WO2017121324A1 - 基于物理下行信道的传输方法、用户设备以及基站 - Google Patents

基于物理下行信道的传输方法、用户设备以及基站 Download PDF

Info

Publication number
WO2017121324A1
WO2017121324A1 PCT/CN2017/070838 CN2017070838W WO2017121324A1 WO 2017121324 A1 WO2017121324 A1 WO 2017121324A1 CN 2017070838 W CN2017070838 W CN 2017070838W WO 2017121324 A1 WO2017121324 A1 WO 2017121324A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
subframe
physical downlink
scheduling window
time domain
Prior art date
Application number
PCT/CN2017/070838
Other languages
English (en)
French (fr)
Inventor
吴敏
孙霏菲
张磊
Original Assignee
联发科技(新加坡)私人有限公司
吴敏
孙霏菲
张磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联发科技(新加坡)私人有限公司, 吴敏, 孙霏菲, 张磊 filed Critical 联发科技(新加坡)私人有限公司
Priority to CN201780006221.1A priority Critical patent/CN108702749A/zh
Priority to US15/554,292 priority patent/US20180049164A1/en
Publication of WO2017121324A1 publication Critical patent/WO2017121324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates generally to wireless communications and, more particularly, to a transmission method for indicating a scheduling delay based on a physical downlink channel.
  • 5G has been officially named IMT-2020 by the ITU and is expected to enter the commercial phase by 2020.
  • IMT-2020 Unlike traditional 2G/3G/4G mobile cellular systems, 5G will no longer be only for human users, but will also better support a variety of "machine type” communications (Machine Type Communication, MTC for short). user.
  • Machine Type Communication MTC for short.
  • MMC Massive MTC
  • the main features of the MTC user equipment served by this service are: (1) low cost, user equipment cost is much lower than that of smart phones; (2) large number, refer to ITU requirements for 5G, for MMC services, will support each 106 connections per square kilometer; (3) low data transmission rate requirements; (4) high tolerance to delay, and so on.
  • MMC user equipment In cellular communication for traditional user equipment, the system coverage is generally considered to be about 99%. Uncovered 1% users can use the mobility characteristics (Mobility) of the user equipment itself to obtain services through cell selection or cell reselection. Unlike traditional user equipment for human communication, some types of MMC user equipment may be deployed in relatively fixed locations, such as MTC user equipment serving public facilities (street lights, water, electricity, gas meters, etc.). This type of MMC user equipment has almost no mobility characteristics, so in the design of the MMC communication system, the cell coverage is usually required to reach 99.99% or more. Even worse, this type of MMC user may be deployed in a scenario such as a basement with severe path loss.
  • MTC user equipment serving public facilities (street lights, water, electricity, gas meters, etc.).
  • This type of MMC user equipment has almost no mobility characteristics, so in the design of the MMC communication system, the cell coverage is usually required to reach 99.99% or more. Even worse, this type of MMC user may be deployed in a scenario such as a
  • the maximum coupling loss (MCL) used in the MMC system design is usually 10dB to 20dB larger than the traditional cellular system.
  • MCL target is 164 dB or more.
  • the number of available subcarriers in the frequency domain is very small due to the narrow occupied bandwidth, for example, When the 15 kHz subcarrier interval is included, only 12 subcarriers are included in the 180 kHz bandwidth.
  • only one OFDMA symbol (downlink) or SC-FDMA symbol (uplink) is included in one subframe, that is, one subframe at most 168 resource elements (Resource Element, hereinafter referred to as RE) can be allocated.
  • RE resource elements
  • TBS Transport Block Size
  • a scheduling window includes a plurality of subframes, and the base station performs a scheduling decision (decision) in each scheduling window, and allocates all subframes in the scheduling window to one user equipment (User Equipment, hereinafter referred to as UE) or more.
  • UE User Equipment
  • the scheduling window is similar to the traditional concept of bandwidth (BD) based on frequency domain resource allocation, moving the concept from the frequency domain to the time domain.
  • the scheduling bandwidth can implement frequency division multiplexing (RDM) for multiple UEs
  • the scheduling window can implement Time Domain Multiplexing (TDM) for multiple UEs.
  • TDM Time Domain Multiplexing
  • the scheduling window-based time domain resource allocation method facilitates flexible allocation of time domain resources for multiple UEs.
  • the present invention provides a resource allocation method for allocating a set of time domain resource units based on a scheduling window.
  • the present invention provides a physical downlink channel based transmission method and user equipment.
  • the present invention provides a physical downlink channel-based transmission method, the method comprising: receiving control information carried by the physical downlink channel, the control information including a time interval indication; and indicating and according to the time interval
  • the end subframe of the physical downlink channel determines information about the uplink resource of the user equipment or the starting subframe of the scheduling window.
  • the control information is a Random Access Response (RAR) message
  • the physical downlink channel is a physical downlink shared channel (PUSCH) that carries the RAR information; and is indicated according to the time interval.
  • the end subframe of the physical downlink shared channel determines that the user equipment transmits a start subframe of a third message (message 3, hereinafter referred to as Msg3).
  • Msg3 a MAC control element
  • MAC CE MAC control element in the RAR information indicates the time interval.
  • the present invention provides a user equipment.
  • the user equipment includes a wireless transceiver and a controller.
  • the wireless transceiver is configured to wirelessly communicate with at least one base station.
  • Control is connected to the wireless transceiver.
  • the controller is configured to receive control information carried by a physical downlink channel from the at least one base station, the control information including a time interval indication.
  • the controller determines information about the uplink resource of the user equipment or the starting subframe information of the scheduling window according to the time interval indication and the end subframe of the physical downlink channel.
  • the present invention provides a base station.
  • the base station includes a wireless transceiver and a controller.
  • the wireless transceiver is configured to wirelessly communicate with at least one user equipment.
  • the controller is coupled to the wireless transceiver.
  • the controller is configured in the control information carried by the physical downlink channel to indicate a time interval indication, so that the at least one user equipment indicates the end of the physical downlink channel according to the time interval indication in the control information.
  • the frame determines information about the uplink resource of the at least one user equipment or a starting subframe of the scheduling window.
  • the present invention provides a resource allocation method for scheduling a set of time domain resource units based on a scheduling window, wherein the method includes: the user equipment receives a physical transport block for scheduling (Transport Block, below) A downlink control information (hereinafter referred to as DCI) of the TB), the Resource Allocation (RA) field included in the DCI indicates a set of time domain resource units in a time domain scheduling window; The device performs the transmission operation of the TB on the set of time domain resource units, such as receiving or transmitting.
  • the time domain resource unit is a subframe.
  • the time domain resource unit is a plurality of subframes.
  • the allocated set of time domain resource elements is contiguous.
  • the allocated set of time domain resource units is non-contiguous.
  • the present invention provides a method for processing a subframe that is unavailable for a duration of a scheduling window, wherein the method includes: determining, by the user equipment, whether each subframe in the duration of the scheduling window is an unavailable subframe. If the subframe is an unavailable subframe, a predefined processing method is employed. In an embodiment, the predefined processing method is: if the schedulable subframe in the scheduling window includes an unavailable subframe, the actual number of available subframes may be smaller than the allocated subframe, and the original mapping is not available. The data transmission on the subframe is discarded or rate matched according to the actual number of available subframes to avoid the unavailable subframe.
  • the predefined processing method is that the schedulable subframe in the scheduling window does not include an unavailable subframe, and the actual number of available subframes is equal to the allocated subframe number, and is originally mapped to the unavailable subframe. The data transfer on is pushed to the next available subframe.
  • the present invention provides a method of determining a starting subframe position of a scheduling window,
  • the method includes: the user equipment receives a physical downlink control channel (PDCCH) that allocates a set of time domain resource units based on the scheduling window; and the user equipment determines the starting subframe position of the scheduling window according to a predefined rule. Determine the absolute location of a set of time domain resource units allocated within the scheduling window.
  • the predefined rule is that the starting subframe position of the scheduling window is determined by the ending subframe of the corresponding physical downlink control channel, or by the end of the search space including the corresponding physical downlink control channel. Determined by the frame or determined by the end subframe of the control region containing the corresponding physical downlink control channel.
  • the predefined rule is that the starting subframe position of the scheduling window is determined by the subframe number, the frame number, and the number of subframes included in the scheduling window, and includes a physical downlink in each downlink scheduling window.
  • the control area and a physical downlink data area, the physical downlink control channel and the scheduled group of time domain resource units belong to the same scheduling window or different scheduling windows.
  • a plurality of scheduling windows included in a given time are numbered, the numbering of the scheduling window being used to participate in the initialization of the scrambling sequence generator for use in the corresponding physical data channel transmission.
  • the present invention provides a method of designing Resource Allocation (RA) domain content within a DCI, wherein the method includes: the RA domain of the DCI includes at least one or more of the following information: a time domain The location of the time domain resource unit allocated in the scheduling window; the number of time domain resource units allocated in a time domain scheduling window; the location of a frequency domain resource unit allocated within a frequency domain scheduling bandwidth; and a frequency domain scheduling bandwidth The number of frequency domain resource units allocated within.
  • the number of frequency domain resource units allocated in one frequency domain scheduling bandwidth is fixed to one frequency domain resource unit, and the frequency domain resource unit may be indicated in the RA at the location of the scheduling bandwidth, or configured by high layer signaling.
  • the maximum number of frequency domain resource units included in the frequency domain scheduling bandwidth is fixedly allocated, that is, the number and location of frequency domain resource units allocated in the frequency domain scheduling bandwidth need not be indicated in the RA.
  • the present invention provides a method for repeating a physical data channel based on a scheduling window, wherein the method includes: the physical data channel is repeatedly transmitted on the same set of time domain resource units of the plurality of scheduling windows, when occupied If the number of domain resource units is less than the maximum number of time domain resource units in the scheduling window, it is an intermittent repetition.
  • the physical downlink control channel and the scheduled physical data channel are repeatedly transmitted in multiple scheduling windows, and the time relationship between the first physical data channel repetition and the last physical downlink control channel repetition is the same window scheduling ( Same-window Scheduling, or intra-window scheduling) or cross-window Scheduling (or inter-window scheduling).
  • the physical downlink control channel and the scheduled object The data channels are all contiguous, and the time relationship between the first physical data channel repetition and the last physical downlink control channel repetition is determined by the scheduling window.
  • the present invention provides a method for scheduling a third message (Msg3), the method comprising: determining a timing of the Msg3 according to a random access response (RAR), in the frequency domain and the time domain.
  • the different number of carriers provides resource allocation for Msg3.
  • the UE determines the size of the tone according to the DCI, for example, the UE first obtains the number of tones in the DCI domain, and then obtains the resource size obtained for resource allocation in the domain. For the case of multi-tone, for example, if 12 carriers are known from the DCI, 4+4 bits are allocated for indicating time domain resource allocation, and bits for indication are not allocated for the frequency domain RA. If a single-tone is known from the DCI, 4 bits are allocated for indicating the time domain resource, and 4 bits are allocated for indicating the RA of the frequency domain.
  • the present invention provides a method for a UE to obtain a scheduling resource, the method comprising: obtaining a frequency domain scheduling information according to a first domain in the parsing DCI; and determining a second DCI according to the frequency domain scheduling information.
  • the frequency domain scheduling information is the number of subcarriers.
  • the time domain scheduling information is a scheduling window starting position, or a scheduling window sequence number.
  • the time domain scheduling information is a time domain starting location of the scheduled resource.
  • FIG. 1 is a block diagram of a wireless communication environment in accordance with an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a wireless communication device 200 in accordance with an embodiment of the present invention.
  • FIG. 3 is a block diagram of a base station 300 according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a method for transmitting a physical downlink channel according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of a time domain resource allocation method based on a scheduling window according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a time domain scheduling window according to an embodiment of the present invention, wherein a time domain resource unit is a Subframe.
  • FIG. 7 is a schematic diagram of a time domain scheduling window according to an embodiment of the present invention, wherein the time domain resource unit is a plurality of subframes.
  • FIG. 8 is a schematic diagram of continuously allocating a set of time domain resource units in a time domain scheduling window according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of discontinuously allocating a set of time domain resource elements in a time domain scheduling window in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a time domain scheduling window including unavailable subframes according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a time domain scheduling window not including unavailable subframes according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a start position of a time domain scheduling window determined by an end position of a corresponding physical downlink control channel according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a start position of a time domain scheduling window determined by an end position of a search space including a corresponding physical downlink control channel according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a start position of a time domain scheduling window determined by an end position of a control region including a corresponding physical downlink control channel according to an embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a start position of a time domain scheduling window determined by a subframe number, a frame number, and a number of subframes included in a scheduling window according to an embodiment of the present invention.
  • 16 is a schematic diagram of numbering a plurality of scheduling windows in a given time and using a number of a scheduling window to initialize a scrambling sequence generator in accordance with an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a downlink scheduling window including a physical downlink control region and a physical downlink data region, and performing same-window scheduling for downlink and cross-window scheduling for uplink according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the number of subframes included in the downlink scheduling window and the number of subframes included in the uplink scheduling window are different, but the uplink and downlink scheduling window durations are the same according to an embodiment of the invention.
  • FIG. 19 is a schematic diagram showing that the duration in the downlink scheduling window is different from the duration in the uplink scheduling window according to the embodiment of the present invention, but the uplink and downlink scheduling window includes the same number of subframes.
  • 20 is a schematic diagram of a resource allocation method based on a single-tone transmission method and a scheduling window according to an embodiment of the present invention.
  • 21 is a multi-tone transmission method and a scheduling window according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a resource allocation method based on a full-tone transmission method and a scheduling window according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of jointly indicating resources in a time domain by scheduling a location of a resource and an offset according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram showing intermittent repetition of a physical downlink control channel and a scheduled physical downlink data channel according to an embodiment of the present invention.
  • FIG. 25 is a schematic diagram of a physical downlink control channel and a scheduled physical downlink data channel being consecutive repetitions and intermittent repetitions, respectively, according to an embodiment of the present invention.
  • FIG. 26 is a schematic diagram showing a continuous repetition of a physical downlink control channel and a scheduled physical downlink data channel according to an embodiment of the present invention.
  • the term “scheduling window” is used for convenience of description. In the art, other expressions may also be used, such as “scheduling subframe”, “scheduling frame”, and “super-subframe”. Etc., the embodiments of the present invention are not limited thereto.
  • the terms “single-tone”, “multi-tone” and “full-tone” transmission can also be “single carrier”, “single subcarrier”, “multi-carrier”
  • the “multiple subcarriers", “full carrier”, “full subcarrier”, etc., are not limited by this embodiment of the present invention.
  • the “Time Domain Resource Unit” may also be a "subframe”, a “Transmission Time Interval (TTI)", etc., which is not limited by this embodiment of the present invention.
  • the "frequency domain resource unit” may also be a "subcarrier”, a “physical resource block (hereinafter referred to as PRB)", a PRB pair, etc., and the embodiment of the present invention is not limited thereto.
  • the wireless communication environment 100 includes a plurality of wireless communication devices (eg, the wireless communication device 110 of FIG. 1 , Wireless communication device 111 and wireless communication device 113) and service network 130.
  • the wireless communication device 110, the wireless communication device 111, and the wireless communication device 113 are wirelessly connected to the service network 130 to obtain mobile services.
  • Each of the wireless communication device 110, the wireless communication device 111, and the wireless communication device 113 may be referred to as a user device.
  • the wireless communication device 110 and the wireless communication device 111 may be mobile user devices, such as a feature phone, a smart phone, a personal tablet, a laptop, or other support service network.
  • the wireless communication device 113 can be a user device that is not mobile or has low mobility.
  • it may be a user device that is deployed in a relatively fixed location to serve the MMC.
  • it may be a user equipment applied to a public facility (for example, a street lamp, a water meter, an electric meter, a gas meter, etc.), or may be a user equipment applied to a household facility (for example, a desk lamp, an oven, a washing machine, a refrigerator, etc.). Wait.
  • a user equipment for example, the wireless communication device 113 serving the MMC/MTC has almost no mobility characteristics.
  • the serving network 130 may be LTE/LTE-A/LTE-U (LAA)/TD-LTE/5G/IOT/LTE-M/NB-IoT/EC-GSM/WiMAX/W-CDMA Waiting for the network.
  • the service network 130 includes an access network 131 and a core network 132.
  • the access network 131 is responsible for processing radio signals, reaching radio protocols, and connecting the wireless communication device 110, the wireless communication device 111, and the core network 132.
  • the core network 132 is responsible for performing mobility management, network side authentication, and as a public/external network (e.g., the Internet) interface.
  • each of access network 131 and core network 132 may include one or more network nodes of the function.
  • the access network 131 may be including at least two evolved NodeBs (for example, a macro cell/macro ENB, a small base station (Pico cell/pico ENB), or a femtocell/femto ENB).
  • the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) the core network 132 may include a Home Subscriber Server (HSS) and a Mobility Management Entity (Mobility Management Entity).
  • HSS Home Subscriber Server
  • Mobility Management Entity Mobility Management Entity
  • EPC evolved data packet core network
  • MME Serving Gateway
  • PDN-GW Packet Network Gateway
  • EPC evolved data packet core network
  • Access network 131 includes eNB 131-a and eNB 131-b serving Cell A and Cell B.
  • the eNB 131-a and the eNB 131-b may be cellular base stations that communicate with user equipment.
  • the eNB may be a cellular station that performs wireless communication with a plurality of user equipments, or may be a base station, an access point (AP), or the like.
  • Each eNB provides a specific communication coverage for a particular geographic area. In 3GPP, a "cell" can be considered as the specific communication coverage of an eNB.
  • the access network 131 can be a heterogeneous network (HetNet).
  • HetNet includes different types of eNBs, for example, large base stations, small base stations, femtocell base stations, relays, and the like.
  • Large base stations cover a relatively large geographic area (e.g., a geographic area with a radius of several kilometers) and allow unrestricted access to subscriber services between the user equipment and the network provider.
  • Small base stations cover a relatively small geographic area and allow unrestricted access to subscription services between user equipment and network providers.
  • the femtocell base station coverage is disposed in a relatively small geographic area of the residential type (eg, home or small office), and in addition to unrestricted access, the femtocell base station can also provide association with the
  • the user equipment of the femtocell base station is restricted access (for example, a user equipment in a Closed Subscriber Group (CSG), a user equipment used by a user in a home, etc.).
  • CSG Closed Subscriber Group
  • the wireless communication device 200 can be the user equipment shown in the embodiment of FIG.
  • the wireless communication device 200 includes a wireless transceiver 210, a controller 220, a storage device 230, a display device 240, and an input and output device 250, wherein the controller 220 is connected to the wireless transceiver 210, the storage device 230, the display device 240, and the input and output device, respectively. 250.
  • the wireless transceiver 210 is configured to perform both wireless transmission and transmission and reception with the access network 131 and includes an interference cancellation and suppression receiver.
  • the wireless transceiver 210 includes a radio frequency processing device 211, a baseband processing device 212, and an antenna 213.
  • the radio frequency processing device 211 is connected to the baseband processing device 212 and the antenna 213, respectively.
  • the transmitting end of the radio frequency processing device 211 receives the baseband signal from the baseband processing device 212, and converts the received baseband signal into a radio frequency wireless signal to be transmitted by the antenna 213 later, wherein
  • the radio frequency band of the radio frequency wireless signal may be 900 MHz used by the LTE/LTE-A/TD-LTE technology.
  • the frequency band, 2100MHz frequency band or 2.6GHz frequency band may be the 1800MHz, 900MHz frequency band, 800MHz frequency band or 700MHz frequency band used by the NB-IoT/LTE-M technology, or may be the radio frequency band used by other wireless communication technologies.
  • the transmitting end of the radio frequency processing device 211 includes at least a power amplifier, a mixer, and a low pass filter, but the present invention is not limited thereto.
  • the receiving end of the radio frequency processing device 211 receives the radio frequency wireless signal through the antenna 213, and converts the received radio frequency wireless signal into a baseband signal processed by the baseband processing device 212, wherein the radio frequency
  • the radio frequency band of the wireless signal may be the 900MHz frequency band, the 2100MHz frequency band or the 2.6GHz frequency band used by the LTE/LTE-A/TD-LTE technology, and may be the 1800MHz and 900MHz frequency bands used by the NB-IoT/LTE-M technology.
  • the 800MHz band or the 700MHz band can also be the RF band used by other wireless communication technologies.
  • the receiving end of the radio frequency processing device 211 includes a plurality of hardware devices that process radio frequency signals.
  • the receiving end of the radio frequency processing device 211 includes at least a low noise amplifier, a mixer (or a down converter) and a low pass filter, but the present invention is not limited thereto.
  • the low noise amplifier is configured to perform noise processing on the radio frequency wireless signal received from the antenna 213.
  • the mixer is configured to perform a frequency down operation on the radio frequency wireless signal processed by the low noise amplifier.
  • the baseband processing device 212 is configured to perform baseband signal processing and is configured to control communication between a Subscriber Identity Module (SIM) and the RF processing device 211.
  • SIM Subscriber Identity Module
  • the baseband processing device 212 can include a plurality of hardware components to perform the baseband signal processing, such as an analog to digital converter, a digital to analog converter, an amplifier circuit associated with gain adjustment, a modulation/demodulation related circuit, an encoding/ Decoded related circuits, etc.
  • the controller 220 can be a general purpose processor, a Micro Control Unit (MCU), an application processor, a digital signal processor, or any type of processor control device that processes digital data.
  • the controller 220 includes functions for providing data processing and calculation, a function of controlling the wireless transceiver 210 to wirelessly communicate with the access network 131, a function of storing data to and extracting data from the storage device 230, and transmitting sequence frames.
  • Various circuits of data (for example, frame data representing messages, graphics, images) to the functions of the display device 240 and functions for receiving signals from the input and output device 250.
