution,LTE)系统标准被认为是第四代无线接入系统标准,LTE系统广泛部署在小于6GHz频段范围。然而,根据可划分频谱的分布,第5代无线接入系统的载波频率极有可能会高于第4代无线接入系统,待选的载频范围包括30GHz、60GHz等。
在终端设备初始接入系统时,需要检测同步信号块(synchronization signal block,SS block),同步信号块包括同步信号和广播信道。终端设备接收广播信道承载的广播信息获得控制信道所在的时频资源,在LTE系统中,广播信息承载系统带宽信息,而系统带宽信息用于指示所述控制信道资源集合的频域资源,针对第五代移动通信技术(5-Generation,5G)研发的新一代无线通信系统称为新无线(new radio,NR)。NR支持更大带宽,更多业务。5G系统中,系统带宽信息不会包括在广播信息中,因此用户设备无法获取接入带宽信息。此外,有相关技术方案提出,广播信息指示的控制信道资源集合占用连续的频域资源。
发明内容
本申请提供一种信息传输的方法、终端设备和网络设备,通过控制信道资源集合的配置信息通知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,终端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。
第一方面,提供了一种信息传输的方法,该方法包括:终端设备接收控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个;该终端设备根据该配置信息确定该控制信道的时频资源;该终端设备在该控制信道的时频资源上接收控制信息。
第一方面提供的信息传输的方法,通过控制信道资源集合的配置信息通知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,这样,即使信道环境导致信号多径较多,终 端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。
在第一方面的一种可能的实现方式中,该时频资源块包括至少一个资源单元组REG集合,该REG集合包括在时域或频域为连续或邻近的多个REG。
在第一方面的一种可能的实现方式中,该相邻两个时频资源块的间隔在频域上包括整数个REG对应的频域资源或整数个该REG集合对应的频域资源。
在第一方面的一种可能的实现方式中,该资源集合的频域中心位置相对于同步信号块的频域中心位置的偏移为预定义的,或者是由该配置信息指示,该同步信号块包括该配置信息。
在第一方面的一种可能的实现方式中,该时频资源块的数量和该相邻两个时频资源块的间隔中的至少一个为预定义的。
在第一方面的一种可能的实现方式中,该时频资源块包括的该REG集合的个数和该REG集合包括的REG个数中的至少一个,是预定义,或者是由该配置信息指示。
在第一方面的一种可能的实现方式中,该资源集合的频域中心位置相对于同步信号块的频域中心位置的偏移的偏移量是根据该同步信号块中的小区标识确定的。
第二方面,提供了一种信息传输的方法,该方法包括:网络设备生成控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个;该网络设备发送该配置信息。
第二方面提供的信息传输的方法,网络设备通过控制信道资源集合的配置信息通知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,这样,即使信道环境导致信号多径较多,终端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。
在第二方面的一种可能的实现方式中,该时频资源块包括至少一个资源单元组REG集合,该REG集合包括时域或频域为连续或邻近的多个REG。
在第二方面的一种可能的实现方式中,该相邻两个时频资源块的间隔在频域上包括整数个REG对应的频域资源或整数个该REG集合对应的频域资源。
在第二方面的一种可能的实现方式中,该资源集合的频域中心位置与同步信号块的频域中心位置的偏移为预定义,或者由该配置信息指示,该同步信号块包括该配置信息。
在第二方面的一种可能的实现方式中,该时频资源块的数量和该相邻两个时频资源块的间隔中的至少一个为预定义的。
在第二方面的一种可能的实现方式中,该时频资源块包括的该REG集合的个数和该REG集合包括的REG个数中的至少一个,是预定义的,或者是由该配置信息指示。
在第二方面的一种可能的实现方式中,该资源集合的频域中心位置相对于同步信号块的频域中心位置的偏移的偏移量是根据该同步信号块中的小区标识确定的。
第三方面,提供了一种终端设备,包括处理器、存储器和收发器,用于支持该终端设备执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第一方面及其各种实现方式中的信息传输的方法。
第四方面,提供了一种终端设备,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第五方面,提供了一种网络设备,包括处理器、存储器和收发器,用于支持该网络设备执行上述方法中相应的功能。处理器、存储器和收发器通过通信连接,存储器存储指令,收发器用于在处理器的驱动下执行具体的信号收发,该处理器用于调用该指令实现上述第二方面及其各种实现方式中的信息传输的方法。
第六方面,提供了一种网络设备,包括处理模块、存储模块和收发模块,用于支持终端设备执行上述第二方面或第二方面的任意可能的实现方式中的终端设备的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或者多个与上述功能相对应的模块。
第七方面,提供了一种通信系统,该通信系统包括上述第三或第四方面提供的终端设备以及上述第五或第六方面提供的网络设备。该通信系统可以完成上述第一方面和第二方面提供的确定参考信号序列的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第一方面或第一方面的任一种可能的实现方式的方法的指令。
第九方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行上述第二方面或第二方面的任一种可能的实现方式的方法的指令。
附图说明
图1是同步信号块结构的示意图。
图2是现有技术中公共搜索空间的时频资源的示意图。
图3是适用于本申请的信息传输的方法和装置的通信系统的示意图。
图4是本申请一个实施例的信息传输的方法的示意性流程图。
图5本申请一个实施例的REG的示意图。
图6本申请另一个实施例的REG的示意图。
图7是本申请一个实施例REG集合的示意图。
图8是本申请另一个实施例REG集合的示意图。
图9是本申请另一个实施例REG集合的示意图。
图10是本申请一个实施例的控制信道资源集合的示意图。
图11是本申请一个实施例的不同小区控制信道资源集合的频域中心位置偏移的示意图。
图12是本申请另一个实施例的不同小区的控制信道资源集合的频域偏移的示意图。
图13是本申请另一个实施例的信息传输的方法的示意性流程图。
图14是本申请一个实施例的终端设备的示意性框图。
图15是本申请另一个实施例的终端设备的示意性框图。
图16是本申请一个实施例的网络设备的示意性框图。
图17是本申请另一个实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
应理解,本申请的技术方案可以应用于各种通信系统,例如:LTE/LTE-A系统、LTE/LTE-A频分双工(frequency division duplex,FDD)系统、LTE/LTE-A时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、公共陆地移动网络(public land mobile network,PLMN)系统、设备对设备(device to device,D2D)网络系统或者机器对机器(machine to machine,M2M)网络系统、无线保真(wireless fidelity,Wi-Fi)系统、无线局域网(wireless local area networks,WLAN)以及未来的5G通信系统等。
还应理解,在本申请实施例中,终端设备也可称之为用户设备(user equipment,UE)、移动台mobile station,MS)、移动终端(mobile terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网设备进行通信,例如,终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。还可以包括用户单元、蜂窝电话(cellular phone)、智能手机(smart phone)、无线数据卡、个人数字助理(Personal Digital Assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type Communication,MTC)终端、无线局域网(wireless local area networks,WLAN)中的站点(station,ST)。可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。本申请实施例在此不作限制。
