WO2019051707A1 - 用于传输信息的方法、终端设备和网络设备 - Google Patents

用于传输信息的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019051707A1
WO2019051707A1 PCT/CN2017/101718 CN2017101718W WO2019051707A1 WO 2019051707 A1 WO2019051707 A1 WO 2019051707A1 CN 2017101718 W CN2017101718 W CN 2017101718W WO 2019051707 A1 WO2019051707 A1 WO 2019051707A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
coresets
coreset
time slot
pdcch
Prior art date
Application number
PCT/CN2017/101718
Other languages
English (en)
French (fr)
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2017/101718 priority Critical patent/WO2019051707A1/zh
Priority to CN201780049595.1A priority patent/CN109691206A/zh
Publication of WO2019051707A1 publication Critical patent/WO2019051707A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications, and, more particularly, to a method, a terminal device, and a network device for transmitting information.
  • CORESET Control Resource Set
  • 5G fifth-generation
  • PDCH Physical Downlink Control Channel
  • CORESET occupies 1 to 3 symbols in the time domain and occupies a configurable bandwidth in the frequency domain.
  • the network is configured with CORESET, it can be configured in units of symbols. That is to say, multiple CORESETs may be included in one time slot. How to acquire and monitor multiple CORESET locations in a time slot is urgently needed to be solved. problem.
  • the embodiments of the present application provide a method, a terminal device, and a network device for transmitting information, which are beneficial to reducing power consumption of the terminal.
  • a first aspect provides a method for transmitting information, where the method includes: receiving, by a terminal device, first configuration information sent by a network device, where the first configuration information is used to indicate that the terminal is used to carry the terminal in a first time slot.
  • a time domain location of a first CORESET of the plurality of control resource sets CORESET of the physical downlink control channel PDCCH of the device and a distribution period of the plurality of CORESETs in the first time slot, each CORESET of the plurality of CORESETs At least one symbol is periodically distributed in the first time slot; the terminal device determines a time domain location of the multiple CORESETs according to the first configuration information; and the terminal device monitors the PDCCH on the multiple CORESETs.
  • the time domain location of the first CORESET configured by the network device and the distribution period of the CORESET in a certain time slot enable the terminal device to accurately know the location of the monitoring PDCCH, which is beneficial to reducing the power consumption of the terminal device.
  • the first configuration information may be used to indicate a time domain location of any one of the plurality of CORESETs in the first time slot, and the terminal device only needs to know any one of the CORESETs.
  • the time domain position in the first time slot combined with the distribution period of the CORESET, the time domain position of all other CORESETs in the first time slot can be determined.
  • the distribution period of the CORESET in the first time slot may also be pre-configured in the terminal device.
  • Two adjacent CORESETs may or may not be continuous in the time domain.
  • the duration of each of the plurality of CORESETs in the time domain may be the same or different.
  • a CORESET occupies 1 to 3 consecutive symbols in the frequency domain.
  • the method further includes: receiving, by the terminal device, a slot format indication SFI information sent by the network device; and determining, by the terminal device, the downlink information used in the first time slot according to the SFI information.
  • the PDCCH is monitored by the terminal device on the plurality of CORESETs, and the terminal device monitors the PDCCH on the symbol for transmitting downlink information in the plurality of CORESETs.
  • M first time slots are included in every N consecutive time slots, N is a positive integer greater than 1, and M is a positive integer.
  • a second aspect provides a method for transmitting information, where the method includes: the network device sends, to the terminal device, first configuration information, where the first configuration information is used to indicate that the terminal device is used in the first time slot.
  • the time domain location of the first CORESET of the plurality of control resource sets CORESET of the physical downlink control channel PDCCH and the distribution period of the plurality of CORESETs in the first time slot, each of the plurality of CORESETs is at least A symbol is periodically distributed in the first time slot; the network device transmits the PDCCH to the terminal device on the plurality of CORESETs.
  • the method further includes: the network device sending a slot format indication SFI information to the terminal device, where the SFI information is used to indicate a symbol for transmitting downlink information in the first time slot; And transmitting, by the network device, the physical downlink control channel PDCCH to the terminal device, where the network device sends the PDCCH to the terminal device on the symbol for transmitting downlink information in the multiple CORESETs.
  • M first time slots are included in every N consecutive time slots, N is a positive integer greater than 1, and M is a positive integer.
  • a terminal device for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the terminal device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a network device for performing the method of any of the foregoing second aspect or any of the possible implementations of the second aspect.
  • the network device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a terminal device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the first aspect or the first aspect of the first aspect.
  • a network device comprising: a memory, a processor, an input interface, and an output interface.
  • the memory, the processor, the input interface, and the output interface are connected by a bus system.
  • the memory is for storing instructions for executing the memory stored instructions for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a computer storage medium for storing the method in any of the above possible implementations of the first aspect or the first aspect, or any possible implementation of the second or second aspect
  • Computer software instructions for use in the method of the present invention which comprise a program designed to perform the above aspects.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the first aspect or the optional implementation of the first aspect, or the second Aspect or method of any alternative implementation of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • Figure 2 shows a resource configuration diagram in 5G.
  • FIG. 3 shows a schematic block diagram of a method for transmitting information in an embodiment of the present application.
  • FIG. 4 shows a configuration diagram of a CORESET of an embodiment of the present application.
  • FIG. 5 shows another configuration diagram of the CORESET of the embodiment of the present application.
  • FIG. 6 shows another configuration diagram of the CORESET of the embodiment of the present application.
  • FIG. 7 shows another configuration diagram of the CORESET of the embodiment of the present application.
  • FIG. 8 shows another schematic block diagram of a method for transmitting information according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device of an embodiment of the present application.
  • FIG. 10 shows a schematic block diagram of a network device of an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 12 shows another schematic block diagram of a network device of an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the technical solutions of the embodiments of the present application can be applied to various communication systems based on non-orthogonal multiple access technologies, such as a sparse code multiple access (SCMA) system, and a low-density signature (Low). Density Signature (LDS) system, etc., of course, the SCMA system and the LDS system may also be referred to as other names in the communication field; further, the technical solution of the embodiment of the present application can be applied to multi-carrier using non-orthogonal multiple access technology.
  • SCMA sparse code multiple access
  • LDS Density Signature
  • Orthogonal Frequency Division Multiplexing OFDM
  • Filter Bank Multi-Carrier FBMC
  • General Frequency Division Multiplexing Generalized Frequency Division Multiplexing (OFDM)) Frequency Division Multiplexing (GFDM)
  • Filtered Orthogonal Frequency Division Multiplexing Filtered-OFDM, F-OFDM
  • the terminal device in the embodiment of the present application may refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PLMN Public Land Mobile Network
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system. And may be an evolved base station (eNB or eNodeB) in the LTE system, or may be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be The embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or the network device in the future evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • CRAN cloud radio access network
  • the embodiments of the present application are not limited to the relay station, the access point, the in-vehicle device, the wearable device, and the network device in the future 5G network or
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system in FIG. 1 may include a terminal device 10 and a network device 20.
