WO2021159451A1 - New radio physical downlink control channel repetition - Google Patents

New radio physical downlink control channel repetition Download PDF

Info

Publication number
WO2021159451A1
WO2021159451A1 PCT/CN2020/075228 CN2020075228W WO2021159451A1 WO 2021159451 A1 WO2021159451 A1 WO 2021159451A1 CN 2020075228 W CN2020075228 W CN 2020075228W WO 2021159451 A1 WO2021159451 A1 WO 2021159451A1
Authority
WO
WIPO (PCT)
Prior art keywords
coreset
repetitions
transmission
slot
pdcch
Prior art date
Application number
PCT/CN2020/075228
Other languages
French (fr)
Inventor
Qiaoyu Li
Chao Wei
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/075228 priority Critical patent/WO2021159451A1/en
Publication of WO2021159451A1 publication Critical patent/WO2021159451A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for blind decoding and channel estimation (BD/CE) limitations and configuration of new radio (NR) physical downlink control channel (PDCCH) repetition.
  • BD/CE blind decoding and channel estimation
  • NR new radio
  • PDCCH physical downlink control channel
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) .
  • available system resources e.g., bandwidth, transmit power, etc.
  • multiple-access systems examples include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • New radio e.g., 5G NR
  • 5G NR is an example of an emerging telecommunication standard.
  • NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP.
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) .
  • CP cyclic prefix
  • NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • MIMO multiple-input multiple-output
  • the method generally includes receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , determining a CORESET repetition pattern based on the configuration information, and monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • the apparatus generally includes at least one processor configured to: receive configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , determine a CORESET repetition pattern based on the configuration information, and monitor for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • the apparatus also generally includes a memory coupled with the at least one processor.
  • the apparatus generally includes means for receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , means for determining a CORESET repetition pattern based on the configuration information, and means for monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • Non-transitory computer-readable medium for wireless communication in a wireless network by a user equipment (UE) .
  • the non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, cause at least one processor to: receive configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , determine a CORESET repetition pattern based on the configuration information, and monitor for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • the method generally includes transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • the apparatus generally includes at least one processor configured to: transmit configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and transmit physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • the apparatus also generally includes a memory coupled with the at least one processor.
  • the apparatus generally includes means for transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and means for transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • Non-transitory computer-readable medium for wireless communication in a wireless network by a base station (BS) .
  • the non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, cause at least one processor to: transmit configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and transmit physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram conceptually illustrating a design of an example a base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • BS base station
  • UE user equipment
  • FIG. 3 is an example frame format for new radio (NR) , in accordance with certain aspects of the present disclosure.
  • FIG. 4 illustrates how different synchronization signal blocks (SSBs) may be sent using different beams, in accordance with certain aspects of the present disclosure.
  • SSBs synchronization signal blocks
  • FIG. 5 shows an exemplary transmission resource mapping, according to aspects of the present disclosure.
  • FIGs. 6-8 illustrate different frequency domain interleaving patterns for CORESETS, according to aspects of the present disclosure.
  • FIG. 9 illustrates an example of mapping of PDCCH candidates of an SS set to CCEs of an associated CORESET, according to aspects of the present disclosure.
  • FIG. 10 is a flow diagram illustrating example operations for wireless communication by a BS in a wireless network, according to aspects of the present disclosure.
  • FIG. 11 is a flow diagram illustrating example operations for wireless communication by a UE in a wireless network, according to aspects of the present disclosure.
  • FIGs. 12-15 illustrate different CORESET repetition patterns, according to aspects of the present disclosure.
  • FIG. 16 illustrates overlapped and non-overlapped transmission slots associated with CORESET repetitions, according to aspects of the present disclosure.
  • FIG. 17 illustrates an example of determining a BD/CE limit based on the number of separate CORESETs are included within a transmission slot, according to aspects of the present disclosure.
  • FIG. 18 illustrates an example of determining a BD/CE limit based on a total number of remaining transmission slots, according to aspects of the present disclosure.
  • FIG. 19 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • FIG. 20 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for blind decoding and channel estimation (BD/CE) limitations and configuration of new radio (NR) physical downlink control channel (PDCCH) repetition.
  • BD/CE blind decoding and channel estimation
  • NR new radio
  • PDCCH physical downlink control channel
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • the techniques described herein may be used for various wireless networks and radio technologies. While aspects may be described herein using terminology commonly associated with 3G, 4G, and/or new radio (e.g., 5G NR) wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems.
  • 3G, 4G, and/or new radio e.g., 5G NR
  • NR access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive machine type communications MTC
  • URLLC ultra-reliable low-latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • NR supports beamforming and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
  • FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed.
  • the wireless communication network 100 may be an NR system (e.g., a 5G NR network) .
  • the wireless communication network 100 may be in communication with a core network 132.
  • the core network 132 may in communication with one or more base station (BSs) 110 and/or user equipment (UE) 120 in the wireless communication network 100 via one or more interfaces.
  • BSs base station
  • UE user equipment
  • the wireless communication network 100 may include a number of BSs 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities.
  • a BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110.
  • the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network.
  • backhaul interfaces e.g., a direct physical connection, a wireless connection, a virtual network, or the like
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BSs for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple cells.
  • a network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110 (e.g., via a backhaul) .
  • the BSs 110 communicate with UEs 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100.
  • the UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile.
  • Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • relay stations e.g., relay station 110r
  • relays or the like that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
  • the BSs 110 and UEs 120 may be configured for NR PDCCH repetition.
  • the BS 110a includes a repetition module 112.
  • the repetition module 112 may be configured to perform the operations illustrated in one or more of FIGs. 10 and 12-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with aspects of the present disclosure.
  • the UE 120a includes a repetition module 122.
  • the repetition module 122 may be configured to perform the operations illustrated in one or more of FIGs. 11-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates example components of BS 110a and UE 120a (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
  • a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240.
  • the control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc.
  • the data may be for the physical downlink shared channel (PDSCH) , etc.
  • a medium access control (MAC) -control element (MAC-CE) is a MAC layer communication structure that may be used for control command exchange between wireless nodes.
  • the MAC-CE may be carried in a shared channel such as a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) .
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PSSCH physical sidelink shared channel
  • the processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and channel state information reference signal (CSI-RS) .
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CSI-RS channel state information reference signal
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) in transceivers 232a-232t.
  • MIMO multiple-input multiple-output
  • Each modulator in transceivers 232a-232t may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators in transceivers 232a-232t may be transmitted via the antennas 234a-234t, respectively.
  • the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in transceivers 254a-254r, respectively.
  • Each demodulator in transceivers 254a-254r may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all the demodulators in transceivers 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
  • a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280.
  • the transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) .
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a.
  • the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators in transceivers 232a-232t, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
  • the memories 242 and 282 may store data and program codes for BS 110a and UE 120a, respectively.
  • a scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
  • Antennas 252, processors 266, 258, 264, and/or controller/processor 280 of the UE 120a and/or antennas 234, processors 220, 230, 238, and/or controller/processor 240 of the BS 110a may be used to perform the various techniques and methods described herein for NR PDCCH repetition.
  • the controller/processor 240 of the BS 110a includes a reselection module 241 that may be configured to perform the operations illustrated in one or more of FIGs. 10 and 12-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with aspects of the present disclosure. As shown in FIG.
  • the controller/processor 280 of the UE 120a includes repetition module 281 that may be configured to perform the operations illustrated in one or more of FIGs. 11-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with aspects of the present disclosure. Although shown at the Controller/Processor, other components of the UE 120a and BS 110a may be used performing the operations described herein.
  • NR may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink.
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • NR may support half-duplex operation using time division duplexing (TDD) .
  • OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth into multiple orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers may be dependent on the system bandwidth.
  • the minimum resource allocation may be 12 consecutive subcarriers.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover multiple RBs.
  • NR may support a base subcarrier spacing (SCS) of 15 KHz and other SCS may be defined with respect to the base SCS (e.g., 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. ) .
  • SCS base subcarrier spacing
  • FIG. 3 is a diagram showing an example of a frame format 300 for NR.
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames.
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9.
  • Each subframe may include a variable number of slots (e.g., 1, 2, 4, 8, 16, ...slots) depending on the SCS.
  • Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the SCS.
  • the symbol periods in each slot may be assigned indices.
  • a mini-slot which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
  • Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched.
  • the link directions may be based on the slot format.
  • Each slot may include DL/UL data as well as DL/UL control information.
  • a synchronization signal (SS) block (SSB) is transmitted.
  • the SS block includes a PSS, a SSS, and a two symbol PBCH.
  • the SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 3.
  • the PSS and SSS may be used by UEs for cell search and acquisition.
  • the PSS may provide half-frame timing, and the SS may provide the CP length and frame timing.
  • the PSS and SSS may provide the cell identity.
  • the PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
  • RMSI remaining minimum system information
  • SIBs system information blocks
  • OSI system information
  • PDSCH physical downlink shared channel
  • the SS blocks may be organized into SS burst sets to support beam sweeping.
  • each SSB within a burst set may be transmitted using a different beam, which may help a UE quickly acquire both transmit (Tx) and receive (Rx) beams (particular for mmW applications) .
  • a physical cell identity (PCI) may still decoded from the PSS and SSS of the SSB.
  • Certain deployment scenarios may include one or both NR deployment options. Some may be configured for non-standalone (NSA) and/or standalone (SA) option.
  • a standalone cell may need to broadcast both SSB and remaining minimum system information (RMSI) , for example, with SIB1 and SIB2.
  • RMSI remaining minimum system information
  • a non-standalone cell may only need to broadcast SSB, without broadcasting RMSI.
  • multiple SSBs may be sent in different frequencies, and may include the different types of SSB.
  • Control Resource Sets (CORESETs)
  • a control resource set (CORESET) for an OFDMA system may comprise one or more control resource (e.g., time and frequency resources) sets, configured for conveying PDCCH, within the system bandwidth (e.g., a specific area on the NR Downlink Resource Grid) and a set of parameters used to carry PDCCH/DCI.
  • a CORESET may by similar in area to an LTE PDCCH area (e.g., the first 1, 2, 3, 4 OFDM symbols in a subframe) .
  • search spaces e.g., common search space (CSS) , UE-specific search space (USS) , etc.
  • search spaces are generally areas or portions where a communication device (e.g., a UE) may look for control information.
  • a CORESET is a set of time and frequency domain resources, defined in units of resource element groups (REGs) .
  • Each REG may comprise a fixed number (e.g., twelve) tones/subcarriers in one symbol period (e.g., a symbol period of a slot) , where one tone in one symbol period is referred to as a resource element (RE) .
  • a fixed number of REGs such as six, may be included in a control channel element (CCE) .
  • CCE control channel element
  • Sets of CCEs may be used to transmit new radio PDCCHs (NR-PDCCHs) , with different numbers of CCEs in the sets used to transmit NR-PDCCHs using differing aggregation levels.
  • Multiple sets of CCEs may be defined as search spaces for UEs, and thus a NodeB or other base station may transmit an NR-PDCCH to a UE by transmitting the NR-PDCCH in a set of CCEs that is defined as a decoding candidate within a search space for the UE.
  • the UE may receive the NR-PDCCH by searching in search spaces for the UE and decoding the NR-PDCCH transmitted by the NodeB.
  • Aggregation levels may be generally defined as the number of CCEs that consist of a PDCCH candidate and may include aggregation levels 1, 2, 4, 8, and 18, which may be configured by a radio resource control (RRC) configuration of a search space set (SS-set) .
  • RRC radio resource control
  • a CORESET may be linked with the SS-set within the RRC configuration.
  • the number of PDCCH candidates may be RRC configurable.
  • Operating characteristics of a NodeB or other base station in an NR communications system may be dependent on a frequency range (FR) in which the system operates.
  • a frequency range may comprise one or more operating bands (e.g., “n1” band, “n2” band, “n7” band, and “n41” band) , and a communications system (e.g., one or more NodeBs and UEs) may operate in one or more operating bands.
  • Frequency ranges and operating bands are described in more detail in “Base Station (BS) radio transmission and reception” TS38.104 (Release 15) , which is available from the 3GPP website.
  • a CORESET is a set of time and frequency domain resources.
  • the CORESET can be configured for conveying PDCCH within system bandwidth.
  • a UE may determine a CORESET and monitors the CORESET for control channels.
  • a UE may identify an initial CORESET (CORESET #0) configuration from a field (e.g., pdcchConfigSIB1) in a maser information block (MIB) .
  • This initial CORESET may then be used to configure the UE (e.g., with other CORESETs and/or bandwidth parts via dedicated (UE-specific) signaling.
  • the UE When the UE detects a control channel in the CORESET, the UE attempts to decode the control channel and communicates with the transmitting BS (e.g., the transmitting cell) according to the control data provided in the control channel (e.g., transmitted via the CORESET) .
  • the transmitting BS e.g., the transmitting cell
  • CORESET #0 may include different numbers of resource blocks (RBs) .
  • CORESET #0 may include one of 24, 48, or 96 RBs.
  • a 45-bit bitmap may be used to configure available RB-groups, where each bit in the bitmap is with respect to 6-RBs within a bandwidth part (BWP) and a most significant bit corresponds to the first RB-group in the BWP.
  • BWP bandwidth part
  • the UE may receive a master information block (MIB) .
  • the MIB can be in a synchronization signal and physical broadcast channel (SS/PBCH) block (e.g., in the PBCH of the SS/PBCH block) on a synchronization raster (sync raster) .
  • SS/PBCH synchronization signal and physical broadcast channel
  • the sync raster may correspond to an SSB.
  • the UE may determine an operating band of the cell. Based on a cell’s operation band, the UE may determine a minimum channel bandwidth and a subcarrier spacing (SCS) of the channel.
  • SCS subcarrier spacing
  • the UE may then determine an index from the MIB (e.g., four bits in the MIB, conveying an index in a range 0-15) .
  • the UE may look up or locate a CORESET configuration (this initial CORESET configured via the MIB is generally referred to as CORESET #0) . This may be accomplished from one or more tables of CORESET configurations. These configurations (including single table scenarios) may include various subsets of indices indicating valid CORESET configurations for various combinations of minimum channel bandwidth and subcarrier spacing (SCS) . In some arrangements, each combination of minimum channel bandwidth and SCS may be mapped to a subset of indices in the table.
  • CCS subcarrier spacing
  • the UE may select a search space CORESET configuration table from several tables of CORESET configurations. These configurations can be based on a minimum channel bandwidth and SCS.
  • the UE may then look up a CORESET configuration (e.g., a Type0-PDCCH search space CORESET configuration) from the selected table, based on the index.
  • the UE may then determine the CORESET to be monitored (as mentioned above) based on the location (in time and frequency) of the SS/PBCH block and the CORESET configuration.
  • FIG. 5 shows an exemplary transmission resource mapping 500, according to aspects of the present disclosure.
  • a BS e.g., BS 110a, shown in FIG. 1 transmits an SS/PBCH block 502.
  • the SS/PBCH block includes a MIB conveying an index to a table that relates the time and frequency resources of the CORESET 504 to the time and frequency resources of the SS/PBCH block.
  • the BS may also transmit control signaling.
  • the BS may also transmit a PDCCH to a UE (e.g., UE 120, shown in FIG. 1) in the (time/frequency resources of the) CORESET.
  • the PDCCH may schedule a PDSCH 506.
  • the BS then transmits the PDSCH to the UE.
  • the UE may receive the MIB in the SS/PBCH block, determine the index, look up a CORESET configuration based on the index, and determine the CORESET from the CORESET configuration and the SS/PBCH block.
  • the UE may then monitor the CORESET, decode the PDCCH in the CORESET, and receive the PDSCH that was allocated by the PDCCH.