还应理解,基站也可以称之为网络侧设备或者接入网设备,网络侧设备可以是用于与终端设备通信的设备,网络设备可以是LTE系统中的演进型基站(evolutional Node B,eNB或eNodeB),NR中的gNB或接入点,基站收发器、收发节点等,或者车载设备、可穿戴设备,未来5G网络中的网络设备或者未来演进的PLMN系统中的网络侧设备。例如,网络侧设备可以是WLAN中的接入点(access point,AP),也可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code dvision multiple access, CDMA),CDMA中的基站(Base Transceiver Station,BTS)。还可以是LTE系统中的演进的节点B(evolved NodeB,eNB或者eNodeB)。或者,网络设备还可以是第三代(3rd Generation,3G)系统的节点B(Node B),另外,该网络设备还可以是中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本申请实施例在此不作限制。为方便描述,本申请所有实施例中,上述为MS提供无线通信功能的装置统称为网络设备。
下面将对本申请实施例涉及的术语进行简单介绍。
符号:包含但不限于正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、稀疏码分多址技术(sparse code multiplexing access,SCMA)符号、过滤正交频分复用(filtered orthogonal frequency division Multiplexing,F-OFDM)符号、非正交多址接入(non-orthogonal multiple access,NOMA)符号等,本申请实施例在此不作限制。
子帧:一个子帧在频域上占用整个系统带宽的时频资源、在时域上为一固定时间长度的时频资源单元,例如1ms。
时隙:时隙是指一个基本的时频资源单元,在时域上占用连续的7个符号。本申请实施例在此不作限制。
子载波宽度:频域上最小的粒度。例如,在LTE系统中,1个子载波的子载波宽度为15kHz,在5G系统中,1个子载波宽度可能为15kHz,30kHz,或60kHz等。本申请实施例在此不作限制。
物理资源块(physical resource block,PRB):频域上占用的P个连续的子载波,在时域上占用的资源为连续的Q个OFDM符号。其中P和Q为大于1的自然数。例如,一个物理资源块在频域上可占用12个连续的子载波,在时域上可占用7个连续OFDM符号,其中,P=12,Q=7;或者,P=12,Q=14。本申请实施例在此不作限制。
资源单元组(resource element group,REG):频域上占用的P个连续的子载波,在时域上占用的资源为连续的Q个OFDM符号。其中P为大于1的自然数。例如,一个资源单元组在频域上可占用12个连续的子载波,在时域上可占用1个OFDM符号,其中,P=12,Q=1。本申请实施例在此不作限制。
控制信道单元(control channel element,CCE):对应多个资源单元组,一个控制信道单元对应的资源单元组的数量固定,例如,6。本申请实施例在此不作限制。
终端设备初始接入系统时,需要检测同步信号块,图1是同步信号块结构的示意图,从图1中可以看出,同步信号块包括同步信号和广播信道。同步信号包括主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS),同步信号以同步信号序列的格式发送的,不同的同步信号序列对应不同小区标识。广播信道占24个PRB,主同步信号和辅同步信号占12个PRB,同步信号块在时域上占4个符号长度。终端设备接收广播信道承载的广播信息获得控制信道所在的时频资源,控制信道所在的时频资源内至少包括公共搜索空间,公共搜索空间为服务小区内,终端设备接收广播信令的时频资源,而广播信令包括调度寻呼信息的控制信息和指示随机接入应答信息的控制信息中的至少一种。
在LTE系统中,广播信息承载系统带宽信息,而系统带宽信息用于指示控制信道资源 集合的频域资源,例如,广播信息中包括3比特信息,分别对应系统带宽中包括{6,15,25,50,75,100}个物理资源块,或对应{1.4MHz,3MHz,5MHz,10MHz,15MHz,20MHz}带宽值。
在5G系统中,系统带宽信息不会包括在广播信息中,因此用户设备无法获取接入带宽信息。此外,有相关技术方案提出,广播信息指示的控制信道资源集合占用连续的频域资源,如图2所示,图2是现有技术中公共搜索空间的时频资源的示意图,图2中,横轴为频域,每个小区的公共搜索空间(common search space,CSS)由多个CCE组成,例如,8个,其中,每个CCE在频域上包括6个PRB,所述控制信道在时域上占用1个OFDM符号,图2中的2、1、0、-1、-2分别为不同小区的控制信道的频域资源相对于广播信息的中心频点的偏移量,正值和负值分别代表相反方向的偏移量。从图2中可以看出,对于一个小区而言,控制信道所占的频域资源是连续的,即8个CCE之间没有间隔,而且,图2中所示的5个不同的小区的控制信道的频域是有部分重叠的,这样,使得控制信息容易受到邻小区的干扰,控制信道在频域上的连续,若信道环境导致信号多径较多,则传输的控制信息不容易获得频率分集增益。而且,在5G系统中,广播信息中不在包含系统带宽信息,因此,用户无法控制信道的时频资源,这样,用户便无法获得接入带宽信息。
基于上述问题,本申请实施例提供了一种信息传输的方法,可以通过同步信号块的配置信息向终端设备通知控制信道的时频资源,并且,在保证邻小区干扰较低的情况下,尽可能获得更多的频率分集增益。
图3是适用于本申请的信息传输的方法和装置的通信系统的示意图。如图3所示,该通信系统100包括网络设备102,网络设备102可包括多个天线例如,天线104、106、108、110、112和114。另外,网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、编码器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是,例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图3所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在FDD系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在TDD系统和全双工(full duplex)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程 中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络或者D2D网络或者M2M网络或者其他网络,图3只是举例的简化示意图,网络中还可以包括其他网络设备,图3中未予以画出。
下面结合图4详细说明本申请提供的信息传输的方法,图4是本申请一个实施例的信息传输的方法200的示意性流程图,该方法200可以应用在图3所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
如图4所示,该方法200包括:
S210,终端设备接收控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个。
S220,该终端设备根据该配置信息确定该控制信道的时频资源。
S230,该终端设备在该控制信道的时频资源上接收控制信息。
具体而言,在S210中,终端设备在初始接入系统的过程中,会首先确定控制信道的时频资源,在确定控制信道的时频资源后,便会在该控制信道的时频资源上接收控制信息,控制信道主要用于传输控制信息或者同步数据,主要由公共搜索空间信道CSS和终端设备专属搜索空间中的一种或多种组成。公共搜索空间为服务小区内,终端设备接收广播控制信息或终端设备专属控制信息的时频资源,而广播控制信息包括调度寻呼信息的控制信息和指示随机接入应答信息的控制信息中的至少一种。同步信号块包括广播信息和同步信号,广播信息包括该控制信道资源集合的配置信息,该同步信号携带小区标识。终端设备会接收网络设备发送的控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个,例如,当该配置信息包括该控制信道的时频资源块的数量时,该相邻两个时频资源块的间隔可以是系统预定义的,或者当该配置信息包括该控制信道的相邻两个时频资源块的间隔时,该控制信道的时频资源块的数量可以是系统预定义的。该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,例如,可以在频域具有一定的间隔或者时域上具有一定的间隔。