  • controller 220 cooperates with the operations of wireless transceiver 210, storage device 230, display device 240, and input and output device 250 to perform the methods of the present invention.
  • controller 220 can be incorporated into the baseband processing device 212 as a base. Frequency processor.
  • storage device 230 is a non-transitory machine readable storage medium.
  • the storage device 230 includes a memory (eg, a flash memory, a non-volatile random access memory) for storing instructions and/or program code of the methods, applications, and/or communication protocols of the present invention, and magnetic storage devices (eg, Hard disk, tape, or CD), or any combination thereof.
  • a memory eg, a flash memory, a non-volatile random access memory
  • magnetic storage devices eg, Hard disk, tape, or CD
  • the display device 240 may be a liquid crystal display (LCD), a Light-Emitting Diode (LED) display, or an electronic paper display (Electronic). Paper Display, hereinafter referred to as EPD).
  • the display device 240 further includes one or more touch sensors disposed thereon or below for sensing touch, touch, or touch of a target (eg, a finger or a stylus) Close.
  • the input and output device 250 can include one or more buttons, a keyboard device, a mouse, a trackpad, a camera, a microphone, and/or a speaker, etc., as a human-machine interface that interacts with the user (Man- Machine Interface, hereinafter referred to as MMI).
  • MMI Man- Machine Interface
  • FIG. 3 is a block diagram illustrating a base station 300 in accordance with an embodiment of the present invention.
  • the base station 300 includes a wireless transceiver 360, a controller 370, a storage device 380, and a wired communication interface 390, wherein the controller 370 is coupled to the wireless transceiver 360, the storage device 380, and the wired communication interface 390, respectively.
  • the radio frequency processing device 361, the baseband processing device 362, and the antenna 363 of the wireless transceiver 360 are similar to the radio frequency processing device 211, the baseband processing device 212, and the antenna 213 of the wireless transceiver 210 of FIG. Therefore, the detailed description will not be repeated below.
  • controller 370 can be a general purpose processor, MCU, application processor, digital signal processor, or the like.
  • the controller 370 includes functions for providing data processing and calculation, a function of controlling the wireless transceiver 360 to wirelessly communicate with the wireless communication devices 110, 111, and 113, storing data to and from the storage device 380, Various circuits for transmitting/receiving messages from other network entities via wired communication interface 390.
  • controller 370 cooperates with the operations of wireless transceiver 360, storage device 380, and wired communication interface 390 to perform the methods of the present invention.
  • controller 370 can be incorporated into baseband processing device 362 as a baseband processor.
  • the circuitry of controller 220 or controller 370 generally includes a plurality of transistors configured to control the operation of the circuitry.
  • the particular architecture or connection of the transistor is typically determined by a compiler, such as a Register Transfer Language (RTL) compiler.
  • RTL Register Transfer Language
  • the RTL compiler can operate on a script in a similar combination language by a processor to compile the script into a format that can be used in the circuit layout of the final circuit.
  • RTL is known for its role and use in promoting the design of electronic and digital systems.
  • storage device 380 is a non-transitory machine readable storage medium.
  • the storage device 330 includes a memory (eg, flash memory, non-volatile random access memory) for storing instructions and/or program code of the methods, applications, and/or communication protocols of the present invention, magnetic storage devices (eg, Hard disk, tape or CD), or any combination thereof.
  • a memory eg, flash memory, non-volatile random access memory
  • magnetic storage devices eg, Hard disk, tape or CD
  • the wired communication interface 390 is responsible for providing functionality for communicating with other network entities (e.g., MME and S-GW) in the core network 132.
  • the wired communication interface 390 may include a cable data machine, an Asymmetric Digital Subscriber Line (ADSL) data machine, a Fiber-Optic Modem (FOM), and/or an Ethernet interface. .
  • ADSL Asymmetric Digital Subscriber Line
  • FOM Fiber-Optic Modem
  • step S401 the wireless communication device 200 (user equipment) receives control information carried by the physical downlink channel, and the control information includes a time interval indication.
  • step S402 the wireless communication device 200 (user equipment) determines the information about the uplink resource or the starting subframe of the scheduling window of the wireless communication device 200 (user equipment) according to the time interval indication and the end subframe of the physical downlink channel.
  • the wireless transceiver 210 of the user equipment 200 is configured to wirelessly communicate with at least one base station 300.
  • the controller 220 of the user device 200 is connected to the wireless transceiver 210.
  • the controller 220 is configured to receive control information carried by the physical downlink channel from the at least one base station 300, the control information including a time interval indication.
  • the controller 220 determines the information about the uplink resource of the user equipment 200 or the starting subframe of the scheduling window according to the time interval indication and the end subframe of the physical downlink channel.
  • the wireless transceiver 360 of the base station 300 is configured to wirelessly communicate with at least one user equipment 200.
  • the controller 370 of the base station 300 is connected to the wireless transceiver 360.
  • the controller 370 is configured to indicate a time interval indication among the control information carried by the physical downlink channel, so that the at least one is used.
  • the user equipment 200 determines the information about the uplink resource of the at least one user equipment or the starting subframe of the scheduling window according to the time interval indication in the control information and the end subframe of the physical downlink channel.
  • FIG. 5 is a schematic flowchart of a time domain resource allocation method based on a scheduling window.
  • a resource allocation method for allocating a set of time domain resource units based on a scheduling window is provided.
  • the user equipment receives a DCI for scheduling a physical TB, where the RA domain included in the DCI indicates a set of time domain resource units in a time domain scheduling window; then, in step S502, when the user equipment is in the group The transmission operation of the TB is performed on the domain resource unit, such as receiving or transmitting.
  • FIG. 6 is a schematic diagram of a time domain scheduling window in which a time domain resource unit is one subframe.
  • 7 is a schematic diagram of a time domain scheduling window in which a time domain resource unit is a plurality of subframes.
  • the scheduling window includes at least a plurality of time domain resource units, and the time domain resource unit is a minimum allocation granularity of the time domain resources.
  • the time domain resource unit is one subframe, and one or more subframes within the scheduling window may be allocated for one TB. For example, a set of subframes assigned to one TB 601 is shown in FIG. In another embodiment, as shown in FIG.
  • the time domain resource unit is a plurality of subframes, and the multiple subframes may also be referred to as a Minimum Transmission Time Interval (TTI) or a minimum resource unit (Resource Unit). ), or one TB can be assigned one or more TTIs within the scheduling window. For example, a set of TTIs assigned to one TB 701 is shown in FIG.
  • the time domain resource unit is a slot or a plurality of time slots, and the one or more time slots may also be referred to as a TTI or a minimum resource unit.
  • the maximum number of time domain resource units that can be allocated for one TB is equal to the number of time domain resource units included in the scheduling window. In another embodiment, the maximum number of time domain resource units that can be allocated for one TB is less than the number of time domain resource units included in the scheduling window.
  • the number of time domain resource units included in the scheduling window is a predefined fixed value. In another embodiment, the number of time domain resource elements included in the scheduling window is a configurable value, and in system broadcast information block (SIB) or UE-specific higher layer signaling ( As indicated in RRC Signaling, for example. In another embodiment, the number of time-frequency resource units included in the scheduling window may be obtained in an implicit manner, for example, the length of the scheduling window is equal to the period of the downlink control channel search space.
  • SIB system broadcast information block
  • UE-specific higher layer signaling As indicated in RRC Signaling
  • the number of time domain resource units and the downlink scheduling window included in the uplink scheduling window is the same.
  • the durations of the uplink and downlink time domain resource units are the same. Otherwise, the durations of the uplink and downlink scheduling windows are different.
  • the number of time domain resource units included in the uplink scheduling window and the number of time domain resource units included in the downlink scheduling window are different, but uplink and downlink scheduling, depending on the duration of the uplink and downlink time domain resource units.
  • the duration of the window may be the same or different.
  • the duration of the scheduling window is a predefined fixed value, but the duration of the time domain resource unit is a configurable value, according to the duration of the predefined scheduling window and the duration of the configured time domain resource unit
  • the time can further determine the number of time domain resource units included in the scheduling window.
  • the time unit for the minimum scheduling resource with the number of carriers ⁇ 1, 3, 6, 12 ⁇ is ⁇ 8, 4, 2, 1 ⁇ milliseconds (or subframe), respectively, correspondingly for a fixed duration, for example 128 milliseconds (or subframes), the time domain resources available for scheduling are ⁇ 16, 32, 64, 128 ⁇ .
  • Figure 8 shows a schematic diagram of the continuous allocation of time domain resource elements within a scheduling window.
  • the RA needs to indicate the location of the allocated starting resource unit (for example, 801 shown in FIG. 8) and the number of allocated consecutive resource units (for example, 802 shown in FIG. 8), and the number of contiguous resource units that can be allocated
  • the location of the starting resource unit is related.
  • the allocated starting resource unit is the first resource unit in the scheduling window, then the number of contiguous resource units that can be allocated may have Possibility ), To schedule the number of resource elements within the window; if the allocated starting resource unit is the last resource element within the scheduling window, then the number of contiguous resource elements that can be allocated is only one. Include all the possibilities of distribution Kind, then you can use it in RA Bits are used to achieve the allocation of consecutive resource elements.
  • Figure 9 shows a schematic diagram of non-contiguous allocation of time domain resource elements within a scheduling window.
  • the RA can indicate the allocated resource unit through a bitmap (Bit-map).
  • This bitmap contains a total of Each bit information corresponds to scheduling information of one resource unit in the scheduling window. For example, a bit of 1 indicates that the resource unit is scheduled, and a bit is 0, and vice versa.
  • a bitmap 901 eg, 0...10101
  • each bit information corresponds to scheduling information of one resource unit within the scheduling window.
  • Embodiment 2 Based on the resource allocation in the scheduling window in Embodiment 1, a reconciliation is provided in Embodiment 2 of the present invention.
  • the method includes: the user equipment determines whether each subframe in the duration of the scheduling window is an unavailable subframe; Use a predefined processing method.
  • the user equipment may determine whether a subframe is an unavailable subframe according to a high-level signaling configuration, for example, indicating information of an available subframe or an unavailable subframe by using a bitmap signaling form in SIB or RRC signaling. It is indicated by 1 and 0 that the corresponding subframe is a usable subframe and an unavailable subframe, respectively.
  • a downlink subframe and a special subframe including a very small number of uplink symbols are unavailable subframes; when scheduling a physical downlink data channel, an uplink subframe and a minimum number of downlink symbols are included.
  • the special subframe is the unavailable subframe.
  • the predefined processing method is that the set of schedulable subframes in the scheduling window includes unavailable subframes
  • FIG. 10 is a schematic diagram of the time domain scheduling window including unavailable subframes, as shown in FIG. 10, that is, the allocated subframes may be For unavailable subframes, the actual number of available subframes may be less than the number of allocated subframes.
  • the duration of the scheduling window is fixed, but the number of available subframes within the scheduling window is dynamically changed.
  • the physical TBS scheduled in one embodiment is determined by the number of allocated subframes, that is, the number of corresponding PRBs or PRB pairs is determined by the number of allocated subframes, and the corresponding correspondence is obtained in the TBS-PRB mapping table.
  • TBS the scheduled TBS is determined by the number of actually available subframes, that is, the number of PRBs is determined by the number of actually available subframes, and the corresponding TBS is obtained in the TBS-PRB mapping table.
  • the rate matching may be based on the number of allocated subframes, that is, the number of REs included in the unavailable subframe is also used for rate matching, and the ratio matching is mapped to the unavailable subframe. Data transmission is directly discarded.
  • the rate matching is based on the number of actually available subframes, ie the number of REs contained in the unavailable subframe is not used for rate matching, thereby avoiding mapping data on the unavailable subframe.
  • the predefined processing method is that the schedulable subframe set in the scheduling window does not include an unavailable subframe
  • FIG. 11 is a schematic diagram of the time domain scheduling window not including the unavailable subframe, as shown in FIG. 11 .
  • the number of actually available subframes is always equal to the number of allocated subframes.
  • the TBS and rate matching are based on the number of allocated subframes.
  • the data transmission should avoid the unavailable subframes, that is, the mapping to the unavailable subframes.
  • the data transmission is delayed to the next available subframe.
  • the duration of the scheduling window is dynamically changed, depending on whether there are unavailable subframes and the number of unavailable subframes that may exist in the scheduling window.
  • a method for determining a starting subframe position of a scheduling window is provided, and the method may be used in the foregoing Embodiment 1 and/or Embodiment 2, wherein the method includes: receiving, by a user equipment a physical downlink control channel for allocating a set of time domain resource units based on a scheduling window; the user equipment further determines a starting subframe position of the scheduling window according to a predefined rule to determine a set of time domain resource units allocated in the scheduling window Absolute position.
  • the pre-defined rule is that the starting subframe position of the scheduling window is determined by the end subframe of the Physical Downlink Control Channel (hereinafter referred to as PDCCH) that carries the DCI.
  • FIG. 12 is a schematic diagram of the start position of the time domain scheduling window determined by the end position of the corresponding physical downlink control channel. As shown in FIG. 12, 1111 indicates a subframe set occupied by a PDCCH search space, 1112 indicates a subframe set occupied by a PDCCH carrying a DCI, and a start subframe between a scheduling window and an end subframe of a corresponding PDCCH has a subframe set. Fixed interval. For example, if the end subframe of the PDCCH is subframe n, then the starting subframe of the scheduling window is subframe n+k, and k is a fixed value.
  • the PDCCH search space spans multiple subframes, while the PDCCH carrying the corresponding DCI occupies one or more subframes within the PDCCH search space.
  • the start subframe of the PDCCH may be the same as or different from the start subframe of the PDCCH search space, and the end subframe of the PDCCH may be the same as or different from the end subframe of the PDCCH search space.
  • the starting subframe of the PDCCH is the same as the starting subframe of the PDCCH search space, and the ending subframe of the PDCCH is different from the ending subframe of the PDCCH search space.
  • the interval between the end subframe of the PDCCH and the starting subframe of the scheduled physical data channel is determined by the time domain resource unit allocation information and the k value in the scheduling window, and the time relationship between the two dynamically changes.
  • the predefined rule is that the starting subframe position of the scheduling window is determined by the ending subframe of the search space that includes the corresponding PDCCH
  • FIG. 13 is that the starting position of the time domain scheduling window is included by the corresponding physical downlink.
  • the end subframe of the PDCCH search space is subframe n
  • the starting subframe of the scheduling window is subframe n+k
  • k is a fixed integer value.
  • End subframe of PDCCH and tone The interval of the starting subframe of the physical data channel is determined by the location of the PDCCH in the PDCCH search space, the allocation of the time domain resource unit allocation within the scheduling window, and the k value, and the time relationship between the two may be dynamically changed.
  • the above method is also applicable to the starting position of a scheduling resource block that directly indicates uplink or downlink transmission/transmission.
  • a field in the DCI is used to indicate an interval between the end subframe of the PDCCH (or the end subframe of the PDCCH search space or the end subframe of the PDCCH downlink control region) and the start position of the scheduling resource block.
  • k can be one subframe, or the number of subframes in a TTI.
  • the interval k may also be defined as a starting subframe with a PDCCH, a PDCCH search space, or a PDCCH downlink control region.
  • the interval can be predefined or indicated by DCI or higher layer signaling.
  • the initial transmission position of Msg3 can be obtained in a similar manner.
  • the UE determines the starting subframe position of the uplink resource for transmitting Msg3 or the location of the scheduling window by using an interval k and an end subframe (or starting subframe) position of the PDSCH for transmitting the RAR.
  • the interval k is a scheduling delay between the start transmission position (starting subframe position) of the third message (Msg3) and the end subframe of the PDSCH corresponding to the transmission RAR.
  • the interval may be predefined or indicated by a MAC CE in the RAR.
  • k can indicate a metric value in units of subframes or the number of subframes in the TTI.
  • the predefined rule is that the starting subframe position of the scheduling window is determined by the ending subframe that includes the downlink control region of the corresponding PDCCH
  • FIG. 14 is that the starting position of the time domain scheduling window is included by the corresponding physical
  • 1401 represents a subframe set occupied by a PDCCH search space
  • 1402 represents a subframe set occupied by a PDCCH carrying a DCI
  • 1403 represents a subframe set occupied by a physical downlink control region, and a start of a scheduling window.
  • the end subframe of the downlink control region is subframe n
  • the start subframe of the scheduling window is subframe n+k
  • k is a fixed interval. Value.
  • the interval between the end subframe of the PDCCH and the starting subframe of the scheduled physical data channel is determined by the location of the PDCCH in the downlink control region, the time domain resource unit allocation information in the scheduling window, and the k value, and the time between the two. Relationships can be dynamic.
  • the base station will allocate a part of the continuous time domain resources to the downlink control area and in the SIB.
  • the start subframe of the downlink control region may be the same or different, and the end subframe of the PDCCH search space and the end subframe of the downlink control region may be the same or different.
  • the predefined rule is that the starting subframe position of the scheduling window is determined by the subframe number, the frame number, and the number of subframes included in the scheduling window
  • FIG. 15 is the starting position of the time domain scheduling window by the subframe.
  • a schematic diagram determined by the number of frames, the frame number, and the number of subframes included in the scheduling window.
  • subframe i is the starting subframe of scheduling window j
  • the starting subframe of scheduling window j+1 the starting subframe of scheduling window j+1
  • the subframe i+N, the starting subframe of the scheduling window j+2 is the subframe i+2N, where N is the number of subframes included in the scheduling window
  • the starting subframe of the subsequent scheduling window is deduced by analogy. That is, multiple scheduling windows are continuous in time, and the duration of each scheduling window is a fixed value.
  • one radio frame includes 10 subframes, and the system frame number (SFN) is numbered from 0 to 1023.
  • SFN system frame number
  • a predefined time is divided into a plurality of scheduling windows, and the set of the plurality of scheduling windows may be referred to as a "scheduling frame" or a "super-window” or the like, and The multiple scheduling windows are numbered.
  • Figure 16 is a diagram showing the numbering of a plurality of scheduling windows in a given time, #1 to #(N-1), and using the number of the scheduling window to initialize the scrambling sequence generator.
  • the numbering of the scheduling window can participate in the initialization of the scrambling sequence generator used by the physical data channel transmission, for example
  • n sw is the number of the scheduling window
  • n RNTI is the C-RNTI value of the UE. It is the ID number of the cell to which the UE belongs.
  • the above predefined duration is 60 ms, that is, 60 subframes are included (the duration of one subframe is 1 ms), and each scheduling window includes 6 subframes, and then 10 scheduling windows are included in the 60 ms duration, and scheduling is performed.
  • the window number is 0 to 9.
  • the numbering of the scheduling window can also be used to determine other parameters used for physical data channel transmission, such as initialization of a reference signal generator, and the like.
  • each downlink scheduling window includes a physical downlink control region and a physical downlink data region, and the physical downlink control channel belongs to the same scheduling window or different scheduling window as the scheduled group of time domain resource units.
  • FIG. 17 is a schematic diagram of a downlink scheduling window including a physical downlink control region and a physical downlink data region, and performing the same window scheduling for the downlink and performing cross-window scheduling for the uplink.
  • the PDSCH is scheduled with the same window, and the physical downlink control area in the downlink scheduling window n allocates a set of time domain resource units in the downlink data area in the scheduling window for the PDSCH, that is, the same window scheduling (Same-Window Scheduling)
  • the PUSCH cross-window scheduling is used, and the physical downlink control region in the downlink scheduling window n allocates a group of time domain resource units in the uplink data region in the uplink scheduling window n+1 for the PUSCH, that is, cross-window scheduling.
  • Cross-window scheduling may also be employed for PUSCH allocation.
  • the physical downlink control region and the physical downlink data region in the downlink scheduling window are each composed of multiple consecutive time domain resource units, and the physical downlink control region starts from the start position of the scheduling window.
  • the time domain resource unit outside the physical downlink control region belongs to the physical downlink data region.
  • the number of time domain resource units included in the physical downlink control region is a configurable value, for example, configured in the SIB, or configured by UE specific high layer signaling.
  • the UE is configured with a physical downlink control region and a PDCCH search space, where the former is indicated by the SIB, and the latter is configured by the UE specific high layer signaling, and the time domain resource unit occupied by the latter must exist in the UE. Within the former, the number of time domain resource units included in the latter should be less than or equal to the number of time domain resource units included in the former.
  • the UE only configures the PDCCH search space, and can be configured by using SIB or UE-specific high-layer signaling.
  • the PDCCH search space is the downlink control area in FIG.
  • the time domain resource unit allocated for the PDSCH can only belong to the physical downlink data area, that is, the maximum number of time domain resource units that can be allocated by the PDSCH can only be less than or equal to that included in the physical downlink data area.
  • the RA domain size used for scheduling the PDSCH is determined by the number of time domain resource units included in the physical downlink data region, and the number of downlink time domain resource units and physical uplink data regions included in the physical downlink data region are included.
  • the RA domain size used for downlink resource allocation is different from the RA domain size used for uplink resource allocation.
  • the RA domain size for the PDSCH is still scheduled by the downlink.
  • the number of time domain resource units included in the window is determined, and the base station avoids allocating time domain resource units in the physical downlink control region to the PDSCH.
  • the time domain resource unit allocated for the PDSCH may exist in the physical downlink control region, that is, the maximum number of time domain resource units that can be allocated by the PDSCH may be greater than the time domain resources included in the physical downlink data region. The number of units. If the time domain resource unit reserved for the physical downlink control region is not used by the PDCCH in the actual transmission, it can be scheduled to the PDSCH.
  • the RA domain size for the downlink resource allocation is determined by the number of time domain resource units included in the downlink scheduling window, and the base station may allocate the time domain resource unit in the physical downlink control region to the PDSCH, and the allocated time domain resource unit After the end subframe corresponding to the PDCCH.
  • FIG. 18 is a schematic diagram showing that the number of subframes included in the downlink scheduling window is different from the number of subframes included in the uplink scheduling window, but the duration of the uplink and downlink scheduling window is the same.
  • the downlink subframe duration is 1 ms
  • the uplink subframe duration is twice the duration of the downlink subframe, that is, 2 ms
  • the downlink scheduling window includes N downlink subframes
  • the uplink scheduling window includes N/2 uplink subframes. frame. Since the durations of the uplink and downlink scheduling windows are the same, the numbers of the uplink and downlink scheduling windows may correspond one-to-one.
  • Each downlink scheduling window includes a physical downlink control area, and the physical downlink control area can allocate an uplink time domain resource of an uplink scheduling window.
  • the physical downlink control area in the downlink scheduling window n can be allocated in the uplink scheduling window n+1. Time domain resources.