  • the network device 20 is configured to provide communication services for the terminal device 10 and access the core network.
  • the terminal device 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 10 and the network device 20.
  • the PDCCH is transmitted in the control area of the system, and the system control area occupies the entire system bandwidth, and the number of symbols occupied is 1-4 symbols, and the number of symbols is indicated by a physical control format indicator channel (PCFICH). ) Notify the terminal.
  • PCFICH physical control format indicator channel
  • CORESET occupies 1 to 3 symbols in the time domain, and the frequency domain does not occupy the entire system bandwidth, but a configurable bandwidth.
  • the frequency resource bandwidth occupied by the CORESET and the number of time domain symbols can be configured to the terminal through high layer signaling.
  • PDSCH Physical Downlink Shared Channel
  • the network wants to send a Physical Downlink Shared Channel (PDSCH) to the terminal, its scheduling information PDCCH is sent in the corresponding CORESET.
  • PDSCH of UE2 is scheduled by the PDCCH in the CORESET of UE2
  • the PDSCH of UE1 is scheduled by the PDCCH in the CORESET of UE1.
  • the PDCCH in the LTE system is composed of a Control Channel Element (CCE), and each CCE is composed of a Resource-Element Group (REG), and each REG includes a plurality of Resource Elements (REs);
  • the REG in the NR is a physical resource block (PRB) in the frequency domain, and is an OFDM symbol in time. Unless otherwise specified, the symbols appearing multiple times in this paper are all OFDM symbols.
  • Multiple REGs form a REG bundle (REG bundle), and the REG bundle can include 2, 3, and 6 REG, one CCE includes 6 REGs.
  • the network When the network is configured with CORESET, it will be configured with corresponding parameters, such as time-frequency resources and PDCCH monitoring period.
  • the PDCCH monitoring period may be in units of slots, or may be in units of symbols, and one slot in the NR includes 14 OFDM symbols, when the configured monitoring period of the CORESET is in units of symbols, and the symbol period It is not divisible by 14 and CORESET may appear in different locations of different slots, which may result in the terminal not being able to accurately know the monitoring position of the PDCCH in a certain slot.
  • FIG. 3 shows a schematic block diagram of a method 100 for transmitting information in an embodiment of the present application. As shown in FIG. 3, the method 100 includes some or all of the following:
  • the terminal device receives the first configuration information that is sent by the network device, where the first configuration information is used to indicate the first of the multiple control resource sets CORESET used to carry the physical downlink control channel PDCCH of the terminal device in the first time slot. a time domain position of the CORESET and a distribution period of the plurality of CORESETs in the first time slot, each of the plurality of CORESETs being periodically distributed in the first time slot by at least one symbol;
  • the terminal device determines, according to the first configuration information, a time domain location of the multiple CORESETs.
  • the terminal device monitors the PDCCH on the multiple CORESETs.
  • the network device may configure the location of the first CORESET in the time slot to the terminal device and
  • the distribution period of multiple CORESETs in the time slot which may refer to the interval of two adjacent CORESETs in the time domain, for example, may be the number of symbols included between two CORESET start symbols.
  • the terminal device can further determine the time domain location of all CORESETs in the time slot according to the configuration of the network device, and then the terminal device can monitor the PDCCH in the determined time domain position of the CORESET.
  • the terminal device can accurately detect the monitoring PDCCH by using the time domain location of the first CORESET configured by the network device and the CORESET distribution period in a certain time slot.
  • the location helps to reduce the power consumption of the terminal device.
  • two CORESETs adjacent in the time domain may overlap partially or completely, may also be continuous in the time domain, and may also be discontinuous in the time domain. This embodiment of the present application does not limit this.
  • the first configuration information may be used to indicate a time domain location of any one of the plurality of CORESETs in the first time slot, and the terminal device only needs to know that any one of the CORESETs is in the first time.
  • the time domain position in the gap, combined with the CORESET distribution period, can determine the time domain position of all other CORESETs in the first time slot.
  • the network device may inform the terminal device of the time domain location of the first few CORESETs.
  • the network device may reserve a few bits in the first configuration information to indicate a certain CORESET. After the terminal device obtains the reserved bit, the terminal device can determine the first CORESET according to the value of the bit.
  • the terminal device can consider that each CORESET occupies the same number of symbols in one time slot. Then, when the terminal device acquires the time domain position of a certain CORESET, the terminal device can determine the time domain position of other CORESETs according to the distribution period of the CORESET in the time slot, that is, the terminal device can accurately know which symbols are in the terminal device. Go up to monitor the PDCCH. For example, the network device can configure each CORESET to occupy one symbol, and the monitoring period is 6 symbols. If the network device configures the first symbol of the first CORESET in a time slot, the terminal device can know that other CORESETs are respectively in the first 7 symbols and the 13th symbol. Furthermore, the terminal device can monitor the PDCCH on the first symbol, the seventh symbol, and the thirteenth symbol.
  • the terminal device can also think that the number of symbols occupied by each CORESET of the network device configuration is different. For example, the monitoring period of the PDCCH configured by the network device is 6 symbols, and the network device configures the first symbol of the first CORESET in one slot, and the terminal device can consider the 7th symbol to the 9th symbol to be the first symbol.
  • the time domain position of the two CORESET, the terminal device can think that the 13th symbol and the 14th symbol are the time domain positions of the third CORESET, then the terminal device can be in the 1st symbol, the 7th to 9th symbols, and the 13th PDCCH is monitored on 14 symbols.
  • the monitoring period of the PDCCH is 8 OFDM symbols, and the time domain position of the first CORESET in the time slot is on the 1st OFDM symbol, and each time slot includes 2 CORESETs, and the second CORESET. The position is the 9th OFDM symbol.
  • the time domain location of the second CORESET can be determined.
  • the monitoring period of the PDCCH is 6 OFDM symbols, and the time domain position of the first CORESET in the time slot is on the 1st OFDM symbol, and each time slot includes 3 CORESETs, and the second CORESET.
  • the position is the 7th OFDM symbol, and the position of the third CORESET is the 13th OFDM symbol.
  • the PDCCH monitoring period appearing in this paper is the same as the CORESET distribution period. That is, the PDCCH monitoring period can be interchanged with the CORESET distribution period.
  • the PDCCH monitoring period appearing in this paper is the same as the period of the search space. That is, the PDCCH monitoring period can be interchanged with the period of the search space.