  • each configuration may indicate a number of resource blocks (e.g., 24, 48, or 96) , a number of symbols (e.g., 1-3) , as well as an offset (e.g., 0-38 RBs) that indicates a location in frequency.
  • resource blocks e.g., 24, 48, or 96
  • symbols e.g., 1-3
  • offset e.g., 0-38 RBs
  • REG bundles may be used to convey CORESETs.
  • REGs in an REG bundle may be contiguous in a frequency and/or a time domain. In certain cases, the time domain may be prioritized before the frequency domain.
  • REG bundle sizes may include: 2, 3, or 6 for interleaved mapping and 6 for non-interleaved mapping.
  • FIGs. 6-8 illustrate different frequency domain interleaving patterns.
  • Interleaving may entail writing the logical REG bundles into the rows of an interleaver matrix while reading out the logical REG bundles by the columns of the interleaver matrix (e.g., forming an interleaved CORESET) , as shown in FIGs. 6-8.
  • An REG-to-CCE mapping may be determined by counting CCEs in the CORESET with interleaved REG bundles.
  • a cyclic shift may be applied to interleaved CORESETs.
  • the cyclic shift of the interleaved REG bundles may be in terms of a number of physical resource blocks (PRBs) and based on a ShiftIndex (from 0 to maxNrofPhysicalResourceBlocks-1) configured via RRC.
  • ShiftIndex is absent (e.g., for CORESET0)
  • PHY-Cell-ID may be used as a virtual ShiftIndex.
  • the PDCCH may be associated with a particular precoder and precoder granularity, which may be defined in TS 38.331 and 38.211 within the following configuration information: PDCCH-Config ⁇ ControlResourceSet ⁇ precoderGranularity.
  • the parameter sameAsREG-bundle of the preceding configuration information may be used to indicate that the same precoding is used within a REG bundle.
  • the parameter allContiguousRBs may be used to indicate that the same precoding being used across the all resource-element groups within the set of contiguous resource blocks in the CORESET.
  • sets of CCEs may be used to transmit new radio PDCCHs (NR-PDCCHs) , with different numbers of CCEs in the sets used to transmit NR-PDCCHs using differing aggregation levels.
  • the mapping of PDCCH candidates of an SS set to CCEs of an associated CORESET may be implemented by means of a hash function, as illustrated in FIG. 9.
  • the hash function may randomize the allocation of the PDCCH candidates within CORESET p in slot n s and may be performed according to:
  • L is the aggregation level
  • N CCE the total number of CCEs for given CORESET p
  • m the candidate index with M (L) being the number of PDCCH candidates for AL L
  • i (0, 1, ..., L-1) is the contiguous CCE index of the PDCCH candidate, for a CSS set
  • (o, 1, ..., 2 16 -1) for a USS set is a pseudo-random variable based on C-RNTI of the UE and slot number n s , and denotes a floor operation.
  • PDCCH physical downlink control channel
  • CORESET spanning the first 1, 2, 3, 4 OFDM symbols of a subframe/slot.
  • search spaces e.g., common search space (CSS) , UE-specific search space (USS) , etc.
  • search spaces are generally areas or portions where a communication device (e.g., a UE) may look for control information.
  • the key radio resource control (RRC) parameters for defining/configuring an SS include controlResourceSetId, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, and searchSpaceType.
  • the controlResourceSetId parameter may correspond to a layer-1 (L1) parameter 'CORESET-ID' and is unique among the bandwidth parts (BWPs) of a ServingCell.
  • L1 layer-1
  • BWPs bandwidth parts
  • a value 0 may identify a common CORESET configured in MIB and in ServingCellConfigCommon while a values 1.
  • maxNrofControlResourceSets-1 may identify CORESETs configured by dedicated signaling.
  • the monitoringSlotPeriodicityAndOffset parameter may indicate the symbols for PDCCH monitoring in the slots configured for PDCCH monitoring.
  • the most significant (left) bit may represent the first OFDM in a slot while the least significant (right) bit may represent the last symbol.
  • the duration parameter refers to the time duration of an SS in terms of slots.
  • the monitoringSymbolsWithinSlot parameter may be a 14-bit bitmap, indicating the starting symbols to look for the CORESET within each slot.
  • the searchSpaceType parameter may indicate a type of the SS, such as a common SS or UE-specific SS.
  • the UE may need to perform blind decoding (BD) and channel estimation (CE) to receive a PDCCH.
  • BD blind decoding
  • CE channel estimation
  • limitations may be placed on the number of blind decodes and/or number of channel estimations within a slot that a UE may perform, which may be based on a UE’s capability.
  • Table 2 illustrates the maximum number of control channel elements (CCE) that require channel estimation (e.g., based on a capability of the UE) in a slot for different numerologies ( ⁇ ) , where ⁇ refers to a subcarrier spacing (e.g., 15kHz, 30kHz, 60kHz, 120kHz, etc. ) .
  • CCE control channel elements
  • a base station e.g., gNB
  • a base station may be allowed to “overbook” a UE in terms of the number of BD or CE to perform (e.g., go over the maximum allowable BD/CE in a slot) with respect to the capability of the UE.
  • certain priority rules for different search spaces may be applied to limit the number of BDs and/or CEs within a slot, such as, (i) CSS sets are mapped before USS sets; (ii) USS sets are mapped in ascending order of the SS set indices; and (iii) if the number of PDCCH candidates/CCEs exceeds either of the UE processing limits, No more SS sets are mapped in the slot after reaching the UE processing limit.
  • NR-light devices may be applicable for certain use-cases, such as smart wearable devices, industrial sensors, video surveillance devices, and the like.
  • NR-light devices may include (e.g., in comparison to “premium” NR UEs) a reduced number of receive antennas, a reduced transmit/receive bandwidth (e.g., 5MHz-20MHz, compared to premium UEs with 100MHz bandwidth) and reduced computational complexity/memory and longer battery life.
  • NR-light UEs such as not being able to properly receive and decode control information transmitted on the PDCCH.
  • One solution to help mitigate this problem may be to introduce repetition of PDCCH candidates.
  • the current Rel-15 NR PDCCH may not support repetition of PDCCH candidates and current solutions related to MPDCCH repetition in LTE may not be desirable.
  • MPDCCH candidates are repeated over subframes, where the starting subframes and the number of repetitions are configured via RRC, which may lead to long delays before receiving a repeated MPDCCH (e.g., 8 MPDCCH repetitions may lead to 8 subframes of duration, which is undesirable) .
  • BD/CE limitations if two repeated PDCCHs associated with two separate SSs are partially reusing one slot, the overall decoding complexity may not be large over time. However, according to Rel-15’s overbooking priority rule, one of the SSs might be dropped if the number of BDs or CEs exceeds the maximum number of BDs/CEs.
  • aspects of the present disclosure provide techniques for enabling NR PDCCH repetition that avoid the reception delays associated with LTE described above. Further, aspects of the present disclosure provide blind decoding and channel estimation limitation schemes that take into account NR PDCCH repetition. For example, in some cases, the techniques provided herein may involve determining a CORESET repetition pattern to monitor for PDCCH transmissions and monitoring for the PDCCH transmissions within one or more CORESET repetitions according to the CORESET repetition pattern.
  • FIG. 10 is a flow diagram illustrating example operations 1000 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 1000 may be performed, for example, by a BS (e.g., such as the BS 110a in the wireless communication network 100) .
  • the operations 1000 may be complimentary operations by the BS to the operations 1000 performed by the UE.
  • Operations 1000 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) .
  • the transmission and reception of signals by the BS in operations 1000 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) .
  • the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals.
  • the operations 1000 may begin, at 1002, by transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern.
  • the BS may transmit the configuration information in radio resource control (RRC) signaling.
  • RRC radio resource control
  • the BS transmits physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • PDCCH physical downlink control channel
  • FIG. 11 is a flow diagram illustrating example operations 1100 for wireless communication, in accordance with certain aspects of the present disclosure.
  • the operations 1100 may be performed, for example, by UE (e.g., such as a UE 120a in the wireless communication network 100) .
  • the operations 1100 may be complimentary operations by the UE to the operations 1000 performed by the BS.
  • Operations 1100 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) .
  • the transmission and reception of signals by the UE in operations 1100 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) .
  • the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
  • the operations 1100 may begin, at 1102, by receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) .
  • the configuration information may be received in radio resource control (RRC) signaling.
  • RRC radio resource control
  • the UE determines a CORESET repetition pattern based on the configuration information.
  • the UE monitors for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • PDCCH physical downlink control channel
  • enabling NR-PDCCH repetition may involve providing CORESET repetition (e.g., in which the PDCCH transmission will be transmitted) within one search space.
  • the BS may provide an indication to the UE, indicating that CORESET repetition will be performed within one SS.
  • the configuration information may include a parameter NumRepetition in a SearchSpace parameter, where a value such as NumRepetition>1 indicates to the UE to follow certain rules/CORESET repetition patterns to determine one or more CORESET repetitions to receive the PDCCH transmissions.
  • each CORESET repetition pattern may comprise a periodicity and offset corresponding to the one or more CORESET repetitions.
  • the periodicity may indicate a number of transmission slots between instances of the CORESET repetition pattern and the may offset indicate a starting slot of the one or more CORESET repetitions within the number of transmission slots indicated in the periodicity.
  • the configuration information may include a parameter indicating the periodicity and offset, such as monitoringSlotPeriodicityAndOffset.
  • the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions based on the periodicity and offset corresponding to the one or more CORESET repetitions.
  • a CORESET repetition pattern may comprise an indication of a duration corresponding to the one or more CORESET repetitions.
  • the duration may signify one or more transmission slots within the periodicity corresponding to the one or more CORESET repetitions.
  • the configuration information may provide an indication of one or more transmission slots within the periodicity corresponding to the one or more CORESET repetitions. Accordingly, the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots.
  • determining a CORESET repetition pattern may include determining a pattern of symbols within at least a first transmission slot of the one or more transmission slots corresponding to the one or more CORESET repetitions. In some cases, the determination may be based on an indication (e.g., a parameter) included in the configuration information, such as montoringSymbolsWithinSlot. In some cases, the indication of the pattern of symbols comprises a bitmap indicating which symbols of at least the first transmission slot correspond to the one or more CORESET repetitions. For example, in some cases, the bitmap may include 14-bits where each bit corresponds to a symbol within the first transmission slot.
  • a bit value of 1 may indicate that the UE should expect a CORESET repetition within a corresponding symbol of the first transmission slot while a bit value of 0 indicates to the UE that it should not expect a CORESET repetition within a corresponding symbol of the first transmission slot.
  • monitoring by the UE for the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots may include the UE monitoring for the PDCCH transmissions within the one or more CORESET repetitions in one or more symbols of at least the first transmission slot of the one or more transmission slots based on the determined pattern of symbols.
  • a first CORESET repetition pattern may include an intra-transmission-slot repetition pattern where each transmission slot of one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs.
  • a first transmission slot of the one or more transmission slots may include CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs while a second transmission slot of the one or more transmission slots may include CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  • the UE may determine the CORESET repetition pattern to be an intra-transmission-slot CORESET repetition pattern based on parameters included in the configuration information, such as the periodicity, offset, duration, and pattern of symbols (e.g., montoringSymbolsWithinSlot) .
  • the UE may then monitor for PDCCH transmissions within one or more CORESET repetitions in at least one SS according to the CORESET repetition pattern intra-transmission-slot CORESET repetition pattern.
  • the UE may monitor a first transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET and may monitor a second transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET.
  • FIG. 12 provides an example of an intra-transmission-slot CORESET repetition pattern 1200, according to certain aspects presented herein.
  • the intra-transmission-slot CORESET repetition pattern 1200 may include CORESET repetitions spanning two symbols and only one search space.
  • CORESET repetitions corresponding to different CORESETs may be configured in unique transmission slots of one or more transmission slots.
  • the intra-transmission-slot CORESET repetition pattern 1200 may include a first transmission slot 1202 and a second transmission slot 1204.
  • the first transmission slot 1202 may include CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs while the second transmission slot 1204 may include CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  • the first transmission slot 1202 may not include the one or more CORESET repetitions corresponding to CORESETs other than the first CORESET.
  • the second transmission slot 1204 may not include the one or more CORESET repetitions corresponding to CORESETs other than the second CORESET.
  • the UE may receive configuration information of the pattern of symbols (e.g., monitoringSymbolsWithinSlot) associated with the intra-transmission-slot CORESET repetition pattern 1200, for example, indicating the symbols of a transmission slot in which to monitor for PDCCH transmissions within the one or more CORESET repetitions.
  • configuration information of the pattern of symbols e.g., monitoringSymbolsWithinSlot
  • symbols within the first transmission slot to monitor for the one or more CORESET repetitions corresponding to the first CORESET may be indicated by the pattern of symbols.
  • symbols within the second transmission slot to monitor for the one or more CORESET repetitions corresponding to the second CORESET may be indicated by the pattern of symbols.
  • the pattern of symbols may indicate that CORESET repetitions corresponding to the first CORESET may occur in symbols 1206A-1206d of the first transmission slot 1202.
  • the pattern of symbols may indicate that CORESET repetitions corresponding to the second CORESET may occur in symbols 1208A-1208d of the second transmission slot 1204.
  • each CORESET repetition may span two symbols; however, the number of symbols that a CORESET repetition spans may be configurable.
  • the UE may determine the intra-transmission-slot CORESET repetition pattern 1200.
  • the BS may then transmit PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-transmission-slot CORESET repetition pattern 1200.
  • the UE may then monitor for the PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-transmission-slot CORESET repetition pattern 1200.
  • the UE may not expect overlapped CORESET searching configured by the parameter monitoringSymbolsWithinSlot. Additionally, with respect to monitoringSymbolsWithinSlot, the number of 1s in the monitoringSymbolsWithinSlot parameter may equal the parameter NumRepetition. Further, the UE may take the CORESETs indicated in each slot (e.g., by the pattern of symbols) to be repeated CORESETs.
  • a second CORESET repetition pattern may include an inter-transmission-slot repetition pattern where each transmission slot of one or more transmission slots includes CORESET repetitions of one or more CORESET repetitions corresponding to a plurality of CORESETs. Additionally, in some cases, CORESET repetitions corresponding to a particular CORESET may be repeated across multiple different transmission slots.
  • a first transmission slot may include a first set of symbols to monitor for PDCCH transmissions within CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs and a second set of symbols to monitor for PDCCH transmissions within CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  • the UE may determine the CORESET repetition pattern to be an inter-transmission-slot CORESET repetition pattern based on parameters included in the configuration information, such as the periodicity, offset, duration, and pattern of symbols (e.g., montoringSymbolsWithinSlot) .
  • the UE may then monitor for PDCCH transmissions within one or more CORESET repetitions in at least one SS according to the CORESET repetition pattern inter-transmission-slot CORESET repetition pattern.
  • the UE may monitor a first set of symbols of a first transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET and may monitor a second set of symbols of the first transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET.
  • FIG. 13 provides an example of an inter-transmission-slot CORESET repetition pattern 1300, according to certain aspects presented herein.
  • the inter-transmission-slot CORESET repetition pattern 1300 may include CORESET repetitions spanning two symbols and only one search space.
  • CORESET repetitions corresponding to different CORESETs may be configured across a plurality of transmission slots and each transmission slot may include a plurality of CORESET repetitions corresponding to one or more of the different CORESETs.
  • the inter-transmission-slot CORESET repetition pattern 1300 may include a first transmission slot 1302 and a second transmission slot 1304.
  • the first transmission slot 1302 may include a first set of symbols 1306 to monitor for the PDCCH transmissions within one or more CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs.
  • the first transmission slot 1302 may also include a second set of symbols 1308 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  • CORESET repetitions corresponding to the first CORESET and second CORESET may be included in additional transmission slots, such as the second transmission slot 1304.