在S220中,终端设备根据该配置信息确定该控制信道的时频资源,即根据该时频资源块的数量和相邻两个时频资源块的间隔信息,确定控制信道的时频资源。
在S230中,在确定了控制信道的时频资源,该终端设备在控制信道的时频资源上接收控制信息,根据接收到的控制信息,确定接入的小区以及小区带宽,用于后续的和网络设备进行通信。
应理解,该控制信道资源集合的配置信息除了包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔之外,还可以包括关于控制信道资源集合的其他信息或者内容,本申请实施例在此不作限制。
还应理解,该控制信道资源集合的配置信息还可以包括该控制信道资源集合的其他信息,例如。该控制信道的频域范围等信息。本申请实施例在此不作限制。
还应理解,该时频资源块可以是协议规定的任何粒度的时频资源块,例如,以PRB为单位等。本申请实施例在此不作限制。
本申请实施例提供的信息传输的方法,通过控制信道资源集合的配置信息通知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,这样,即使信道环境导致信号多径较多,终端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。
可选的,作为一个实施例,该时频资源块包括至少一个资源单元组REG集合,该REG集合包括时域或频域为连续或邻近的多个REG。
为了提供信道估计的精度,可以将频域或者时域连续的多个REG组成一个REG集合,或者,将频域或者时域连续的多个REG绑定(bundling)在一起组成一个REG束(bundle)。所述REG集合可称为REG束(bundle),也可以称为REG组(group),本申请对REG集合的具体名称不作限定。由于物理下行控制信道(physical downlink control channel,PDCCH)通过CCE映射到REG,每个CCE对应的多个REG绑定在一起组成一个或者多个REG集合。对于每个REG集合,终端设备可以利用所述REG集合而不是单个REG中可供使用的解调参考信号(demodulation reference signal,DMRS)进行联合信道估计,从而提供信道估计的精度。图5和图6是本申请实施例的REG的示意图。图5中,REG由12个RE组成,其中,有2个RE用于DMRS,10个RE用于下行控制信息(downlink control infornation,DCI),图6中,有4个RE用于DMRS,6个RE用于DCI。
该时频资源块包括至少一个REG集合,每个REG集合包括时域或频域为连续或邻近的多个REG。频域上连续的REG指的是REG编号在频域上是连续的,即相邻两个REG之间不存在子载波间隔,相邻两个REG的子载波是连续的,无空闲的频域部分。时域上连续的REG指的是REG编号在时域上是连续的,即相邻两个REG之间不存在OFDM符号间隔,相邻两个REG的OFDM符号是连续的。频域上邻近的REG指的是REG编号在频域上是不连续的,即相邻两个REG之间存在子载波间隔,该子载波间隔可以用来和其他终端设备进行通信或者传输其他信令,相邻两个REG的子载波不是连续的。时域上邻近的REG指的是REG编号在时域上是不连续的,即相邻两个REG之间存在OFDM符号间隔,相邻两个REG的OFDM符号是不连续的。
图7是本申请一个实施例REG集合的示意图。图7中,REG集合可以分别为四种不同的格式。格式1所示的REG集合包括一个REG,格式2所示的REG集合包括2个频域上连续的REG,格式3所示的REG集合包括3个频域上连续的REG,格式4所示的REG集合包括6个频域上连续的REG。
图8是本申请另一个实施例REG集合的示意图。REG集合可以分别为2种不同的格式。格式5所示的REG集合包括2个时域上连续的REG,格式6所示的REG集合包括6REG,其中,REG编号为0、1和2的三个REG在频域上连续,REG编号为7、8和9的 三个REG在频域上连续,REG编号为0和7的REG在时域上连续,REG编号为1和8的REG在时域上连续,REG编号为2和9的REG在时域上连续。
图9是本申请另一个实施例REG集合的示意图。REG集合可以分别为2种不同的格式。格式7所示的REG集合包括3个在时域上连续的REG,格式8所示的REG集合包括6REG,其中,REG编号为10、11和12的三个REG在时域上连续,REG编号为13、14和15的三个REG在时域上连续。REG编号为10和13的REG在频域上连续。
应理解,从REG集合的格式可以得到频域或者时域上连续或者邻近的REG的个数。
该REG绑定大小或者REG绑定的格式可以基于控制资源集合或者搜索空间预定义,因此终端设备神和网络设备是共知的。该REG绑定大小或者REG绑定的格式也可以由网络设备通过信令通知给终端设备,例如通过高层信令,如无线资源控制协议(radio resource control,RRC)信令通知给终端设备。例如,可以基于控制资源集合或者搜索空间配置信息通知终端设备。
可选的,作为一个实施例。该至少一个REG集合中任意一个REG集合满足下列条件中的至少一个:频域上连续或者邻近的m个PRB,m为正整数,或者时域上连续或者邻近的n个符号,n为正整数。
例如,m可以取值为1、2、3、6、12等或者2、4、8、16,n可以取值为1、2、3等。
需要指出的是,此处该频域上邻近是指在控制资源集合配置的多个RB可能在频域上不连续,但是按照频域升序或者降序排列后,其索引可以连续。此处该时域上邻近是指在控制资源集合配置的多个RB可能在时域上不连续,但是按照时域升序或者降序排列后,其索引可以连续。
该时频资源块包括至少一个REG集合。例如,该控制信道在频域上包括多个REG集合,该多个REG集合中相邻的两个REG集合存在间隔,该间隔包括至少一个不为0的值。即对于一个小区来说,控制信道在频域上是不连续的,组成控制信道的时频资源的多个REG集合之间是具有间隔的,该间隔的值可以预定义,或者可以根据不同的情况配置成不同的值。该间隔的值至少包括一个不为0的值,若间隔的值为0,则相当于控制信道的时频资源在频域上是连续的。该间隔的值可以包括多个,多个间隔的值可以相同,也可以不相同。
下面结合图10详细说明本申请实施例的信息传输的方法,图10是本申请一个实施例的控制信道资源集合的示意图,如图5所示,控制信道资源集合在时域上仅包括1个OFDM符号,且在整个频域上占了48个REG,即REG的编号从0到47,但是控制信道在频域并不是连续的,控制信道在频域上总共包括4个REG集合,相邻两个REG集合之间是具有间隔的,即有4个间隔,每个间隔包括6个REG,而每个REG集合也包括频域上连续的6个REG,即终端设备在这4个REG集合所在的频域上接接收控制信息。
应理解,图10所示的控制信道的频域的示意图仅是本申请实施例的一个具体例子,而不应对本申请实施例造成任何限制。例如,控制信道在整个频域上也可以占据其他数目的REG,控制信道在频域上也可包括其他数目的REG集合等,多个间隔也可以不相同。该间隔的频域可以大于REG集合对应的频域,可以等于REG集合对应的频域,也可以小于REG集合对应的频域。本申请实施例在此不作限制。
还应理解,上述的控制信道在频域上的占据的频域资源的单位是REG集合或者REG, 在本申请的实施例中,控制信道在频域上的占据的频域资源的单位也可以是PRB或者PRB集合,或者CCE等,本申请实施例在此不作限制。
可选的,作为一个实施例。该REG集合包括N个REG,其中,N的值为1、2、3、2或3的正整数倍数中的任意一个。
具体而言,REG集合是由REG组成的,该REG包括时域一个OFDM符号,频域上连续的12个子载波。而该REG集合可以包括N个REG,N的值为1、2、3、2或3的正整数倍数中的任意一个。即该REG集合可以由2个REG组成,由3个REG组成,或者由6个REG组成等,只要组成REG集合的REG个数为1、2、3、2或3的正整数倍数即可。
应理解,该REG集合也可以包括其他个数的REG,本申请实施例在此不作限制。
可选的,作为一个实施例。该相邻时频资源块的间隔在频域上包括整数个REG对应的频域资源或整数个该REG集合对应的频域资源。
具体而言,该相邻时频资源块的频域间隔的粒度可以是以REG为单位的,即该频域间隔可以包括整数个REG对应的频域资源,例如,该频域间隔为5个REG对应的频域资源,由于该频域间隔包括多个不同的值,因此,该频域间隔对应频域资源也可以不同。该频域间隔可以大于一个REG集合对应的频域,可以等于一个REG集合对应的频域,也可以小于一个REG集合对应的频域。
应理解,该频域间隔的粒度也可以是以PRB所占频域大小或者其他频域单元为单位,本申请实施例在此不作限制。
可选的,作为一个实施例。该相邻时频资源块的间隔在频域包括整数个REG集合对应的频域资源。
具体而言,该相邻时频资源块的频域间隔的粒度可以是以REG集合为单位的,即该频域间隔可以包括整数个REG集合对应的频域资源,例如,该频域间隔为5个REG集合对应的频域资源,当该频域间隔为1个REG集合对应的频域资源时,即该频域间隔的频域和REG集合对应的频域相同,即为图5所示的控制信道的资源。