  • the monitoring period in the embodiment of the present application may not be configured by the network device, or may be pre-configured at the terminal device, that is, may be agreed by the protocol. Then the network device only needs to configure the time domain location of any one of the CORESETs in the time slot to the terminal device.
  • M first time slots are included in every N consecutive time slots, N is a positive integer greater than 1, and M is a positive integer.
  • FIG. 6 shows another configuration diagram of the CORESET of the embodiment of the present application.
  • the slot level monitoring period of the network configuration PDCCH is 2 slots
  • the symbol level monitoring period is 8 OFDM symbols. That is to say, the network device can configure multiple CORESETs in a certain time slot, and can be configured to have such a time slot configured with CORESET every few time slots. Then, the network device needs to indicate to the terminal device the distribution period of the CORESET in the time slot in which the CORESET is configured, that is, the symbol level period described above, and the terminal device needs to indicate to the terminal device that there is such a time slot configured with CORESET every few time slots. That is, the above slot level period.
  • the method further includes: receiving, by the terminal device, Slot Format Indicator (SFI) information sent by the network device; the terminal device determining, according to the SFI information, the first a symbol for transmitting downlink information in a time slot; the terminal device monitoring the PDCCH on the plurality of CORESETs, comprising: the terminal device monitoring the PDCCH on a symbol of the plurality of CORESETs for transmitting downlink information.
  • SFI Slot Format Indicator
  • a slot includes 11 Downlink (DL) symbols, 1 Guard Period (GP) symbol, and 2 Uplink (UL) symbols.
  • the monitoring period of the PDCCH configured by the base station is 6 OFDM symbols
  • the time domain position of the first CORESET in the time slot is the first OFDM symbol
  • the time domain position of the third CORESET is on the 13th OFDM symbol
  • the network is The PDCCH is not transmitted on the symbol, but since the terminal does not know the SFI information, the terminal monitors the PDCCH on all CORESET resources. If the terminal knows SFI information, therefore knowing that the network will not transmit PDCCH on the third CORESET resource, so PDCCH monitoring will not be performed on this resource. Thereby unnecessary monitoring can be avoided, further reducing the power consumption of the terminal.
  • FIG. 8 shows a schematic block diagram of a method 200 for transmitting information in an embodiment of the present application. As shown in FIG. 8, the method 200 includes some or all of the following:
  • the network device sends, to the terminal device, first configuration information, where the first configuration information is used to indicate the first one of the plurality of control resource sets CORESET for carrying the physical downlink control channel PDCCH of the terminal device in the first time slot. a time domain position of the CORESET and a distribution period of the plurality of CORESETs in the first time slot, each of the plurality of CORESETs being periodically distributed in the first time slot by at least one symbol;
  • the network device sends the PDCCH to the terminal device on the multiple CORESETs.
  • the network device can accurately detect the monitoring PDCCH by configuring the time domain location of the first CORESET and the distribution period of the CORESET in a certain time slot to the terminal device.
  • the location helps to reduce the power consumption of the terminal device.
  • the method further includes: the network device sending a slot format indication SFI information to the terminal device, where the SFI information is used to indicate a symbol used to transmit downlink information in the first time slot.
  • the network device sends the physical downlink control channel PDCCH to the terminal device on the multiple CORESETs, including: the network device transmitting the PDCCH to the terminal device on the symbol for transmitting downlink information in the multiple CORESETs.
  • M first time slots are included in every N consecutive time slots, N is a positive integer greater than 1, and M is a positive integer.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
  • the implementation of the examples constitutes any limitation.
  • FIG. 9 shows a schematic block diagram of a terminal device 300 of an embodiment of the present application.
  • the terminal device 300 includes:
  • the first receiving unit 310 is configured to receive first configuration information that is sent by the network device, where the first configuration information is used to indicate multiple control resource sets used to carry the physical downlink control channel PDCCH of the terminal device in the first time slot. a time domain position of the first CORESET in the CORESET and a distribution period of the plurality of CORESETs in the first time slot, each of the plurality of CORESETs being periodically distributed in the first time slot by at least one symbol ;
  • a first determining unit 320 configured to determine a time domain location of the multiple CORESETs according to the first configuration information
  • the monitoring unit 330 is configured to monitor the PDCCH on the multiple CORESETs.
  • the terminal device in the embodiment of the present application by using the time domain location of the first CORESET configured by the network device and the CORESET distribution period in a certain time slot, enables the terminal device to accurately know the location of the monitoring PDCCH, which is beneficial to reduce The power consumption of the terminal device.
  • the terminal device 300 further includes: a second receiving unit, configured to receive slot format indication SFI information sent by the network device; and a second determining unit, configured to use, according to the SFI information, Determining a symbol for transmitting downlink information in the first time slot; the monitoring unit is specifically configured to: monitor the PDCCH on the symbol used to transmit downlink information in the multiple CORESETs.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the terminal device 300 respectively implement the terminal in the method of FIG.
  • the corresponding process of the device is not described here for brevity.
  • FIG. 10 shows a schematic block diagram of a network device 400 of an embodiment of the present application.
  • the network device 400 includes:
  • the first sending unit 410 is configured to send, to the terminal device, first configuration information, where the first configuration information is used to indicate a plurality of control resource sets CORESET for carrying the physical downlink control channel PDCCH of the terminal device in the first time slot. a time domain position of the first CORESET and a distribution period of the plurality of CORESETs in the first time slot, each of the plurality of CORESETs being periodically distributed in the first time slot by at least one symbol;
  • the second sending unit 420 is configured to send the PDCCH to the terminal device on the multiple CORESETs.
  • the network device in the embodiment of the present application can enable the terminal device to accurately know the location of the monitoring PDCCH by configuring the time domain location of the first CORESET and the distribution period of the CORESET in a certain time slot to facilitate the reduction.
  • the power consumption of the terminal device can be configured.
  • the network device further includes: a third sending unit, configured to send a slot format indication SFI information to the terminal device, where the SFI information is used to indicate that the first time slot is used in Transmitting a symbol of the downlink information; the second sending unit is specifically configured to: send the PDCCH to the terminal device on the symbol for transmitting downlink information in the multiple CORESETs.
  • a third sending unit configured to send a slot format indication SFI information to the terminal device, where the SFI information is used to indicate that the first time slot is used in Transmitting a symbol of the downlink information
  • the second sending unit is specifically configured to: send the PDCCH to the terminal device on the symbol for transmitting downlink information in the multiple CORESETs.
  • the network device 400 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of the respective units in the network device 400 respectively implement the network in the method of FIG.
  • the corresponding process of the device is not described here for brevity.