  • the second transmission slot 1304 may include a third set of symbols to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs.
  • the second transmission slot 1304 may also include a fourth set of symbols to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
  • the UE may receive configuration information of the pattern of symbols (e.g., monitoringSymbolsWithinSlot) associated with the intra-transmission-slot CORESET repetition pattern 1300, for example, indicating the sets of symbols of a transmission slot in which to monitor for PDCCH transmissions within the one or more CORESET repetitions.
  • the pattern of symbols may provide an indication to the UE to monitor the first set of symbols within the first transmission slot 1302 for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET.
  • the pattern of symbols may also provide an indication to the UE to monitor the second set of symbols within the first transmission slot 1302 for PDCCH transmissions within one or more CORESET repetitions corresponding to the second CORESET.
  • the pattern of symbols may indicate to the UE to monitor symbols 1306 of the first transmission slot 1302 for PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET. Additionally, the pattern of symbols may indicate to the UE to monitor symbols 1308 of the first transmission slot 1302 for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET. Additionally, the pattern of symbols may indicate to the UE to monitor the third set of symbols and fourth set of symbols of the second transmission slot 1304 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET and second CORESET, respectively.
  • the UE may determine the inter-transmission-slot CORESET repetition pattern 1300.
  • the BS may then transmit PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the inter-transmission-slot CORESET repetition pattern 1300.
  • the UE may then monitor for the PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the inter-transmission-slot CORESET repetition pattern 1300.
  • the duration parameter may be set to an integer (s) of the parameter NumRepetition. Additionally, the UE may take each of number of NumRepetition transmission slots as repeated CORESETs within the duration of transmission slots.
  • a third CORESET repetition pattern may include an intra-and-inter-transmission-slot repetition pattern.
  • the intra-and-inter-transmission-slot repetition pattern may be considered a combination of the intra-transmission-slot repetition pattern and inter-transmission-slot repetition pattern described above.
  • the intra-and-inter-transmission-slot repetition pattern may include transmitting PDCCH transmissions within one or more CORESET repetitions in one or more transmission slots, where each transmission slot of the one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs.
  • the one or more CORESET repetitions corresponding to each different CORESET of the plurality of CORESETs may include in a plurality of transmission slots of the one or more transmission slots.
  • intra-and-inter-transmission-slot repetition pattern may include a plurality of transmission slots, such as a first transmission slot, a second transmission slot, a third transmission slot, and a fourth transmission slot.
  • CORESET repetitions corresponding to a first CORESET may be included within a first transmission slot and a second transmission slot while CORESET repetitions corresponding to a second CORESET may be included within a third transmission slot and a fourth transmission slot.
  • the first transmission slot and the second transmission slot may only include CORESET repetitions corresponding to the first CORESET but not CORESET repetitions corresponding to the second CORESET.
  • the third transmission slot and fourth transmission slot may include CORESET repetitions corresponding to the second CORESET but not CORESET repetitions corresponding to the first CORESET.
  • the UE may determine the CORESET repetition pattern to be an intra-and-inter-transmission-slot CORESET repetition pattern based on parameters included in the configuration information, such as the periodicity, offset, duration, and pattern of symbols (e.g., montoringSymbolsWithinSlot) .
  • the UE may then monitor for PDCCH transmissions within one or more CORESET repetitions in at least one SS according to the CORESET repetition pattern inter-transmission-slot CORESET repetition pattern.
  • the UE may monitor a first set of symbols of a first transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET and may monitor a second set of symbols of a second transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET. Additionally, the UE may monitor a third set of symbols of a third transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the second CORESET and may monitor a fourth set of symbols of a fourth transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET.
  • FIG. 14 provides an example of an intra-and-inter-transmission-slot CORESET repetition pattern 1400, according to certain aspects presented herein.
  • the intra-and-inter-transmission-slot CORESET repetition pattern 1400 may include CORESET repetitions spanning two symbols and only one search space.
  • a number of CORESET repetitions e.g., NumRepetitions
  • CORESET repetitions corresponding to different CORESETs may be configured across a plurality of transmission slots and each transmission slot may include CORESET repetitions corresponding to only one of the different CORESETs.
  • the intra-and-inter-transmission-slot CORESET repetition pattern 1400 may include a first transmission slot 1402, a second transmission slot 1404, a third transmission slot 1406, and a fourth transmission slot 1408.
  • the first transmission slot 1402 may include a first set of symbols 1410 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETs.
  • the second transmission slot 1404 may include a second set of symbols 1412 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs.
  • the third transmission slot 1406 may include a third set of symbols 1414 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
  • the fourth transmission slot 1408 may include a fourth set of symbols 1416 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs. It should be understood that, while FIG.
  • the first transmission slot 1402 and the second transmission slot 1404 corresponding to the first CORESET may not be adjacent to each other.
  • the first transmission slot 1402 corresponding to the first CORESET may be adjacent to the third transmission slot 1406 corresponding to the second CORESET.
  • the UE may receive configuration information of the pattern of symbols (e.g., monitoringSymbolsWithinSlot) associated with the intra-and-inter-transmission-slot CORESET repetition pattern 1400, for example, indicating the sets of symbols of a transmission slot in which to monitor for PDCCH transmissions within the one or more CORESET repetitions.
  • the pattern of symbols may provide an indication to the UE to monitor the first set of symbols 1410 within the first transmission slot 1402 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs.
  • the pattern of symbols may also provide an indication to the UE to monitor the second set of symbols 1412 within the second transmission slot 1404 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs.
  • the pattern of symbols may provide an indication to the UE to monitor the third set of symbols 1414 within the third transmission slot 1406 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
  • the pattern of symbols may provide an indication to the UE to monitor the fourth set of symbols 1416 within the fourth transmission slot 1408 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
  • the UE may determine the intra-and-inter-transmission-slot CORESET repetition pattern 1400.
  • the BS may then transmit PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-and-inter-transmission-slot CORESET repetition pattern 1400.
  • the UE may then monitor for the PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-and-inter-transmission-slot CORESET repetition pattern 1400.
  • a value of the parameter NumRepetition may be an integer (s) of the number of 1s in the parameter monitoringSymbolsWithinSlot.
  • a value of the duration parameter may be an integer (s) of NumRepetition/N, where N is the number of 1s in the parameter monitoringSymbolsWithinSlot.
  • the UE may take jointly intra-and-inter transmission slot repetition of the CORESET as the repeated CORESETs, wherein the repetition pattern (e.g., the intra-and-inter-transmission-slot CORESET repetition pattern) may be determined by NumRepetition/N.
  • the repetition pattern e.g., the intra-and-inter-transmission-slot CORESET repetition pattern
  • a fourth CORESET repetition pattern may include a mirrored-SS CORESET repetition pattern, indicating that the one or more CORESET repetitions will be transmitted across a plurality of SSs, an example of which is illustrated in FIG. 15.
  • the plurality of SSs may comprise a mother SS and at least one mirrored SS, such as mirror-SS#0, mirror-SS#1, and mirror-SS#2, in which one or more CORESET repetitions may be transmitted.
  • a number of CORESET repetitions e.g., NumRepetitions
  • each of the mother SS and mirrored SSs may carry a CORESET repetition corresponding to a particular CORESET.
  • the mother SS may include a first CORESET repetition 1502 corresponding to a first CORESET in a first number of transmission slots
  • mirror-SS#0 may include a second CORESET repetition 1504 corresponding to the first CORESET in a second number of transmission slots
  • mirror-SS#1 may include a third CORESET repetition 1506 corresponding to the first CORESET in a third number of transmission slots
  • mirror-SS#2 may include a fourth CORESET repetition 1508 corresponding to the first CORESET in a fourth number of transmission slots.
  • the UE may receive a pattern of symbols indicating which symbols of a particular transmission slot within each of the mother SS and mirrored SSs correspond to one or more CORESET repetitions.
  • the UE may determine the mirrored SSs in which the one or more CORESET repetitions are transmitted based on different criteria. According to aspects, the UE may then for the PDCCH transmissions within the one or more CORESET repetitions by monitoring the mother SS and the at least one mirrored SS.
  • the UE may determine the mirrored SSs based on a legacy search space configuration.
  • the mirrored SSs may depend on the mother SS.
  • the UE may use configuration information of the mother SS to determine the mirrored SSs. For example, in some cases, the UE may receive configuration information indicating a transmission slot offset of the mother SS. Thus, in some cases, determining the at least one mirrored SS may be based on a transmission slot offset with respect to the transmission slot offset of the mother SS. For example, in some cases, as illustrated in FIG. 15, the UE may receive the parameter monitoringSlotPeriodicityAndOffset for the mother SS, indicating a periodicity of 20 transmission slots and a slot offset of zero transmission slots. Accordingly, the UE may then determine that each mirrored offset includes an additional offset with respect to the offset for the mother SS.
  • the UE may determine a transmission slot offset for mirror-SS#0 to be two transmission slots from the mother SS. Further, the UE may determine a transmission offset for mirror-SS#1 to be four transmission slots from the mother SS, and so on.
  • the UE may determine the mirrored SSs based on a symbol offset with respect to the mother SS. For example, in some cases, the UE may determine the symbol offset based on a number of bit shifts compared to a bitmap (e.g., such as monitoringSymbolsWithinSlot) corresponding to the mother SS, wherein the bitmap indicates which symbols of a transmission slot include the one or more CORESET repetitions corresponding to the mother SS. In certain cases, bits at the end may be circularly shifted or ignored.
  • a bitmap e.g., such as monitoringSymbolsWithinSlot
  • the UE may determine the mirrored SSs based on a combination of the transmission slot offset with respect to a transmission slot offset of the mother SS and the symbol offset with respect to the mother SS.
  • the UE may monitor for the PDCCH transmissions transmitted by the BS within the one or more CORESET repetitions by monitoring the mother SS and the mirrored SSs.
  • the UE may take the CORESETS in the mother SS and the mirrored SSs as repeated CORESETs.
  • the UE may identify a starting SS associated with the one or more CORESET repetitions by determining an SS with an earliest transmission slot offset.
  • the mother SS and the mirrored SSs identified/determined by the UE in each periodicity may be considered as a set of CORESET repetitions.
  • the UE may determine whether a PDCCH transmission is a PDCCH repetition based on certain criteria. More specifically, for example, the UE may determine a first PDCCH transmission within a first CORESET repetition of the one or more CORESET repetitions and a second PDCCH transmission within a second CORESET repetition of the one or more CORESET repetitions comprise repeated PDCCH transmissions based on one or more criteria.
  • the one or more criteria may comprise the first PDCCH transmission occupying same control channel elements (CCEs) as the second PDCCH transmission. In some cases, the one or more criteria may comprise the first PDCCH transmission and the second PDCCH transmission are associated with a same aggregation level. In some cases, the one or more criteria may comprise the first PDCCH transmission and the second PDCCH transmission are radio resource control (RRC) configured by the at least one SS associated with a first CORESET. In some cases, the one or more criteria may comprise arbitrary PDCCH transmissions in the first CORESET repetition are identifiable as the first PDCCH transmission and arbitrary PDCCH transmissions within the second CORESET repetition are identifiable as the second PDCCH transmission.
  • CCEs control channel elements
  • the first CORESET repetition and the second CORESET repetition are associated with a same set of CORESET repetitions, and the PDCCH transmissions within the one or more CORESET repetitions are identifiable from configuration of the at least one SS associated with a CORESET to which the one or more CORESET repetitions correspond.
  • BD blind decodes
  • CE channel estimations
  • CCEs in repeated CORESETs may be jointly channel estimated to further lower the complexity.
  • a maximum number of BD/CE supported for PDCCH decoding are defined for each transmission slot.
  • the UE may need to drop certain SSs as in Rel-15/16, thus degrading achievable repetition gains.
  • the actual decoding capacity may not be fully used as PDDCH repetitions in other slots may not require linearly increased decoding efforts.
  • the BS/gNB may need to limit the number of PDCCH candidates in at least one of the SSs, but the number of PDCCH candidates in those non-overlapping slots may be far less than the limitations.
  • aspects presented herein provide BD/CE limits that consider such partially overlapped TDRA of different set of NR-PDCCH repetitions, which may be used by the UE when monitoring for the PDCCH transmission within the one or more CORESET repetitions.
  • the UE may determine the maximum BD/CE limitation (e.g., maximum number of BDs and/or CEs) in a certain transmission slot based on different criteria.
  • the maximum BD/CE limitation e.g., maximum number of BDs and/or CEs
  • the UE may determine the maximum BD/CE limit for a first transmission slot based on a number of separate/district CORESET repetitions sets (e.g., CORESET repetitions corresponding to different CORESETS) included within the first transmission slot.
  • the UE may determine the BD/CE limit for a first transmission slot based on a number of CORESETs to which the one or more CORESET repetitions in the first transmission slot correspond.
  • transmission slots with a greater number of separately repeated CORESETSs may comprise a higher maximum BD/CE limit.
  • the BD/CE limit for a first transmission slot may be higher than the BD/CE limit for a second transmission slot when one or more CORESET repetitions in the first transmission slot correspond to a greater number of CORESETs as compared to the second transmission slot.
  • FIG. 17 illustrates an example of determining a BD/CE limit based on the number of separate CORESETs are included within a transmission slot, according to certain aspects presented herein.
  • CORESET repetitions corresponding to different CORESETs may be transmitted in one or more transmission slots.
  • transmission slots 1702a-1702c may include CORESET repetitions corresponding to a first CORESET while transmission slots 1704a-1704c may include CORESET repetitions corresponding to a second CORESET.
  • transmission slot 1706 may include a CORESET repetition corresponding to the first CORESET and a CORESET repetition corresponding to the second CORESET.
  • the UE may determine the transmission slot 1706 to have a higher BD/CE limit than the transmission slot 1702a.
  • boundaries of the proposed number of separate CORESET repetition sets described above and the associated BD/CE limits may be predefined or RRC configured.
  • the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions of the one or more transmission slots based on the determined BD/CE limits. For example, in some cases, monitoring based on the determined BD/CE limits may include determining which SSs to drop based on the BD/CE limits.
  • the UE may determine the maximum BD/CE limit for a first transmission slot based on a total number of transmission slots (denoted S) comprising only a single set of remaining CORESET repetitions of each CORESET involved in the first transmission slot, for example, if the first transmission slot comprises CORESET repetitions corresponding to multiple separate CORESETs. According to aspects, if S is higher for the first transmission slot as compared to other transmission slots, so too will the BD/CE limit for the first transmission slot.
  • S total number of transmission slots
  • CORESET repetitions may be transmitted in a plurality of transmission slots.
  • the plurality of transmissions slots may include a first transmission slot and one or more other transmission slots.
  • the first transmission slot may include CORESET repetitions of one or more CORESET repetitions corresponding to a first CORESET and CORESET repetitions of the one or more CORESET repetitions corresponding to a second CORESET.
  • determining the BD/CE limit for the first transmission slot may be based on (1) a first number of other transmission slots of the plurality of transmission slots that include only the CORESET repetitions of the one or more CORESET repetitions corresponding to the first CORESET and (2) a second number of other transmission slots of the plurality of transmission slots that include only the CORESET repetitions of the one or more CORESET repetitions corresponding to the second CORESET.
  • the UE may combine the first number of other transmission slots with the second number of transmission slots to determine a total number of remaining transmission slots including one of CORESET repetitions corresponding to the first CORESET or the second CORESET. According to aspects, the greater the number of total remaining transmission slots, the greater the BD/CE of the first transmission slot may be.
  • FIG. 18 illustrates an example of determining a BD/CE limit based on a total number of remaining transmission slots, according to certain aspects presented herein.
  • CORESET repetitions corresponding to different CORESETs may be transmitted in one or more transmission slots.