  • FIG. 19 is a schematic diagram showing that the duration in the downlink scheduling window is different from the duration in the uplink scheduling window, but the number of uplink and downlink subframes included in the uplink and downlink scheduling window is the same.
  • the duration of the downlink subframe is 1 ms
  • the duration of the uplink subframe is twice the duration of the downlink subframe, that is, 2 ms. Since the number of subframes included in the uplink and downlink scheduling window is the same, the duration of the uplink scheduling window will be the downlink scheduling window.
  • the duration of the downlink scheduling window will be twice that of the upstream scheduling window.
  • the time domain resources of the uplink scheduling window n can only be allocated by the physical downlink control region within the downlink scheduling window 2n. In another embodiment, the time domain resource of the uplink scheduling window n can only be allocated by the physical downlink control area in the downlink scheduling window 2n+1. In still another embodiment, the time domain resource of the uplink scheduling window n may be allocated by the physical downlink control region within the downlink scheduling window 2n or 2n+1.
  • the uplink scheduling window length is related to the TTI length corresponding to the number of different subcarriers allocated. For example, for a minimum scheduling resource with a carrier number of ⁇ 1, 3, 6, 12 ⁇ , the time units are ⁇ 8, 4, 2, 1 ⁇ milliseconds (or subframes), respectively, and the corresponding uplink scheduling window lengths are respectively ⁇ 128,64,32,16 ⁇ Milliseconds (or sub-frame). At this time, the number of resource blocks that can be indicated for different number of subcarriers or different subcarrier spacings in one scheduling window is the same. For example, for 3.75 kHz and 15 kHz, the number of subcarriers is 1, the length of the 3.75 kHz uplink scheduling window can be 4 times that of 15 kHz.
  • the present invention provides a method for designing RA domain content in a DCI, wherein the method includes: the RA domain of the DCI includes at least one or more of the following information, one time The location of the time domain resource unit allocated within the domain modulation window; the number of time domain resource elements allocated in a frequency domain modulation window; the location of a frequency domain resource unit internally allocated by a frequency domain scheduling bandwidth; and a frequency domain modulation bandwidth internal The number of allocated frequency domain resource units.
  • the time domain resource unit is the minimum scheduling granularity of the time domain resource
  • the frequency domain resource unit is the minimum scheduling granularity of the frequency domain resource.
  • the set of frequency domain resource elements allocated within the frequency domain scheduling bandwidth is contiguous. In another embodiment, the set of frequency domain resource elements allocated within the frequency domain scheduling bandwidth is non-contiguous. In one embodiment, the set of time domain resource elements allocated within the time domain scheduling window are contiguous. In another embodiment, the set of time domain resource elements allocated within the time domain scheduling window is non-contiguous. Examples of the above-described time-frequency domain allocation may have various combinations.
  • the foregoing information may be independently coded when constructing the RA domain, that is, the RA domain includes two independent subdomains, one subdomain indicates domain domain scheduling information, and the other subdomain indicates domain domain scheduling information.
  • the above information may also be jointly coded when constructing the RA domain, that is, the RA domain contains only one subfield, and comprehensively indicates all possibilities of frequency domain and time domain modulation information.
  • the time domain resource unit is a subframe. In another embodiment, the time domain resource unit is a plurality of subframes. In an embodiment, the time domain resource unit includes different subframes in the uplink and downlink, for example, the downlink time domain resource unit is one subframe, and the uplink time domain resource unit includes 6, 8, 10, or 12 subframes. In an embodiment, the uplink subframe and the downlink subframe have different durations, for example, the downlink subframe is 1 ms, and the uplink subframe is 2 ms or 5 ms.
  • the frequency domain resource unit is a plurality of subcarriers, for example, the frequency domain resource unit is 1 PRB, and includes 12 subcarriers.
  • the frequency domain resource unit has different number of subcarriers included in the uplink and downlink, for example, the downlink frequency domain resource unit is 12 subcarriers, and the uplink frequency domain resource unit is 1 subcarrier.
  • the downlink subcarrier spacing and the uplink subcarrier spacing are different, for example, the downlink subcarrier spacing is 15 kHz, and the uplink subcarrier spacing is 3.75 kHz.
  • the allocated frequency domain resource unit in a frequency domain scheduling bandwidth is fixed as a frequency domain resource unit, and the location of the frequency domain resource unit in the frequency domain scheduling bandwidth may be indicated in the DCI or through a high layer letter.
  • the maximum number of frequency domain resource units included in the scheduling bandwidth is fixedly allocated, that is, the number and location of frequency domain resource units allocated in the frequency domain scheduling bandwidth are fixed, and need not be indicated in the DCI.
  • the RA domain includes the following information: the allocated subcarriers are within a scheduling bandwidth.
  • the location shown as 11101 in Figure 20; the number and location of time domain resource units allocated within the scheduling window (shown in Figure 20).
  • the location of the allocated subcarriers within the scheduling bandwidth is not indicated in the DCI, but is configured by UE specific higher layer signaling.
  • the scheduling bandwidth is less than the system bandwidth or the RF bandwidth. The relative position of the scheduling bandwidth in the system bandwidth or the RF bandwidth can be configured through higher layer signaling, such as RRC signaling.
  • the specific frequency domain resource such as a carrier, is indicated by the DCI at the location of the scheduling bandwidth.
  • FIG. 21 is a schematic diagram of a resource allocation method based on a multi-tone transmission mode and a scheduling window, that is, a user equipment can allocate a group of subcarriers in a frequency domain scheduling bandwidth, and the RA domain includes the following information: allocated in a frequency domain scheduling bandwidth.
  • the number and location of subcarriers (2101 as shown in FIG. 21); the number and location of time domain resource units allocated in the time domain scheduling window (shown as 2102 in FIG. 21).
  • the scheduling bandwidth is 180 kHz
  • the subcarrier spacing is 15 kHz
  • the scheduling bandwidth includes 12 subcarrier spacings.
  • the user equipment can be allocated 1 to 12 subcarriers.
  • the user equipment may be assigned 1, 3, 6, 12 subcarriers.
  • the user equipment can be allocated 6, 12 subcarriers.
  • the user equipment can be assigned 1, 2, 4, 8, 12 subcarriers.
  • FIG. 22 is a schematic diagram of a resource allocation method of a Full-tone transmission mode and a scheduling window, that is, a user equipment is always allocated all subcarriers in a scheduling bandwidth, and an RA domain includes the following information: an allocated time domain resource in a time domain scheduling window The number and location of the cells (2201 shown in Figure 22).
  • the probability of the number of information bits of the PDCCH is as small as possible, even one. If the number of carriers in the frequency domain needs to be indicated in the DCI, the DCI size for scheduling the number of different frequency domain resource carriers is the same. Further, the DCI sizes for the PUSCH and the PDSCH are also the same.
  • the uplink transmission power spectral density (PSD boosting) boosting by occupying a small bandwidth can improve the SINR of the receiving end and improve the channel estimation performance, thereby improving the user's data rate. On the other hand, other bandwidth saved can be allocated to other UEs.
  • the uplink can use a single carrier of 3.75 kHz or a single carrier of 15 kHz, and the number of different subcarriers, for example, 3, 6, 12 carriers.
  • the number of different subcarriers may correspond to the number of resource blocks in the frequency domain.
  • frequency domain resources can be arbitrarily allocated, there are ⁇ 12, 4, 2, 1 ⁇ allocateable resources in the frequency domain for ⁇ 1, 3, 6, 12 ⁇ carriers, respectively.
  • 12 carriers are divided into 4 blocks, and each block includes 3 carriers.
  • the size of the RA field used to indicate the location of the frequency domain resource is different from the number of different carriers. For example, 4 bits, 2 bits, 1 bit or no bits are required to indicate ⁇ 12, 4, 2, 1 ⁇ resources corresponding to ⁇ 1, 3, 6, 12 ⁇ , respectively.
  • reducing the amount of resources occupied in the frequency domain increases the time of transmission in the time domain, that is, the TTI lengths of different numbers of carriers are different.
  • the TTI lengths corresponding to ⁇ 1, 3, 6, 12 ⁇ carriers are ⁇ 8, 4, 2, 1 ⁇ milliseconds, respectively. Then, on the same time resource, the number of information bits required may also be different.
  • an uplink resource it may indicate the location occupied by the frequency domain and the location occupied by the time domain.
  • the frequency domain only needs to indicate the number of subcarriers and the frequency domain location.
  • the time domain resource can be simplified to the start position of the time domain and the number of subframes in the time domain.
  • the above several fields may indicate or jointly encode the indications, respectively.
  • the number of subcarriers is indicated by 2 bits
  • the location of the frequency domain is indicated by 2 bits for 1 or 3 subcarriers
  • high layer signaling is used to indicate a scheduling bandwidth, for example, including
  • the 8 subcarriers are further indicated by 3 bits in the DCI which is the 8 subcarriers.
  • the higher layer signaling directly gives the starting position of a scheduling bandwidth and the number of carriers included.
  • the higher layer signaling indicates one of a few scheduled bandwidths in advance.
  • the high layer signaling may directly give a corresponding subcarrier sequence number of the scheduling bandwidth, where the subcarrier sequence number may be continuous or discontinuous. For 6 carriers, 1 bit is used to indicate the location of the frequency domain.
  • indications can be made by means of higher layer signaling.
  • an additional information bit is used to indicate a different carrier spacing, such as 3.75 kHz or 15 kHz.
  • the number of frequency domain carriers and the carrier position and subcarrier spacing are jointly encoded, as shown in Table 1.
  • the frequency domain carrier position can be replaced with a frequency domain carrier start position.
  • the frequency domain resource number (index) can be indicated by higher layer signaling.
  • the scheduling information of Msg3 can be given in the RAR.
  • the scheduling in the RAR for example, it can be explicitly given in the system information, or can be calculated by implied manner, or according to information of the RAR (such as the transmission location, calling the control information of the RAR), or the information of the PRACH.
  • the above joint coding method is applicable to the indication of Msg3.
  • a group of subcarriers can be defined as a time-frequency resource block (PRB).
  • PRB time-frequency resource block
  • the #0-#5 subcarrier is defined as PRB#0 of 6 carriers
  • the #6-#11 subcarrier is defined as PRB#1 of 6 carriers.
  • four PRBs can be defined for three carriers, 12 PRBs for a single carrier of 15 kHz, and 48 PRBs for a single carrier of 3.75 kHz.
  • different bit numbers are also required for different TTI lengths.
  • a scheduling window of 128 milliseconds is assumed, or a transmission block can be allocated up to 16 TTIs (or the length of the minimum scheduling resource), or one DCI is responsible for allocation.
  • 128 sub-frame resources then for single-carrier transmission, the TTI length is 8 milliseconds (or sub- Frame), then 4 bits are needed, but for the scheduling of 3 subcarriers, the TTI length is 4 milliseconds (or subframe), which requires 5 bits, and for the scheduling of 6 subcarriers or the scheduling of 12 subcarriers, 6 bits are needed respectively. Or 7 bits to indicate.
  • the UE successfully decodes one PDCCH to obtain a DCI, where the DCI includes at least a field indicating the number of subcarriers, and a field indicating a frequency domain location or a time domain start location.
  • the UE first obtains the number of subcarriers of the scheduling resource block by using the field indicating the number of subcarriers, determines the number of bits of other domains by the number of subcarriers, and further resolves the resources of the frequency domain and the time domain according to the number of bits of other domains. Block location.
  • the total number of information bits required for indicating the number of arbitrary subcarriers is the same, as shown in Table 2. .
  • Field 1 subcarrier 3 subcarriers 6 subcarriers 12 subcarriers Frequency domain location 3 bits 2 bits 1 bit - Time domain start position 4 bits 5 bits 6 bits 7 bits total 7 bits 7 bits 7 bits 7 bits 7 bits
  • Table 2 shows the frequency domain position of the number of different carriers and the number of bits indicated by the start position of the time domain.
  • the time domain occupies the number of resource blocks.
  • the maximum transport block size that the user can transmit is the same, the maximum number of time domain resource blocks is also the same. For example, up to 16 resource blocks, 4 bits of information are needed to indicate. As shown in Table 3, the number of different information bits for the time-frequency resource location of the scheduling information is the same for different number of subcarriers.
  • Table 3 Number of information bits of scheduling information with different numbers of carriers
  • multiple time domain scheduling windows may be defined, and a DCI includes a domain of subcarriers, a frequency domain location domain, a scheduling window sequence number domain, and a time domain resource location domain in the scheduling window, such as Table 4 shows.
  • the size of the DCI is the same as the number of different subcarriers.
  • Table 4 Number of information bits of scheduling information with different numbers of carriers
  • 23 is a schematic diagram of jointly indicating resources of a time domain by scheduling a location of a resource and an offset, in accordance with an embodiment of the present invention.
  • type 0 type 0
  • 8-bit information is needed to indicate the location occupied by the allocated uplink resources in the 16 time domain resources.
  • 4-bit information may be used to indicate which of the 16 resources, and 4-bit information indicates that several time domain resources are occupied.
  • a 3-bit offset is used to indicate the starting position of the 16 time domain resources.
  • the offset may also be understood as the location of the PUSCH relative to the PDCCH, or the relative position of the scheduling window to the PDCCH.
  • the scheduling resource of the DCI may be, for example, 128 subframes, but is not limited thereto.
  • the number of scheduling windows is different for different number of subcarriers, for example, 8 scheduling windows in 128 subframes, and each scheduling window includes 12 subcarriers.
  • each scheduling window contains 6 subcarriers, or contains 3 scheduling windows, wherein 2 scheduling windows, each of the 2 scheduling windows includes 3 carriers, and 1 scheduling window It contains 1 single carrier.
  • the TTI lengths of different subcarrier numbers are different, in order to enable one uplink transmission to start in any one subframe, 6, 3, and 1 carriers respectively need 1 bit, 2 bits, and 3 bits to indicate an offset. .
  • the number of information bits required for the scheduling of different subcarrier numbers is the same. As shown in FIG. 23, a total of 3 bits is required.
  • the number of subcarriers acquired by the UE is first, and then the time domain location of the scheduling window is further analyzed according to the number of subcarriers.
  • the time domain location of the scheduling window is indicated by the subframe offset and the scheduling window sequence number.
  • the time domain location of the scheduling window is indicated directly based on the number of subcarriers and the length of the TTI. For example, for 12 carriers whose length of TTI is 1 millisecond (or subframe), the basic unit for indicating the number of information bits of the scheduling window is 1 millisecond (or subframe), and for 6, 3, 1 subcarrier.
  • the corresponding TTI length is 2, 4, 8 milliseconds (or subframe), respectively, and the basic order for indicating the number of information bits of the scheduling window is 2, 4, 8 milliseconds (or subframe), respectively.
  • the corresponding TTI length is 1, 2, 4, 8 times the scheduling window length, in other words, if the scheduling window is determined according to the PDCCH position. Then, the information bit directly indicates the sequence number of the scheduling window. With the same information bit size, the starting position of the scheduling window that can be indicated is different. Such scheduling may have a blocking problem (one resource cannot be allocated) or a frequency domain resource length indicated by one PDCCH is different.
  • one DCI can schedule 16 millisecond (or subframe) time domain resources for 12 subcarriers, and 128 millisecond (or subframe) time domain resources can be scheduled for one subcarrier.
  • Table 5 gives a summary of the number of information bits based on the scheduling window number, the subframe offset, and the time domain resource location within the window.
  • Table 5 Number of information bits of scheduling information with different numbers of carriers
  • the frequency domain position may be in the form of joint coding as shown in Table 1, or may be indicated by the number of subcarriers (for example, 2 bits) and the frequency domain position (for example, 2 bits). the way.
  • the UE obtains a method for scheduling the resource, where the method includes: obtaining the first frequency domain scheduling information according to one domain in the parsing DCI; and determining the DCI according to the frequency domain scheduling information.
  • the frequency domain scheduling information is the number of subcarriers.
  • the time domain scheduling information is a scheduling window starting position, or a scheduling window sequence number.
  • the time domain scheduling information is a time domain starting location of the scheduled resource.
  • the parsing step can include one or more of the following processes: parsing for Deriving the number of subcarriers of the uplink scheduling information in the field indicating the number of subcarriers; obtaining the number of bits of the domain for indicating frequency domain scheduling according to the number of subcarriers, and parsing the domain for frequency domain scheduling to obtain frequency domain scheduling And obtaining, according to the number of subcarriers, a number of bits of the domain for indicating a start position of the time domain resource, and parsing the domain for indicating a start position of the time domain resource to obtain a start position of the time domain resource; The domain of the number of time domain resources obtains the number of time domain resources.
  • the step of the UE parsing the uplink scheduling information includes one or more of the following processes: parsing the number of subcarriers for obtaining the uplink scheduling information in the domain indicating the number of subcarriers; and obtaining the number of subcarriers according to the number of subcarriers And indicating the number of bits in the domain for the frequency domain scheduling, and parsing the domain for indicating the frequency domain scheduling to obtain the frequency domain scheduling information; obtaining the number of bits of the domain for indicating the location of the scheduling window according to the number of subcarriers, and parsing the Obtaining a scheduling window position in a domain indicating a location of the scheduling window; parsing a domain indicating a time domain resource location in the scheduling window to obtain a time-frequency resource location in the scheduling window, and obtaining a time domain resource location for uplink transmission according to the scheduling window location .
  • the step of the UE parsing the uplink scheduling information includes one or more of the following steps: parsing a domain for indicating a frequency domain resource location to obtain a frequency domain resource location, and a number of subcarriers; Obtaining a field for indicating a location of the scheduling window, and parsing the domain for indicating the location of the scheduling window to obtain a scheduling window position; parsing a domain for indicating a subframe offset to obtain a subframe offset; and parsing for indicating a scheduling window
  • the domain of the inner time domain resource location obtains the time-frequency resource location within the scheduling window, and obtains the time domain resource location for uplink transmission according to the scheduling window location and the subframe offset.
  • the step of the UE parsing the uplink scheduling information includes one or more of the following steps: parsing a domain for indicating a frequency domain resource location to obtain a frequency domain resource location, and a number of subcarriers; and parsing is used to indicate scheduling
  • the domain of the time domain resource location in the window obtains the location of the time domain resource in the scheduling window; and obtains the time domain resource location for the uplink transmission according to the scheduling window location and the time domain resource location in the scheduling window.
  • a method for repeating a physical data channel based on a scheduling window is provided, and the method may be implemented in combination with any one or more of the foregoing Embodiment 1, Embodiment 2, Embodiment 3, and Embodiment 4.
  • the method includes: the physical data channel is repeatedly transmitted on the same group of time domain resource units of the plurality of scheduling windows, when the number of time domain resource units occupied by the physical data channel in each scheduling window is less than that included in the scheduling window The number of domain resource units is an intermittent repetition.
  • the physical downlink control channel and the scheduled physical data channel are repeatedly transmitted in multiple scheduling windows, and the time relationship between the first physical data channel repetition and the last physical downlink control channel repetition is the same window scheduling or cross. Window scheduling.
  • the physical downlink control channel and the scheduled physical data channel are consecutive repetitions, and the time relationship between the first physical data channel repetition and the last physical downlink control channel repetition is determined by a scheduling window.
  • FIG. 24 is a schematic diagram of the PDCCH and the scheduled PDSCH being repeatedly transmitted in multiple scheduling windows.
  • each scheduling window includes one physical downlink control region and one physical downlink data region, so that the time domain resource unit occupied by the PDCCH or the scheduled PDSCH in each scheduling window is always smaller than the scheduling window.
  • the number of time domain resource units included, that is, the PDCCH and the PDSCH are intermittent repetitions in time. For example, 2401 in FIG. 24 represents an intermittent PDCCH repetition, and 2402 represents an intermittent PDSCH repetition.
  • the number of repetitions of the PDCCH transmission is N1, and the number and location of the time domain resource units occupied by the PDCCH in each scheduling window are the same, the number of repetitions of the PDSCH transmission is N2, and the time domain allocated by the PDSCH in each scheduling window.
  • the number and location of resource units are the same.
  • the first PDSCH repetition belongs to a scheduling window in the same manner as the corresponding last PDCCH repetition.
  • the PDSCH in FIG. 24 may also be a PUSCH.
  • the uplink scheduling area includes only the uplink data area, that is, the number of time domain resource units allocated to one PUSCH may be less than or equal to the time included in the uplink scheduling window.
  • the number of domain resource units, if less than, the PUSCH is an intermittent repetition. If equal, the PUSCH is a continuous repetition.
  • the first PUSCH repetition and the corresponding last PDCCH repetition belong to different scheduling windows, such as two adjacent scheduling windows.
  • 25 is a schematic diagram of a PDCCH and a scheduled PDSCH being consecutive repetitions and intermittent repetitions, respectively, wherein 2501 in FIG. 25 represents a continuous PDCCH repetition, and 2502 represents an intermittent PDSCH repetition.
  • the repetition of the PDCCH is independent of the scheduling window, and the PDSCH is repeatedly transmitted on the same group of time domain resource units of the plurality of scheduling windows. If the number of time domain resource units allocated by the PDSCH in the scheduling window is smaller than the number of time domain resource units included in the scheduling window, the PDSCH is an intermittent repetition; if the number of time domain resource units allocated by the PDSCH in the scheduling window is equal to the scheduling window The number of time domain resource units included, and the PDSCH is a continuous repetition.
  • the relationship between the start subframe of the scheduling window for the first PDSCH repetition and the last PDCCH repetition may be referred to FIG. 12, FIG. 13, and FIG.
  • 26 is a schematic diagram of the PDCCH and the scheduled PDSCH being consecutive repetitions, and the starting position of the first PDSCH repetition is still determined by the scheduling window, that is, the initiator of the first PDSCH repetition.
  • the time relationship between the end subframe of the frame and the last PDCCH repetition is determined by the time relationship between the PDCCH and its corresponding scheduling window and the time domain resource unit allocation position of the PDSCH in the scheduling window, wherein 2601 in FIG. 26 Indicates a continuous PDCCH repetition, and 2602 represents a continuous PDSCH repetition.
  • the time relationship between the PDCCH and its corresponding scheduling window can be referred to FIG. 12, FIG. 13, and FIG.
  • the wireless communication device can be used for communicating voice and/or transmitting data to the electronic device of the base station, and can communicate with the network device (for example, Public Switched Telephone Network (PSTN), Internet (Internet) Wait).
  • PSTN Public Switched Telephone Network
  • Internet Internet
  • the wireless communication device may be referred to as a mobile station, a user equipment (User Equipment, UE), an access terminal, a user using a subscriber station (Subscriber Station), a mobile terminal, and a user. Terminal, terminal, user use unit, etc.
  • the wireless communication device can be a cellular handheld device, a smart handheld device, a personal digital assistant (PDA), a notebook computer, a netbook, an e-reader (electronic reader), a wireless modem (Wireless Modem), etc. .
  • PDA personal digital assistant
  • UE user equipment
  • wireless communication device wireless communication device
  • a base station is generally referred to as a Node B, an evolved Node B (eNB), an enhanced Node eNB, and a Home evolved Node B (HeNB) Addition Node B (Home).
  • Enhanced Node B, HeNB or other similar terms. Since the scope of the present invention is not limited to the cellular mobile communication standard, the terms “base station”, “node B”, “base station” and “home base station” are used interchangeably, and are all expressed as common terms of the "base station” in the present invention. .
  • the term “base station” can be used to refer to an access point.
  • the access point may be an electronic device that provides access to a device for wireless communication to a network (eg, a local area network (LAN), an Internet, etc.).
  • the term “communication device” may also be used to mean a wireless communication device and/or a base station.