  • the embodiment of the present application further provides a terminal device 500, which may be the terminal device 300 in FIG. 9, which can be used to execute the content of the terminal device corresponding to the method 100 of FIG.
  • the terminal device 500 includes an input interface 510, an output interface 520, a processor 530, and a memory 540.
  • the input interface 510, the output interface 520, the processor 530, and the memory 540 can be connected by a bus system.
  • the memory 540 is for storing programs, instructions or code.
  • the processor 530 is configured to execute a program, an instruction or a code in the memory 540 to control the input interface 510 to receive a signal, control the output interface 520 to send a signal, and complete the operations in the foregoing method embodiments.
  • the terminal device in the embodiment of the present application by using the time domain location of the first CORESET configured by the network device and the CORESET distribution period in a certain time slot, enables the terminal device to accurately know the location of the monitoring PDCCH, which is beneficial to reduce The power consumption of the terminal device.
  • the processor 530 may be a central processing unit (Central)
  • the processing unit (CPU) the processor 530 can also be other general-purpose processors, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (Field Programmable). Gate Array, FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 540 can include read only memory and random access memory and provides instructions and data to the processor 530. A portion of the memory 540 may also include a non-volatile random access memory. For example, the memory 540 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 530 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 540, and the processor 530 reads the information in the memory 540 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • the first determining unit and the second determining unit and the sending unit of the terminal device 300 may be implemented by the processor 520 in FIG. 11, the first receiving unit, the second receiving unit, and the monitoring unit of the terminal device 300. This can be implemented by the input interface 510 in FIG.
  • the embodiment of the present application further provides a network device 600, which may be the network device 400 in FIG. 10, which can be used to execute the content of the network device corresponding to the method 200 in FIG. .
  • the network device 600 includes an input interface 610, an output interface 620, a processor 630, and a memory 640.
  • the input interface 610, the output interface 620, the processor 630, and the memory 640 can be connected by a bus system.
  • the memory 640 is used to store programs, instructions or code.
  • the processor 630 is configured to execute a program, an instruction or a code in the memory 640 to control the input interface 610 to receive a signal, control the output interface 620 to send a signal, and complete the operations in the foregoing method embodiments.
  • the network device in the embodiment of the present application can enable the terminal device to accurately know the location of the monitoring PDCCH by configuring the time domain location of the first CORESET and the distribution period of the CORESET in a certain time slot to facilitate the reduction.
  • the power consumption of the terminal device can be configured.
  • the processor 630 may be a central processing unit (Central)
  • the processing unit (CPU) may be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or a field programmable gate array (Field Programmable). Gate Array, FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 640 can include read only memory and random access memory and provides instructions and data to the processor 630. A portion of the memory 640 can also include a non-volatile random access memory. For example, the memory 640 can also store information of the device type.
  • each content of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 630 or an instruction in a form of software.
  • the content of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 640, and the processor 630 reads the information in the memory 640 and combines the hardware to complete the contents of the above method. To avoid repetition, it will not be described in detail here.