应理解,该频域间隔的粒度也可以是以PRB集合或者其他频域单元集合为单位,本申请实施例在此不作限制。
可选的,作为一个实施例,该终端设备根据该相邻时频资源块的间隔和/或至少一个REG集合,确定该终端设备的接入带宽信息。
具体而言,终端设备接入系统的带宽信息可以由控制信道在频域上的资源确定,由于控制信道在频域上是有间隔的,因此,可以由该间隔和该至少一个时频资源块来确定,以图10所示的控制信道的频域示意图为例进行说明,在图10中,相邻的两个时频资源块之间间隔6个REG,即该间隔为6个REG对应的频域,4个时频资源块中,每个时频资源块包括11个REG,即具有4个间隔和4个时频资源块,因此,该终端设备的接入带宽为4x6+4x6=48,即终端设备的接入系统的带宽为48个REG对应的带宽值。
或者,终端设备根据该间隔来确定终端设备接入系统的带宽信息,例如,可以根据预定义,确定该间隔对应的频域资源的K倍为终端设备接入系统的带宽,又例如,可以是通过和该间隔对应的频域资源有关的方程来确定终端设备接入系统的带宽信息,本申请实施例在此不作限制。同样,对于终端设备根据至少一个时频资源块确定终端设备接入系统的 带宽信息,也可以是根据预定义,确定至少一个时频资源块对应的频域资源的K倍为终端设备接入系统的带宽,又例如,可以是通过和至少一个时频资源块对应的频域资源有关的方程来确定终端设备接入系统的带宽信息等,本申请实施例在此不作限制。
可选的,作为一个实施例,该资源集合的频域中心位置与同步信号块的频域中心位置的偏移的偏移量为预定义的,或者由该配置信息指示,该同步信号块包括该配置信息。
具体而言,由于不同的小区的控制信道的频域是可能是有部分重叠的,即不同小区的控制信道在频域上可能是有重叠部分,这样,不同小区的在各自控制信道上接收控制信息时容易受到邻小区的干扰。在本申请实施例中,每个小区的控制信道的频域中心位置相对于该广播信息的频域中心位置存在偏移,不同的小区的偏移值是不同的。即该资源集合的频域中心位置与同步信号块的频域中心位置的存在偏移,该偏移的偏移量与小区标识对应。同步信号块包括广播信息和同步信号,广播信息包括该控制信道资源集合的配置信息,该同步信号携带小区标识。即该终端设备根据该同步信号中的小区标识,确定该偏移的偏移量,便可以确定该控制信道的时频资源。小区的标识是承载在网络设备发送的同步信号块上的。该资源集合的频域中心位置相对于同步信号块的频域中心位置的偏移的偏移量是根据该同步信号块中的小区标识确定的。这样,对于不同的小区的控制信道的频域就不会重叠或者重叠较少,可以降低不同小区的在各自控制信道上接收控制信息时容易受到邻小区的干扰。而该偏移的偏移值可以是系统预定义的,即协议规定好的,或者由可以由该配置信息指示。本申请实施例在此不作限制。
可选的,所述控制信道资源集合的频域中心位置与同步信号块的频域中心位置的偏移的偏移量的个数,可由所述时频资源块和相邻两个时频资源块的间隔确定。
根据所述时频资源块和相邻两个时频资源块的间隔确定所述终端设备的接入带宽,根据接入带宽可导出控制信道资源集合相对于频率偏移量的个数。
具体的,在一种可实现方法中,如图11所示,小区1的控制信道资源集合为20MHz,对应的时域偏移个数为4;小区2的接入带宽为10MHz,对应的时域偏移为2个。
图11是本申请一个实施例的不同小区的控制信道资源集合的频域偏移的示意图,图11中,小区1的控制信道资源集合为20MHz,小区2的控制信道资源集合为10MHz,小区1和小区2的控制信道资源集合在频域上都是不连续的,小区1的控制信道资源集合和小区2的控制信道资源集合的频域中心相对于该同步信号块的频域中心位置各自存在一个偏移值,小区1的控制信道资源集合的频域中心相对于该同步信号块的频域中心位置向左偏移了一个REG集合所对应的频域,小区2的控制信道资源集合的频域中心相对于该同步信号块的频域中心位置向右偏移了一个REG集合所对应的频域,偏移之后,小区1的控制信道资源集合的和小区2的控制信道资源集合在频域上就重叠的比较少,或者不重叠。可以降低不同小区的在各自控制信道资源集合上接收控制信息时容易受到邻小区的干扰。
图12是本申请另一个实施例的不同小区的控制信道资源集合的频域偏移的示意图,图12中,小区1的控制信道资源集合在频域上也是不连续的,具有间隔,因此,可以配置小区2在小区1的控制信道资源集合的频域间隔部分接收控制信息,即小区1的控制信道资源集合的频域间隔部分为小区2的控制信道资源集合频域部分。这样,小区1的控制信道资源集合的频域和小区2的控制信道资源集合的频域就不会重叠,也可以降低不同小 区的在各自控制信道资源集合上接收控制信息时容易受到邻小区的干扰。
应理解,上述的图11和图12仅以两个小区的控制信道资源集合的频域不重叠为例来说明不同小区的控制信道在频域上不叠进行说明,但本申请实施例并不限于此,例如,可以是更多的小区的控制信道在频域上不重叠,即相对于广播信息的频域中心位置存在不同的偏移值,本申请实施例在此不作限制。
本申请实施例提供的信息传输的方法,对于一个小区的控制信道在整个频域是不连续的,具有频域间隔,终端设备在这种格式的控制信道上接收控制信息,也可以获得更好的频率分集增益,提高传输效率。而对于不同的小区的控制信道的频域中心位置相对于该控制信道的资源集合的频域中心位置存在不同的偏移值,即不同小区的控制信道的频域不会重叠,可以降低不同小区的在各自的控制信道上接收控制信息时受到的邻小区干扰。并且,通过控制信道资源集合的配置信息来指示控制信道的时频资源,即确定控制信道的频域资源,解决了5G中无法通知控制信道的时频资源的问题。
应理解,该时频资源块的数量和该相邻两个时频资源块的间隔中的至少一个为预定义。
具体而言,控制信道包括的时频资源块的数量可以是协议预定义的,当控制信道包括的时频资源块的数量是协议预定义时,可以不用向终端设备通过信令进行通知,这样,可以节省信令开销。或者。控制信道包括的时频资源块的数量也可以是网络设备配置的,当网络设备配置时频资源块的数量的时,可以配置多个不同数量的时频资源快,并且通过该配置信息指示给终端设备其中的某一个数量的时频资源块。这样可以提供资源配置的灵活性,提高频谱的利用率。
同样,该相邻两个时频资源块的间隔也可以是协议预定义的,也可以是网络设备配置的,并且通过该配置信息指示给终端设备。本申请实施例在此不作限制。
应理解,该时频资源块包括的该REG集合的个数和该REG集合包括的REG个数中的至少一个为预定义,或者由该配置信息指示。
具体而言,时频资源块包括的该REG集合的个数,可以是协议预定义的,也可以是网络设备配置的,并且通过该配置信息指示给终端设备。该REG集合包括的REG个数也可以是协议预定义的,也可以是网络设备配置的,并且通过该配置信息指示给终端设备。本申请实施例在此不作限制。
本申请实施例还提供了一种信息传输的方法300,该方法300可以由网络设备来执行,图13示出了本申请实施例的信息传输的方法300的示意性流程图,如图13所示,该方法300包括:
S310,网络设备生成控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个。
S320,该网络设备发送该配置信息。
具体而言,网络设备在终端设备在初始接入系统的过程中,会向终端设备通知控制信道的时频资源,用于终端设备在该时频资源上接收控制信息,控制信道主要用于传输信令或者同步数据。由于在5G系统中,广播信息中不再包含系统带宽信息。因此,在S310中,网络设备会生成控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源 集合。该控制信道包括公共搜索空间CSS、广播信道和专用控制信道,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个,例如,当该配置信息包括该控制信道的时频资源块的数量时。该相邻两个时频资源块的间隔可以是系统预定义好的,或者当该配置信息包括该控制信道的相邻两个时频资源块的间隔时。该控制信道的时频资源块的数量可以是系统预定义好的。该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的。例如。可以在频域具有一定的间隔或者时域上具有一定的间隔。在网络上设备生成该控制信道资源集合的配置信息后,便会向终端设备发送该配置信息,该终端设备在确定了控制信道的时频资源后,在控制信道的时频资源上接收控制信息,根据接收到的控制信息,确定接入的小区以及小区带宽,用于后续的和网络设备进行通信。
本申请实施例提供的信息传输的方法,网络设备通过控制信道资源集合的配置信息通知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,这样,即使信道环境导致信号多径较多,终端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。
可选的,作为一个实施例,该时频资源块包括至少一个资源单元组REG集合,该REG集合包括时域或频域为连续或邻近的多个REG。