Abstract

本发明提供基于物理下行信道的传输方法,用户设备以及基站,所述方法包括:接收所述物理下行信道携带的控制信息,该控制信息包括一个时间间隔指示;以及依据该时间间隔指示和所述物理下行信道的结束子帧决定用户设备关于上行资源的信息或是调度窗口的起始子帧。本发明提供的基于调度窗口的时域资源分配方法便于为多个UE灵活分配时域资源。

Description

基于物理下行信道的传输方法、用户设备以及基站 技术领域
本发明一般有关于无线通信,更具体地,有关基于物理下行信道指示调度延迟(scheduling delay)的一种传输方法。
背景技术
随着蜂窝移动通信产业的迅猛发展,第五代移动通信系统得到了越来越多的关注和研究。日前,5G已经被ITU正式命名为IMT-2020,并预计在2020年进入商用阶段。与传统的2G/3G/4G移动蜂窝系统不同,5G将不再仅仅面向人类用户(human user),还将更好的支持各种各样“机器”类型通信(Machine Type Communication,以下简称MTC)用户。在众多服务于MTC用户设备的业务中,有一种叫做海量MTC(Massive MTC,以下简称MMC)。这种业务所服务的MTC用户设备的主要特点是:(1)造价低廉,用户设备造价远远低于智能手机;(2)数目庞大,参照ITU对5G的要求,针对MMC业务,将支持每平方公里106个连接数;(3)数据传输速率要求低;(4)对时延高容忍,等等。
在面向传统用户设备的蜂窝通信中,对系统进行设计的时候一般考虑小区覆盖率约为99%。未覆盖的1%用户可以利用用户设备本身的移动特性(Mobility)通过小区选择或者小区重选获得服务。不同于传统的面向人类通信的用户设备,一些类型的MMC用户设备可能被部署在相对固定的位置,例如服务于公共设施(路灯,水、电、煤气表等)的MTC用户设备。这种类型的MMC用户设备几乎不具备移动特性,因此在MMC通信系统设计的过程中,小区覆盖率通常要求达到99.99%或以上。更为恶劣的是,这种类型的MMC用户可能被部署在诸如地下室一类具有严重路径损耗的场景。因此为了更好的支持覆盖,MMC系统设计中采用的目标最大耦合损耗(Maximum Coupling Loss,以下简称MCL)通常会比传统蜂窝系统大10dB至20dB。例如,正在进行中的窄带物联网(Narrow Band Internet-of-Things,以下简称NB-IoT)系统标准化工作中,小区MCL目标为164dB或以上。
在NB-IOT系统中,由于占用带宽窄,频域可用子载波数非常少,例如采用 15kHz子载波间隔时,180kHz带宽内仅包含12个子载波,考虑与LTE系统的兼容,一个子帧内仅包含14个OFDMA符号(下行)或SC-FDMA符号(上行),即一个子帧最多只能分配168个资源粒子(Resource Element,以下简称RE)。为了支持更大的物理传输块(Transport Block,以下简称TB),例如传输块大小(Transport Block Size,以下简称TBS)达到1000比特,为一个TB在时域分配多个子帧是必须的,考虑到时域资源调度的灵活性,基于调度窗口为一个TB分配一组时域资源是一个合适的方法。
一个时域调度窗口(scheduling window)包含多个子帧,基站在每个调度窗口执行一次调度决策(decision),将调度窗口内所有子帧分配给一个用户设备(User Equipment,以下简称UE)或多个UE。调度窗口和传统的基于频域资源分配的调度带宽(bandwidth,BD)的概念相似,即将概念从频域搬到时域。在一次调度决策时,调度带宽可为多个UE实现频分复用(Frequency Domain Multiplexing,以下简称RDM),而调度窗口可为多个UE实现时分复用(Time Domain Multiplexing,以下简称TDM)。这种基于调度窗口的时域资源分配方法便于为多个UE灵活分配时域资源,有鉴于此,本发明提供了一种基于调度窗口分配一组时域资源单元的资源分配方法。
发明内容
有鉴于此,本发明提供基于物理下行信道的传输方法以及用户设备。
在一个新颖方面,本发明提供一种基于物理下行信道的传输方法,所述方法包括:接收所述物理下行信道携带的控制信息,该控制信息包括一时间间隔指示;以及依据该时间间隔指示和所述物理下行信道的结束子帧决定用户设备关于上行资源的信息或是调度窗口的起始子帧。在一个实施例中,该控制信息是随机接入响应(Random Access Response,RAR)消息,且所述物理下行信道是承载所述RAR信息的物理下行共享信道(PUSCH);以及依据该时间间隔指示和所述物理下行共享信道的结束子帧决定所述用户设备传输第三消息(message3,以下简称Msg3)的起始子帧。在一个实施例中,所述RAR信息中的MAC控制粒子(MAC control element,以下简称MAC CE)指示该时间间隔。
在另一个新颖方面,本发明提供一种用户设备。所述用户设备包括无线收发器和控制器。所述无线收发器被配置以与至少一基站进行无线传输。所述控 制器连接所述无线收发器。所述控制器被配置以接收来自所述至少一基站的物理下行信道所携带的控制信息,该控制信息包括一时间间隔指示。所述控制器依据该时间间隔指示和所述物理下行信道的结束子帧决定所述用户设备关于上行资源的信息或是调度窗口的起始子帧信息。
在另一个新颖方面,本发明提供一种基站。所述基站包括无线收发器和控制器。所述无线收发器被配置以与至少一用户设备进行无线传输。所述控制器连接至所述无线收发器。所述控制器被配置于物理下行信道所携带的控制信息中以指示出时间间隔指示,使得所述至少一用户设备依据所述控制信息中的该时间间隔指示和所述物理下行信道的结束子帧决定所述至少一用户设备关于上行资源的信息或是调度窗口的起始子帧。
在另一个新颖方面,本发明提供一种基于调度窗口调度一组时域资源单元的资源分配方法,其中,所述方法包括:用户设备收到用于调度的一个物理传输块(Transport Block,以下简称TB)的一个下行控制信息(Downlink Control Information,以下简称DCI),该DCI包含的资源分配(Resource Allocation,以下简称RA)域指示一个时域调度窗口内的一组时域资源单元;然后用户设备在该组时域资源单元上执行该TB的传输操作,如接收或发送。在一个实施例中,所述时域资源单元是一个子帧。在另一个实施例中,所述时域资源单元是多个子帧。在一个实施例中,所分配的一组时域资源单元是连续的。在另一个实施例中,所分配的一组时域资源单元是非连续的。
在再一个新颖方面,本发明提供一种对调度窗口持续时间内不可用子帧的处理方法,其中,所述方法包括:用户设备判断调度窗口持续时间内的每个子帧是否为不可用子帧;如果该子帧为不可用子帧,则采用预定义的处理方法。在一个实施例中,该预定义的处理方法为:如果调度窗口内可调度的子帧包含不可用子帧,那么实际可用子帧数可能小于所分配的子帧数,原先被映射到不可用子帧上的数据传输被丢弃或者根据实际可用子帧数做速率匹配以避开不可用子帧。在另一个实施例中,该预定义的处理方法为调度窗口内可调度的子帧不包含不可用子帧,那么实际可用子帧数等于分配的子帧数,原先被映射到不可用子帧上的数据传输被推延到下一个可用子帧上。
在再一个新颖方面,本发明提供一种决定调度窗口的起始子帧位置的方法, 其中,所述方法包括:用户设备收到一个基于调度窗口分配一组时域资源单元的物理下行控制信道(PDCCH);用户设备再根据一个预定义规则决定该调度窗口的起始子帧位置以确定调度窗口内所分配的一组时域资源单元的绝对位置。在一个实施例中,该预定义规则为调度窗口的起始子帧位置由对应物理下行控制信道的结束子帧所决定,或由包含对应物理下行控制信道的搜索空间(searching space)的结束子帧所决定,或由包含对应物理下行控制信道的控制区域的结束子帧所决定。在另一个实施例中,该预定义规则为调度窗口的起始子帧位置由子帧号、帧号和调度窗口所包含的子帧数所决定,且在每个下行调度窗口内包含一个物理下行控制区域和一个物理下行数据区域,物理下行控制信道与所调度的该组时域资源单元属于同一个调度窗口或不同调度窗口。在另一个实施例中,对一个给定时间内包含的多个调度窗口进行编号,调度窗口的编号用于参与对应物理数据信道传输使用的扰码序列生成器的初始化。
在再一个新颖方面,本发明提供一种设计DCI内的资源分配(Resource Allocation,RA)域内容的方法,其中所述方法包括:DCI的RA域至少包含以下一个或多个信息:一个时域调度窗口内所分配的时域资源单元的位置;一个时域调度窗口内所分配的时域资源单元的数目;一个频域调度带宽内所分配的频域资源单元的位置;一个频域调度带宽内所分配的频域资源单元的数目。在一个实施例中,一个频域调度带宽内分配的频域资源单元数目固定为一个频域资源单元,该频域资源单元在调度带宽的位置可在RA中指示,或通过高层信令配置。在另一个实施例中,固定分配频域调度带宽内包含的最大频域资源单元数目,即频域调度带宽内分配的频域资源单元的数目和位置无需在RA中指示。
在再一个新颖方面,本发明提供一种基于调度窗口重复物理数据信道的方法,其中所述方法包括:物理数据信道在多个调度窗口的同一组时域资源单元上重复传输,当占用的时域资源单元数目少于调度窗口内最大时域资源单元数目,则为间断性重复。在一个实施例中,物理下行控制信道和所调度的物理数据信道均在多个调度窗口内重复传输,第一个物理数据信道重复和最后一个物理下行控制信道重复的时间关系为同窗口调度(Same-window Scheduling,or intra-window scheduling)或跨窗口调度(Cross-window Scheduling,or inter-window scheduling)。在另一个实施例中,物理下行控制信道和所调度的物 理数据信道均为连续性重复,第一个物理数据信道重复和最后一个物理下行控制信道重复的时间关系通过调度窗口来决定。
根据再一个新颖方面,本发明提供调度第三消息(Msg3)的方法,该方法包含:根据随机接入响应(Random Access Response,以下简称RAR)而决定Msg3的时序,在频域以及时域中载波(tone/subcarrier)的不同数量,为Msg3提供资源分配。在一个实现中,UE根据DCI决定载波(tone)的大小,例如UE首先在DCI域中获得载波(tone)的数量,然后获得该域中获得用于资源分配的资源大小。对于多音调(multi-tone)的情况,例如,如果从DCI中获知12个载波,分配4+4个比特用于指示时域资源分配,以及不为频域RA分配用于指示的比特。如果从DCI中获知单音调(single-tone),分配4比特用于指示时域资源,以及分配4比特用于指示频域的RA。
根据再一个新颖方面,本发明提供UE获得调度资源的一种方法,该方法包含:根据解析DCI中的第一个域获得一个频域调度信息;根据该频域调度信息,判断DCI中第二个域的比特数,并解析第二个域并获得一个时域调度信息。其中,该频域调度信息为子载波个数。在一个实施例中,该时域调度信息为调度窗口起始位置,或调度窗口序号。在另一个实施例中,该时域调度信息为调度的资源的时域起始位置。
下文将具体描述关于基于物理下行信道的传输方法以及用户设备的其他的实施例及优点。“发明内容”部分并非用以定义本发明,本发明保护范围以权利要求为准。
附图说明
下面参考附图说明本发明的实施例,附图中相同数字表示相似元件。
图1是依据本发明实施例实现无线通讯环境的区块示意图。
图2是依据本发明实施例举例说明无线通讯装置200的区块示意图。
图3是依据本发明实施例举例说明的基站300的区块示意图。
图4为依据本发明实施例基于的物理下行信道的传输方法的流程示意图。
图5为依据本发明实施例的基于调度窗口的时域资源分配方法的流程示意图。
图6为依据本发明实施例时域调度窗口的示意图,其中时域资源单元为一个 子帧。
图7为依据本发明实施例时域调度窗口的示意图,其中时域资源单元为多个子帧。
图8为依据本发明实施例在时域调度窗口内连续分配一组时域资源单元的示意图。
图9为依据本发明实施例在时域调度窗口内非连续分配一组时域资源单元的示意图。
图10为依据本发明实施例时域调度窗口包含不可用子帧的示意图。
图11为依据本发明实施例时域调度窗口不包含不可用子帧的示意图。
图12为依据本发明实施例时域调度窗口的起始位置由对应物理下行控制信道的结束位置所决定的示意图。
图13为依据本发明实施例时域调度窗口的起始位置由包含对应物理下行控制信道的搜索空间的结束位置所决定的示意图。
图14为依据本发明实施例时域调度窗口的起始位置由包含对应物理下行控制信道的控制区域的结束位置所决定的示意图。
图15为依据本发明实施例时域调度窗口的起始位置由子帧号、帧号和调度窗口内包含的子帧数目所决定的示意图。
图16为依据本发明实施例在给定时间内对多个调度窗口编号,并利用调度窗口的编号来初始化扰码序列生成器的示意图。
图17为依据本发明实施例一个下行调度窗口包含一个物理下行控制区域和物理下行数据区域,以及对于下行执行同窗口调度,对于上行执行跨窗口调度的示意图。
图18为依据本发明实施例下行调度窗口内包含子帧数与上行调度窗口内包含子帧数不同,但上下行调度窗口持续时间相同的示意图。
图19为依据本发明实施例下行调度窗口内持续时间与上行调度窗口内持续时间不同,但上下行调度窗口包含子帧数相同的示意图。
图20为依据本发明实施例基于单音调(Single-tone)传输方式和调度窗口的资源分配方法的一个示意图。
图21为依据本发明实施例基于多音调(Multi-tone)传输方式和调度窗口的 资源分配方法的一个示意图。
图22为依据本发明实施例基于全音调(Full-tone)传输方式和调度窗口的资源分配方法的一个示意图。
图23为依据本发明实施例根据本发明的实施例,通过调度资源的位置以及一个偏移量来联合指示时域的资源的示意图。
图24为依据本发明实施例物理下行控制信道和所调度的物理下行数据信道均为间断性重复的示意图。
图25为依据本发明实施例物理下行控制信道和所调度的物理下行数据信道分别为连续性重复和间断性重复的示意图。
图26为依据本发明实施例物理下行控制信道和所调度的物理下行数据信道均为连续性重复的示意图。
具体实施方式
参照附图,通过下面的说明书,本发明实施例的前述以及其它特征将变得明显。这些实施方式只是示例性的,不是对本发明的限制。为了使本领域的技术人员能够容易地理解本发明的原理和实施方式,本发明的实施方式以LTE载波和海量机器通信类型(Massive MTC,以下简称MMC)通信系统为例进行说明,但可以理解,本发明实施例并不限于上述场景,对于涉及传输能力指示和传输模式配置的其它场景均适用。
在本发明实施例中,“调度窗口”的说法是为了方便说明,在本领域,也可以采用其他表述,例如“调度子帧”,“调度帧”,“超子帧(Super-subframe)”等,本发明实施例并不以此作为限制。“单音调(Single-tone)”、“多音调(Multi-tone)”和“全部音调(Full-tone)”传输方式的说法也可以是“单载波”,“单子载波”,“多载波”,“多子载波”,“满载波”,“满子载波”等,本发明实施例并不以此作为限制。“时域资源单元”也可以是“子帧”,“最小传输时间间隔(Transmission Time Interval,以下简称TTI)”等,本发明实施例并不以此作为限制。“频域资源单元”也可以是“子载波”、“物理资源块(Physical Resource Block,以下简称PRB)”,PRB对等等,本发明实施例也不以此作为限制。
图1是依据本发明实施例实现无线通讯环境的方块示意图。在一个实施例中,无线通讯环境100包括多个无线通讯装置(例如,图1所示无线通讯装置110、 无线通讯装置111和无线通讯装置113)和服务网路130。无线通讯装置110、无线通讯装置111和无线通讯装置113无线连接至服务网路130以取得移动服务。无线通讯装置110、无线通讯装置111和无线通讯装置113的每一者可以被称为用户设备。在一个实施例中,无线通讯装置110和无线通讯装置111可以是具有移动性的用户设备,例如,功能型手机、智能手机、个人平板电脑、笔记电脑或是其他可以支持(support)服务网路130所采用无线通讯技术的计算装置。在另一个实施例中,无线通讯装置113可以是不具移动性或是低移动性的用户设备。例如,可以是被部署在相对固定的位置而服务于MMC的用户设备。更详细地说,可以是应用于公共设施(例如,路灯、水表、电表、煤气表等)的用户设备,也可以是应用于家用设施(例如,台灯、烤箱、洗衣机、冰箱等)的用户设备等。这种服务于MMC/MTC的用户设备(例如,无线通讯装置113)几乎不具备移动特性。
在一个实施例中,服务网路130可以是LTE/LTE-A/LTE-U(LAA)/TD-LTE/5G/IOT/LTE-M/NB-IoT/EC-GSM/WiMAX/W-CDMA等网路。服务网路130包括接入(access)网路131和核心网路132。接入网路131负责处理无线电信号、达成无线电协议以及连接无线通讯装置110、无线通讯装置111和核心网路132。核心网路132负责执行移动管理、网路端验证以及作为公共/外部网路(例如,网际网路)的介面。