  • each of the transmitting units in the network device 400 can be implemented by the output interface 620 in FIG.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • Another point that is shown or discussed between each other The coupling or direct coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种用于传输信息的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备发送的第一配置信息,该第一配置信息用于指示在第一时隙中用于承载该终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和该多个CORESET在该第一时隙中的分布周期,该多个CORESET中的每个CORESET以至少一个符号周期性分布在该第一时隙中;该终端设备根据该第一配置信息,确定该多个CORESET的时域位置;该终端设备在该多个CORESET上监测该PDCCH。本申请实施例的方法、终端设备和网络设备,有利于降低终端设备的功耗。

Description

用于传输信息的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种用于传输信息的方法、终端设备和网络设备。
背景技术
在第五代(5G)通信系统的技术讨论中引入了控制资源集(Control Resource Set,CORESET)的概念,物理下行控制信道(Physical Downlink Control Channel,PDCCH)在CORESET中传输。CORESET在时域上占用1到3个符号,频域上占用的是一个可配置的带宽。网络在配置CORESET时,可以是以符号为单位进行配置,也就是说一个时隙里边可能会包括多个CORESET,终端设备如何获取一个时隙里边的多个CORESET的位置并进行监测是亟待解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种用于传输信息的方法、终端设备和网络设备,有利于降低终端功耗。
第一方面,提供了一种用于传输信息的方法,该方法包括:终端设备接收网络设备发送的第一配置信息,该第一配置信息用于指示在第一时隙中用于承载该终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和该多个CORESET在该第一时隙中的分布周期,该多个CORESET中的每个CORESET以至少一个符号周期性分布在该第一时隙中;该终端设备根据该第一配置信息,确定该多个CORESET的时域位置;该终端设备在该多个CORESET上监测该PDCCH。
终端设备通过网络设备配置的第一个CORESET的时域位置以及在某个时隙中CORESET的分布周期,使得终端设备能够准确地获知监测PDCCH的位置,有利于降低终端设备的功耗。
可选地,该第一配置信息可以用于指示在第一时隙的多个CORESET中的任何一个CORESET的时域位置,终端设备只要知道任何一个CORESET 在第一时隙中的时域位置,再结合CORESET的分布周期,就可以确定出第一时隙中其他所有的CORESET的时域位置。
可选地,CORESET在第一时隙的分布周期可以也可以是预配置在终端设备的。
两个相邻的CORESET在时域上可以连续也可以不连续。
可选地,该多个CORESET中每个CORESET在时域上的持续时间可以相同也可以不同。一个CORESET在频域上占1到3个连续的符号。
在一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的时隙格式指示SFI信息;该终端设备根据该SFI信息,确定该第一时隙中用于传输下行信息的符号;该终端设备在该多个CORESET上监测该PDCCH,包括:该终端设备在该多个CORESET中该用于传输下行信息的符号上监测该PDCCH。
在一种可能的实现方式中,每N个连续的时隙中包括M个该第一时隙,N为大于1的正整数,M为正整数。
第二方面,提供了一种用于传输信息的方法,该方法包括:网络设备向终端设备发送第一配置信息,该第一配置信息用于指示在第一时隙中用于承载该终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和该多个CORESET在该第一时隙中的分布周期,该多个CORESET中的每个CORESET以至少一个符号周期性分布在该第一时隙中;该网络设备在该多个CORESET上向该终端设备发送该PDCCH。
在一种可能的实现方式中,该方法还包括:该网络设备向该终端设备发送时隙格式指示SFI信息,该SFI信息用于指示该第一时隙中用于传输下行信息的符号;该网络设备在该多个CORESET上向该终端设备发送物理下行控制信道PDCCH,包括:该网络设备在该多个CORESET中的该用于传输下行信息的符号上向该终端设备发送该PDCCH。
在一种可能的实现方式中,每N个连续的时隙中包括M个该第一时隙,N为大于1的正整数,M为正整数。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:存储器、处理器、输入接口和输出接口。其中,存储器、处理器、输入接口和输出接口通过总线系统相连。该存储器用于存储指令,该处理器用于执行该存储器存储的指令,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机存储介质,用于储存为执行上述第一方面或第一方面的任意可能的实现方式中的方法,或者上述第二方面或第二方面的任意可能的实现方式中的方法所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法,或者上述第二方面或第二方面的任一可选的实现方式中的方法。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1示出了本申请实施例一个应用场景的示意图。
图2示出了5G中的资源配置图。
图3示出了本申请实施例的用于传输信息的方法的示意性框图。
图4示出了本申请实施例的CORESET的一种配置图。
图5示出了本申请实施例的CORESET的另一种配置图。
图6示出了本申请实施例的CORESET的另一种配置图。
图7示出了本申请实施例的CORESET的另一种配置图。
图8示出了本申请实施例的用于传输信息的方法的另一示意性框图。
图9示出了本申请实施例的终端设备的示意性框图。
图10示出了本申请实施例的网络设备的示意性框图。
图11示出了本申请实施例的终端设备的另一示意性框图。
图12示出了本申请实施例的网络设备的另一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
特别地,本申请实施例的技术方案可以应用于各种基于非正交多址接入技术的通信系统,例如稀疏码多址接入(Sparse Code Multiple Access,SCMA)系统、低密度签名(Low Density Signature,LDS)系统等,当然SCMA系统和LDS系统在通信领域也可以被称为其他名称;进一步地,本申请实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输系统,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)、滤波器组多载波(Filter Bank Multi-Carrier,FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,GFDM)、滤波正交频分复用(Filtered-OFDM,F-OFDM)系统等。
本申请实施例中的终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中 的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例一个应用场景的示意图。图1中的通信系统可以包括终端设备10和网络设备20。网络设备20用于为终端设备10提供通信服务并接入核心网,终端设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
在LTE系统中,PDCCH是在系统的控制区域内传输,系统控制区域占用整个系统带宽,占用的符号数为1-4个符号,符号数由物理控制格式指示信道(Physical control format indicator channel,PCFICH)通知终端。
在5G的技术讨论中引入了CORESET的概念,PDCCH在CORESET中传输。CORESET在时域上占用1到3个符号,频域上占用的不再固定是整个系统带宽,而是一个可配置的带宽。CORESET占用的频率资源带宽以及时域符号数可以通过高层信令配置给终端。当网络要向终端发送物理下行共享信道(Physical Downlink Shared channel,PDSCH)时,其调度信息PDCCH在相应的CORESET中发送。如图2中,UE2的PDSCH通过UE2的CORESET中的PDCCH调度,UE1的PDSCH由UE1的CORESET中的PDCCH调度。
LTE系统中的PDCCH由控制信道单元(Control Channel Element,CCE)组成,每个CCE由资源单元组(Resource-Element Group,REG)组成,每个REG包括多个资源单元(Resource Element,RE);相应的,NR中REG在频域上是一个物理资源块(Physical Resource Block,PRB)大小,时间上是一个OFDM符号,如无特殊说明,本文中多次出现的符号均为OFDM符号。多个REG组成一个REG bundle(REG束),REG bundle可以包括2、3、6 个REG,一个CCE包括6个REG。