具体而言,该时频资源块包括至少一个REG集合,每个REG集合包括时域或频域为连续或邻近的多个REG。频域上连续的REG指的是REG编号在频域上是连续的,即相邻两个REG之间不存在子载波间隔,相邻两个REG的子载波是连续的,无空闲的频域部分。时域上连续的REG指的是REG编号在时域上是连续的,即相邻两个REG之间不存在OFDM符号间隔,相邻两个REG的OFDM符号是连续的,无空闲的时域部分。频域上邻近的REG指的是REG编号在频域上是不连续的,即相邻两个REG之间存在子载波间隔,该子载波间隔可以用来和其他终端设备进行通信或者传输其他信令,相邻两个REG的子载波不是连续的。时域上邻近的REG指的是REG编号在时域上是不连续的,即相邻两个REG之间存在OFDM符号间隔,相邻两个REG的OFDM符号是不连续的。该时频资源块包括至少一个资源单元组REG集合。例如,该控制信道在频域上包括多个REG集合,该多个REG集合中相邻的两个REG集合存在间隔,该间隔包括至少一个不为0的值。即对于一个小区来说,控制信道在频域上是不连续的,组成控制信道的时频资源的多个REG集合之间是具有间隔的,该间隔的值可以根据系统协议设定,可以根据不同的情况配置成不同的值。该间隔的值至少包括一个不为0的值,若间隔的值为0,则相当于控制信道的时频资源在频域上是连续的。该间隔的值可以包括多个,多个间隔的值可以相同,也可以不相同。
应理解,该时频资源块还可以包括至少一个PRB集合,该PRB集合包括时域或频域为连续或邻近的多个PRB,本申请实施例在此不作限制。
可选的,作为一个实施例,该REG集合包括N个REG,其中,N的值为1、2、3、2或3的正整数倍数中的任意一个。
具体而言,REG集合是由REG组成的,该REG包括时域一个OFDM符号,频域上连续的12个子载波。而该REG集合可以包括N个REG,N的值为1、2、3、2或3的正 整数倍数中的任意一个。即该REG集合可以由2个REG组成,由3个REG组成,或者由6个REG组成等,只要组成REG集合的REG个数为1、2、3、2或3的正整数倍数即可。可选的,作为一个实施例。该相邻时频资源块的间隔在频域上包括整数个REG对应的频域资源或整数个该REG集合对应的频域资源。
可选的,作为一个实施例。该相邻时频资源块的间隔在频域上包括整数个REG对应的频域资源或整数个该REG集合对应的频域资源。
具体而言,该相邻时频资源块的间隔的粒度可以是以REG为单位的,即该频域间隔可以包括整数个REG,例如,该频域间隔为5个REG对应的频域资源,由于该频域间隔包括多个不同的值,因此,该频域间隔的频域资源也可以不同。该间隔的频域可以大于一个REG集合对应的频域,可以等于一个REG集合对应的频域,也可以小于一个REG集合对应的频域。
应理解,该频域间隔的粒度也可以是以PRB或者其他频域单元为单位,本申请实施例在此不作限制。
可选的,作为一个实施例。该相邻时频资源块的间隔在频域包括整数个REG集合对应的频域资源。
具体而言,该相邻时频资源块的频域间隔的粒度可以是以REG集合为单位的,即该频域间隔可以包括整数个REG集合对应的频域资源,例如,该频域间隔为5个REG集合对应的频域资源,当该频域间隔为1个REG集合对应的频域资源时,即该间隔的频域和REG集合对应的频域相同,即为图5所示的控制信道的频域资源。
应理解,该频域间隔的粒度也可以是以PRB集合或者其他频域单元集合为单位,本申请实施例在此不作限制。
可选的,作为一个实施例,该资源集合的频域中心位置与同步信号块的频域中心位置的偏移的偏移量为预定义的,或者由该配置信息指示,该同步信号块包括该配置信息。
具体而言,由于不同的小区的控制信道的频域是可能是有部分重叠的,即不同小区的控制信道在频域上可能是有重叠部分,这样,不同小区的在各自控制信道上接收控制信息时容易受到邻小区的干扰。在本申请实施例中,每个小区的控制信道的频域中心位置相对于该广播信息的频域中心位置存在偏移,不同的小区的偏移值是不同的。即该资源集合的频域中心位置与同步信号块的频域中心位置的存在偏移,该偏移的偏移量与小区标识对应。同步信号块包括广播信息和同步信号,广播信息包括该控制信道资源集合的配置信息,该同步信号携带小区标识。即该终端设备根据该同步信号块中的小区标识,确定该偏移的偏移量。该资源集合的频域中心位置相对于同步信号块的频域中心位置的偏移的偏移量是根据所述同步信号块中的小区标识确定的。这样,对于不同的小区的控制信道的频域就不会重叠或者重叠较少,可以降低不同小区的在各自控制信道上接收控制信息时容易受到邻小区的干扰。而该偏移的偏移值可以是系统预定义的,即协议规定好的,或者由可以由该配置信息指示。本申请实施例在此不作限制。
应理解,该时频资源块的数量和该相邻两个时频资源块的间隔中的至少一个为预定义。
具体而言,控制信道包括的时频资源块的数量可以是协议预定义的,当控制信道包括的时频资源块的数量是协议预定义的时,可以不用向终端设备通过信令进行通知,这样, 可以节省信令开销。或者,控制信道包括的时频资源块的数量也可以是网络设备配置的,当网络设备配置时频资源块的数量的时,可以配置多个不同数量的时频资源快,并且通过该配置信息指示给终端设备其中的某一个数量的时频资源块。这样可以提供资源配置的灵活性,提高频谱的利用率。
该相邻两个时频资源块的间隔也可以是协议预定义的,也可以是网络设备配置的,并且通过该配置信息指示给终端设备。本申请实施例在此不作限制。
应理解,该时频资源块包括的REG集合的个数和该REG集合包括的REG个数中的至少一个为预定义,或者由该配置信息指示。
还应理解,在本申请各个实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应该以其功能和内在的逻辑而定,而不应对本申请的实施例的实施过程造成任何限制。
具体而言,时频资源块包括的REG集合的个数,可以是协议预定义的,也可以是网络设备配置的,并且通过该配置信息指示给终端设备。该REG集合包括的REG个数也可以是协议预定义的,也可以是网络设备配置的,并且通过该配置信息指示给终端设备。本申请实施例在此不作限制。
本申请实施例提供的信息传输的方法,对于一个小区的控制信道在整个频域是不连续的,具有频域间隔,在这种格式的控制信道上发送控制信息,也可以获得更好的频率分集增益,提高传输效率。而对于不同的小区的控制信道的频域中心位置相对于控制信道的资源集合的频域中心位置存在不同的偏移值,即不同小区的控制信道的频域不会重叠,可以降低不同小区的在各自的控制信道上接收控制信息时受到的邻小区干扰。并且,通过控制信道资源集合的配置信息来指示控制信道的时频资源,即确定控制信道的频域资源,解决了5G中无法通知控制信道的时频资源的问题。
上文结合图1至图13,详细描述了本申请实施例的信息传输的方法,下面将结合图14至图17,详细描述本申请实施例的终端设备和网络设备。
图14是本申请一个实施例的终端设备的示意性框图。应理解,终端设备实施例与方法实施例相互对应,类似的描述可以参照方法实施例,图14所示的终端设备400可以用于执行对应于图4中终端设备执行的步骤。该终端设备400包括:处理器410、存储器420和收发器430,处理器410、存储器420和收发器430通过通信连接,存储器420存储指令,处理器410用于执行存储器420存储的指令,收发器430用于在处理器410的驱动下执行具体的信号收发。
该收发器430,用于接收控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个。
该处理器410,用于根据该配置信息确定该控制信道的时频资源。
该收发器430还用于在该控制信道的时频资源上接收控制信息。
本申请实施例提供的终端设备,通过控制信道资源集合的配置信息获知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,这样,即使信道环境导致信号多径较多,终端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。
终端设备400中的各个组件通过通信连接,即处理器410、存储器420和收发器430之间通过内部连接通路互相通信,传递控制和/或数据信号。本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,该时频资源块包括至少一个资源单元组REG集合,该REG集合包括时域或频域为连续或邻近的多个REG。
可选的,在本申请的另一个实施例中,该相邻两个时频资源块的间隔在频域上包括整数个REG对应的频域资源或整数个该REG集合对应的频域资源。
可选的,在本申请的另一个实施例中,该资源集合的频域中心位置与同步信号块的频域中心位置的偏移为预定义,或者由该配置信息指示,该同步信号块包括该配置信息。
可选的,在本申请的另一个实施例中,该时频资源块的数量和该相邻两个时频资源块的间隔中的至少一个为预定义。
可选的,在本申请的另一个实施例中,该时频资源块包括的该REG集合的个数和该REG集合包括的REG个数中的至少一个为预定义,或者由该配置信息指示。