  • transmission slots 1802-1808 may include CORESET repetitions corresponding to a first CORESET
  • transmission slots 1808-1814 may include CORESET repetitions corresponding to a second CORESET
  • transmission slots 1812-1818 may include CORESET repetitions corresponding to a third CORESET.
  • transmission slot 1808 may include a CORESET repetition corresponding to the first CORESET and a CORESET repetition corresponding to the second CORESET.
  • transmission slots 1812 and 1814 may include a CORESET repetition corresponding to the second CORESET and a CORESET repetition corresponding to the third CORESET.
  • the transmission slot 1808 since the transmission slot 1808 is associated with four remaining transmission slots that each include only a single CORESET repetition corresponding to either the first CORESET or the second CORESET, the transmission slot 1808 may have a higher BD/CE limit. More specifically, from the perspective of transmission slot 1808, the UE may determine that singular CORESET repetitions corresponding to the first CORESET are included in remaining transmission slots 1802, 1804, and 1806 (e.g., three transmission slots) . Similarly, the UE may determine that a singular CORESET repetition corresponding to the second CORESET is included in remaining transmission slot 1810 (e.g., on transmission slot) .
  • the UE may determine that transmission slot 1808 is associated with a total of four remaining transmission slot and, therefore, that transmission slot 1808 has a higher BD/CE limit as compared to, for example, transmission slot 1802 (e.g., which is not a transmission slot that includes CORESET repetitions corresponding to multiple CORESETs) .
  • the UE may determine that transmission slots 1812 and 1814 are associated with three remaining total transmission slots (e.g., transmission slots 1810, 1816, and 1818) and, therefore, that transmission slots 1812 and 1814 may have higher BD/CE limits compared to, for example, transmission slot 1816 (e.g., which is not a transmission slot that includes CORESET repetitions corresponding to multiple CORESETs) .
  • transmission slots that include CORESET repetitions corresponding to multiple CORESETs have higher BD/CE limits as compared to transmission slots without CORESET repetitions corresponding to multiple CORESETs. Additionally, as illustrated, transmission slots that include CORESET repetitions corresponding to multiple CORESETs and that have a greater total of remaining transmission slots (as described above) have higher BD/CE limits as compared to transmission slots with CORESET repetitions corresponding to multiple CORESETs that have a lesser total number of remaining transmission slots (as described above) .
  • boundaries of the proposed total number of remaining transmission slots and the associated BD/CE limits may be predefined or RRC configured.
  • the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions of the one or more transmission slots based on the determined BD/CE limits. For example, in some cases, monitoring based on the determined BD/CE limits may include determining which SSs to drop based on the BD/CE limits.
  • the UE may determine the maximum BD/CE limits based on an explicit indication of the BD/CE limit per transmission slot.
  • the configuration information received by the UE may include a number of maximum BD/CE limitations per transmission slot via RRC, which may be configured for each set of consecutive transmission slots. This may reduce UE complexity of determining BD/CE limitations in each transmission slot.
  • the dropping of SSs in each slot may follow each configured maximum BD/CE limitations in each slot.
  • BD/CE limitations may be configured for a multiple number of transmission slots.
  • the configuration information received by the UE may include a number of maximum BD/CE limitations for a multiple number of transmission slots.
  • the associated dropping of SSs may also be determined based on the multiple number of transmission slots.
  • FIG. 19 illustrates a communications device 1900 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 10.
  • the communications device 1900 includes a processing system 1902 coupled to a transceiver 1908 (e.g., a transmitter and/or a receiver) .
  • the transceiver 1908 is configured to transmit and receive signals for the communications device 1900 via an antenna 1910, such as the various signals as described herein.
  • the processing system 1902 may be configured to perform processing functions for the communications device 1900, including processing signals received and/or to be transmitted by the communications device 1900.
  • the processing system 1902 includes a processor 1904 coupled to a computer-readable medium/memory 1912 via a bus 1906.
  • the computer-readable medium/memory 1912 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1904, cause the processor 1904 to perform the operations illustrated in FIG. 10, or other operations for performing the various techniques discussed herein for NR PDCCH repetition.
  • computer-readable medium/memory 1912 stores code 1914 for transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and code 1916 for transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • the processor 1904 includes circuitry configured to implement the code stored in the computer-readable medium/memory 1912.
  • the processor 1904 includes circuitry 1918 for transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and circuitry 1920 for transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCCH physical downlink control channel
  • FIG. 20 illustrates a communications device 2000 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 11.
  • the communications device 2000 includes a processing system 2002 coupled to a transceiver 2008 (e.g., a transmitter and/or a receiver) .
  • the transceiver 2008 is configured to transmit and receive signals for the communications device 2000 via an antenna 2010, such as the various signals as described herein.
  • the processing system 2002 may be configured to perform processing functions for the communications device 2000, including processing signals received and/or to be transmitted by the communications device 2000.
  • the processing system 2002 includes a processor 2004 coupled to a computer-readable medium/memory 2012 via a bus 2006.
  • the computer-readable medium/memory 2012 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 2004, cause the processor 2004 to perform the operations illustrated in FIG. 11, or other operations for performing the various techniques discussed herein for NR PDCCH repetition.
  • computer-readable medium/memory 2012 stores code 2014 for receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ; code 2016 for determining a CORESET repetition pattern based on the configuration information; and code 2017 for monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • the processor 2004 includes circuitry configured to implement the code stored in the computer-readable medium/memory 2012.
  • the processor 2004 includes circuitry 2018 for receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ; circuitry 2020 for determining a CORESET repetition pattern based on the configuration information; and circuitry 2022 for monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  • CORESET control resource set
  • SS search space
  • PDCH physical downlink control channel
  • NR e.g., 5G NR
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA Universal Terrestrial Radio Access
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc.
  • NR e.g. 5G RA
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • LTE and LTE-A are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • NR is an emerging wireless communications technology under development.
  • the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used.
  • NB Node B
  • BS next generation NodeB
  • AP access point
  • DU distributed unit
  • TRP transmission reception point
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • CPE Customer Premises Equipment
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband IoT
  • a scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell.
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity.
  • a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may communicate directly with one another in addition to communicating with a scheduling entity.
  • the methods disclosed herein comprise one or more steps or actions for achieving the methods.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein, for example, instructions for performing the operations described herein and illustrated in FIG. 10 and/or FIG. 11.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Abstract

Certain aspects of the present disclosure provide techniques for blind decoding and channel estimation (BD/CE) limitations and configuration of new radio (NR) physical downlink control channel (PDCCH) repetition. A method that may be performed by a user equipment (UE) includes A method for wireless communication in a wireless network by a user equipment (UE), comprising receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS), determining a CORESET repetition pattern based on the configuration information, and monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.

Description

NEW RADIO PHYSICAL DOWNLINK CONTROL CHANNEL REPETITION BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate to wireless communications, and more particularly, to techniques for blind decoding and channel estimation (BD/CE) limitations and configuration of new radio (NR) physical downlink control channel (PDCCH) repetition.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, broadcasts, etc. These wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, etc. ) . Examples of such multiple-access systems include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) systems, LTE Advanced (LTE-A) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems, to name a few.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. New radio (e.g., 5G NR) is an example of an emerging telecommunication standard. NR is a set of enhancements to the LTE mobile standard promulgated by 3GPP. NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) . To these ends, NR supports beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR and LTE technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved blind decoding and channel estimation (BD/CE) limitations and configuration of new radio (NR) physical downlink control channel (PDCCH) repetition.
Certain aspects of the subject matter described in this disclosure can be implemented in a method for wireless communication in a wireless network by a user equipment (UE) . The method generally includes receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , determining a CORESET repetition pattern based on the configuration information, and monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communication in a wireless network by a user equipment (UE) . The apparatus generally includes at least one processor configured to: receive configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , determine a CORESET repetition pattern based on the configuration information, and monitor for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern. The apparatus also generally includes a memory coupled with the at least one processor.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communication in a wireless network by a user  equipment (UE) . The apparatus generally includes means for receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , means for determining a CORESET repetition pattern based on the configuration information, and means for monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
Certain aspects of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium for wireless communication in a wireless network by a user equipment (UE) . The non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, cause at least one processor to: receive configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , determine a CORESET repetition pattern based on the configuration information, and monitor for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
Certain aspects of the subject matter described in this disclosure can be implemented in a method for wireless communication in a wireless network by a base station (BS) . The method generally includes transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communication in a wireless network by a base station (BS) . The apparatus generally includes at least one processor configured to: transmit configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and transmit physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern. The apparatus also generally includes a memory coupled with the at least one processor.
Certain aspects of the subject matter described in this disclosure can be implemented in an apparatus for wireless communication in a wireless network by a base station (BS) . The apparatus generally includes means for transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and means for transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
Certain aspects of the subject matter described in this disclosure can be implemented in a non-transitory computer-readable medium for wireless communication in a wireless network by a base station (BS) . The non-transitory computer-readable medium generally includes instructions that, when executed by at least one processor, cause at least one processor to: transmit configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and transmit physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the appended drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram conceptually illustrating a design of an example a base station (BS) and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 3 is an example frame format for new radio (NR) , in accordance with certain aspects of the present disclosure.
FIG. 4 illustrates how different synchronization signal blocks (SSBs) may be sent using different beams, in accordance with certain aspects of the present disclosure.
FIG. 5 shows an exemplary transmission resource mapping, according to aspects of the present disclosure.
FIGs. 6-8 illustrate different frequency domain interleaving patterns for CORESETS, according to aspects of the present disclosure.
FIG. 9 illustrates an example of mapping of PDCCH candidates of an SS set to CCEs of an associated CORESET, according to aspects of the present disclosure.
FIG. 10 is a flow diagram illustrating example operations for wireless communication by a BS in a wireless network, according to aspects of the present disclosure.
FIG. 11 is a flow diagram illustrating example operations for wireless communication by a UE in a wireless network, according to aspects of the present disclosure.
FIGs. 12-15 illustrate different CORESET repetition patterns, according to aspects of the present disclosure.
FIG. 16 illustrates overlapped and non-overlapped transmission slots associated with CORESET repetitions, according to aspects of the present disclosure.
FIG. 17 illustrates an example of determining a BD/CE limit based on the number of separate CORESETs are included within a transmission slot, according to aspects of the present disclosure.
FIG. 18 illustrates an example of determining a BD/CE limit based on a total number of remaining transmission slots, according to aspects of the present disclosure.
FIG. 19 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
FIG. 20 illustrates a communications device that may include various components configured to perform operations for the techniques disclosed herein in accordance with aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for blind decoding and channel estimation (BD/CE) limitations and configuration of new radio (NR) physical downlink control channel (PDCCH) repetition.
The following description provides examples of BD/CE limitations and configuration of NR PDCCH repetition in communication systems, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to, or other than, the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a subcarrier, a frequency channel, a tone, a subband, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
The techniques described herein may be used for various wireless networks and radio technologies. While aspects may be described herein using terminology commonly associated with 3G, 4G, and/or new radio (e.g., 5G NR) wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems.
NR access may support various wireless communication services, such as enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g., 80 MHz or beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 25 GHz or beyond) , massive machine type communications MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low-latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe. NR supports beamforming and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells.
FIG. 1 illustrates an example wireless communication network 100 in which aspects of the present disclosure may be performed. For example, the wireless communication network 100 may be an NR system (e.g., a 5G NR network) . As shown in FIG. 1, the wireless communication network 100 may be in communication with a core network 132. The core network 132 may in communication with one or more base  station (BSs) 110 and/or user equipment (UE) 120 in the wireless communication network 100 via one or more interfaces.
As illustrated in FIG. 1, the wireless communication network 100 may include a number of BSs 110a-z (each also individually referred to herein as BS 110 or collectively as BSs 110) and other network entities. A BS 110 may provide communication coverage for a particular geographic area, sometimes referred to as a “cell” , which may be stationary or may move according to the location of a mobile BS 110. In some examples, the BSs 110 may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in wireless communication network 100 through various types of backhaul interfaces (e.g., a direct physical connection, a wireless connection, a virtual network, or the like) using any suitable transport network. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BSs for the  femto cells  102y and 102z, respectively. A BS may support one or multiple cells. A network controller 130 may couple to a set of BSs 110 and provide coordination and control for these BSs 110 (e.g., via a backhaul) .
The BSs 110 communicate with UEs 120a-y (each also individually referred to herein as UE 120 or collectively as UEs 120) in the wireless communication network 100. The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless communication network 100, and each UE 120 may be stationary or mobile. Wireless communication network 100 may also include relay stations (e.g., relay station 110r) , also referred to as relays or the like, that receive a transmission of data and/or other information from an upstream station (e.g., a BS 110a or a UE 120r) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE 120 or a BS 110) , or that relays transmissions between UEs 120, to facilitate communication between devices.
According to certain aspects, the BSs 110 and UEs 120 may be configured for NR PDCCH repetition. As shown in FIG. 1, the BS 110a includes a repetition module 112. The repetition module 112 may be configured to perform the operations illustrated in one or more of FIGs. 10 and 12-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with aspects of the present disclosure. Additionally, as  shown in FIG. 1, the UE 120a includes a repetition module 122. The repetition module 122 may be configured to perform the operations illustrated in one or more of FIGs. 11-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with aspects of the present disclosure.
FIG. 2 illustrates example components of BS 110a and UE 120a (e.g., in the wireless communication network 100 of FIG. 1) , which may be used to implement aspects of the present disclosure.
At the BS 110a, a transmit processor 220 may receive data from a data source 212 and control information from a controller/processor 240. The control information may be for the physical broadcast channel (PBCH) , physical control format indicator channel (PCFICH) , physical hybrid ARQ indicator channel (PHICH) , physical downlink control channel (PDCCH) , group common PDCCH (GC PDCCH) , etc. The data may be for the physical downlink shared channel (PDSCH) , etc. A medium access control (MAC) -control element (MAC-CE) is a MAC layer communication structure that may be used for control command exchange between wireless nodes. The MAC-CE may be carried in a shared channel such as a physical downlink shared channel (PDSCH) , a physical uplink shared channel (PUSCH) , or a physical sidelink shared channel (PSSCH) .
The processor 220 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The transmit processor 220 may also generate reference symbols, such as for the primary synchronization signal (PSS) , secondary synchronization signal (SSS) , and channel state information reference signal (CSI-RS) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) in transceivers 232a-232t. Each modulator in transceivers 232a-232t may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators in transceivers 232a-232t may be transmitted via the antennas 234a-234t, respectively.
At the UE 120a, the antennas 252a-252r may receive the downlink signals from the BS 110a and may provide received signals to the demodulators (DEMODs) in  transceivers 254a-254r, respectively. Each demodulator in transceivers 254a-254r may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all the demodulators in transceivers 254a-254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120a to a data sink 260, and provide decoded control information to a controller/processor 280.
On the uplink, at UE 120a, a transmit processor 264 may receive and process data (e.g., for the physical uplink shared channel (PUSCH) ) from a data source 262 and control information (e.g., for the physical uplink control channel (PUCCH) from the controller/processor 280. The transmit processor 264 may also generate reference symbols for a reference signal (e.g., for the sounding reference signal (SRS) ) . The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modulators in transceivers 254a-254r (e.g., for SC-FDM, etc. ) , and transmitted to the BS 110a. At the BS 110a, the uplink signals from the UE 120a may be received by the antennas 234, processed by the modulators in transceivers 232a-232t, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120a. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to the controller/processor 240.
The  memories  242 and 282 may store data and program codes for BS 110a and UE 120a, respectively. A scheduler 244 may schedule UEs for data transmission on the downlink and/or uplink.