网络在配置CORESET时,会为其配置相应的参数,如时频资源,PDCCH监测周期等。其中PDCCH监测周期可以是以时隙(slot)为单位,也可以是以符号为单位,NR中一个slot包括14个OFDM符号,当配置的CORESET的监测周期以符号为单位时,并且这个符号周期并不能被14整除,CORESET就可能会出现在不同slot的不同位置内,进而导致终端无法准确的获知某一个slot内PDCCH的监测位置。
图3示出了本申请实施例的用于传输信息的方法100的示意性框图。如图3所示,该方法100包括以下部分或全部内容:
S110,终端设备接收网络设备发送的第一配置信息,该第一配置信息用于指示在第一时隙中用于承载该终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和该多个CORESET在该第一时隙中的分布周期,该多个CORESET中的每个CORESET以至少一个符号周期性分布在该第一时隙中;
S120,该终端设备根据该第一配置信息,确定该多个CORESET的时域位置;
S130,该终端设备在该多个CORESET上监测该PDCCH。
具体地,为了实现CORESET的符号级配置,并且能够使得终端设备能够准确地获取到某一个时隙内PDCCH的监测位置,网络设备可以向终端设备配置该时隙内的第一个CORESET的位置以及多个CORESET在该时隙中的分布周期,该分布周期可以是指在时域上任意相邻的两个CORESET的间隔,例如,可以是两个CORESET起始符号之间包含的符号数。终端设备可以根据网络设备的配置,进一步地确定该时隙中所有CORESET的时域位置,那么终端设备就可以在确定出来的CORESET的时域位置上监测PDCCH。
因此,本申请实施例的用于传输信息的方法,终端设备通过网络设备配置的第一个CORESET的时域位置以及在某个时隙中CORESET的分布周期,使得终端设备能够准确地获知监测PDCCH的位置,有利于降低终端设备的功耗。
可选地,在本申请实施例中,在时域上相邻的两个CORESET可以部分或全部重叠,也可以是在时域上连续,还可以在时域上不连续。本申请实施例对此不作限定。
可选地,在本申请实施例中,该第一配置信息可以用于指示在第一时隙的多个CORESET中的任何一个CORESET的时域位置,终端设备只要知道任何一个CORESET在第一时隙中的时域位置,再结合CORESET的分布周期,就可以确定出第一时隙中其他所有的CORESET的时域位置。
具体地,网络设备得告知终端设备指示的是第几个CORESET的时域位置。网络设备可以在第一配置信息中预留几个比特位用来指示某一个CORESET。终端设备在获取到该预留的比特位之后,终端设备可以根据该比特位的值确定时第几个CORESET。
终端设备可以认为在一个时隙中每个CORESET所占的符号数相同。那么当终端设备在获取某一个CORESET的时域位置,终端设备就可以结合CORESET在该时隙中的分布周期来确定出来其他CORESET的时域位置,也就是说终端设备可以准确地获知在哪些符号上去监测PDCCH。例如,网络设备可以配置每一个CORESET占用一个符号,并且监测周期为6个符号,如果网络设备配置第一个CORESET在一个时隙中的第一个符号,那么终端设备可以知道其他CORESET分别在第7个符号以及第13个符号。进而终端设备就可以在第1个符号、第7个符号以及第13个符号上监测PDCCH。
终端设备也可以认为网络设备配置的每个CORESET所占的符号数不同。例如,同样地网络设备配置的PDCCH的监测周期为6个符号,网络设备配置第一个CORESET在一个时隙中的第一个符号,终端设备可以认为第7个符号至第9个符号为第二CORESET的时域位置,终端设备可以认为第13个符号和第14个符号为第三个CORESET的时域位置,那么终端设备就可以在第1个符号、第7至9个符号以及第13、14个符号上监测PDCCH。
图4和图5分别示出了本申请实施例中CORESET的配置图。如图4所示,PDCCH的监测周期为8个OFDM符号,时隙中第一个CORESET的时域位置在第1个OFDM符号上,则每个时隙中包括2个CORESET,第二个CORESET的位置为第9个OFDM符号。终端设备一旦获知第一个CORESET的时域位置以及监测周期,就可以确定出来第二个CORESET的时域位置。如图5所示,PDCCH的监测周期为6个OFDM符号,时隙中第一个CORESET的时域位置在第1个OFDM符号上,则每个时隙中包括3个CORESET,第二个CORESET的位置为第7个OFDM符号,第三个CORESET的位置为第13个OFDM符号。终端设备一旦获知第一个CORESET的时域位置以及监 测周期,就可以确定出来第二个CORESET和第三个CORESET的时域位置。
应理解,本文中出现的PDCCH监测周期与CORESET分布周期相同。也就是说,PDCCH监测周期可以与CORESET分布周期互换。
应理解,本文中出现的PDCCH监测周期与搜索空间的周期相同。也就是说,PDCCH监测周期可以与搜索空间的周期互换。
还应理解,本申请实施例中的监测周期可以不由网络设备配置,也可以是预配置在终端设备处的,也就是说可以是由协议约定好的。那么网络设备只需要向终端设备配置一个时隙中的任何一个CORESET的时域位置即可。
可选地,在本申请实施例中,每N个连续的时隙中包括M个所述第一时隙,N为大于1的正整数,M为正整数。
具体地,网络设备可以同时配置符号级别和时隙级别的监测周期。图6示出了本申请实施例的CORESET的另一配置图。如图6所示,网络配置PDCCH的时隙级别监测周期为2个时隙,符号级别监测周期为8个OFDM符号。也就是说网络设备可以在某一个时隙中配置多个CORESET,并且可以配置每隔几个时隙有这样一个配置有CORESET的时隙。那么网络设备既需要向终端设备指示配置有CORESET的时隙中CORESET的分布周期,也就是上述的符号级周期,又需要向终端设备指示每隔几个时隙有这样一个配置有CORESET的时隙,也就是上述的时隙级周期。
可选地,在本申请实施例中,该方法还包括:该终端设备接收该网络设备发送的时隙格式指示(Slot Format Indicator,SFI)信息;该终端设备根据该SFI信息,确定该第一时隙中用于传输下行信息的符号;该终端设备在该多个CORESET上监测该PDCCH,包括:该终端设备在该多个CORESET中该用于传输下行信息的符号上监测该PDCCH。
具体地,如果终端设备没有SFI信息,即终端设备不知道时隙结构,那么终端设备会在所有可能的CORESET资源上监测PDCCH。如图7所示,一个slot中包括11个下行(Downlink,DL)符号,1个保护周期(Guard Period,GP)符号,2个上行(Uplink,UL)符号,基站配置的PDCCH的监测周期为6个OFDM符号,时隙中第一个CORESET的时域位置为第一个OFDM符号,因此第三个CORESET的时域位置在第13个OFDM符号上,因为该符号为UL符号,因此网络在该符号上不发送PDCCH,但是由于终端不知道SFI信息,因此终端会在所有的CORESET资源上监测PDCCH。如果终端知道 SFI信息,因此知道网络不会在第三个CORESET资源上传输PDCCH,因此不会在该资源上进行PDCCH监测。从而可以避免不必要的监测,进一步降低终端的功耗。
应理解,上述各种举例仅仅是用于示意性说明,对本申请技术方案的保护范围不构成限定。
图8示出了本申请实施例的用于传输信息的方法200的示意性框图。如图8所示,该方法200包括以下部分或全部内容:
S210,网络设备向终端设备发送第一配置信息,该第一配置信息用于指示在第一时隙中用于承载该终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和该多个CORESET在该第一时隙中的分布周期,该多个CORESET中的每个CORESET以至少一个符号周期性分布在该第一时隙中;
S220,该网络设备在该多个CORESET上向该终端设备发送该PDCCH。
因此,本申请实施例的用于传输信息的方法,网络设备通过向终端设备配置第一个CORESET的时域位置以及在某个时隙中CORESET的分布周期,使得终端设备能够准确地获知监测PDCCH的位置,有利于降低终端设备的功耗。
可选地,在本申请实施例中,该方法还包括:该网络设备向该终端设备发送时隙格式指示SFI信息,该SFI信息用于指示该第一时隙中用于传输下行信息的符号;该网络设备在该多个CORESET上向该终端设备发送物理下行控制信道PDCCH,包括:该网络设备在该多个CORESET中的该用于传输下行信息的符号上向该终端设备发送该PDCCH。
可选地,在本申请实施例中,每N个连续的时隙中包括M个该第一时隙,N为大于1的正整数,M为正整数。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,网络设备描述的网络设备与终端设备之间的交互及相关特性、功能等与终端设备的相关特性、功能相应。并且相关内容在上述方法100中 已经作了详尽描述,为了简洁,在此不再赘述。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中详细描述了根据本申请实施例的用于传输信息的方法,下面将结合图9至图12,描述根据本申请实施例的用于传输信息的装置,方法实施例所描述的技术特征适用于以下装置实施例。
图9示出了本申请实施例的终端设备300的示意性框图。如图9所示,该终端设备300包括:
第一接收单元310,用于接收网络设备发送的第一配置信息,该第一配置信息用于指示在第一时隙中用于承载该终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和该多个CORESET在该第一时隙中的分布周期,该多个CORESET中的每个CORESET以至少一个符号周期性分布在该第一时隙中;
第一确定单元320,用于根据该第一配置信息,确定该多个CORESET的时域位置;
监测单元330,用于在该多个CORESET上监测该PDCCH。
因此,本申请实施例的终端设备,通过网络设备配置的第一个CORESET的时域位置以及在某个时隙中CORESET的分布周期,使得终端设备能够准确地获知监测PDCCH的位置,有利于降低终端设备的功耗。