可选的,在本申请的另一个实施例中,该处理器410还用于根据该同步信号块中的小区标识,确定该偏移的偏移量。
本申请实施例提供的终端设备,接收控制信息的控制信道在整个频域是不连续的,具有频域间隔,终端设备在这种格式的控制信道上接收控制信息,也可以获得更好的频率分集增益,提高传输效率。不同的小区的控制信道的频域中心位置相对于该控制信道的资源集合的频域中心位置存在不同的偏移值,终端设备在不用小区的控制信道的频域不会重叠,可以降低终端设备在不同小区的在各自的控制信道上接收控制信息时受到的邻小区干扰。
应注意,本申请实施例中,处理器410可以由处理模块实现,存储器420可以由存储模块实现,收发器430可以由收发模块实现,如图10所示,终端设备500可以包括处理模块510、存储模块520和收发模块530。
图14所示的终端设备400或图15所示的终端设备500能够实现前述图4中终端设备执行的步骤,为避免重复,这里不再赘述。
图16示出了本申请一个实施例的网络设备600的示意性框图。应理解,网络设备实 施例与方法实施例相互对应,类似的描述可以参照方法实施例,如图16所示,该网络设备600包括:处理器610、存储器620和收发器630,处理器610、存储器620和收发器630通过通信连接,存储器620存储指令,处理器610用于执行存储器620存储的指令,收发器630用于在处理器610的驱动下执行具体的信号收发。
该处理器610,用于生成控制信道资源集合的配置信息,该配置信息用于指示控制信道的资源集合,该配置信息包括该控制信道的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个。
该收发器620,用于发送该配置信息。
本申请实施例提供网络设备,网络设备通过控制信道资源集合的配置信息通知控制信道的时频资源,该控制信道在时频资源上是不连续的,该控制信道的时频资源由多个时频资源块组成,多个时频资源块之间是存在间隔的,这样,即使信道环境导致信号多径较多,终端设备在该控制信道上接收控制信息时可以获得更好的频率分集增益,提高传输效率。
网络设备600中的各个组件通过通信连接,即处理器610、存储器620和收发器630之间通过内部连接通路互相通信,传递控制和/或数据信号。应注意,本申请上述方法实施例可以应用于处理器中,或者由处理器实现上述方法实施例的步骤。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是中央处理器CPU,NP或者CPU和NP的组合、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可选的,在本申请的另一个实施例中,该时频资源块包括至少一个资源单元组REG集合,该REG集合包括时域或频域为连续或邻近的多个REG。
可选的,在本申请的另一个实施例中,该相邻两个时频资源块的间隔在频域上包括整数个REG对应的频域资源或整数个该REG集合对应的频域资源。
可选的,在本申请的另一个实施例中,该资源集合的频域中心位置与同步信号块的频域中心位置的偏移为预定义,或者由该配置信息指示,该同步信号块包括该配置信息。
可选的,在本申请的另一个实施例中,该时频资源块的数量和该相邻两个时频资源块的间隔中的至少一个为预定义。
可选的,在本申请的另一个实施例中,该时频资源块包括的该REG集合的个数和该REG集合包括的REG个数中的至少一个为预定义,或者由该配置信息指示。
本申请实施例提供的网络设备,提供的控制信道在整个频域是不连续的,具有频域间隔,在这种格式的控制信道上发送控制信息,也可以获得更好的频率分集增益,提高传输效率。而对于不同的小区的控制信道的频域中心位置相对于控制信道的资源集合的频域中心位置存在不同的偏移值,即不同小区的控制信道的频域不会重叠,可以降低不同小区的 在各自的控制信道上接收控制信息时受到的邻小区干扰。并且,通过控制信道资源集合的配置信息来指示控制信道的时频资源,解决了5G中无法通知控制信道的时频资源的问题。
应注意,在发明实施例中,处理器610可以由处理模块实现,存储器620可以由存储模块实现,收发器630可以由收发模块实现,如图12所示,网络设备700可以包括处理模块710、存储模块720和收发模块730。
图16所示的网络设备600或图17所示的网络设备700能够实现前述图13中网络设备执行的步骤,为避免重复,这里不再赘述。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述图4和图8中本申请实施的信息传输的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请实施例还提供了一种通信系统,该通信系统包括上述本申请实施例提供的终端设备和上述本申请实施例提供网络设备,该通信系统可以完成本申请实施例提供的任一种信息传输的方法。
应理解,本文中术语“和/或”以及“A或B中的至少一种”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (38)

  1. 一种信息接收的方法,其特征在于,包括:
    接收控制信道资源集合的配置信息,所述配置信息用于指示控制信道资源集合,所述配置信息指示所述控制信道资源集合的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个;
    根据所述配置信息确定所述控制信道资源集合;
    在所述控制信道资源集合内接收控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述时频资源块频域上为连续的6个资源单元组REG,所述6个REG中的每个REG占频域上12个连续的子载波。
  3. 根据权利要求1所述的方法,其特征在于,所述时频资源块包括至少一个资源单元组REG集合,所述REG集合包括在时域和/或频域为连续或邻近的多个REG,其中,所述多个REG中的每个REG占频域上12个连续的子载波且占时域上一个OFDM符号长度。
  4. 根据权利要求2或3所述的方法,其特征在于,所述相邻两个时频资源块的间隔为整数个REG对应的频域资源,或所述相邻两个时频资源块的间隔为整数个所述REG集合对应的频域资源。
  5. 根据权利要求4所述的方法,其特征在于,所述相邻两个时频资源块的间隔包括一个或多个值。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述REG集合的频域大小为频域上连续或邻近的2个REG,或3个REG,或6个REG。
  7. 根据权利要求2至5任一项所述的方法,其特征在于,所述REG集合的时域大小为时域上连续或邻近的1个REG,或2个REG,或3个REG。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述资源集合的频域中心位置相对于同步信号块的频域中心位置的偏移量为所述配置信息指示的,所述同步信号块包括广播信息和同步信号,所述广播信息中包括所述配置信息。
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,所述REG集合包括的REG个数是预定义的。
  10. 一种信息发送的方法,其特征在于,包括:
    生成控制信道资源集合的配置信息,所述配置信息用于指示控制信道的资源集合,所述配置信息指示所述控制信道资源集合的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个;
    发送所述配置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述时频资源块频域上为连续的6个资源单元组REG,所述6个REG中的每个REG占频域上12个连续的子载波。
  12. 根据权利要求10所述的方法,其特征在于,所述时频资源块包括至少一个资源单元组REG集合,所述REG集合包括在时域和/或频域为连续或邻近的多个REG,其中,所述多个REG中的每个REG占频域上12个连续的子载波且占时域上一个OFDM符号长 度。
  13. 根据权利要求11或12所述的方法,其特征在于,所述相邻两个时频资源块的间隔在频域上为整数个REG对应的频域资源,或所述相邻两个时频资源块的间隔在频域上为整数个所述REG集合对应的频域资源。
  14. 根据权利要求13所述的方法,其特征在于,所述相邻两个时频资源块的间隔包括一个或多个值。
  15. 根据权利要求11至14任一项所述的方法,其特征在于,所述REG集合的频域大小为频域上连续或邻近的2个REG,或3个REG,或6个REG。
  16. 根据权利要求11至14任一项所述的方法,其特征在于,所述REG集合的时域大小为时域上连续或邻近的1个REG,或2个REG,或3个REG。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述资源集合的频域中心位置与同步信号块的频域中心位置的偏移量为所述配置信息指示的,所述同步信号块包括广播信息和同步信号,所述广播信息中包括所述配置信息。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述REG集合包括的REG个数是预定义的。