Antennas 252,  processors  266, 258, 264, and/or controller/processor 280 of the UE 120a and/or antennas 234,  processors  220, 230, 238, and/or controller/processor 240 of the BS 110a may be used to perform the various techniques and methods described herein for NR PDCCH repetition. For example, as shown in FIG. 2, the controller/processor 240 of the BS 110a includes a reselection module 241 that may be configured to perform the operations illustrated in one or more of FIGs. 10 and 12-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with  aspects of the present disclosure. As shown in FIG. 2, the controller/processor 280 of the UE 120a includes repetition module 281 that may be configured to perform the operations illustrated in one or more of FIGs. 11-18, as well as other operations disclosed herein for NR PDCCH repetition, in accordance with aspects of the present disclosure. Although shown at the Controller/Processor, other components of the UE 120a and BS 110a may be used performing the operations described herein.
NR may utilize orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) on the uplink and downlink. NR may support half-duplex operation using time division duplexing (TDD) . OFDM and single-carrier frequency division multiplexing (SC-FDM) partition the system bandwidth into multiple orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. Modulation symbols may be sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers may be dependent on the system bandwidth. The minimum resource allocation, called a resource block (RB) , may be 12 consecutive subcarriers. The system bandwidth may also be partitioned into subbands. For example, a subband may cover multiple RBs. NR may support a base subcarrier spacing (SCS) of 15 KHz and other SCS may be defined with respect to the base SCS (e.g., 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc. ) .
FIG. 3 is a diagram showing an example of a frame format 300 for NR. The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames. Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into 10 subframes, each of 1 ms, with indices of 0 through 9. Each subframe may include a variable number of slots (e.g., 1, 2, 4, 8, 16, …slots) depending on the SCS. Each slot may include a variable number of symbol periods (e.g., 7 or 14 symbols) depending on the SCS. The symbol periods in each slot may be assigned indices. A mini-slot, which may be referred to as a sub-slot structure, refers to a transmit time interval having a duration less than a slot (e.g., 2, 3, or 4 symbols) .
Each symbol in a slot may indicate a link direction (e.g., DL, UL, or flexible) for data transmission and the link direction for each subframe may be dynamically switched. The link directions may be based on the slot format. Each slot may include DL/UL data as well as DL/UL control information.
In NR, a synchronization signal (SS) block (SSB) is transmitted. The SS block includes a PSS, a SSS, and a two symbol PBCH. The SS block can be transmitted in a fixed slot location, such as the symbols 0-3 as shown in FIG. 3. The PSS and SSS may be used by UEs for cell search and acquisition. The PSS may provide half-frame timing, and the SS may provide the CP length and frame timing. The PSS and SSS may provide the cell identity. The PBCH carries some basic system information, such as downlink system bandwidth, timing information within radio frame, SS burst set periodicity, system frame number, etc.
Further system information such as, remaining minimum system information (RMSI) , system information blocks (SIBs) , other system information (OSI) can be transmitted on a physical downlink shared channel (PDSCH) in certain subframes.
As shown in FIG. 4, the SS blocks may be organized into SS burst sets to support beam sweeping. As shown, each SSB within a burst set may be transmitted using a different beam, which may help a UE quickly acquire both transmit (Tx) and receive (Rx) beams (particular for mmW applications) . A physical cell identity (PCI) may still decoded from the PSS and SSS of the SSB.
Certain deployment scenarios may include one or both NR deployment options. Some may be configured for non-standalone (NSA) and/or standalone (SA) option. A standalone cell may need to broadcast both SSB and remaining minimum system information (RMSI) , for example, with SIB1 and SIB2. A non-standalone cell may only need to broadcast SSB, without broadcasting RMSI. In a single carrier in NR, multiple SSBs may be sent in different frequencies, and may include the different types of SSB.
Control Resource Sets (CORESETs)
A control resource set (CORESET) for an OFDMA system (e.g., a communications system transmitting PDCCH using OFDMA waveforms) may comprise one or more control resource (e.g., time and frequency resources) sets, configured for conveying PDCCH, within the system bandwidth (e.g., a specific area on the NR Downlink Resource Grid) and a set of parameters used to carry PDCCH/DCI. For example, a CORESET may by similar in area to an LTE PDCCH area (e.g., the first 1, 2, 3, 4 OFDM symbols in a subframe) .
Within each CORESET, one or more search spaces (e.g., common search space (CSS) , UE-specific search space (USS) , etc. ) may be defined for a given UE. Search spaces are generally areas or portions where a communication device (e.g., a UE) may look for control information.
According to aspects of the present disclosure, a CORESET is a set of time and frequency domain resources, defined in units of resource element groups (REGs) . Each REG may comprise a fixed number (e.g., twelve) tones/subcarriers in one symbol period (e.g., a symbol period of a slot) , where one tone in one symbol period is referred to as a resource element (RE) . A fixed number of REGs, such as six, may be included in a control channel element (CCE) . Sets of CCEs may be used to transmit new radio PDCCHs (NR-PDCCHs) , with different numbers of CCEs in the sets used to transmit NR-PDCCHs using differing aggregation levels. Multiple sets of CCEs may be defined as search spaces for UEs, and thus a NodeB or other base station may transmit an NR-PDCCH to a UE by transmitting the NR-PDCCH in a set of CCEs that is defined as a decoding candidate within a search space for the UE. The UE may receive the NR-PDCCH by searching in search spaces for the UE and decoding the NR-PDCCH transmitted by the NodeB.
As noted above, different aggregation levels may be used to transmit sets of CCEs. Aggregation levels may be generally defined as the number of CCEs that consist of a PDCCH candidate and may include  aggregation levels  1, 2, 4, 8, and 18, which may be configured by a radio resource control (RRC) configuration of a search space set (SS-set) . A CORESET may be linked with the SS-set within the RRC configuration. For each aggregation level, the number of PDCCH candidates may be RRC configurable.
Operating characteristics of a NodeB or other base station in an NR communications system may be dependent on a frequency range (FR) in which the system operates. A frequency range may comprise one or more operating bands (e.g., “n1” band, “n2” band, “n7” band, and “n41” band) , and a communications system (e.g., one or more NodeBs and UEs) may operate in one or more operating bands. Frequency ranges and operating bands are described in more detail in “Base Station (BS) radio transmission and reception” TS38.104 (Release 15) , which is available from the 3GPP website.
As described above, a CORESET is a set of time and frequency domain resources. The CORESET can be configured for conveying PDCCH within system  bandwidth. A UE may determine a CORESET and monitors the CORESET for control channels. During initial access, a UE may identify an initial CORESET (CORESET #0) configuration from a field (e.g., pdcchConfigSIB1) in a maser information block (MIB) . This initial CORESET may then be used to configure the UE (e.g., with other CORESETs and/or bandwidth parts via dedicated (UE-specific) signaling. When the UE detects a control channel in the CORESET, the UE attempts to decode the control channel and communicates with the transmitting BS (e.g., the transmitting cell) according to the control data provided in the control channel (e.g., transmitted via the CORESET) .
In some cases, CORESET #0 may include different numbers of resource blocks (RBs) . For example, in some cases, CORESET #0 may include one of 24, 48, or 96 RBs. For other CORESETSs, a 45-bit bitmap may be used to configure available RB-groups, where each bit in the bitmap is with respect to 6-RBs within a bandwidth part (BWP) and a most significant bit corresponds to the first RB-group in the BWP.
According to aspects of the present disclosure, when a UE is connected to a cell (or BS) , the UE may receive a master information block (MIB) . The MIB can be in a synchronization signal and physical broadcast channel (SS/PBCH) block (e.g., in the PBCH of the SS/PBCH block) on a synchronization raster (sync raster) . In some scenarios, the sync raster may correspond to an SSB. From the frequency of the sync raster, the UE may determine an operating band of the cell. Based on a cell’s operation band, the UE may determine a minimum channel bandwidth and a subcarrier spacing (SCS) of the channel. The UE may then determine an index from the MIB (e.g., four bits in the MIB, conveying an index in a range 0-15) .
Given this index, the UE may look up or locate a CORESET configuration (this initial CORESET configured via the MIB is generally referred to as CORESET #0) . This may be accomplished from one or more tables of CORESET configurations. These configurations (including single table scenarios) may include various subsets of indices indicating valid CORESET configurations for various combinations of minimum channel bandwidth and subcarrier spacing (SCS) . In some arrangements, each combination of minimum channel bandwidth and SCS may be mapped to a subset of indices in the table.
Alternatively or additionally, the UE may select a search space CORESET configuration table from several tables of CORESET configurations. These configurations can be based on a minimum channel bandwidth and SCS. The UE may  then look up a CORESET configuration (e.g., a Type0-PDCCH search space CORESET configuration) from the selected table, based on the index. After determining the CORESET configuration (e.g., from the single table or the selected table) , the UE may then determine the CORESET to be monitored (as mentioned above) based on the location (in time and frequency) of the SS/PBCH block and the CORESET configuration.
FIG. 5 shows an exemplary transmission resource mapping 500, according to aspects of the present disclosure. In the exemplary mapping, a BS (e.g., BS 110a, shown in FIG. 1) transmits an SS/PBCH block 502. The SS/PBCH block includes a MIB conveying an index to a table that relates the time and frequency resources of the CORESET 504 to the time and frequency resources of the SS/PBCH block.
The BS may also transmit control signaling. In some scenarios, the BS may also transmit a PDCCH to a UE (e.g., UE 120, shown in FIG. 1) in the (time/frequency resources of the) CORESET. The PDCCH may schedule a PDSCH 506. The BS then transmits the PDSCH to the UE. The UE may receive the MIB in the SS/PBCH block, determine the index, look up a CORESET configuration based on the index, and determine the CORESET from the CORESET configuration and the SS/PBCH block. The UE may then monitor the CORESET, decode the PDCCH in the CORESET, and receive the PDSCH that was allocated by the PDCCH.
Different CORESET configurations may have different parameters that define a corresponding CORESET. For example, each configuration may indicate a number of resource blocks (e.g., 24, 48, or 96) , a number of symbols (e.g., 1-3) , as well as an offset (e.g., 0-38 RBs) that indicates a location in frequency.
Further, REG bundles may be used to convey CORESETs. REGs in an REG bundle may be contiguous in a frequency and/or a time domain. In certain cases, the time domain may be prioritized before the frequency domain. REG bundle sizes may include: 2, 3, or 6 for interleaved mapping and 6 for non-interleaved mapping.
REG bundles may be interleaved in the frequency domain with different patterns. FIGs. 6-8 illustrate different frequency domain interleaving patterns. For example, FIG. 6 illustrates an interleaving pattern assuming a size of 1 symbol, 24 RBs, an REG bundle size of 2, and an interleaving pattern of R=3 (where R refers to a number of rows in an interleaver matrix) . FIG. 7 illustrates an interleaving pattern assuming a size of 2 symbols, 24 RBs, an REG bundle size of 2, and an interleaving pattern of R=6.  FIG. 8 illustrates an interleaving pattern assuming a size of 3 symbols, 24 RBs, an REG bundle size of 6, and an interleaving pattern of R=6.
Interleaving may entail writing the logical REG bundles into the rows of an interleaver matrix while reading out the logical REG bundles by the columns of the interleaver matrix (e.g., forming an interleaved CORESET) , as shown in FIGs. 6-8. An REG-to-CCE mapping may be determined by counting CCEs in the CORESET with interleaved REG bundles.
In certain cases, a cyclic shift may be applied to interleaved CORESETs. The cyclic shift of the interleaved REG bundles may be in terms of a number of physical resource blocks (PRBs) and based on a ShiftIndex (from 0 to maxNrofPhysicalResourceBlocks-1) configured via RRC. In case ShiftIndex is absent (e.g., for CORESET0) , PHY-Cell-ID may be used as a virtual ShiftIndex.
Additionally, the PDCCH may be associated with a particular precoder and precoder granularity, which may be defined in TS 38.331 and 38.211 within the following configuration information: PDCCH-Config → ControlResourceSet → precoderGranularity. The parameter sameAsREG-bundle of the preceding configuration information may be used to indicate that the same precoding is used within a REG bundle. Additionally, the parameter allContiguousRBs may be used to indicate that the same precoding being used across the all resource-element groups within the set of contiguous resource blocks in the CORESET.
Additionally, as noted above, sets of CCEs may be used to transmit new radio PDCCHs (NR-PDCCHs) , with different numbers of CCEs in the sets used to transmit NR-PDCCHs using differing aggregation levels. The mapping of PDCCH candidates of an SS set to CCEs of an associated CORESET may be implemented by means of a hash function, as illustrated in FIG. 9. The hash function may randomize the allocation of the PDCCH candidates within CORESET p in slot n s and may be performed according to:
Figure PCTCN2020075228-appb-000001
where a single carrier operation with a single SS set with index s is assumed for simplicity, L is the aggregation level, N CCE, p is the total number of CCEs for given CORESET p, m (0, 1, …, M  (L) -1) is the candidate index with M  (L) being the number of PDCCH candidates for AL L, i (0, 1, …, L-1) is the contiguous CCE index of the PDCCH candidate, 
Figure PCTCN2020075228-appb-000002
Figure PCTCN2020075228-appb-000003
Figure PCTCN2020075228-appb-000004
for a CSS set, 
Figure PCTCN2020075228-appb-000005
 (o, 1, …, 2 16-1) for a USS set is a pseudo-random variable based on C-RNTI of the UE and slot number n s, and
Figure PCTCN2020075228-appb-000006
denotes a floor operation.
Example New Radio Physical Downlink Control Channel Repetition
As noted above, physical downlink control channel (PDCCH) information may be carried in one or more CORESETs, spanning the first 1, 2, 3, 4 OFDM symbols of a subframe/slot. Within each CORESET, one or more search spaces (e.g., common search space (CSS) , UE-specific search space (USS) , etc. ) may be defined for a given UE where each SS is associated with one CORESET. Search spaces are generally areas or portions where a communication device (e.g., a UE) may look for control information.
The key radio resource control (RRC) parameters for defining/configuring an SS include controlResourceSetId, monitoringSlotPeriodicityAndOffset, duration, monitoringSymbolsWithinSlot, and searchSpaceType. The controlResourceSetId parameter may correspond to a layer-1 (L1) parameter 'CORESET-ID' and is unique among the bandwidth parts (BWPs) of a ServingCell. In some cases, a value 0 may identify a common CORESET configured in MIB and in ServingCellConfigCommon while a values 1.. maxNrofControlResourceSets-1 may identify CORESETs configured by dedicated signaling.
The monitoringSlotPeriodicityAndOffset parameter may indicate the symbols for PDCCH monitoring in the slots configured for PDCCH monitoring. In certain cases, the most significant (left) bit may represent the first OFDM in a slot while the least significant (right) bit may represent the last symbol.
The duration parameter refers to the time duration of an SS in terms of slots.
The monitoringSymbolsWithinSlot parameter, in some cases, may be a 14-bit bitmap, indicating the starting symbols to look for the CORESET within each slot.
The searchSpaceType parameter may indicate a type of the SS, such as a common SS or UE-specific SS.
In some cases, the UE may need to perform blind decoding (BD) and channel estimation (CE) to receive a PDCCH. In some cases, limitations may be placed on the number of blind decodes and/or number of channel estimations within a slot that a UE may perform, which may be based on a UE’s capability. Table 1, below, illustrates the  maximum number of blind decodes a UE may perform (e.g., based on a capability of the UE) in a slot for different numerologies (μ) , where μ refers to a subcarrier spacing (e.g., 15kHz, 30kHz, 60kHz, 120kHz, etc. ) .
Figure PCTCN2020075228-appb-000007
Table 1: Maximum Blind Decodes
Table 2, below, illustrates the maximum number of control channel elements (CCE) that require channel estimation (e.g., based on a capability of the UE) in a slot for different numerologies (μ) , where μ refers to a subcarrier spacing (e.g., 15kHz, 30kHz, 60kHz, 120kHz, etc. ) .