可选地,在本申请实施例中,该终端设备300还包括:第二接收单元,用于接收该网络设备发送的时隙格式指示SFI信息;第二确定单元,用于根据该SFI信息,确定该第一时隙中用于传输下行信息的符号;该监测单元具体用于:在该多个CORESET中该用于传输下行信息的符号上监测该PDCCH。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图3方法中终端设备的相应流程,为了简洁,在此不再赘述。
图10示出了本申请实施例的网络设备400的示意性框图。如图10所示,该网络设备400包括:
第一发送单元410,用于向终端设备发送第一配置信息,该第一配置信息用于指示在第一时隙中用于承载该终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和该多个CORESET在该第一时隙中的分布周期,该多个CORESET中的每个CORESET以至少一个符号周期性分布在该第一时隙中;
第二发送单元420,用于在该多个CORESET上向该终端设备发送该PDCCH。
因此,本申请实施例的网络设备,通过向终端设备配置第一个CORESET的时域位置以及在某个时隙中CORESET的分布周期,使得终端设备能够准确地获知监测PDCCH的位置,有利于降低终端设备的功耗。
可选地,在本申请实施例中,该网络设备还包括:第三发送单元,用于向该终端设备发送时隙格式指示SFI信息,该SFI信息用于指示该第一时隙中用于传输下行信息的符号;该第二发送单元具体用于:在该多个CORESET中的该用于传输下行信息的符号上向该终端设备发送该PDCCH。
应理解,根据本申请实施例的网络设备400可对应于本申请方法实施例中的网络设备,并且网络设备400中的各个单元的上述和其它操作和/或功能分别为了实现图8方法中网络设备的相应流程,为了简洁,在此不再赘述。
如图11所示,本申请实施例还提供了一种终端设备500,该终端设备500可以是图9中的终端设备300,其能够用于执行与图3方法100对应的终端设备的内容。该终端设备500包括:输入接口510、输出接口520、处理器530以及存储器540,该输入接口510、输出接口520、处理器530和存储器540可以通过总线系统相连。该存储器540用于存储包括程序、指令或代码。该处理器530,用于执行该存储器540中的程序、指令或代码,以控制输入接口510接收信号、控制输出接口520发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的终端设备,通过网络设备配置的第一个CORESET的时域位置以及在某个时隙中CORESET的分布周期,使得终端设备能够准确地获知监测PDCCH的位置,有利于降低终端设备的功耗。
应理解,在本申请实施例中,该处理器530可以是中央处理单元(Central  Processing Unit,CPU),该处理器530还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器540可以包括只读存储器和随机存取存储器,并向处理器530提供指令和数据。存储器540的一部分还可以包括非易失性随机存取存储器。例如,存储器540还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器530中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器540,处理器530读取存储器540中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,终端设备300的第一确定单元和第二确定单元和发送单元可以由图11中的处理器520实现,终端设备300的第一接收单元、第二接收单元和监测单元可以由图11中的输入接口510实现。
如图12所示,本申请实施例还提供了一种网络设备600,该网络设备600可以是图10中的网络设备400,其能够用于执行与图8中方法200对应的网络设备的内容。该网络设备600包括:输入接口610、输出接口620、处理器630以及存储器640,该输入接口610、输出接口620、处理器630和存储器640可以通过总线系统相连。该存储器640用于存储包括程序、指令或代码。该处理器630,用于执行该存储器640中的程序、指令或代码,以控制输入接口610接收信号、控制输出接口620发送信号以及完成前述方法实施例中的操作。
因此,本申请实施例的网络设备,通过向终端设备配置第一个CORESET的时域位置以及在某个时隙中CORESET的分布周期,使得终端设备能够准确地获知监测PDCCH的位置,有利于降低终端设备的功耗。
应理解,在本申请实施例中,该处理器630可以是中央处理单元(Central  Processing Unit,CPU),该处理器630还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器640可以包括只读存储器和随机存取存储器,并向处理器630提供指令和数据。存储器640的一部分还可以包括非易失性随机存取存储器。例如,存储器640还可以存储设备类型的信息。
在实现过程中,上述方法的各内容可以通过处理器630中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的内容可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器640,处理器630读取存储器640中的信息,结合其硬件完成上述方法的内容。为避免重复,这里不再详细描述。
一个具体的实施方式中,网络设备400中的各个发送单元可以由图12中的输出接口620实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (12)

  1. 一种用于传输信息的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于指示在第一时隙中用于承载所述终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和所述多个CORESET在所述第一时隙中的分布周期,所述多个CORESET中的每个CORESET以至少一个符号周期性分布在所述第一时隙中;
    所述终端设备根据所述第一配置信息,确定所述多个CORESET的时域位置;
    所述终端设备在所述多个CORESET上监测所述PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的时隙格式指示SFI信息;
    所述终端设备根据所述SFI信息,确定所述第一时隙中用于传输下行信息的符号;
    所述终端设备在所述多个CORESET上监测所述PDCCH,包括:
    所述终端设备在所述多个CORESET中所述用于传输下行信息的符号上监测所述PDCCH。
  3. 根据权利要求1或2所述的方法,其特征在于,每N个连续的时隙中包括M个所述第一时隙,N为大于1的正整数,M为正整数。
  4. 一种用于传输信息的方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于指示在第一时隙中用于承载所述终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和所述多个CORESET在所述第一时隙中的分布周期,所述多个CORESET中的每个CORESET以至少一个符号周期性分布在所述第一时隙中;
    所述网络设备在所述多个CORESET上向所述终端设备发送所述PDCCH。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送时隙格式指示SFI信息,所述SFI信息用于指示所述第一时隙中用于传输下行信息的符号;
    所述网络设备在所述多个CORESET上向所述终端设备发送物理下行控 制信道PDCCH,包括:
    所述网络设备在所述多个CORESET中的所述用于传输下行信息的符号上向所述终端设备发送所述PDCCH。
  6. 根据权利要求4或5所述的方法,其特征在于,每N个连续的时隙中包括M个所述第一时隙,N为大于1的正整数,M为正整数。
  7. 一种终端设备,其特征在于,包括:
    第一接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于指示在第一时隙中用于承载所述终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和所述多个CORESET在所述第一时隙中的分布周期,所述多个CORESET中的每个CORESET以至少一个符号周期性分布在所述第一时隙中;
    第一确定单元,用于根据所述第一配置信息,确定所述多个CORESET的时域位置;
    监测单元,用于在所述多个CORESET上监测所述PDCCH。
  8. 根据权利要求7所述的终端设备,其特征在于,所述终端设备还包括:
    第二接收单元,用于接收所述网络设备发送的时隙格式指示SFI信息;
    第二确定单元,用于根据所述SFI信息,确定所述第一时隙中用于传输下行信息的符号;
    所述监测单元具体用于:
    在所述多个CORESET中所述用于传输下行信息的符号上监测所述PDCCH。
  9. 根据权利要求7或8所述的终端设备,其特征在于,每N个连续的时隙中包括M个所述第一时隙,N为大于1的正整数,M为正整数。
  10. 一种网络设备,其特征在于,所述网络设备包括:
    第一发送单元,用于向终端设备发送第一配置信息,所述第一配置信息用于指示在第一时隙中用于承载所述终端设备的物理下行控制信道PDCCH的多个控制资源集CORESET中的第一个CORESET的时域位置和所述多个CORESET在所述第一时隙中的分布周期,所述多个CORESET中的每个CORESET以至少一个符号周期性分布在所述第一时隙中;
    第二发送单元,用于在所述多个CORESET上向所述终端设备发送所述 PDCCH。
  11. 根据权利要求10所述的网络设备,其特征在于,所述网络设备还包括:
    第三发送单元,用于向所述终端设备发送时隙格式指示SFI信息,所述SFI信息用于指示所述第一时隙中用于传输下行信息的符号;