在一个实施例中,接入网路131和核心网路132的每一者可包括所述功能的一或多个网路节点。例如,接入网路131可以是包括至少两演进NodeB(例如,大型基站(macro cell/macro ENB)、小型基站(Pico cell/pico ENB)或毫微微蜂窝式基站(femtocell/femto ENB))的演进通用陆面无线接入网络(Evolved Universal Terrestrial Radio Access Network,以下简称E-UTRAN),核心网路132可以是包括归属用户服务器(Home Subscriber Server,以下简称HSS)、行动管理实体(Mobility Management Entity,以下简称MME)、服务闸道(Serving Gateway,以下简称S-GW)和数据封包网路闸道器(Packet Data Network Gateway,以下简称PDN-GW或P-GW)的演进数据封包核心网(Evolved Packet Core,以下简称EPC),但本发明并不限定于此。
如图1所示,无线通讯装置110位于小区A的覆盖范围之内和小区B的覆盖范 围之内。也就是说,无线通讯装置110位在小区A和小区B重叠的覆盖范围之内。无线通讯装置111则仅位于小区A的覆盖范围之内。接入网路131包括服务于小区A和小区B的eNB 131-a和eNB 131-b。eNB 131-a和eNB 131-b可以是与用户设备通讯的蜂窝式基站。eNB可以是与多个用户设备进行无线通讯的蜂窝式站(cellular station),亦可以是一基站、接入点(Access Point,AP)等。每一eNB对于一特定地理区域提供特定通讯覆盖范围。在3GPP中,”小区(cell)”可以视为一个eNB的所述特定通讯覆盖范围。
在一个实施例中,接入网路131可以是一异质网路(heterogeneous network,以下简称HetNet)。HetNet包括不同种类型的eNB,例如,大型基站、小型基站、毫微微蜂窝式基站、中继站(relay)等。大型基站覆盖相对较大的地理区域(例如,半径数公里的地理区域),并且允许用户设备与网络供应商之间不受限制地接入订阅(subscribe)服务。小型基站覆盖相对较小的地理区域,并且允许用户设备与网络供应商之间不受限制地接入订阅服务。毫微微蜂窝式基站覆盖设置在住宅类型中相对较小的地理区域(例如,家庭或小型办公场合),并且除了不受限制地接入之外,毫微微蜂窝式基站亦可提供关联于所述毫微微蜂窝式基站的用户设备受限制的接入(例如,在一闭型用户群组(Closed Subscriber Group,以下简称CSG)中的用户设备、使用者使用于家庭中的用户设备等)。
图2是依据本发明实施例举例说明的无线通讯装置200的方块示意图。无线通讯装置200可以是图1实施例所示的用户设备。无线通讯装置200包括无线收发器210、控制器220、储存装置230、显示装置240和输入输出装置250,其中控制器220分别连接至无线收发器210、储存装置230、显示装置240和输入输出装置250。
在一个实施例中,无线收发器210被配置以执行无线传输和与接入网路131之间的传送和接收,并包括干扰消除和抑制接收器(interference cancellation and suppression receiver)。无线收发器210包括射频处理装置211、基频处理装置212和天线213。射频处理装置211分别连接至基频处理装置212和天线213。在本实施例中,射频处理装置211的传送端接收来自基频处理装置212的基频信号,并将接收到的所述基频信号转换成稍后将被天线213发送的射频无线信号,其中所述射频无线信号的射频频段可以是LTE/LTE-A/TD-LTE技术所使用到的900MHz 频段、2100MHz频段或2.6GHz频段,可以是NB-IoT/LTE-M技术所使用到的1800MHz、900MHz频段、800MHz频段或是700MHz频段,也可以是其他无线通讯技术所使用的射频频段。在本实施例中,射频处理装置211的传送端至少包括功率放大器、混频器(Mixer)和低通滤波器,但本发明并不限定于此。
在一个实施例中,射频处理装置211的接收端透过天线213接收射频无线信号,并将接收到的所述射频无线信号转换成交给基频处理装置212处理的基频信号,其中所述射频无线信号的射频频段可以是LTE/LTE-A/TD-LTE技术所使用到的900MHz频段、2100MHz频段或2.6GHz频段,可以是NB-IoT/LTE-M技术所使用到的1800MHz、900MHz频段、800MHz频段或是700MHz频段,也可以是其他无线通讯技术所使用的射频频段。在本实施例中,射频处理装置211接收端包括处理射频信号的多个硬件装置。例如,射频处理装置211的接收端至少包括低噪声放大器、混频器(Mixer)(或称作降频混频器(Down converter))和低通滤波器,但本发明并不限定于此。所述低噪声放大器用以对接收自天线213的所述射频无线信号进行噪声处理。所述混频器用以对所述低噪声放大器处理过的所述射频无线信号执行一降频操作。
在一个实施例中,基频处理装置212被配置以执行基频信号处理,并被配置以控制用户身份模块(Subscriber Identity Module,以下简称SIM)和射频处理装置211之间的通讯。基频处理装置212可以包含多个硬件构件以执行所述基频信号处理,例如,模拟数字转换器、数字模拟转换器、与增益调整相关的放大器电路、调制/解调制的相关电路、编码/解码的相关电路等。
在一个实施例中,控制器220可以是通用处理器、微控制单元(Micro Control Unit,以下简称MCU)、应用处理器、数字讯号处理器或处理数字数据的任何类型的处理器控制装置。控制器220包括用于提供数据处理和计算的功能、控制无线收发器210与接入网路131进行无线通讯的功能、储存数据至储存装置230和从储存装置230提取数据的功能、传送序列帧数据(例如,表示消息、图形、图像的帧数据)至显示装置240的功能以及从输入输出装置250接收信号的功能的各种电路。特别地,控制器220配合无线收发器210、储存装置230、显示装置240和输入输出装置250的所述操作以执行本发明的方法。
在另一个实施例中,控制器220可以被合并在基频处理装置212中而为一基 频处理器。
在一个实施例中,储存装置230是非暂时性机器可读取储存媒体。储存装置230包括用于储存本发明方法、应用程序和/或通讯协议的指令和/或程序码的存储器(例如,一快闪存储器、非挥发性随机存取存储器)、磁性储存装置(例如,硬碟、磁带、或是光盘)、或是其任意组合。
在一个实施例中,显示装置240可以是提供显示功能的一液晶显示器(Liquid-Crystal Display,以下简称LCD)、发光二极管(Light-Emitting Diode,以下简称LED)显示器、或是电子纸显示器(Electronic Paper Display,以下简称EPD)等。可替换的是,显示装置240更包括设置在其上或下面的一或多个触控感测器,以用于感测目标物(例如,手指或触控笔)的触控、碰触或接近。
在一个实施例中,输入输出装置250可以包括一或多个按钮、键盘装置、滑鼠、触控板、摄像机,麦克风和/或扬声器等,以作为与使用者互动的人机界面(Man-Machine Interface,以下简称MMI)。
应当理解的是,在图2实施例中所描述各个构件仅用于说明,而不是旨在限定本发明的范围。
图3是依据本发明的一个实施例举例说明基站300的方块示意图。基站300包括无线收发器360、控制器370、储存装置380和有线通讯介面(interface)390,其中控制器370分别连接至无线收发器360、储存装置380和有线通讯介面390。无线收发器360的射频处理装置361、基频处理装置362和天线363相似于图2所述无线收发器210的射频处理装置211、基频处理装置212和天线213。因此,下文不再重复详细描述。
在一个实施例中,控制器370可以是一通用处理器、MCU、应用处理器、数字讯号处理器或类似处理器。控制器370包括用于提供数据处理和计算的功能、控制无线收发器360与无线通讯装置110、111和113进行无线通讯的功能、储存数据至储存装置380和从储存装置380提取数据的功能、透过有线通讯介面390从其他网路实体传送/接收消息的功能的各种电路。特别地,控制器370配合无线收发器360、储存装置380和有线通讯介面390的所述操作以执行本发明的方法。
在另一个实施例中,控制器370可以被合并至基频处理装置362中而为基频处理器。
本领域通常知识者可以理解的是,根据所述各种功能和操作,控制器220或控制器370的电路一般包括配置多个电晶体以控制所述电路的所述操作。如将进一步理解的是,所述电晶体的特定架构或连接通常是由一编译器所决定,例如,暂存器传递语言(Register Transfer Language,以下简称RTL)编译器。RTL编译器可藉由一处理器于类似组合语言的脚本上操作,以编译所述脚本成可使用于最终电路的电路布局中的格式。事实上,RTL因其在促进电子和数字系统的设计过程中的作用和用途而众所周知。
在一个实施例中,储存装置380是一非暂时性机器可读取储存媒体。储存装置330包括用于储存本发明的方法、应用程序和/或通讯协议的指令和/或程序码的存储器(例如,快闪存储器、非挥发性随机存取存储器)、磁性储存装置(例如,硬碟、磁带或光盘)、或是其任意组合。
在一个实施例中,有线通讯介面390负责提供与核心网路132之中其他网路实体(例如,MME和S-GW)通讯的功能。有线通讯介面390可以包括电缆数据机、非对称数字用户回路(Asymmetric Digital Subscriber Line,以下简称ADSL)数据机、光纤数据机(Fiber-Optic Modem,以下简称FOM)、和/或乙太网路介面。
图4为基于物理下行信道的传输方法的流程示意图。如图4所示,步骤S401中,无线通讯装置200(用户设备)接收所述物理下行信道携带的控制信息,该控制信息包括一时间间隔指示。步骤S402中,无线通讯装置200(用户设备)依据时间间隔指示和所述物理下行信道的结束子帧决定无线通讯装置200(用户设备)关于上行资源的信息或是调度窗口的起始子帧。
在一个实施例中,用户设备200的无线收发器210被配置以与至少一基站300进行无线传输。用户设备200的控制器220连接无线收发器210。控制器220被配置以接收来自所述至少一基站300的物理下行信道所携带的控制信息,该控制信息包括一时间间隔指示。控制器220依据该时间间隔指示和所述物理下行信道的结束子帧决定用户设备200关于上行资源的信息或是调度窗口的起始子帧。
在一个实施例中,基站300的无线收发器360被配置以与至少一用户设备200进行无线传输。基站300的控制器370连接无线收发器360。控制器370被配置于物理下行信道所携带的控制信息之中指示出时间间隔指示,使得所述至少一用 户设备200依据所述控制信息中的该时间间隔指示和所述物理下行信道的结束子帧决定所述至少一用户设备关于上行资源的信息或是调度窗口的起始子帧。
实施例1
图5为基于调度窗口的时域资源分配方法的一个流程示意图。如图5所示,提供一种基于调度窗口分配一组时域资源单元的的资源分配方法。步骤S501中,用户设备收到用于调度一个物理TB的DCI,该DCI包含的RA域指示一个时域调度窗口内的一组时域资源单元;然后,步骤S502中,用户设备在该组时域资源单元上执行该TB的传输操作,如接收或发送。
图6为时域调度窗口的一个示意图,其中时域资源单元为一个子帧。图7为时域调度窗口的一个示意图,其中时域资源单元为多个子帧。调度窗口至少包含多个时域资源单元,时域资源单元为时域资源的最小分配粒度(granularity)。在一个实施例中,如图6所示,时域资源单元为一个子帧,为一个TB可以分配调度窗口内的一个或多个子帧。例如,如图6所示分配给一个TB 601的一组子帧。在另一个实施例中,如图7所示,时域资源单元为多个子帧,该多个子帧也可能被称为最小传输时间间隔(Transmission Time Interval,TTI)或最小的资源单位(Resource Unit),或者为一个TB可以分配调度窗口内的一个或多个TTI。例如,如图7所示分配给一个TB 701的一组TTI。
在另一个实施例中,时域资源单元为一个时隙(slot)或者多个时隙,所述一个或多个时隙也可能被称为TTI或最小的资源单位。
在一个实施例中,为一个TB可分配的最大时域资源单元数目与调度窗口所包含的时域资源单元数目相等。在另一个实施例中,为一个TB可分配的最大时域资源单元数目小于调度窗口所包含的时域资源单元数目。
在一个实施例中,调度窗口所包含的时域资源单元数目为预定义的固定值。在另一个实施例中,调度窗口所包含的时域资源单元数目为可配置的值,以及在系统广播信息块(SIB)或UE特定(UE-specific)的高层信令(higher layer signaling)(例如RRC信令)中指出。在另一个实施例中,调度窗口所包含的时频资源单元数目可以通过隐式(implicitly)方式获得,例如调度窗口的长度等于下行控制信道搜索空间的周期。
在一个实施例中,上行调度窗口所包含的时域资源单元数目和下行调度窗 口所包含的时域资源单元数目相同,当上下行时域资源单元的持续时间相同时,那么上下行调度窗口的持续时间则相同;反之不同时,那么上下行调度窗口的持续时间则不同。在另一个实施例中,取决于上下行时域资源单元的持续时间的关系,上行调度窗口所包含的时域资源单元数目和下行调度窗口所包含的时域资源单元数目不同,但上下行调度窗口的持续时间可能相同或不同。
在一个实施例中,调度窗口的持续时间为预定义的固定值,但时域资源单元的持续时间为可配置的值,根据预定义的调度窗口的持续时间和配置的时域资源单元的持续时间可以进一步确定调度窗口所包含的时域资源单元的数目。例如,对于载波数目为{1,3,6,12}的最小调度资源的时间单元分别为{8,4,2,1}毫秒(或子帧),相应地在一个固定持续时间内,例如128毫秒(或子帧),可用于调度的时域资源分别为{16,32,64,128}个。
图8给出在调度窗口内连续分配时域资源单元的一个示意图。RA需要指出所分配的起始资源单元的位置(例如,图8所示801)以及所分配的连续资源单元的数目(例如,图8所示802),可分配的连续资源单元的数目与起始资源单元的位置相关,例如分配的起始资源单元为调度窗口内的第一个资源单元,那么可分配的连续资源单元的数目可以有
Figure PCTCN2017070838-appb-000001
种可能性(即
Figure PCTCN2017070838-appb-000002
),
Figure PCTCN2017070838-appb-000003
为调度窗口内资源单元的数目;如果分配的起始资源单元为调度窗口内的最后一个资源单元,那么可分配的连续资源单元的数目只可能为1。将所有分配的可能性包括起来共有
Figure PCTCN2017070838-appb-000004
种,那么在RA中可以用
Figure PCTCN2017070838-appb-000005
比特来实现连续资源单元的分配。
图9给出在调度窗口内非连续分配时域资源单元的一个示意图。RA可以通过一个位图(Bit-map)来指示所分配的资源单元,这个位图共包含
Figure PCTCN2017070838-appb-000006
个比特,每个比特信息对应调度窗口内一个资源单元的调度信息,例如比特为1表示该资源单元被调度,比特为0则反之。如图9所示,位图901(例如,0…10101)用以指示非连续的时域资源单元分配,其中每个比特信息对应调度窗口内一个资源单元的调度信息。
实施例2
基于实施例1中的调度窗口内资源分配,在本发明实施例2中提供一种对调 度窗口持续时间内不可用子帧的处理方法,其中,所述方法包括:用户设备判断调度窗口持续时间内的每个子帧是否为不可用子帧;如果该子帧为不可用子帧,则采用预定义的处理方法。用户设备可以根据一个高层信令配置来判断一个子帧是否为不可用子帧,例如在SIB或者RRC信令中通过一个位图的信令形式指出可用子帧或不可用子帧的信息,比特为1和0分别表示对应子帧为可用子帧和不可用子帧。在TDD系统中,当调度物理上行数据信道时,下行子帧以及包含极少量上行符号的特殊子帧即为不可用子帧;当调度物理下行数据信道时,上行子帧以及包含极少量下行符号的特殊子帧即为不可用子帧。
该预定义的处理方法为调度窗口内可调度的子帧集合包含不可用子帧,图10为时域调度窗口包含不可用子帧的一个示意图,如图10所示,即分配的子帧可能为不可用子帧,那么实际可用的子帧数可能小于所分配的子帧数。这里,调度窗口的持续时间是固定的,但调度窗口内可用子帧的数目则是动态变化的。