  19. 一种信息接收的装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述装置实现:
    接收控制信道资源集合的配置信息,所述配置信息用于指示控制信道的资源集合,所述配置信息指示所述控制信道资源集合的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个;
    根据所述配置信息确定所述控制信道资源集合;
    在所述控制信道资源集合上接收控制信息。
  20. 根据权利要求19所述的装置,其特征在于,所述时频资源块频域上为连续的6个资源单元组REG,所述6个REG中的每个REG占频域上12个连续的子载波。
  21. 根据权利要求19所述的装置,其特征在于,所述时频资源块包括至少一个资源单元组REG集合,所述REG集合包括在时域和/或频域为连续或邻近的多个REG,其中,所述多个REG中的每个REG占频域上12个连续的子载波且占时域上一个OFDM符号长度。
  22. 根据权利要求20或21所述的装置,其特征在于,所述相邻两个时频资源块的间隔在频域上为整数个REG对应的频域资源,或所述相邻两个时频资源块的间隔在频域上为整数个所述REG集合对应的频域资源。
  23. 根据权利要求22所述的装置,其特征在于,所述相邻两个时频资源块的间隔包括一个或多个值。
  24. 根据权利要求20至23中任一项所述的装置,其特征在于,所述REG集合的频域大小为频域上连续或邻近的2个REG,或3个REG,或6个REG。
  25. 根据权利要求20至23中任一项所述的装置,其特征在于,所述REG集合的时域大小为时域上连续或邻近的1个REG,或2个REG,或3个REG。
  26. 根据权利要求19至23中任一项所述的装置,其特征在于,所述资源集合的频域中心位置相对于同步信号块的频域中心位置的偏移量为所述配置信息指示的,所述同步信 号块包括广播信息和同步信号,所述广播信息中包括所述配置信息。
  27. 根据权利要求20至26中任一项所述的装置,其特征在于,所述REG集合包括的REG个数是预定义的。
  28. 一种信息发送的装置,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述装置实现:
    生成控制信道资源集合的配置信息,所述配置信息用于指示控制信道的资源集合,所述配置信息指示所述控制信道资源集合的时频资源块的数量和相邻两个时频资源块的间隔中的至少一个;
    发送所述配置信息。
  29. 根据权利要求28所述的装置,所述时频资源块频域上为连续的6个资源单元组REG,所述6个REG中的每个REG占频域上12个连续的子载波。
  30. 根据权利要求28所述的装置,其特征在于,所述时频资源块包括至少一个资源单元组REG集合,所述REG集合包括在时域和/或频域为连续或邻近的多个REG,其中,所述多个REG中的每个REG占频域上12个连续的子载波且占时域上一个OFDM符号长度。
  31. 根据权利要求29或30所述的装置,其特征在于,所述相邻两个时频资源块的间隔在频域上为整数个REG对应的频域资源,或所述相邻两个时频资源块的间隔在频域上为整数个所述REG集合对应的频域资源。
  32. 根据权利要求31所述的装置,其特征在于,所述相邻两个时频资源块的间隔包括一个或多个值。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述REG集合的频域大小为频域上连续或邻近的2个REG,或3个REG,或6个REG。
  34. 根据权利要求29至32中任一项所述的装置,其特征在于,所述REG集合的时域大小为时域上连续或邻近的1个REG,或2个REG,或3个REG。
  35. 根据权利要求28至32中任一项所述的装置,其特征在于,所述资源集合的频域中心位置与同步信号块的频域中心位置的偏移量为所述配置信息指示的,所述同步信号块包括广播信息和同步信号,所述广播信息中包括所述配置信息。
  36. 根据权利要求29至35中任一项所述的装置,其特征在于,所述REG集合包括的REG个数是预定义的。
  37. 一种计算机可读存储介质,用于存储计算机程序,当其在计算机上运行时,使得计算机执行所述权利要求1至9任一项所述的方法。
  38. 一种计算机可读存储介质,用于存储计算机程序,当其在计算机上运行时,使得计算机执行所述权利要求10至18任一项所述的方法。
PCT/CN2018/091823 2017-06-16 2018-06-19 信息传输的方法、终端设备和网络设备 WO2018228587A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18818933.6A EP3627937A4 (en) 2017-06-16 2018-06-19 INFORMATION TRANSMISSION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
JP2019569756A JP7094995B2 (ja) 2017-06-16 2018-06-19 情報送信方法、端末デバイス、及びネットワーク・デバイス
US16/715,881 US20200120659A1 (en) 2017-06-16 2019-12-16 Information Transmission Method, Terminal Device, And Network Device
US17/876,248 US11700101B2 (en) 2017-06-16 2022-07-28 Information transmission method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710461711.2 2017-06-16
CN201710461711.2A CN109152041B (zh) 2017-06-16 2017-06-16 信息传输的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/715,881 Continuation US20200120659A1 (en) 2017-06-16 2019-12-16 Information Transmission Method, Terminal Device, And Network Device

Publications (1)

Publication Number Publication Date
WO2018228587A1 true WO2018228587A1 (zh) 2018-12-20

Family

ID=64659028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091823 WO2018228587A1 (zh) 2017-06-16 2018-06-19 信息传输的方法、终端设备和网络设备

Country Status (5)

Country Link
US (2) US20200120659A1 (zh)
EP (1) EP3627937A4 (zh)
JP (1) JP7094995B2 (zh)
CN (1) CN109152041B (zh)
WO (1) WO2018228587A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152041B (zh) * 2017-06-16 2023-11-03 华为技术有限公司 信息传输的方法、终端设备和网络设备
CN111867095B (zh) * 2019-04-30 2024-04-16 华为技术有限公司 一种通信方法与终端装置
CN111867074B (zh) * 2019-04-30 2023-04-18 华为技术有限公司 接收数据和发送数据的方法、通信装置
CN112312465B (zh) * 2019-08-02 2022-11-22 大唐移动通信设备有限公司 随机接入报告的上报及接收方法、装置、终端及设备
CN113630822B (zh) * 2020-05-08 2023-05-02 华为技术有限公司 组播业务切换的方法和装置
CN111786916B (zh) * 2020-06-04 2022-12-20 Oppo广东移动通信有限公司 信道估计方法及装置、终端、存储介质
CN112218115B (zh) * 2020-09-25 2022-07-29 深圳市捷视飞通科技股份有限公司 流媒体音视频同步的控制方法、装置、计算机设备
US11778477B2 (en) * 2021-06-16 2023-10-03 Qualcomm Incorporated Base station resource selection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804625A (zh) * 2010-01-18 2012-11-28 株式会社泛泰 无线通信系统中分配信道状态信息-基准信号的方法和设备