    所述第二发送单元具体用于:
    在所述多个CORESET中的所述用于传输下行信息的符号上向所述终端设备发送所述PDCCH。
  12. 根据权利要求10或11所述的网络设备,其特征在于,每N个连续的时隙中包括M个所述第一时隙,N为大于1的正整数,M为正整数。
PCT/CN2017/101718 2017-09-14 2017-09-14 用于传输信息的方法、终端设备和网络设备 WO2019051707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/101718 WO2019051707A1 (zh) 2017-09-14 2017-09-14 用于传输信息的方法、终端设备和网络设备
CN201780049595.1A CN109691206A (zh) 2017-09-14 2017-09-14 用于传输信息的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101718 WO2019051707A1 (zh) 2017-09-14 2017-09-14 用于传输信息的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019051707A1 true WO2019051707A1 (zh) 2019-03-21

Family

ID=65722248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101718 WO2019051707A1 (zh) 2017-09-14 2017-09-14 用于传输信息的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN109691206A (zh)
WO (1) WO2019051707A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021139576A1 (zh) * 2020-01-10 2021-07-15 中兴通讯股份有限公司 时域资源确定方法、设备及介质
CN114501600A (zh) * 2019-06-05 2022-05-13 Oppo广东移动通信有限公司 调整pdcch监听周期的方法和设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115444B (zh) * 2020-01-09 2022-06-14 维沃移动通信有限公司 一种pdcch配置方法及终端
WO2021159451A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated New radio physical downlink control channel repetition
CN115066029A (zh) * 2020-02-28 2022-09-16 Oppo广东移动通信有限公司 控制信道的确定方法、装置、存储介质和处理器
CN113904759A (zh) * 2020-07-06 2022-01-07 维沃移动通信有限公司 控制信息接收方法、控制信息发送方法及相关设备
WO2022188724A1 (zh) * 2021-03-11 2022-09-15 华为技术有限公司 确定物理上行信道传输资源的方法及其装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090181690A1 (en) * 2008-01-15 2009-07-16 Mccoy James W Dynamic allocation of communication resources in a wireless system
CN102045843A (zh) * 2009-10-10 2011-05-04 中兴通讯股份有限公司 一种第二类中继站的下行子帧配置和传输方法及系统
CN102625457A (zh) * 2011-02-01 2012-08-01 中兴通讯股份有限公司 下行控制信息的发送、接收和传输方法及相关装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018011973A2 (zh) * 2015-12-15 2018-12-11 Huawei Technologies Co., Ltd. Scheduling resource allocation method, device and user equipment, base station
CN106937302A (zh) * 2015-12-29 2017-07-07 中国移动通信集团上海有限公司 一种确定lte-tdd小区业务支持容量的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090181690A1 (en) * 2008-01-15 2009-07-16 Mccoy James W Dynamic allocation of communication resources in a wireless system
CN102045843A (zh) * 2009-10-10 2011-05-04 中兴通讯股份有限公司 一种第二类中继站的下行子帧配置和传输方法及系统
CN102625457A (zh) * 2011-02-01 2012-08-01 中兴通讯股份有限公司 下行控制信息的发送、接收和传输方法及相关装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Search space design for NR-PDCCH", RL-1716094. 3GPPTSG RAN WG1 MEETING NR#3, 12 September 2017 (2017-09-12), XP051329753 *
ERICSSON: "On Group-Commom PDCCH", RL-1716580. 3GPP TSG-RAN WG1 MEETING AH_NR#3, 12 September 2017 (2017-09-12), XP051330111 *
NTT DOCOMO, INC. ET AL.: "Search space design for NR-PDCCH, Rl-1716094", 3GPPTSG RAN WG1 MEETING NR#3, 12 September 2017 (2017-09-12), XP051329753 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501600A (zh) * 2019-06-05 2022-05-13 Oppo广东移动通信有限公司 调整pdcch监听周期的方法和设备
CN114501600B (zh) * 2019-06-05 2023-07-18 Oppo广东移动通信有限公司 调整pdcch监听周期的方法和设备
WO2021139576A1 (zh) * 2020-01-10 2021-07-15 中兴通讯股份有限公司 时域资源确定方法、设备及介质

Also Published As

Publication number Publication date
CN109691206A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
US20190082453A1 (en) Downlink Control Information Transmission Method and Apparatus
TWI812603B (zh) 數據傳輸方法和裝置
US11871427B2 (en) Data transmission method, terminal device and network device
WO2019051707A1 (zh) 用于传输信息的方法、终端设备和网络设备
WO2019191929A1 (zh) 传输上行控制信息的方法、终端设备和网络设备
US10952207B2 (en) Method for transmitting data, terminal device and network device
WO2019051806A1 (zh) 传输数据的方法、终端设备和网络设备
TW201836410A (zh) 傳輸訊號的方法、終端設備和網路設備
WO2017197586A1 (zh) 传输数据的方法和装置
EP3606133A1 (en) Method for transmitting signal, network device and terminal device
WO2019100338A1 (zh) 传输数据的方法、终端设备和网络设备
JP2022058811A (ja) 無線通信方法、ネットワーク機器及び端末装置
WO2019029693A1 (zh) 一种数据传输方法和网络设备以及终端设备
TWI757382B (zh) 傳輸信息的方法、網路設備和終端設備
CN109644482B (zh) 传输数据的方法、终端设备和网络设备
TW201826747A (zh) 資源映射的方法和通訊設備
WO2018195861A1 (zh) 无线通信的方法、终端设备和传输与接收节点
WO2018072062A1 (zh) 信息传输方法和装置
US10912113B2 (en) Communication method, terminal device, and network device
JP7313420B2 (ja) データ伝送方法及び装置
WO2019051788A1 (zh) 用于传输数据的方法和终端设备
WO2018072180A1 (zh) 传输上行数据的方法、网络侧设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924998

Country of ref document: EP

Kind code of ref document: A1