基于图10,在一个实施例中所调度的物理TBS由分配的子帧数决定,即由分配的子帧数决定对应的PRB或者PRB对的数量,进而在TBS-PRB映射表中得出对应的TBS。在另一个实施例中,所调度的TBS由实际可用的子帧数决定,即由实际可用的子帧数决定PRB数,进而在TBS-PRB映射表中那个得出对应的TBS。
基于图10,在一个实施例中,速率匹配可以基于分配的子帧数,即不可用子帧所包含的RE数也用于速率匹配,数率匹配后本该映射到不可用子帧上的数据传输被直接丢弃。在另一个实施例中,速率匹配基于实际可用的子帧数,即不可用子帧所包含的RE数不用于速率匹配,从而避开在不可用子帧上映射数据。
在另一个实施例中,该预定义的处理方法为调度窗口内可调度的子帧集合不包含不可用子帧,图11为时域调度窗口不包含不可用子帧的一个示意图,如图11所示,即实际可用子帧数总是等于分配的子帧数,TBS和速率匹配均基于分配的子帧数,数据传输应避开不可用子帧,即本该映射到不可用子帧上的数据传输被推延到下一个可用子帧上。这里,调度窗口的持续时间是动态变化的,取决于调度窗口是否存在不可用子帧及可能存在的不可用子帧的数目。
实施例3
在一个实施例中,提供一种决定调度窗口的起始子帧位置的方法,该方法可以用于上述实施例1以及/或者实施例2,其中,所述方法包括:用户设备收到 一个基于调度窗口分配一组时域资源单元的物理下行控制信道;用户设备再根据一个预定义规则决定该调度窗口的起始子帧位置以确定调度窗口内所分配的一组时域资源单元的绝对位置。
在一个实施例中,该预定义规则为调度窗口的起始子帧位置由承载对应DCI的物理下行控制信道(Physical Downlink Control Channel,以下简称PDCCH)的结束子帧所决定。图12为时域调度窗口的起始位置由对应物理下行控制信道的结束位置所决定的一个示意图。如图12所示,1111表示PDCCH搜索空间所占用的子帧集合,1112表示承载对应DCI的PDCCH所占用的子帧集合,调度窗口的起始子帧与对应PDCCH的结束子帧之间有一个固定间隔。例如PDCCH的结束子帧为子帧n,那么调度窗口的起始子帧为子帧n+k,k是一个固定的值。
在该实施例中,PDCCH搜索空间横跨(across)多个子帧,而承载对应DCI的PDCCH占据PDCCH搜索空间内一个或多个子帧。该PDCCH的起始子帧与PDCCH搜索空间的起始子帧可以相同或不同,该PDCCH的结束子帧与PDCCH搜索空间的结束子帧可以相同或不同。例如,在图12中,该PDCCH的起始子帧与PDCCH搜索空间的起始子帧相同,而该PDCCH的结束子帧与PDCCH搜索空间的结束子帧不同。
对于物理下行共享信道(Physical Downlink Shared Channel,以下简称PDSCH)和物理上行共享信道(Physical Uplink Shared Data Channel,以下简称PUSCH)的调度,k的值可能不同。例如对于PDSCH的调度,k=1,而对于PUSCH的调度,k=4。PDCCH的结束子帧与所调度的物理数据信道的起始子帧的间隔由调度窗口内的时域资源单元分配信息及k值共同决定,两者之间的时间关系是动态变化的。
在另一个实施例中,该预定义规则为调度窗口的起始子帧位置由包含对应PDCCH的搜索空间的结束子帧所决定,图13为时域调度窗口的起始位置由包含对应物理下行控制信道的搜索空间的结束位置所决定的一个示意图。如图13所示,1301表示PDCCH搜索空间所占用的子帧集合,1302表示承载对应DCI的PDCCH所占用的子帧集合,调度窗口的起始子帧与对应PDCCH搜索空间的结束子帧之间有一个固定间隔,例如PDCCH搜索空间的结束子帧为子帧n,那么调度窗口的起始子帧为子帧n+k,k是一个固定的整数值。PDCCH的结束子帧与所调 度物理数据信道的起始子帧的间隔由PDCCH在PDCCH搜索空间的位置、调度窗口内的时域资源单元分配分配及k值共同决定,两者之间的时间关系可以是动态变化的。
上述方法也适用于直接指示上行或下行发送/传输的调度资源块的起始位置。例如用DCI中的一个域(field)来指示PDCCH的结束子帧(或PDCCH搜索空间的结束子帧,或PDCCH下行控制区域的结束子帧)与调度资源块的起始位置之间的间隔k。其中k可以为一个子帧,或一个TTI中子帧的数量。
在另一个实施例中,间隔k也可以定义为与PDCCH、PDCCH搜索空间或PDCCH下行控制区域的起始子帧。该间隔可以预先定义,或者通过DCI或高层信令指示。
特别的,对于Msg3的起始位置,由于用于Msg3传输的上行资源在RAR中指示,那么Msg3的起始传输位置可以通过类似的方式获得。例如,UE通过一个间隔k以及用于传输RAR的PDSCH的结束子帧(或起始子帧)位置决定用于传输Msg3的上行资源的起始子帧位置,或者起始调度窗口的位置。其精神在于,上述间隔k为第三消息(Msg3)的起始传输位置(起始子帧位置)与对应传输RAR的PDSCH的结束子帧之间的调度延迟(scheduling delay)。该间隔可以是预先定义的,或者在RAR中的MAC CE指示。类似的,k可以指示以子帧为单位或TTI中子帧数量为单位的度量值。
在又一个实施例中,该预定义规则为调度窗口的起始子帧位置由包含对应PDCCH的下行控制区域的结束子帧所决定,图14为时域调度窗口的起始位置由包含对应物理下行控制信道的控制区域的结束位置所决定的一个示意图。如图14所示,1401表示PDCCH搜索空间所占用的子帧集合,1402表示承载对应DCI的PDCCH所占用的子帧集合,1403表示物理下行控制区域所占用的子帧集合,调度窗口的起始子帧与对应下行控制区域的结束子帧之间有一个固定间隔,例如下行控制区域的结束子帧为子帧n,那么调度窗口的起始子帧为子帧n+k,k是一个固定的值。PDCCH的结束子帧与所调度的物理数据信道的起始子帧的间隔由PDCCH在下行控制区域的位置、调度窗口内的时域资源单元分配信息及k值共同决定,两者之间的时间关系可以是动态变化的。
这里,基站会将部分连续的时域资源固定分配给下行控制区域,并在SIB中 指示出该下行控制区域的大小和位置,通过UE特定(UE-specific)高层信令(例如RRC信令)配置的PDCCH搜索空间必须存在于该下行控制区域内,PDCCH搜索空间的起始子帧与下行控制区域的起始子帧可以相同或不同,PDCCH搜索空间的结束子帧与下行控制区域的结束子帧可以相同或不同。
在一个实施例中,该预定义规则为调度窗口的起始子帧位置由子帧号、帧号和调度窗口所包含的子帧数所决定,图15为时域调度窗口的起始位置由子帧号、帧号和调度窗口内包含的子帧数目所决定的一个示意图,如图15所示,假定子帧i为调度窗口j的起始子帧,那么调度窗口j+1的起始子帧则为子帧i+N,调度窗口j+2的起始子帧则为子帧i+2N,这里N为调度窗口所包含的子帧数,后续调度窗口的起始子帧以此类推,即多个调度窗口在时间上是连续的,且每个调度窗口的持续时间均为固定值。
在当前LTE系统中,一个无线帧包含10个子帧,系统帧号(System Frame Number,SFN)在0~1023内编号。基于图15,第一个调度窗口的起始子帧位置可以为预定义,例如为无线帧#0内第一个子帧,根据子帧号#m(m=0~9)和无线帧号#n(n=0~1023)可得出每个子帧的绝对编号为10n+m,那么(10n+m)%N=0的子帧即为一个调度窗口的起始子帧,这里N为调度窗口所包含的子帧数。
基于图15,在一个实施例中,将一个预定义时间划分为多个调度窗口,该多个调度窗口的集合可以被称为“调度帧”或“超级窗口(Super-Window)”等,并对该多个调度窗口进行编号。图16为在给定时间内对多个调度窗口编号#1~#(N-1),并利用调度窗口的编号来初始化扰码序列生成器的一个示意图。如图16所示,调度窗口的编号可以参与物理数据信道传输所使用的扰码序列生成器的初始化,例如
Figure PCTCN2017070838-appb-000007
这里nsw为调度窗口的编号,nRNTI为UE的C-RNTI值,
Figure PCTCN2017070838-appb-000008
为UE所属小区的ID号。
例如,上述预定义的持续时间为60ms,即包含60个子帧(一个子帧的持续时间为1ms),且每个调度窗口包含6个子帧,那么60ms持续时间内共包含10个调度窗口,调度窗口的编号为0~9。在另一个实施例中,调度窗口的编号也可以用于决定物理数据信道传输所使用的其他参数,例如参考信号生成器的初始化等。
在一个实施例中,每个下行调度窗口都包含一个物理下行控制区域和一个物理下行数据区域,物理下行控制信道与所调度的一组时域资源单元属于同一个调度窗口或不同调度窗口。图17为一个下行调度窗口包含一个物理下行控制区域和物理下行数据区域,以及对于下行执行同窗口调度,对于上行执行跨窗口调度的一个示意图。如图17上方所示对使用PDSCH同窗口调度,下行调度窗口n内的物理下行控制区域为PDSCH分配本调度窗口内下行数据区域内一组时域资源单元,即同窗口调度(Same-Window Scheduling);如图17下方所示对使用PUSCH跨窗口调度,下行调度窗口n内的物理下行控制区域为PUSCH分配上行调度窗口n+1内上行数据区域内一组时域资源单元,即跨窗口调度(Cross-Window Scheduling)。在另一个实施例中,对于PUSCH分配,也可能采用跨窗口调度。
基于图17,在一个实施例中,下行调度窗口内的物理下行控制区域和物理下行数据区域均由多个连续的时域资源单元组成,且物理下行控制区域从调度窗口的起始位置开始,物理下行控制区域以外的时域资源单元则属于物理下行数据区域。物理下行控制区域所包含的时域资源单元数目为一个可配置的值,例如在SIB中配置,或通过UE特定高层信令配置。
基于图17,在一个实施例中,UE被配置物理下行控制区域和PDCCH搜索空间,前者通过SIB指示,后者通过UE特定高层信令配置,且后者所占用的时域资源单元必须存在于前者内,即后者所包含的时域资源单元数目应小于或等于前者所包含的时域资源单元数目。在另一个实施例中,UE只配置了PDCCH搜索空间,可以通过SIB或UE特定高层信令配置,此时PDCCH搜索空间即为图16里的下行控制区域。
基于图17,在一个实施例中,为PDSCH所分配的时域资源单元只能属于物理下行数据区域,即PDSCH可分配的最大时域资源单元数目只能小于或等于物理下行数据区域所包含的时域资源单元数目。在一个实施例中,用于调度PDSCH的RA域大小由物理下行数据区域所包含的时域资源单元数目决定,当物理下行数据区域所包含的下行时域资源单元数目和物理上行数据区域所包含的上行时域资源单元数目不同时,用于下行资源分配的RA域大小与用于上行资源分配的RA域大小则不同。在另一个实施例中,用于PDSCH的RA域大小仍由下行调度 窗口所包含的时域资源单元数目决定,基站避免将物理下行控制区域内的时域资源单元分配给PDSCH。
基于图17,在一个实施例中,为PDSCH所分配的时域资源单元可能存在于物理下行控制区域,即PDSCH可分配的最大时域资源单元数目可能大于物理下行数据区域所包含的时域资源单元数目。如果预留给物理下行控制区域的时域资源单元在实际传输中并未被PDCCH所使用,那么就可以调度给PDSCH。这里,用于下行资源分配的RA域大小由下行调度窗口所包含的时域资源单元数目决定,基站可能将物理下行控制区域内的时域资源单元分配给PDSCH,且所分配的时域资源单元在对应PDCCH的结束子帧之后。
图18为下行调度窗口内包含子帧数与上行调度窗口内包含子帧数不一致,但上下行调度窗口的持续时间相同的一个示意图。例如下行子帧持续时间为1ms,上行子帧持续时间为下行子帧持续时间的2倍,即2ms,下行调度窗口内包含N个下行子帧,上行调度窗口内则包含N/2个上行子帧。由于上下行调度窗口的持续时间相同,上下行调度窗口的编号可以一一对应。每个下行调度窗口都包含一个物理下行控制区域,该物理下行控制区域可分配一个上行调度窗口的上行时域资源,例如下行调度窗口n内的物理下行控制区域可分配上行调度窗口n+1内的时域资源。
图19为下行调度窗口内持续时间与上行调度窗口内持续时间不同,但上下行调度窗口所包含的上下行子帧数相同的一个示意图。例如下行子帧持续时间为1ms,上行子帧持续时间为下行子帧持续时间的2倍,即2ms,由于上下行调度窗口内包含子帧数相同,上行调度窗口的持续时间将是下行调度窗口的持续时间的2倍,那么一个给定时间内下行调度窗口的数目将是上行调度窗口的2倍。在一个实施例中,上行调度窗口n的时域资源只能由下行调度窗口2n内物理下行控制区域所分配。在另一个实施例中,上行调度窗口n的时域资源只能由下行调度窗口2n+1内物理下行控制区域所分配。在又一个实施例中,上行调度窗口n的时域资源可以由下行调度窗口2n或2n+1内物理下行控制区域所分配。
在另一个实施例中,上行的调度窗口长度与已分配不同子载波数目所对应的TTI长度相关。例如,对于载波数目为{1,3,6,12}的最小调度资源的时间单元分别为{8,4,2,1}毫秒(或子帧),所对应的上行调度窗口长度分别为{128,64,32,16} 毫秒(或子帧)。此时,在一个调度窗口中对于不同子载波个数或不同的子载波间隔可以指示的资源块的数目相同。例如,对于3.75kHz与15kHz同样是子载波数目为1的情况,3.75kHz上行调度窗口的长度可以为15kHz的4倍。
实施例4
基于上述实施例1,实施例2和实施例3,本发明提供一种设计DCI内RA域内容的方法,其中,所述方法包括:DCI的RA域至少包含以下一个或多个信息,一个时域调制窗口内部分配的时域资源单元的位置;一个频域调制窗口内所分配的时域资源单元的数目;一个频域调度带宽内部分配的频域资源单元的位置;一个频域调制带宽内部分配的频域资源单元的数目。时域资源单元为时域资源的最小调度粒度,频域资源单元为频域资源的最小调度粒度。
在一个实施例中,频域调度带宽内所分配的一组频域资源单元为连续的。在另一个实施例中,频域调度带宽内所分配的一组频域资源单元为非连续的。在一个实施例中,时域调度窗口内所分配的一组时域资源单元为连续的。在另一个实施例中,时域调度窗口内所分配的一组时域资源单元为非连续。上述时频域分配的例子可以有多种组合。
在一个实施例中,上述信息在构造RA域时可以独立编码,即RA域内包含两个独立的子域,一个子域指示域域调度信息,另一个子域指示域域调度信息。中,上述信息在构造RA域时也可以联合编码,即RA域只包含一个子域,综合指示频域和时域调制信息的所有可能性。
在一个实施例中,上述时域资源单元是一个子帧。在另一个实施例中,上述时域资源单元是多个子帧。在一个实施例中,上述时域资源单元在上行和下行包含的子帧数不同,例如下行时域资源单元为一个子帧,上行时域资源单元包含6,8,10或12个子帧。在一个实施例中,上行子帧和下行子帧所持续的时间不同,例如下行子帧为1ms,上行子帧为2ms或5ms。
在一个实施例中,上述频域资源单元是多个子载波,例如频域资源单元是1个PRB,包含12个子载波。在一个实施例中,上述频域资源单元在上行和下行所包含的子载波数不同,例如下行频域资源单元为12个子载波,上行频域资源单元为1个子载波。在一个实施例中,下行子载波间隔和上行子载波间隔不同,例如下行子载波间隔为15kHz,上行子载波间隔为3.75kHz。
在一个实施例中,一个频域调度带宽内所分配的频域资源单元固定为一个频域资源单元,该频域资源单元在频域调度带宽内的位置可以在DCI中指示,或通过高层信在另一个实施例中,调度带宽内包含的最大频域资源单元数目被固定分配,即频域调度带宽内所分配的频域资源单元的数目和位置均为固定,无需在DCI中指示中。
图20为基于Single-tone传输方式和调度窗口的资源分配方法的一个示意图,即用户设备在频域只能分配一个子载波,那么RA域包含以下信息:所分配的子载波在调度带宽内的位置(如图20所示11101);在调度窗口内所分配的时域资源单元的数目和位置(如图20所示2002)。在另一个实施例中,所分配的子载波在调度带宽内的位置不在DCI中指示,而是通过UE特定高层信令配置。在另一个实施例中,调度带宽小于系统带宽或RF带宽。其调度带宽在系统带宽或RF带宽的相对位置可以通过高层信令配置,例如RRC信令。进一步,通过DCI指示具体频域资源,例如一个载波,在调度带宽的位置。
图21为基于Multi-tone传输方式和调度窗口的资源分配方法的一个示意图,即用户设备在频域调度带宽内可分配一组子载波,RA域包含以下信息:频域调度带宽内所分配的子载波的数目和位置(如图21所示2101);时域调度窗口内所分配的时域资源单元的数目和位置(如图21所示2102)。例如,调度带宽为180kHz,子载波间隔为15kHz,调度带宽内包含12个子载波间隔,在一个实施例中,用户设备可以被分配1~12个子载波。在另一个实施例中,用户设备可以被分配1,3,6,12个子载波。在又一个实施例中,用户设备可以被分配6,12个子载波。在又一个实施例中,用户设备可以被分配1,2,4,8,12个子载波。