Figure PCTCN2020075228-appb-000008
In certain cases, a base station (e.g., gNB) may be allowed to “overbook” a UE in terms of the number of BD or CE to perform (e.g., go over the maximum allowable BD/CE in a slot) with respect to the capability of the UE. In such cases, certain priority rules for different search spaces may be applied to limit the number of BDs and/or CEs within a slot, such as, (i) CSS sets are mapped before USS sets; (ii) USS sets are mapped in ascending order of the SS set indices; and (iii) if the number of PDCCH  candidates/CCEs exceeds either of the UE processing limits, No more SS sets are mapped in the slot after reaching the UE processing limit.
As 5G NR technology continues to progress, certain “light” NR (e.g., NR-light) devices or such as reduced complexity NR UEs have been discussed for 3GPP Release 17+. NR-light devices may be applicable for certain use-cases, such as smart wearable devices, industrial sensors, video surveillance devices, and the like. Generally, NR-light devices may include (e.g., in comparison to “premium” NR UEs) a reduced number of receive antennas, a reduced transmit/receive bandwidth (e.g., 5MHz-20MHz, compared to premium UEs with 100MHz bandwidth) and reduced computational complexity/memory and longer battery life.
However, such limitations on UE capability may be negatively impact NR-light UEs, such as not being able to properly receive and decode control information transmitted on the PDCCH. One solution to help mitigate this problem may be to introduce repetition of PDCCH candidates. However, the current Rel-15 NR PDCCH may not support repetition of PDCCH candidates and current solutions related to MPDCCH repetition in LTE may not be desirable. For example, in LTE, MPDCCH candidates are repeated over subframes, where the starting subframes and the number of repetitions are configured via RRC, which may lead to long delays before receiving a repeated MPDCCH (e.g., 8 MPDCCH repetitions may lead to 8 subframes of duration, which is undesirable) .
Additionally, with respect to BD/CE limitations, if two repeated PDCCHs associated with two separate SSs are partially reusing one slot, the overall decoding complexity may not be large over time. However, according to Rel-15’s overbooking priority rule, one of the SSs might be dropped if the number of BDs or CEs exceeds the maximum number of BDs/CEs.
Therefore, aspects of the present disclosure provide techniques for enabling NR PDCCH repetition that avoid the reception delays associated with LTE described above. Further, aspects of the present disclosure provide blind decoding and channel estimation limitation schemes that take into account NR PDCCH repetition. For example, in some cases, the techniques provided herein may involve determining a CORESET repetition pattern to monitor for PDCCH transmissions and monitoring for the PDCCH  transmissions within one or more CORESET repetitions according to the CORESET repetition pattern.
FIG. 10 is a flow diagram illustrating example operations 1000 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 1000 may be performed, for example, by a BS (e.g., such as the BS 110a in the wireless communication network 100) . The operations 1000 may be complimentary operations by the BS to the operations 1000 performed by the UE. Operations 1000 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 240 of FIG. 2) . Further, the transmission and reception of signals by the BS in operations 1000 may be enabled, for example, by one or more antennas (e.g., antennas 234 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the BS may be implemented via a bus interface of one or more processors (e.g., controller/processor 240) obtaining and/or outputting signals.
The operations 1000 may begin, at 1002, by transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern. In certain cases, the BS may transmit the configuration information in radio resource control (RRC) signaling.
At 1004, the BS transmits physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
FIG. 11 is a flow diagram illustrating example operations 1100 for wireless communication, in accordance with certain aspects of the present disclosure. The operations 1100 may be performed, for example, by UE (e.g., such as a UE 120a in the wireless communication network 100) . The operations 1100 may be complimentary operations by the UE to the operations 1000 performed by the BS. Operations 1100 may be implemented as software components that are executed and run on one or more processors (e.g., controller/processor 280 of FIG. 2) . Further, the transmission and reception of signals by the UE in operations 1100 may be enabled, for example, by one or more antennas (e.g., antennas 252 of FIG. 2) . In certain aspects, the transmission and/or reception of signals by the UE may be implemented via a bus interface of one or more processors (e.g., controller/processor 280) obtaining and/or outputting signals.
The operations 1100 may begin, at 1102, by receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) . In certain cases, the configuration information may be received in radio resource control (RRC) signaling.
At 1104, the UE determines a CORESET repetition pattern based on the configuration information.
At 1106, the UE monitors for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
As noted above, aspects of the present disclosure provide techniques for enabling NR-PDCCH repetition. For example, in some cases, enabling NR-PDCCH repetition may involve providing CORESET repetition (e.g., in which the PDCCH transmission will be transmitted) within one search space. In some cases, the BS may provide an indication to the UE, indicating that CORESET repetition will be performed within one SS. For example, in some cases, the configuration information may include a parameter NumRepetition in a SearchSpace parameter, where a value such as NumRepetition>1 indicates to the UE to follow certain rules/CORESET repetition patterns to determine one or more CORESET repetitions to receive the PDCCH transmissions.
Different options for CORESET repetition patterns may be used by the UE, which may be based on different parameters in the configuration information received from the BS. For example, in some cases, each CORESET repetition pattern may comprise a periodicity and offset corresponding to the one or more CORESET repetitions. The periodicity may indicate a number of transmission slots between instances of the CORESET repetition pattern and the may offset indicate a starting slot of the one or more CORESET repetitions within the number of transmission slots indicated in the periodicity. In some cases, the configuration information may include a parameter indicating the periodicity and offset, such as monitoringSlotPeriodicityAndOffset.
Accordingly, the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions based on the periodicity and offset corresponding to the one or more CORESET repetitions.
Further, in some cases, a CORESET repetition pattern may comprise an indication of a duration corresponding to the one or more CORESET repetitions. In some cases, the duration may signify one or more transmission slots within the periodicity corresponding to the one or more CORESET repetitions. In some cases, the configuration information may provide an indication of one or more transmission slots within the periodicity corresponding to the one or more CORESET repetitions. Accordingly, the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots.
Further, in some cases, determining a CORESET repetition pattern may include determining a pattern of symbols within at least a first transmission slot of the one or more transmission slots corresponding to the one or more CORESET repetitions. In some cases, the determination may be based on an indication (e.g., a parameter) included in the configuration information, such as montoringSymbolsWithinSlot. In some cases, the indication of the pattern of symbols comprises a bitmap indicating which symbols of at least the first transmission slot correspond to the one or more CORESET repetitions. For example, in some cases, the bitmap may include 14-bits where each bit corresponds to a symbol within the first transmission slot. A bit value of 1 may indicate that the UE should expect a CORESET repetition within a corresponding symbol of the first transmission slot while a bit value of 0 indicates to the UE that it should not expect a CORESET repetition within a corresponding symbol of the first transmission slot.
Accordingly, monitoring by the UE for the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots may include the UE monitoring for the PDCCH transmissions within the one or more CORESET repetitions in one or more symbols of at least the first transmission slot of the one or more transmission slots based on the determined pattern of symbols.
As noted above, different CORESET repetition patterns may be used by the UE to receive PDCCH transmissions. For example, in some cases, a first CORESET repetition pattern may include an intra-transmission-slot repetition pattern where each transmission slot of one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs. For example, in some cases, a first transmission slot of the one or more transmission slots may include CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs while a second transmission slot of the one or  more transmission slots may include CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
According to aspects, the UE may determine the CORESET repetition pattern to be an intra-transmission-slot CORESET repetition pattern based on parameters included in the configuration information, such as the periodicity, offset, duration, and pattern of symbols (e.g., montoringSymbolsWithinSlot) . The UE may then monitor for PDCCH transmissions within one or more CORESET repetitions in at least one SS according to the CORESET repetition pattern intra-transmission-slot CORESET repetition pattern. For example, in some cases, the UE may monitor a first transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET and may monitor a second transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET.
FIG. 12 provides an example of an intra-transmission-slot CORESET repetition pattern 1200, according to certain aspects presented herein. According to aspects, the intra-transmission-slot CORESET repetition pattern 1200 may include CORESET repetitions spanning two symbols and only one search space.
As illustrated, the intra-transmission-slot CORESET repetition pattern 1200 may be associated with a periodicity of 20 transmission slots and an offset of zero slots (e.g., monitoringSlotPeriodicityAndOffset=20 &0) . Further, as illustrated, a duration of the intra-transmission-slot CORESET repetition pattern 1200 may be set to four transmission slots (e.g., the intra-transmission-slot CORESET repetition pattern spans four transmission slots of the periodicity of 20 transmission slots) . Additionally, a number of CORESET repetitions (e.g., NumRepetitions) may be set to four.
As illustrated, CORESET repetitions corresponding to different CORESETs may be configured in unique transmission slots of one or more transmission slots. For example, as illustrated, For example, as illustrated, the intra-transmission-slot CORESET repetition pattern 1200 may include a first transmission slot 1202 and a second transmission slot 1204. The first transmission slot 1202 may include CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs while the second transmission slot 1204 may include CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs. According to aspects, the first  transmission slot 1202 may not include the one or more CORESET repetitions corresponding to CORESETs other than the first CORESET. Likewise, as illustrated, the second transmission slot 1204 may not include the one or more CORESET repetitions corresponding to CORESETs other than the second CORESET.
Accordingly, as noted above, the UE may receive configuration information of the pattern of symbols (e.g., monitoringSymbolsWithinSlot) associated with the intra-transmission-slot CORESET repetition pattern 1200, for example, indicating the symbols of a transmission slot in which to monitor for PDCCH transmissions within the one or more CORESET repetitions. For example, the pattern of symbols associated with the intra-transmission-slot CORESET repetition pattern 1200 may indicate symbols within the first transmission slot 1202 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETS and symbols within the second transmission slot 1204 of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CROESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
According to aspects, symbols within the first transmission slot to monitor for the one or more CORESET repetitions corresponding to the first CORESET may be indicated by the pattern of symbols. Likewise, symbols within the second transmission slot to monitor for the one or more CORESET repetitions corresponding to the second CORESET may be indicated by the pattern of symbols.
For example, as illustrated, the pattern of symbols may indicate that CORESET repetitions corresponding to the first CORESET may occur in symbols 1206A-1206d of the first transmission slot 1202. Similarly, the pattern of symbols may indicate that CORESET repetitions corresponding to the second CORESET may occur in symbols 1208A-1208d of the second transmission slot 1204.
As illustrated in the example of FIG. 12, each CORESET repetition may span two symbols; however, the number of symbols that a CORESET repetition spans may be configurable. According to aspects, the pattern of symbols defining the intra-transmission-slot CORESET repetition pattern 1200 shown in FIG. 12 may be indicated to the UE using a bitmap, such as monitoringSymbolsWithinSlot= “10010010010000, ” for example, where the first “1” corresponds with symbol 1206a, the second “1”  corresponds with symbol 1206b, and so on. Based on the pattern of symbols, the UE may determine which symbols within a transmission slot to monitor for PDCCH transmissions within the one or more CORESET repetitions.
For example, based on the parameters, such as periodicity, offset, duration, and pattern of symbols, the UE may determine the intra-transmission-slot CORESET repetition pattern 1200. The BS may then transmit PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-transmission-slot CORESET repetition pattern 1200. Correspondingly, the UE may then monitor for the PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-transmission-slot CORESET repetition pattern 1200.
It should be noted that with the intra-transmission-slot CORESET repetition pattern, the UE may not expect overlapped CORESET searching configured by the parameter monitoringSymbolsWithinSlot. Additionally, with respect to monitoringSymbolsWithinSlot, the number of 1s in the monitoringSymbolsWithinSlot parameter may equal the parameter NumRepetition. Further, the UE may take the CORESETs indicated in each slot (e.g., by the pattern of symbols) to be repeated CORESETs.
In some cases, a second CORESET repetition pattern may include an inter-transmission-slot repetition pattern where each transmission slot of one or more transmission slots includes CORESET repetitions of one or more CORESET repetitions corresponding to a plurality of CORESETs. Additionally, in some cases, CORESET repetitions corresponding to a particular CORESET may be repeated across multiple different transmission slots.
For example, in some cases, a first transmission slot may include a first set of symbols to monitor for PDCCH transmissions within CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs and a second set of symbols to monitor for PDCCH transmissions within CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
According to aspects, the UE may determine the CORESET repetition pattern to be an inter-transmission-slot CORESET repetition pattern based on parameters included in the configuration information, such as the periodicity, offset, duration, and pattern of symbols (e.g., montoringSymbolsWithinSlot) . The UE may then monitor for  PDCCH transmissions within one or more CORESET repetitions in at least one SS according to the CORESET repetition pattern inter-transmission-slot CORESET repetition pattern. For example, in some cases, the UE may monitor a first set of symbols of a first transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET and may monitor a second set of symbols of the first transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET.
FIG. 13 provides an example of an inter-transmission-slot CORESET repetition pattern 1300, according to certain aspects presented herein. According to aspects, the inter-transmission-slot CORESET repetition pattern 1300 may include CORESET repetitions spanning two symbols and only one search space.
As illustrated, the inter-transmission-slot CORESET repetition pattern 1300 may be associated with a periodicity of 20 transmission slots and an offset of zero slots (e.g., monitoringSlotPeriodicityAndOffset=20 &0) . Further, as illustrated, a duration of the inter-transmission-slot CORESET repetition pattern 1300 may be set to four transmission slots (e.g., the inter-transmission-slot CORESET repetition pattern spans four transmission slots of the periodicity of 20 transmission slots) . Additionally, a number of CORESET repetitions (e.g., NumRepetitions) may be set to four.
As illustrated, CORESET repetitions corresponding to different CORESETs may be configured across a plurality of transmission slots and each transmission slot may include a plurality of CORESET repetitions corresponding to one or more of the different CORESETs. For example, as illustrated, the inter-transmission-slot CORESET repetition pattern 1300 may include a first transmission slot 1302 and a second transmission slot 1304. The first transmission slot 1302 may include a first set of symbols 1306 to monitor for the PDCCH transmissions within one or more CORESET repetitions corresponding to a first CORESET of a plurality of CORESETs. Further, as illustrated, the first transmission slot 1302 may also include a second set of symbols 1308 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
Further, as illustrated, CORESET repetitions corresponding to the first CORESET and second CORESET may be included in additional transmission slots, such as the second transmission slot 1304. For example, as illustrated, the second transmission  slot 1304 may include a third set of symbols to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs. Further, as illustrated, the second transmission slot 1304 may also include a fourth set of symbols to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
Accordingly, as noted above, the UE may receive configuration information of the pattern of symbols (e.g., monitoringSymbolsWithinSlot) associated with the intra-transmission-slot CORESET repetition pattern 1300, for example, indicating the sets of symbols of a transmission slot in which to monitor for PDCCH transmissions within the one or more CORESET repetitions. For example, in this case, the pattern of symbols may provide an indication to the UE to monitor the first set of symbols within the first transmission slot 1302 for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET. Likewise, the pattern of symbols may also provide an indication to the UE to monitor the second set of symbols within the first transmission slot 1302 for PDCCH transmissions within one or more CORESET repetitions corresponding to the second CORESET.
For example, the pattern of symbols may indicate to the UE to monitor symbols 1306 of the first transmission slot 1302 for PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET. Additionally, the pattern of symbols may indicate to the UE to monitor symbols 1308 of the first transmission slot 1302 for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET. Additionally, the pattern of symbols may indicate to the UE to monitor the third set of symbols and fourth set of symbols of the second transmission slot 1304 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET and second CORESET, respectively.