CN103096493A (zh) * 2011-11-04 2013-05-08 华为技术有限公司 接收和发送控制信道的方法、用户设备和基站
CN105099639A (zh) * 2015-05-15 2015-11-25 上海华为技术有限公司 一种控制信道传输的方法、装置及通信节点

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9232462B2 (en) * 2009-10-15 2016-01-05 Qualcomm Incorporated Methods and apparatus for cross-cell coordination and signaling
CN102082600A (zh) * 2009-12-01 2011-06-01 中兴通讯股份有限公司 中继链路下行控制信息配置方法及传输基站、中继站与方法
CN103503330B (zh) * 2011-05-02 2017-06-06 黑莓有限公司 使用远程射频头的无线通信的方法和系统
EP2564611B1 (en) * 2011-07-01 2015-02-18 Ofinno Technologies, LLC Synchronization signal and control messages in multicarrier OFDM
CN102438314B (zh) * 2011-10-17 2014-04-16 电信科学技术研究院 一种传输控制信息的方法、系统及设备
EP3110063B1 (en) * 2011-11-07 2018-03-28 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for transmitting control information
CN102420685B (zh) * 2011-11-07 2014-08-06 电信科学技术研究院 一种传输控制信息的方法及装置
US9198181B2 (en) * 2012-03-19 2015-11-24 Blackberry Limited Enhanced common downlink control channels
WO2014166046A1 (zh) * 2013-04-08 2014-10-16 华为技术有限公司 随机接入前导的发送与接收方法、以及相应的设备
US20160157254A1 (en) * 2014-11-26 2016-06-02 Samsung Electronics Co., Ltd. Methods and apparatus for control information resource allocation for d2d communications
WO2017078373A1 (ko) * 2015-11-02 2017-05-11 엘지전자 주식회사 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
WO2017121324A1 (zh) * 2016-01-11 2017-07-20 联发科技(新加坡)私人有限公司 基于物理下行信道的传输方法、用户设备以及基站
WO2017184865A1 (en) * 2016-04-20 2017-10-26 Convida Wireless, Llc Configurable reference signals
BR112019015963A2 (pt) 2017-02-03 2020-03-24 Ntt Docomo, Inc. Terminal, aparelho de estação base e método de radiocomunicação para um terminal
US10432441B2 (en) 2017-02-06 2019-10-01 Samsung Electronics Co., Ltd. Transmission structures and formats for DL control channels
CN109152041B (zh) * 2017-06-16 2023-11-03 华为技术有限公司 信息传输的方法、终端设备和网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804625A (zh) * 2010-01-18 2012-11-28 株式会社泛泰 无线通信系统中分配信道状态信息-基准信号的方法和设备
CN103096493A (zh) * 2011-11-04 2013-05-08 华为技术有限公司 接收和发送控制信道的方法、用户设备和基站
CN105099639A (zh) * 2015-05-15 2015-11-25 上海华为技术有限公司 一种控制信道传输的方法、装置及通信节点

Also Published As

Publication number Publication date
CN109152041B (zh) 2023-11-03
CN109152041A (zh) 2019-01-04
US11700101B2 (en) 2023-07-11
JP2020523933A (ja) 2020-08-06
US20220368501A1 (en) 2022-11-17
EP3627937A4 (en) 2020-05-27
EP3627937A1 (en) 2020-03-25
US20200120659A1 (en) 2020-04-16
JP7094995B2 (ja) 2022-07-04

Similar Documents

Publication Publication Date Title
WO2018228587A1 (zh) 信息传输的方法、终端设备和网络设备
WO2021027694A1 (zh) Ssb候选位置索引指示、接收方法及装置、存储介质、基站、用户设备
TWI794295B (zh) 用於廣播通道的速率匹配
KR102321890B1 (ko) 시간-주파수 자원의 송신 방향을 구성하는 방법, 및 장치
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
US10742465B2 (en) Systems and methods for multi-physical structure system
US9559824B2 (en) Method and apparatus for extending control signalling in an LTE network
CN110915159A (zh) 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质
KR102352644B1 (ko) 비허가 무선 주파수 스펙트럼 대역들을 사용하는 송신들에 대한 프레임 포맷을 나타내기 위한 기법들
CN109417456B (zh) 针对对齐参数设计的分路式码元控制
JP6740367B2 (ja) システム情報の伝送方法、基地局及び端末
WO2019052334A1 (zh) 一种通信方法及设备
KR102466982B1 (ko) 자원 할당 방법, 단말 장치와 네트워크 장치
WO2019029706A1 (zh) 一种信息发送、信息接收方法及装置
WO2018036182A1 (zh) 一种数据通信的方法、装置及系统
JP6685336B2 (ja) アンライセンス周波数帯用の搬送波ホッピング方法およびアンライセンス周波数帯用の端末
JP6987242B2 (ja) リソース構成方法、端末装置及びネットワーク装置
US11991684B2 (en) Data transmission method and apparatus
US20220394601A1 (en) Method and apparatus for wireless communication
CN111147204B (zh) 通信方法、装置及存储介质
WO2018014297A1 (zh) 信息传输装置、方法以及无线通信系统
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
JP7324294B2 (ja) 制御チャネルの伝送方法、機器及び記憶媒体
CN111756509B (zh) 一种传输公共信号块的方法和装置
JP2020074575A (ja) 搬送波ホッピング方法と端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018818933

Country of ref document: EP

Effective date: 20191219