图22为Full-tone传输方式和调度窗口的资源分配方法的一个示意图,即用户设备总是被分配调度带宽内所有子载波,RA域包含以下信息:时域调度窗口内所分配的时域资源单元的数目和位置(如图22所示2201)。
为了降低UE盲(blind)检(detecting)PDCCH的次数,PDCCH的信息比特数的可能性尽量少,甚至为1。如果频域的载波个数需要在DCI中指示,那么对于调度不同频域资源载波个数的DCI大小相同,进一步的,用于PUSCH和PDSCH的DCI大小也相同。由于占用小带宽进行上行传输功率谱密度(PSD boosting)提升可以提高接收端的SINR,提高信道估计性能,从而提高用户的数据速率。 另一方面,节省下来的其他带宽可以分配给其他UE。例如,上行可以用3.75kHz单载波或者15kHz单载波,以及不同子载波个数,例如3,6,12个载波。而对于给定系统带宽,例如180kHz,不同的子载波个数可以对应频域不同的资源块个数。例如,如果频域资源可以任意分配,那么对于{1,3,6,12}个载波在频域分别有{12,4,2,1}个可分配的资源。具体的,一个实施例中,把12个载波分为4块,每块包含3个载波。另一个实施例中,资源分配为频域的任意位置,则对应{1,3,6,12}个载波在频域有{12,9,6,1}个可分配资源位置。也就是说,用于指示频域资源位置的RA域的大小对与不同载波个数是不同的。例如,需要4比特,2比特,1比特或者无需比特来分别指示{1,3,6,12}对应的{12,4,2,1}个资源。另外一方面,为了提供相当的码率,减小在频域占用的资源数量会增加在时域传输的时间,即,不同载波个数的TTI长度不同。在一个实施例中,对应{1,3,6,12}个载波的TTI长度分别为{8,4,2,1}毫秒。那么在相同时间资源上,需要的信息比特数目也可以不同。
为了指示一个上行资源,可以指示频域占用的位置以及时域占用的位置。考虑到SC-FDMA为单载波传输,频域只需要指示子载波数目,频域位置。又考虑到为了节省UE功耗,时域资源可以简化为时域的起始位置以及时域的子帧数目。上述的几个域可以分别指示或者联合编码指示。
在一个实施例中,用2比特指示子载波个数,对于1个或3个子载波,用2比特指示频域的位置,其中对于单载波传输,采用高层信令先指示一个调度带宽,例如包含8个子载波,再通过DCI中3比特来指示是该8个子载波中的哪一个。在一个实施例中,高层信令直接给出一个调度带宽的起始位置,以及包含的载波个数。在另一个实施例中,高层信令指示预先顶一个几个调度带宽中的一个。可选择的,高层信令可以直接给出调度带宽的对应的子载波序号,其中该子载波序号可以为连续的或非连续的。对于6个载波,用1比特来指示频域的位置。而对于12个子载波,无需额外指示频域位置。对于不同载波间隔,可以借助高层信令来进行指示。在另一个实施例中,一个额外的信息比特来指示不同的载波间隔,例如3.75kHz或15kHz。
在另一个实施例中,频域载波个数以及载波位置及子载波间隔进行联合编码,如表1所示。在另一个实施例中,频域载波位置可替换为频域载波起始位置, 或频率域资源序号(index)。在表1中,k可以通过高层信令指示。在另一个实施例中,可以透过高层信令指示一个调度带宽,透过DCI进一步指示为该调度带宽中的载波位置,此时k=0。
针对Msg3的调度,可以在RAR中给出Msg3的调度信息。对于RAR中的调度,例如可以通过系统信息中明确给出,也可以通过暗示的方式,或者根据RAR的信息(如传输位置,调用RAR的控制信息),或者PRACH的信息计算。上述联合编码的方式,适用于Msg3的指示。
请参考表1:其中,一组子载波可以被定义为一个时频资源块(PRB)。例如定义#0-#5子载波为6个载波的PRB#0,定义#6-#11子载波为6个载波的PRB#1。类似的,可以为3个载波定义4个PRB,为15kHz的单载波定义12个PRB,为3.75kHz的单载波定义48个PRB。
Figure PCTCN2017070838-appb-000009
表1频域子载波数目、子载波间隔以及子载波位置的联合编码
相应的,在时域资源的指示中,对于不同TTI长度也需要不同的比特数。进一步的,为了更加灵活的指示时域的起始位置,例如,假设128个毫秒的调度窗口,或假设一个传输块最多可分配16个TTI(或最小调度资源的长度),或一个DCI负责分配128个子帧的资源,那么对于单载波传输,TTI长度为8毫秒(或子 帧),那么需要4比特,但是对于3个子载波的调度,TTI长度为4毫秒(或子帧),需要5比特,而对于6个子载波的调度或者12个子载波的调度,则分别需要6比特或7比特来指示。
在一个实施例中,UE成功解码一个PDCCH得到一个DCI,该DCI至少包含用于指示子载波个数的域,以及指示频域位置或时域起始位置的域。UE先通过指示子载波个数的域来获得调度资源块的子载波个数,通过子载波个数确定其他域的比特数目并进一步根据其他域的比特数目来进一步解析频域以及时域的资源块位置。
综合考虑频域和时域的指示,对于12个子载波带宽以及120毫秒(或子帧)的调度窗口,对于指示任意子载波数目所需要的总的信息比特数是相同的,如表2所示。
栏位 1子载波 3个子载波 6个子载波 12个子载波
频域位置 3比特 2比特 1比特 -
时域起始位置 4比特 5比特 6比特 7比特
总数 7比特 7比特 7比特 7比特
表2用不同载波个数的频域位置以及时域起始位置指示的比特数
进一步,需要指示时域占用资源块数目。考虑到用户能够传输的最大传输块大小相同,因此最大的时域资源块数目也相同,例如,最多为16个资源块,则需要4比特的信息来指示。如表3所示,对于不同的子载波个数用于指示调度信息时频资源位置的信息比特总数相同。
Figure PCTCN2017070838-appb-000010
表3用不同载波个数的调度信息的信息比特数
在另一个实施例中,可以定义多个时域调度窗口,一个DCI中包含子载波个数的域、频域位置域、调度窗口序号域以及调度窗口内的时域资源位置域,如 表4所示。DCI的大小对与不同子载波个数是相同的。
Figure PCTCN2017070838-appb-000011
表4用不同载波个数的调度信息的信息比特数
图23为根据本发明的实施例,通过调度资源的位置以及一个偏移量来联合指示时域的资源的示意图。例如,在最多可以调度16个时域资源的调度中,通过3GPP上行而调度类型0(type0),需要8比特信息来指示分配的上行资源在这16个时域资源中所占用的位置。在另一个实施例中,可以用4比特信息来指示这16个资源中的哪个资源,以及用4比特信息指示占用了几个时域资源。一个3比特的偏移量来指示在这16个时域资源的起始位置。该偏移量也可以理解为PUSCH相对于PDCCH的位置,或者调度窗口与PDCCH的相对位置。在图23中,DCI的调度资源可以是,例如,128子帧,但不仅限定于此。如图23所示,对于给定子帧数目的时域资源,对于不同的子载波个数,其调度窗口个数不同,例如128个子帧中有8个调度窗口,每个调度窗口包含12子载波,或者4个调度窗口,每个调度窗口包含6个子载波,或者包含3个调度窗口,其中,2个调度窗口,该2个调度窗口中每个调度窗口包含3个载波,以及1个调度窗口中包含1个单载波。又因为不同的子载波个数的TTI长度不同,为了使得一个上行传输可以在任意一个子帧开始,则6,3,1个载波分别需要1比特,2比特以及3比特来指示一个偏移量。联合考虑偏移量以及调度窗口的指示,对于不同子载波个数的调度,所需要的信息比特数相同。如图23所示,共需要3比特。
UE先获取的子载波个数,再根据子载波个数来进一步解析调度窗口的时域位置。在一个实施例中,通过子帧偏移量以及调度窗口序号来指示调度窗口的时域位置。在另一个实施例中,直接根据子载波个数以及TTI的长度指示调度窗口的时域位置。例如对于12个载波,其TTI的长度为1毫秒(或子帧),则用于指示调度窗口的信息比特数的基本单位为1毫秒(或子帧),而对于6,3,1个子载波 数,对应的TTI长度分别为2,4,8毫秒(或子帧),则用于指示调度窗口的信息比特数的基本代为分别为2,4,8毫秒(或子帧)。在另一个实施例中,而对于12,6,3,1个子载波数,对应的TTI长度分别1,2,4,8倍调度窗口长度,换句话说,如果调度窗口是根据PDCCH位置确定的,则用该信息比特直接指示调度窗口的序号。采用相同的信息比特大小,能够指示的调度窗口的起始位置不同。这样的调度或者存在阻塞问题(有一个资源无法被分配到)或者一个PDCCH所指示的频域资源长度不同。例如,一个DCI对于12个子载波可以调度16毫秒(或子帧)的时域资源,对于一个子载波可以调度128毫秒(或子帧)的时域资源。表5给出了基于调度窗口序号、子帧偏移量以及窗口内的时域资源位置的信息比特数汇总。
Figure PCTCN2017070838-appb-000012
表5用不同载波个数的调度信息的信息比特数
(注1):在表5中,频域位置可以通过如表1所示的联合编码的方式,也可以通过分别指示子载波个数(例如2比特)以及频域位置(例如2比特)的方式。
(注2):子帧偏移量以及调度窗口序号用于指示调度窗口的时域位置,可以通过联合编码的方式,或者直接指示绝对值得方式给出。
根据上述实施例,UE得到上行调度信息之后,UE获得调度资源的一种方法,该方法包含:根据解析DCI中的一个域获得第一个频域调度信息;根据该频域调度信息,判断DCI中第二个域的比特数,并解析第二个域并获得一个时域调度信息。其中,该频域调度信息为子载波个数。在一个实施例中,该时域调度信息为调度窗口起始位置,或调度窗口序号。在另一个实施例中,该时域调度信息为调度的资源的时域起始位置。
第一种实现中,该解析步骤可以包含如下过程中的一个或多个:解析用于 指示子载波个数的域获得上行调度信息的子载波个数;根据子载波个数获得用于指示频域调度的域的比特数,并解析该用于指示频域调度的域获得频域调度信息;根据子载波个数获得用于指示时域资源起始位置的域的比特数,并解析该用于指示时域资源起始位置的域获得时域资源起始位置;以及根据用于指示时域资源个数的域获得时域资源个数。
第二种实现中,UE解析上行调度信息的步骤包括如下过程中的一个或多个:解析用于指示子载波个数的域获得上行调度信息的子载波个数;根据子载波个数获得用于指示频域调度的域的比特数,并解析该用于指示频域调度的域获得频域调度信息;根据子载波个数获得用于指示调度窗口位置的域的比特数,并解析该用于指示调度窗口位置的域获得调度窗口位置;解析用于指示调度窗口内时域资源位置的域获得调度窗口内的时频资源位置,并根据调度窗口位置获得用于上行传输的时域资源位置。
第三种实现中,UE解析上行调度信息的步骤包括如下过程中的一个或多个:解析用于指示频域资源位置的域获得频域资源位置,以及子载波个数;根据子载波个数获得用于指示调度窗口位置的域,并解析该用于指示调度窗口位置的域获得调度窗口位置;解析用于指示子帧偏移量的域获得子帧偏移量;解析用于指示调度窗口内时域资源位置的域获得调度窗口内的时频资源位置,并根据调度窗口位置,子帧偏移量获得用于上行传输的时域资源位置。
第四种实现中,UE解析上行调度信息的步骤包括如下过程中的一个或多个:解析用于指示频域资源位置的域获得频域资源位置,以及子载波个数;解析用于指示调度窗口内时域资源位置的域,获得调度窗口内时域资源的位置;根据调度窗口位置以及调度窗口内时域资源位置,获得用于上行传输的时域资源位置。
实施例5
在一个实施例中,提供一种基于调度窗口重复物理数据信道的方法,该方法可以结合上述实施例1、实施例2、实施例3以及实施例4中任意一者或者多个的组合而实施,其中该方法包括:物理数据信道在多个调度窗口的同一组时域资源单元上重复传输,当物理数据信道在每个调度窗口内占用的时域资源单元数目少于调度窗口所包含的时域资源单元数目,则为间断性重复。在一个实施 例中,物理下行控制信道和所调度的物理数据信道均在多个调度窗口内重复传输,第一个物理数据信道重复和最后一个物理下行控制信道重复之间的时间关系为同窗口调度或跨窗口调度。在另一个实施例中,物理下行控制信道和所调度的物理数据信道均为连续性重复,第一个物理数据信道重复和最后一个物理下行控制信道重复之间的时间关系通过调度窗口来决定。
图24为PDCCH和所调度的PDSCH均在多个调度窗口内重复传输的一个示意图。如图24所示,每个调度窗口均包含一个物理下行控制区域和一个物理下行数据区域,故PDCCH或所调度的PDSCH在每个调度窗口内所占用的时域资源单元总是小于调度窗口内包含的时域资源单元数目,即PDCCH和PDSCH在时间上均为间断性重复。例如,图24中的2401表示间断性PDCCH重复,而2402表示间断性PDSCH重复。PDCCH传输的重复次数为N1,PDCCH在每个调度窗口内所占用的时域资源单元数目和位置均是相同的,PDSCH传输的重复次数为N2,PDSCH在每个调度窗口内所分配的时域资源单元数目和位置均是相同的。第一个PDSCH重复与对应的最后一个PDCCH重复同属于一个调度窗口。
在另一个实施例中,图24里的PDSCH也可以是PUSCH,由于上行调度窗口内只包含上行数据区域,即分配给一个PUSCH的时域资源单元数目可能小于或等于上行调度窗口所包含的时域资源单元数目,如果小于,PUSCH则为间断性重复,如果等于,PUSCH则为连续性重复。第一个PUSCH重复和对应的最后一个PDCCH重复属于不同的调度窗口,例如两个相邻的调度窗口。
图25为PDCCH和所调度的PDSCH分别为连续性重复和间断性重复的一个示意图,其中图25中的2501表示连续性PDCCH重复,而2502表示间断性PDSCH重复。PDCCH的重复与调度窗口无关,PDSCH则在多个调度窗口的同一组时域资源单元上重复传输。如果PDSCH在调度窗口内所分配的时域资源单元数目小于调度窗口所包含的时域资源单元数目,PDSCH则为间断性重复;如果PDSCH在调度窗口内所分配的时域资源单元数目等于调度窗所包含的时域资源单元数目,PDSCH则为连续性重复。用于第一个PDSCH重复的调度窗口的起始子帧与最后一个PDCCH重复之间的关系可以参考图12、图13和图14。
图26为PDCCH和所调度的PDSCH均为连续性重复的一个示意图,第一个PDSCH重复的起始位置仍通过调度窗口来决定,即第一个PDSCH重复的起始子 帧与最后一个PDCCH重复的结束子帧之间的时间关系由PDCCH及其对应调度窗口之间的时间关系和PDSCH在调度窗口内的时域资源单元分配位置来共同决定,其中图26中的2601表示连续性PDCCH重复,而2602表示连续性PDSCH重复。PDCCH及其对应调度窗口之间的时间关系可以参考图12、图13和图14。
除非另有定义,本文所使用的所有术语(包括技术和科学术语)将被解释为本领域所惯用的。还将理解的是,常用的术语也应被解释为相关领域所惯用的,而并非理想化的或过于正式的含意,除非本文明确地加以定义。
无线通讯装置可以用于通信语音及/或传输数据至基站的电子装置,其可与网路装置互相通讯(例如,公共交换电话网路(Public Switched Telephone Network,PSTN),网际网路(Internet)等)。在本发明所描述的通讯系统及方法中,无线通讯装置可被称为移动台,用户设备(User Equipment,UE),存取终端,使用者使用用户端(Subscriber Station),移动终端,使用者终端,终端,使用者使用单元等。举例说明,无线通讯装置可以为蜂窝式手持装置,智能手持装置,个人数字助理(PDA),笔记本电脑,上网本(Netbook),电子阅读器(电子阅读器),无线数据机(Wireless Modem)等装置。用语“用户设备(UE)”、“无线通讯装置”可以在本发明中互换使用,皆表示为“无线通讯装置”普通的用语。
基站通常被称为B节点(Node B),进化B节点(evolved Node B,eNB),增强型B节点(enhanced eNB),家庭进化B节点(Home evolved Node B,HeNB)增加型B节点(Home enhanced Node B,HeNB)或其他类似的用语。由于本发明的范围不适只局限于蜂窝移动通信标准,因此用语“基站”,“节点B”,“基站”和“家庭基站”可以互换使用,皆表示为本发明中“基站”的普通用语。此外,用语“基站”可被用来表示接入点。存取点可以是电子装置,提供用于无线通讯的设备至网路(例如,区域网路(Local Area Network,LAN),网际网路(Internet)等)的存取。也可以使用用语“通讯设备”来表示无线通讯装置和/或基站。
本发明内容的示范性实施例,充实详细描述如下,以使本领域的技术人员来实现与实施本发明内容。重要且需了解的是,本发明的示范性实施例可多种形式实施,并不应解释为只局限于这里所提出的本发明的示范性实施例。因此,尽管本发明可以受到各种修饰和替换形式的影响,但是其特定实施例在图中作 为示例示出并将在这里详细描述。然而,应理解的是,不意旨将本发明所公开的特定形式。相反地,本发明将涵盖本发明精神和范围内的所有修改,等效,和替换。相同的附图标记在图的描述中为表示相同元件。