According to aspects, the pattern of symbols defining the inter-transmission-slot CORESET repetition pattern 1300 shown in FIG. 13 may be indicated to the UE using a bitmap, such as monitoringSymbolsWithinSlot= “10000001000000, ” for example, where the first “1” corresponds with symbol 1306, the second “1” corresponds with symbol 1308, and so on. Based on the pattern of symbols, the UE may determine which  symbols within a transmission slot to monitor for PDCCH transmissions within the one or more CORESET repetitions.
For example, based on the parameters, such as periodicity, offset, duration, and pattern of symbols, the UE may determine the inter-transmission-slot CORESET repetition pattern 1300. The BS may then transmit PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the inter-transmission-slot CORESET repetition pattern 1300. Correspondingly, the UE may then monitor for the PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the inter-transmission-slot CORESET repetition pattern 1300.
It should be noted that with the intra-transmission-slot CORESET repetition pattern, the duration parameter may be set to an integer (s) of the parameter NumRepetition. Additionally, the UE may take each of number of NumRepetition transmission slots as repeated CORESETs within the duration of transmission slots.
In some cases, a third CORESET repetition pattern may include an intra-and-inter-transmission-slot repetition pattern. The intra-and-inter-transmission-slot repetition pattern may be considered a combination of the intra-transmission-slot repetition pattern and inter-transmission-slot repetition pattern described above. For example, in some cases, the intra-and-inter-transmission-slot repetition pattern may include transmitting PDCCH transmissions within one or more CORESET repetitions in one or more transmission slots, where each transmission slot of the one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs. Further, the one or more CORESET repetitions corresponding to each different CORESET of the plurality of CORESETs may include in a plurality of transmission slots of the one or more transmission slots.
In other words, intra-and-inter-transmission-slot repetition pattern may include a plurality of transmission slots, such as a first transmission slot, a second transmission slot, a third transmission slot, and a fourth transmission slot. Further, similar to the inter-transmission slot repetition patter, CORESET repetitions corresponding to a first CORESET may be included within a first transmission slot and a second transmission slot while CORESET repetitions corresponding to a second CORESET may be included within a third transmission slot and a fourth transmission slot. Additionally, similar to the intra-transmission-slot repetition pattern, the first transmission slot and the second transmission slot may only include CORESET repetitions corresponding to the first  CORESET but not CORESET repetitions corresponding to the second CORESET. Similarly, the third transmission slot and fourth transmission slot may include CORESET repetitions corresponding to the second CORESET but not CORESET repetitions corresponding to the first CORESET.
According to aspects, the UE may determine the CORESET repetition pattern to be an intra-and-inter-transmission-slot CORESET repetition pattern based on parameters included in the configuration information, such as the periodicity, offset, duration, and pattern of symbols (e.g., montoringSymbolsWithinSlot) . The UE may then monitor for PDCCH transmissions within one or more CORESET repetitions in at least one SS according to the CORESET repetition pattern inter-transmission-slot CORESET repetition pattern. For example, in some cases, the UE may monitor a first set of symbols of a first transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the first CORESET and may monitor a second set of symbols of a second transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET. Additionally, the UE may monitor a third set of symbols of a third transmission slot for PDCCH transmissions within one or more CORESET repetitions corresponding to the second CORESET and may monitor a fourth set of symbols of a fourth transmission slot for PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET.
FIG. 14 provides an example of an intra-and-inter-transmission-slot CORESET repetition pattern 1400, according to certain aspects presented herein. According to aspects, the intra-and-inter-transmission-slot CORESET repetition pattern 1400 may include CORESET repetitions spanning two symbols and only one search space.
As illustrated, the intra-and-inter-transmission-slot CORESET repetition pattern 1400 may be associated with a periodicity of 20 transmission slots and an offset of zero slots (e.g., monitoringSlotPeriodicityAndOffset=20 &0) . Further, as illustrated, a duration of the intra-and-inter-transmission-slot CORESET repetition pattern 1400 may be set to four transmission slots (e.g., the inter-transmission-slot CORESET repetition pattern spans four transmission slots of the periodicity of 20 transmission slots) .  Additionally, a number of CORESET repetitions (e.g., NumRepetitions) may be set to four.
As illustrated, CORESET repetitions corresponding to different CORESETs may be configured across a plurality of transmission slots and each transmission slot may include CORESET repetitions corresponding to only one of the different CORESETs. For example, as illustrated, the intra-and-inter-transmission-slot CORESET repetition pattern 1400 may include a first transmission slot 1402, a second transmission slot 1404, a third transmission slot 1406, and a fourth transmission slot 1408. The first transmission slot 1402 may include a first set of symbols 1410 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETs. The second transmission slot 1404 may include a second set of symbols 1412 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs. The third transmission slot 1406 may include a third set of symbols 1414 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs. The fourth transmission slot 1408 may include a fourth set of symbols 1416 to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs. It should be understood that, while FIG. 14 illustrates the first transmission slot 1402 and the second transmission slot 1404 corresponding to the first CORESET as being adjacent to each other, the first transmission slot 1402 and the second transmission slot 1404 may not be adjacent to each other. For example, in some cases, the first transmission slot 1402 corresponding to the first CORESET may be adjacent to the third transmission slot 1406 corresponding to the second CORESET.
Accordingly, as noted above, the UE may receive configuration information of the pattern of symbols (e.g., monitoringSymbolsWithinSlot) associated with the intra-and-inter-transmission-slot CORESET repetition pattern 1400, for example, indicating the sets of symbols of a transmission slot in which to monitor for PDCCH transmissions within the one or more CORESET repetitions. For example, in this case, the pattern of symbols may provide an indication to the UE to monitor the first set of symbols 1410 within the first transmission slot 1402 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs. The pattern of symbols may also provide an indication to the UE to monitor  the second set of symbols 1412 within the second transmission slot 1404 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs. The pattern of symbols may provide an indication to the UE to monitor the third set of symbols 1414 within the third transmission slot 1406 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs. The pattern of symbols may provide an indication to the UE to monitor the fourth set of symbols 1416 within the fourth transmission slot 1408 for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
According to aspects, the pattern of symbols defining the intra-and-inter-transmission-slot CORESET repetition pattern 1400 shown in FIG. 14 may be indicated to the UE using a bitmap, such as monitoringSymbolsWithinSlot= “10000001000000, ” for example, where the first “1” corresponds with symbols 1410a of the first set of symbols 1410, the second “1” corresponds with symbols 1410b of the first set of symbols, and so on. Based on the pattern of symbols, the UE may determine which symbols within a transmission slot to monitor for PDCCH transmissions within the one or more CORESET repetitions.
For example, based on the parameters, such as periodicity, offset, duration, and pattern of symbols, the UE may determine the intra-and-inter-transmission-slot CORESET repetition pattern 1400. The BS may then transmit PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-and-inter-transmission-slot CORESET repetition pattern 1400. Correspondingly, the UE may then monitor for the PDCCH transmissions within the one or more CORESET repetitions in the at least one SS according to the intra-and-inter-transmission-slot CORESET repetition pattern 1400.
It should be noted that with the intra-and-inter-transmission-slot CORESET repetition pattern, the UE may not expect overlapped CORESET searching configured by the parameter monitoringSymbolsWithinSlot. Additionally, additionally, a value of the parameter NumRepetition may be an integer (s) of the number of 1s in the parameter monitoringSymbolsWithinSlot. Additionally, a value of the duration parameter may be an integer (s) of NumRepetition/N, where N is the number of 1s in the parameter  monitoringSymbolsWithinSlot. According to aspects, the UE may take jointly intra-and-inter transmission slot repetition of the CORESET as the repeated CORESETs, wherein the repetition pattern (e.g., the intra-and-inter-transmission-slot CORESET repetition pattern) may be determined by NumRepetition/N.
In some cases, a fourth CORESET repetition pattern may include a mirrored-SS CORESET repetition pattern, indicating that the one or more CORESET repetitions will be transmitted across a plurality of SSs, an example of which is illustrated in FIG. 15. As illustrated, the plurality of SSs may comprise a mother SS and at least one mirrored SS, such as mirror-SS#0, mirror-SS#1, and mirror-SS#2, in which one or more CORESET repetitions may be transmitted.
As with the CORESET repetition patterns illustrated in FIGs. 12-14, the mother SS may be associated with a periodicity and offset (e.g., periodicity = 20 transmission slots and offset = 0 transmission slots) during which one or more CORESET repetitions may be transmitted. Further, the one or more CORESET repetitions may be associated with a duration in terms of transmission slots. As illustrated, the duration of the of the mirrored-SS CORESET repetition pattern may be two slots. An additional offset may be provided between mirrored SSs in terms of transmission slots. For example, as illustrated, the mother SS may have an offset of zero transmission slots, while mirror-SS#0 may be offset from the mother SS by two transmission slots, mirror-SS#1 may be offset from mirror-SS#0 by an additional two transmission slots, and so on. Additionally, a number of CORESET repetitions (e.g., NumRepetitions) may be set to four in the example illustrated in FIG. 15.
In some cases, each of the mother SS and mirrored SSs may carry a CORESET repetition corresponding to a particular CORESET. For example, as illustrated, the mother SS may include a first CORESET repetition 1502 corresponding to a first CORESET in a first number of transmission slots, mirror-SS#0 may include a second CORESET repetition 1504 corresponding to the first CORESET in a second number of transmission slots, mirror-SS#1 may include a third CORESET repetition 1506 corresponding to the first CORESET in a third number of transmission slots, and mirror-SS#2 may include a fourth CORESET repetition 1508 corresponding to the first CORESET in a fourth number of transmission slots.
In some cases, the UE may receive a pattern of symbols indicating which symbols of a particular transmission slot within each of the mother SS and mirrored SSs correspond to one or more CORESET repetitions. For example, as illustrated in FIG. 15, the configuration information received by the UE may include a UE a bitmap, such as monitoringSymbolsWithinSlot= “10000001000000, ” indicating that CORESET repetitions will be included in a first symbol and an eighth symbol of each of the first number of transmission slots corresponding to the mother SS and the mirrored SSs.
In some cases, the UE may determine the mirrored SSs in which the one or more CORESET repetitions are transmitted based on different criteria. According to aspects, the UE may then for the PDCCH transmissions within the one or more CORESET repetitions by monitoring the mother SS and the at least one mirrored SS.
For example, in some cases, the UE may determine the mirrored SSs based on a legacy search space configuration.
Additionally, in some cases, the mirrored SSs may depend on the mother SS.
In this case, the UE may use configuration information of the mother SS to determine the mirrored SSs. For example, in some cases, the UE may receive configuration information indicating a transmission slot offset of the mother SS. Thus, in some cases, determining the at least one mirrored SS may be based on a transmission slot offset with respect to the transmission slot offset of the mother SS. For example, in some cases, as illustrated in FIG. 15, the UE may receive the parameter monitoringSlotPeriodicityAndOffset for the mother SS, indicating a periodicity of 20 transmission slots and a slot offset of zero transmission slots. Accordingly, the UE may then determine that each mirrored offset includes an additional offset with respect to the offset for the mother SS. For example, as illustrated and described above, based on the mother SS offset of zero transmission slots, the UE may determine a transmission slot offset for mirror-SS#0 to be two transmission slots from the mother SS. Further, the UE may determine a transmission offset for mirror-SS#1 to be four transmission slots from the mother SS, and so on.
In other cases, the UE may determine the mirrored SSs based on a symbol offset with respect to the mother SS. For example, in some cases, the UE may determine the symbol offset based on a number of bit shifts compared to a bitmap (e.g., such as monitoringSymbolsWithinSlot) corresponding to the mother SS, wherein the bitmap  indicates which symbols of a transmission slot include the one or more CORESET repetitions corresponding to the mother SS. In certain cases, bits at the end may be circularly shifted or ignored.
In other cases, the UE may determine the mirrored SSs based on a combination of the transmission slot offset with respect to a transmission slot offset of the mother SS and the symbol offset with respect to the mother SS.
As noted, once receiving the configuration information for the mother SS and determining the mirrored SSs as described above, the UE may monitor for the PDCCH transmissions transmitted by the BS within the one or more CORESET repetitions by monitoring the mother SS and the mirrored SSs. According to aspects, the UE may take the CORESETS in the mother SS and the mirrored SSs as repeated CORESETs. In some cases, the UE may identify a starting SS associated with the one or more CORESET repetitions by determining an SS with an earliest transmission slot offset. According to aspects, the mother SS and the mirrored SSs identified/determined by the UE in each periodicity may be considered as a set of CORESET repetitions.
In some cases, the UE may determine whether a PDCCH transmission is a PDCCH repetition based on certain criteria. More specifically, for example, the UE may determine a first PDCCH transmission within a first CORESET repetition of the one or more CORESET repetitions and a second PDCCH transmission within a second CORESET repetition of the one or more CORESET repetitions comprise repeated PDCCH transmissions based on one or more criteria.
In some cases, the one or more criteria may comprise the first PDCCH transmission occupying same control channel elements (CCEs) as the second PDCCH transmission. In some cases, the one or more criteria may comprise the first PDCCH transmission and the second PDCCH transmission are associated with a same aggregation level. In some cases, the one or more criteria may comprise the first PDCCH transmission and the second PDCCH transmission are radio resource control (RRC) configured by the at least one SS associated with a first CORESET. In some cases, the one or more criteria may comprise arbitrary PDCCH transmissions in the first CORESET repetition are identifiable as the first PDCCH transmission and arbitrary PDCCH transmissions within the second CORESET repetition are identifiable as the second PDCCH transmission.
According to certain aspects, in some cases, the first CORESET repetition and the second CORESET repetition are associated with a same set of CORESET repetitions, and the PDCCH transmissions within the one or more CORESET repetitions are identifiable from configuration of the at least one SS associated with a CORESET to which the one or more CORESET repetitions correspond.
Further, as noted above, there may be limitations on the number of blind decodes (BD) and channel estimations (CE) that a UE may perform in a transmission slot. Existing BD/CE limitations may pose issues with NR-PDCCH/CORESET repetitions. For example, in some cases, for two different sets of CORESET repetitions, their time domain resource allocations (TDRA) may comprise partially overlapped transmission slots, while their TDRA may be non-overlapped in other transmission slots, as illustrated in FIG. 16. On the other hand, for the case of NumRepetition=N, a complexity of UE’s PDCCH decoding may not increase linearly with the value of N compared to NumRepetition=1. For example, instead of decoding each PDCCH repetitions separately and combining them in the end, the UE may combine resource elements (Res) or un-decoded bits of each PDCCH repetition to lower the complexity, thus the overall PDCCH decoding complexity over a long duration does not linearly increase compared to the case of NumRepetition=1. Additionally, for channel estimation, CCEs in repeated CORESETs may be jointly channel estimated to further lower the complexity.
However, in Rel-15/16, a maximum number of BD/CE supported for PDCCH decoding are defined for each transmission slot. Thus, if NR-PDCCH repetition is introduced with partially overlapping TDRA among different sets of repetitions, to guarantee the BD/CE limits in slots with overlapping TDRA, the UE may need to drop certain SSs as in Rel-15/16, thus degrading achievable repetition gains. Additionally, the actual decoding capacity may not be fully used as PDDCH repetitions in other slots may not require linearly increased decoding efforts. Alternatively, the BS/gNB may need to limit the number of PDCCH candidates in at least one of the SSs, but the number of PDCCH candidates in those non-overlapping slots may be far less than the limitations.
Accordingly, aspects presented herein provide BD/CE limits that consider such partially overlapped TDRA of different set of NR-PDCCH repetitions, which may be used by the UE when monitoring for the PDCCH transmission within the one or more CORESET repetitions.
According to aspects, the UE may determine the maximum BD/CE limitation (e.g., maximum number of BDs and/or CEs) in a certain transmission slot based on different criteria.