Claims (16)

  1. 一种基于物理下行信道的传输方法,其中,所述方法包括:
    接收所述物理下行信道携带的控制信息,该控制信息包括时间间隔指示;以及
    依据该时间间隔指示和所述物理下行信道的结束子帧决定用户设备关于上行资源的信息或是调度窗口的起始子帧。
  2. 如权利要求1所述方法,其特征在于,该控制信息是随机接入响应RAR信息,以及所述物理下行信道是承载所述RAR信息的物理下行共享信道;以及
    依据该时间间隔指示和所述物理下行共享信道的结束子帧决定所述用户设备传输第三消息的起始子帧。
  3. 如权利要求1所述方法,其特征在于,该控制信息是用于调度物理传输块的下行控制信息,所述物理下行信道是承载所述下行控制信息的对应物理下行控制信道,以及该下行控制信息包含的资源分配域指示调度窗口内的一组时域资源单元;以及
    在指示出的该组时域资源单元上接收或者发送该物理传输块。
  4. 如权利要求3所述方法,其特征在于,所述调度窗口的起始子帧由承载所述下行控制信息的对应物理下行控制信道的结束子帧和该时间间隔指示所决定,或者由包含所述下行控制信息的物理下行控制信道搜索空间的结束子帧和该时间间隔指示所决定;或是
    所述调度窗口的起始子帧由包含所述下行控制信息的物理下行控制区域的结束子帧和该时间间隔指示所决定。
  5. 如权利要求3所述方法,其特征在于,所述时域资源单元是一个子帧或者多个子帧;或是
    所述时域资源单元是一个时隙或者多个时隙。
  6. 如权利要求3所述方法,其特征在于,所指示的一组时域资源单元是连续的。
  7. 如权利要求3所述方法,其特征在于,所述调度窗口包含不可用子帧,或者不包含不可用子帧;以及
    在系统信息块系统中指示出所述不可用子帧。
  8. 如权利要求3所述方法,其特征在于,所述调度窗口的起始子帧由子帧号、帧号和调度窗口所包含的子帧数目所决定。
  9. 如权利要求8所述方法,其特征在于,对一个给定时间所包含的多个调度窗口进行编号,调度窗口的编号会参与物理数据信道传输所使用的扰码序列生成器的初始化。
  10. 如权利要求9所述方法,其特征在于,每个下行时域调度窗口内包含一个物理下行控制区域和一个物理下行数据区域。
  11. 如权利要求10所述方法,其特征在于,物理下行控制信道和其所调度的一组时域资源单元属于同一个调度窗口,或者不同的调度窗口。
  12. 如权利要求3所述方法,其特征在于,下行调度窗口所包含的子帧数与上行调度窗口所包含的子帧数不同;或是
    该下行调度窗口所持续的时间与该上行调度窗口所持续的时间不同。
  13. 一种基于物理下行信道的用户设备,包括:
    无线收发器,用于与至少一基站进行无线传输;以及
    控制器,连接所述无线收发器,所述控制器被配置以接收来自所述至少一基站的物理下行信道所携带的控制信息,该控制信息包时间间隔指示;以及
    所述控制器依据该时间间隔指示和所述物理下行信道的结束子帧决定所述用户设备关于上行资源的信息或是调度窗口的起始子帧。
  14. 如权利要求13所述用户设备,其特征在于,该控制信息是RAR信息,且所述物理下行信道是承载所述RAR信息的物理下行共享信道PDSCH;以及
    所述控制器依据该时间间隔指示和所述物理下行共享信道PDSCH的结束子帧决定传输第三消息的起始子帧。
  15. 一种基于物理下行信道的基站,包括:
    无线收发器,被配置以与至少一用户设备进行无线传输;以及
    控制器,连接所述无线收发器,所述控制器被配置于物理下行信道所携带的控制信息之中指示出时间间隔指示,使得所述至少一用户设备依据所述控制信息中之该时间间隔指示和所述物理下行信道的结束子帧决定所述至少一用户设备关于上行资源的信息或是调度窗口的起始子帧。
  16. 如权利要求15所述基站,其特征在于,该控制信息是RAR信息,且 所述物理下行信道是承载所述RAR信息的物理下行共享信道PDSCH;以及
    所述无线收发器所接收第三消息的起始子帧是决定于该时间间隔指示和所述物理下行共享信道PDSCH的结束子帧。
PCT/CN2017/070838 2016-01-11 2017-01-11 基于物理下行信道的传输方法、用户设备以及基站 WO2017121324A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780006221.1A CN108702749A (zh) 2016-01-11 2017-01-11 基于物理下行信道的传输方法、用户设备以及基站
US15/554,292 US20180049164A1 (en) 2016-01-11 2017-01-11 Transmission method based on physical downlink channel, user equipment, and base station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610015174 2016-01-11
CN201610015174.4 2016-01-11
CN201610081948.3 2016-02-05
CN201610081948 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017121324A1 true WO2017121324A1 (zh) 2017-07-20

Family

ID=59310890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070838 WO2017121324A1 (zh) 2016-01-11 2017-01-11 基于物理下行信道的传输方法、用户设备以及基站

Country Status (3)

Country Link
US (1) US20180049164A1 (zh)
CN (1) CN108702749A (zh)
WO (1) WO2017121324A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391300A (zh) * 2017-08-11 2019-02-26 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
CN111294941A (zh) * 2019-03-28 2020-06-16 北京展讯高科通信技术有限公司 用于v2x业务的反馈资源确定方法及装置、存储介质、终端
CN113365329A (zh) * 2018-09-15 2021-09-07 华为技术有限公司 一种通信方法及装置
CN113711675A (zh) * 2019-04-24 2021-11-26 株式会社Ntt都科摩 用户装置
WO2022236565A1 (en) * 2021-05-10 2022-11-17 Zte Corporation Methods and systems for coverage enhancement in wireless networks
EP4102919A1 (en) * 2017-08-10 2022-12-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device, and terminal device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106982468B (zh) * 2016-01-17 2018-04-27 上海朗帛通信技术有限公司 一种调度方法和装置
JP6185096B2 (ja) * 2016-02-04 2017-08-23 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
WO2017153418A1 (en) 2016-03-11 2017-09-14 Sony Corporation Terminal device, infrastructure equipment and methods
EP3427508A4 (en) * 2016-03-11 2019-10-23 Sierra Wireless, Inc. METHOD AND SYSTEM FOR CARRIER FREQUENCY OFFSET ESTIMATION IN MTC LTE DEVICE COMMUNICATION
CN107197524B (zh) * 2016-03-15 2021-06-22 株式会社Kt 用于发送窄带物联网用户设备上行数据的方法及装置
CN107295655A (zh) * 2016-03-31 2017-10-24 电信科学技术研究院 一种传输资源指示方法、基站、ue和系统
US10405266B2 (en) * 2016-04-04 2019-09-03 Lg Electronics Inc. Method and user equipment for receiving downlink control channel, and method and base station for transmitting downlink control channel
CN110430616B (zh) * 2016-05-13 2023-11-10 华为技术有限公司 一种资源确定方法、相关设备及系统
EP3461311B1 (en) * 2016-07-21 2019-09-04 Telefonaktiebolaget LM Ericsson (publ) Flexible indication for start position of data channel
US11146377B2 (en) * 2016-08-02 2021-10-12 Samung Electronics Co., Ltd Method and apparatus for communicating in a wireless communication system
EP3520519B1 (en) * 2016-09-30 2023-12-13 Sony Group Corporation Method and device for resource allocation of colliding radio systems
CN108282855A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 上行功率控制方法及终端
CN114158122A (zh) * 2017-01-06 2022-03-08 大唐移动通信设备有限公司 一种数据传输方法、终端及基站
EP3574701B1 (en) * 2017-01-26 2023-12-20 Motorola Mobility LLC Resource configuration priority levels
KR102373791B1 (ko) * 2017-05-04 2022-03-14 삼성전자주식회사 통신 시스템에서 제어 정보 탐색 및 데이터 정보 전송을 위한 방법 및 장치
CN109152041B (zh) * 2017-06-16 2023-11-03 华为技术有限公司 信息传输的方法、终端设备和网络设备
CN109462891B (zh) 2017-11-17 2020-04-14 华为技术有限公司 检测窗指示方法及装置
US10681621B2 (en) * 2017-12-14 2020-06-09 T-Mobile Usa, Inc. Narrowband internet of things device channel scanning
US10841942B2 (en) * 2018-04-05 2020-11-17 Qualcomm Incorporated Scheduling and time-domain configuration in integrated access and backhaul
EP3793298A4 (en) * 2018-05-10 2021-12-22 Ntt Docomo, Inc. USER TERMINAL, AND WIRELESS COMMUNICATION PROCESS
US10932250B2 (en) * 2018-06-19 2021-02-23 Mediatek Singapore Pte. Ltd. Method and apparatus for enhancing time domain-resource allocation framework in mobile communications
CN110972274B (zh) * 2018-09-28 2023-01-20 中兴通讯股份有限公司 时域资源分配方法及装置
CN112868194A (zh) * 2018-12-27 2021-05-28 Oppo广东移动通信有限公司 重复传输方法、装置、芯片及计算机程序
US10945296B2 (en) * 2019-01-14 2021-03-09 Cisco Technology, Inc. Synchronization and reservation based on sub timeslots for unaligned wireless communications
CN113498190A (zh) * 2020-04-08 2021-10-12 维沃移动通信有限公司 传输控制信息的方法和通信设备
CN116158156A (zh) * 2021-09-23 2023-05-23 苹果公司 用于无线通信的时域窗口确定
CN115811391B (zh) * 2022-11-19 2024-03-22 中国电子科技集团公司第五十四研究所 一种低轨星座系统的下行共享信道发送装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215547A (zh) * 2008-01-08 2011-10-12 华为技术有限公司 系统信息调度方法、装置及一种终端
CN102450067A (zh) * 2009-03-02 2012-05-09 华为技术有限公司 实现无线传输调度的方法及装置
CN102907014A (zh) * 2010-05-17 2013-01-30 三星电子株式会社 在宽带无线通信系统中指示上行链路资源分配的装置和方法
WO2015096011A1 (zh) * 2013-12-23 2015-07-02 华为技术有限公司 多载波聚合的方法、装置、用户设备及网络侧设备
WO2015142429A1 (en) * 2014-03-19 2015-09-24 Qualcomm Incorporated Scheduling assignment content and transmission in wireless communications

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917832B1 (ko) * 2008-09-19 2009-09-18 엘지전자 주식회사 시간 정렬 타이머를 고려한 신호 송수신 방법 및 이를 위한 사용자 기기
KR101666286B1 (ko) * 2011-10-09 2016-10-13 엘지전자 주식회사 무선통신 시스템에서 데이터 채널의 시작 위치 설정 방법 및 상기 방법을 이용하는 장치
US9560528B2 (en) * 2011-12-22 2017-01-31 Nokia Solutions And Networks Oy Assigning frequency bands from a group of frequency bands to a wireless network system
CN103582073B (zh) * 2012-07-31 2018-07-27 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
KR102082971B1 (ko) * 2012-10-05 2020-02-28 인터디지탈 패튼 홀딩스, 인크 Mtc(machine type communication) 디바이스의 커버리지를 향상시키는 방법 및 장치
EP3713262B1 (en) * 2013-07-26 2022-04-20 LG Electronics Inc. Method for transmitting signal for mtc and apparatus for same
CN105745848B (zh) * 2013-11-01 2019-07-05 三星电子株式会社 用于lte先进的增强覆盖发送的方法和装置
CN106233794A (zh) * 2014-01-29 2016-12-14 交互数字专利控股公司 用于覆盖增强无线传输的接入和链路自适应的方法
CN106160974B (zh) * 2015-04-08 2020-11-24 中兴通讯股份有限公司 一种实现信道传输的方法及基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215547A (zh) * 2008-01-08 2011-10-12 华为技术有限公司 系统信息调度方法、装置及一种终端
CN102450067A (zh) * 2009-03-02 2012-05-09 华为技术有限公司 实现无线传输调度的方法及装置
CN102907014A (zh) * 2010-05-17 2013-01-30 三星电子株式会社 在宽带无线通信系统中指示上行链路资源分配的装置和方法
WO2015096011A1 (zh) * 2013-12-23 2015-07-02 华为技术有限公司 多载波聚合的方法、装置、用户设备及网络侧设备
WO2015142429A1 (en) * 2014-03-19 2015-09-24 Qualcomm Incorporated Scheduling assignment content and transmission in wireless communications

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4102919A1 (en) * 2017-08-10 2022-12-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device, and terminal device
US11711823B2 (en) 2017-08-10 2023-07-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, network device, and terminal device
CN109391300A (zh) * 2017-08-11 2019-02-26 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
CN109391300B (zh) * 2017-08-11 2021-01-26 上海朗帛通信技术有限公司 一种用于无线通信的用户设备、基站中的方法和装置
CN113365329A (zh) * 2018-09-15 2021-09-07 华为技术有限公司 一种通信方法及装置
CN113365329B (zh) * 2018-09-15 2023-04-28 华为技术有限公司 一种通信方法及装置
CN111294941A (zh) * 2019-03-28 2020-06-16 北京展讯高科通信技术有限公司 用于v2x业务的反馈资源确定方法及装置、存储介质、终端
CN111294941B (zh) * 2019-03-28 2023-03-14 北京紫光展锐通信技术有限公司 用于v2x业务的反馈资源确定方法及装置、存储介质、终端
CN113711675A (zh) * 2019-04-24 2021-11-26 株式会社Ntt都科摩 用户装置
WO2022236565A1 (en) * 2021-05-10 2022-11-17 Zte Corporation Methods and systems for coverage enhancement in wireless networks

Also Published As

Publication number Publication date
CN108702749A (zh) 2018-10-23
US20180049164A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2017121324A1 (zh) 基于物理下行信道的传输方法、用户设备以及基站
WO2017157270A1 (zh) 上行控制信息的调度方法及无线通讯装置
US11626947B2 (en) Communication method and communications device
JP6473804B2 (ja) Rel−13通信システムにおけるMTCデバイスのためのリソース割当て
US10667272B2 (en) Determining mechanism of physical shared channel parameters, base station, and user equipment
KR102091371B1 (ko) 머신 타입 통신을 위한 통신 시스템 및 방법
JP7227297B2 (ja) データ通信方法、端末、および基地局
CN106162888B (zh) 载波聚合中的pucch资源配置方法及其设备
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
WO2020047922A1 (zh) 配置信息的传输方法和终端设备
KR102232476B1 (ko) 통신 장치 및 방법
CN107005942B (zh) 功率分配方法和通信设备
TW202008828A (zh) 資源配置的方法和終端設備
TW202008829A (zh) 資源配置的方法和終端設備
CN115004785A (zh) 用于较高频率范围内的pbch有效载荷的方法和装置
CN114270747A (zh) 用于确定循环前缀扩展的方法和装置以及用户设备
CN102905370A (zh) 一种实现控制信道资源配置的方法和系统
US9900216B2 (en) Handling of different control channel configurations for one or more wireless devices in a radio network
WO2018036437A1 (zh) 资源指示、确定方法、装置、网络侧设备及接收侧设备
KR101189806B1 (ko) 자원 할당 방법 및 자원 할당 장치
TWI531196B (zh) 行動通訊裝置與監聽實體下行控制通道之方法
CN111385880B (zh) 一种时域资源的确定方法及装置
JPWO2014112058A1 (ja) 基地局装置、通信方法および端末装置
CN103546411A (zh) 上行授权信息发送方法、授权信息指示方法及基站
RU2767038C1 (ru) Конфигурация интервала отсутствия сигнала для нескольких транспортных блоков

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15554292

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738138

Country of ref document: EP

Kind code of ref document: A1