For example, in a first case, the UE may determine the maximum BD/CE limit for a first transmission slot based on a number of separate/district CORESET repetitions sets (e.g., CORESET repetitions corresponding to different CORESETS) included within the first transmission slot. In other words, the UE may determine the BD/CE limit for a first transmission slot based on a number of CORESETs to which the one or more CORESET repetitions in the first transmission slot correspond. According to aspects, transmission slots with a greater number of separately repeated CORESETSs may comprise a higher maximum BD/CE limit. For example, the BD/CE limit for a first transmission slot may be higher than the BD/CE limit for a second transmission slot when one or more CORESET repetitions in the first transmission slot correspond to a greater number of CORESETs as compared to the second transmission slot.
FIG. 17 illustrates an example of determining a BD/CE limit based on the number of separate CORESETs are included within a transmission slot, according to certain aspects presented herein.
As illustrated in FIG. 17, CORESET repetitions corresponding to different CORESETs may be transmitted in one or more transmission slots. For example, as illustrated, transmission slots 1702a-1702c may include CORESET repetitions corresponding to a first CORESET while transmission slots 1704a-1704c may include CORESET repetitions corresponding to a second CORESET. Further, as illustrated, transmission slot 1706 may include a CORESET repetition corresponding to the first CORESET and a CORESET repetition corresponding to the second CORESET. Accordingly, since the transmission slot 1706 includes CORESET repetitions corresponding to a greater number of separate CORESETs as compared to, for example, transmission slot 1702a, the UE may determine the transmission slot 1706 to have a higher BD/CE limit than the transmission slot 1702a.
In some cases, boundaries of the proposed number of separate CORESET repetition sets described above and the associated BD/CE limits may be predefined or RRC configured.
According to aspects, once the UE has determined the BD/CE limits for the one or more transmission slots, the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions of the one or more transmission slots based on the determined BD/CE limits. For example, in some cases, monitoring based on the determined BD/CE limits may include determining which SSs to drop based on the BD/CE limits.
In a second case, the UE may determine the maximum BD/CE limit for a first transmission slot based on a total number of transmission slots (denoted S) comprising only a single set of remaining CORESET repetitions of each CORESET involved in the first transmission slot, for example, if the first transmission slot comprises CORESET repetitions corresponding to multiple separate CORESETs. According to aspects, if S is higher for the first transmission slot as compared to other transmission slots, so too will the BD/CE limit for the first transmission slot.
For example, in some cases, CORESET repetitions may be transmitted in a plurality of transmission slots. The plurality of transmissions slots may include a first transmission slot and one or more other transmission slots. In some cases, the first transmission slot may include CORESET repetitions of one or more CORESET repetitions corresponding to a first CORESET and CORESET repetitions of the one or more CORESET repetitions corresponding to a second CORESET. In this case, determining the BD/CE limit for the first transmission slot may be based on (1) a first number of other transmission slots of the plurality of transmission slots that include only the CORESET repetitions of the one or more CORESET repetitions corresponding to the first CORESET and (2) a second number of other transmission slots of the plurality of transmission slots that include only the CORESET repetitions of the one or more CORESET repetitions corresponding to the second CORESET.
According to aspects, the UE may combine the first number of other transmission slots with the second number of transmission slots to determine a total number of remaining transmission slots including one of CORESET repetitions corresponding to the first CORESET or the second CORESET. According to aspects, the greater the number of total remaining transmission slots, the greater the BD/CE of the first transmission slot may be.
FIG. 18 illustrates an example of determining a BD/CE limit based on a total number of remaining transmission slots, according to certain aspects presented herein.
As illustrated in FIG. 18, CORESET repetitions corresponding to different CORESETs may be transmitted in one or more transmission slots. For example, as illustrated, transmission slots 1802-1808 may include CORESET repetitions corresponding to a first CORESET, transmission slots 1808-1814 may include CORESET repetitions corresponding to a second CORESET, and transmission slots 1812-1818 may include CORESET repetitions corresponding to a third CORESET. Further, as illustrated, transmission slot 1808 may include a CORESET repetition corresponding to the first CORESET and a CORESET repetition corresponding to the second CORESET. Likewise, transmission slots 1812 and 1814 may include a CORESET repetition corresponding to the second CORESET and a CORESET repetition corresponding to the third CORESET.
Accordingly, since the transmission slot 1808 is associated with four remaining transmission slots that each include only a single CORESET repetition corresponding to either the first CORESET or the second CORESET, the transmission slot 1808 may have a higher BD/CE limit. More specifically, from the perspective of transmission slot 1808, the UE may determine that singular CORESET repetitions corresponding to the first CORESET are included in remaining transmission slots 1802, 1804, and 1806 (e.g., three transmission slots) . Similarly, the UE may determine that a singular CORESET repetition corresponding to the second CORESET is included in remaining transmission slot 1810 (e.g., on transmission slot) . Accordingly, the UE may determine that transmission slot 1808 is associated with a total of four remaining transmission slot and, therefore, that transmission slot 1808 has a higher BD/CE limit as compared to, for example, transmission slot 1802 (e.g., which is not a transmission slot that includes CORESET repetitions corresponding to multiple CORESETs) . Similarly, the UE may determine that transmission slots 1812 and 1814 are associated with three remaining total transmission slots (e.g.,  transmission slots  1810, 1816, and 1818) and, therefore, that transmission slots 1812 and 1814 may have higher BD/CE limits compared to, for example, transmission slot 1816 (e.g., which is not a transmission slot that includes CORESET repetitions corresponding to multiple CORESETs) .
As illustrated, transmission slots that include CORESET repetitions corresponding to multiple CORESETs have higher BD/CE limits as compared to  transmission slots without CORESET repetitions corresponding to multiple CORESETs. Additionally, as illustrated, transmission slots that include CORESET repetitions corresponding to multiple CORESETs and that have a greater total of remaining transmission slots (as described above) have higher BD/CE limits as compared to transmission slots with CORESET repetitions corresponding to multiple CORESETs that have a lesser total number of remaining transmission slots (as described above) .
In some cases, boundaries of the proposed total number of remaining transmission slots and the associated BD/CE limits may be predefined or RRC configured.
According to aspects, once the UE has determined the BD/CE limits for the one or more transmission slots, the UE may monitor for the PDCCH transmissions within the one or more CORESET repetitions of the one or more transmission slots based on the determined BD/CE limits. For example, in some cases, monitoring based on the determined BD/CE limits may include determining which SSs to drop based on the BD/CE limits.
According to aspects, in a third case the UE may determine the maximum BD/CE limits based on an explicit indication of the BD/CE limit per transmission slot. For example, in some cases, the configuration information received by the UE may include a number of maximum BD/CE limitations per transmission slot via RRC, which may be configured for each set of consecutive transmission slots. This may reduce UE complexity of determining BD/CE limitations in each transmission slot. According to aspects, the dropping of SSs in each slot may follow each configured maximum BD/CE limitations in each slot.
In some cases, BD/CE limitations may be configured for a multiple number of transmission slots. For example, in some cases, the configuration information received by the UE may include a number of maximum BD/CE limitations for a multiple number of transmission slots. According to aspects, the associated dropping of SSs may also be determined based on the multiple number of transmission slots.
FIG. 19 illustrates a communications device 1900 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 10. The communications device 1900 includes a processing system 1902 coupled to a transceiver 1908 (e.g., a transmitter and/or a receiver) . The transceiver 1908 is  configured to transmit and receive signals for the communications device 1900 via an antenna 1910, such as the various signals as described herein. The processing system 1902 may be configured to perform processing functions for the communications device 1900, including processing signals received and/or to be transmitted by the communications device 1900.
The processing system 1902 includes a processor 1904 coupled to a computer-readable medium/memory 1912 via a bus 1906. In certain aspects, the computer-readable medium/memory 1912 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 1904, cause the processor 1904 to perform the operations illustrated in FIG. 10, or other operations for performing the various techniques discussed herein for NR PDCCH repetition. In certain aspects, computer-readable medium/memory 1912 stores code 1914 for transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and code 1916 for transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern. In certain aspects, the processor 1904 includes circuitry configured to implement the code stored in the computer-readable medium/memory 1912. The processor 1904 includes circuitry 1918 for transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern and circuitry 1920 for transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
FIG. 20 illustrates a communications device 2000 that may include various components (e.g., corresponding to means-plus-function components) configured to perform operations for the techniques disclosed herein, such as the operations illustrated in FIG. 11. The communications device 2000 includes a processing system 2002 coupled to a transceiver 2008 (e.g., a transmitter and/or a receiver) . The transceiver 2008 is configured to transmit and receive signals for the communications device 2000 via an antenna 2010, such as the various signals as described herein. The processing system 2002 may be configured to perform processing functions for the communications device 2000,  including processing signals received and/or to be transmitted by the communications device 2000.
The processing system 2002 includes a processor 2004 coupled to a computer-readable medium/memory 2012 via a bus 2006. In certain aspects, the computer-readable medium/memory 2012 is configured to store instructions (e.g., computer-executable code) that when executed by the processor 2004, cause the processor 2004 to perform the operations illustrated in FIG. 11, or other operations for performing the various techniques discussed herein for NR PDCCH repetition. In certain aspects, computer-readable medium/memory 2012 stores code 2014 for receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ; code 2016 for determining a CORESET repetition pattern based on the configuration information; and code 2017 for monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern. In certain aspects, the processor 2004 includes circuitry configured to implement the code stored in the computer-readable medium/memory 2012. The processor 2004 includes circuitry 2018 for receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ; circuitry 2020 for determining a CORESET repetition pattern based on the configuration information; and circuitry 2022 for monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
The techniques described herein may be used for various wireless communication technologies, such as NR (e.g., 5G NR) , 3GPP Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single-carrier frequency division multiple access (SC-FDMA) , time division synchronous code division multiple access (TD-SCDMA) , and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System  for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . LTE and LTE-A are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . NR is an emerging wireless communications technology under development.
In 3GPP, the term “cell” can refer to a coverage area of a Node B (NB) and/or a NB subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and BS, next generation NodeB (gNB or gNodeB) , access point (AP) , distributed unit (DU) , carrier, or transmission reception point (TRP) may be used interchangeably. A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cells. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS.
A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet computer, a camera, a gaming device, a netbook, a smartbook, an ultrabook, an appliance, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment,  a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, which may be narrowband IoT (NB-IoT) devices.
In some examples, access to the air interface may be scheduled. A scheduling entity (e.g., a BS) allocates resources for communication among some or all devices and equipment within its service area or cell. The scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. In some examples, a UE may function as a scheduling entity and may schedule resources for one or more subordinate entities (e.g., one or more other UEs) , and the other UEs may utilize the resources scheduled by the UE for wireless communication. In some examples, a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may communicate directly with one another in addition to communicating with a scheduling entity.
The methods disclosed herein comprise one or more steps or actions for achieving the methods. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112 (f) unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic  device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the  machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read-Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable,  fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and
Figure PCTCN2020075228-appb-000009
disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein, for example, instructions for performing the operations described herein and illustrated in FIG. 10 and/or FIG. 11.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (69)

  1. A method for wireless communication in a wireless network by a user equipment (UE) , comprising:
    receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ;
    determining a CORESET repetition pattern based on the configuration information; and
    monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  2. The method of claim 1, wherein:
    the CORESET repetition pattern comprises a periodicity and an offset corresponding to the one or more CORESET repetitions; and
    monitoring for the PDCCH transmissions within the one or more CORESET repetitions is based on the periodicity and offset corresponding to the one or more CORESET repetitions.
  3. The method of claim 2, wherein:
    the periodicity indicates a number of transmission slots between instances of the CORESET repetition pattern; and
    the offset indicates a starting slot of the one or more CORESET repetitions within the number of transmission slots indicated in the periodicity.
  4. The method of claim 2, wherein:
    the CORESET repetition pattern further comprises an indication of one or more transmission slots within the periodicity corresponding to the one or more CORESET repetitions; and
    monitoring for the PDCCH transmissions within the one or more CORESET repetitions comprises monitoring for the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots.
  5. The method of claim 4, wherein:
    the determining the CORESET repetition pattern comprises determining a pattern of symbols within at least a first transmission slot of the one or more transmission slots corresponding to the one or more CORESET repetitions; and
    monitoring for the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots  comprises monitoring for the PDCCH transmissions within the one or more CORESET repetitions in one or more symbols of at least the first transmission slot of the one or more transmission slots based on the determined pattern of symbols.
  6. The method of claim 5, wherein the configuration information comprises an indication of the pattern of symbols within at least the first transmission slot of the one or more transmission slots..
  7. The method of claim 6, wherein the indication of the pattern of symbols comprises a bitmap indicating which symbols of at least the first transmission slot correspond to  the one or more CORESET repetitions.
  8. The method of claim 5, wherein the CORESET repetition pattern comprises an intra-transmission-slot repetition pattern where each transmission slot of the one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs.
  9. The method of claim 8, wherein the pattern of symbols indicates:
    symbols within the first transmission slot to monitor for the PDCCH transmission within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETS; and
    symbols within a second transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  10. The method of claim 9, wherein:
    the first transmission slot does not include the one or more CORESET repetitions corresponding to CORESETs other than the first CORESET; and
    the second transmission slot does not include the one or more CORESET repetitions corresponding to CORESETs other than the second CORESET.
  11. The method of claim 5, wherein the CORESET repetition pattern comprises an inter-transmission-slot repetition pattern where each transmission slot of the one or more transmission slots includes CORESET repetitions of the one or more CORESET repetitions corresponding to a plurality of CORESETs.
  12. The method of claim 11, wherein the pattern of symbols indicates:
    a first set of symbols within the first transmission slot to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETs; and
    a second set of symbols within the first transmission slot to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  13. The method of claim 5, wherein the CORESET repetition pattern comprises an intra-and-inter-transmission-slot repetition pattern where:
    each transmission slot of the one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs; and
    the one or more CORESET repetitions corresponding to each different CORESET of the plurality of CORESETs are included in a plurality of transmission slots of the one or more transmission slots.
  14. The method of claim 13, wherein the pattern of symbols indicates:
    a first set of symbols within the first transmission slot to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETs; and
    a second set of symbols within a second transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more  CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs.
  15. The method of claim 14, wherein the pattern of symbols further indicates:
    a third set of symbols within a third transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs; and
    a fourth set of symbols within a fourth transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
  16. The method of claim 15, wherein:
    the first transmission slot is adjacent to the second transmission slot; or
    the first transmission slot is adjacent to the third transmission slot.
  17. The method of claim 1, wherein the CORESET repetition pattern indicates that the one or more CORESET repetitions will be transmitted across a plurality of SSs of the at least one SS.
  18. The method of claim 17, wherein:
    the plurality of SSs comprise a mother SS and at least one mirrored SS; and
    monitoring for the PDCCH transmissions within the one or more CORESET repetitions comprises monitoring the mother SS and the at least one mirrored SS for the PDCCH transmissions within the one or more CORESET repetitions.
  19. The method of claim 18, further comprising determining the at least one mirrored SS based on a legacy SS configuration.
  20. The method of claim 18, wherein the at least one mirrored SS depends on the mother SS.
  21. The method of claim 20, further comprising determining the at least one mirrored SS based on a transmission slot offset with respect to a transmission slot offset of the mother SS.
  22. The method of claim 20, further comprising determining the at least one mirrored SS based on a symbol offset with respect to the mother SS.
  23. The method of claim 22, further comprising determining the symbol offset based on a number of bit shifts compared to a bitmap corresponding to the mother SS, wherein the bitmap indicates which symbols of a transmission slot include the one or more CORESET repetitions corresponding to the mother SS.
  24. The method of claim 20, further comprising determining the at least one mirrored SS based on a combination of:
    a transmission slot offset with respect to a transmission slot offset of the mother SS;and
    a symbol offset with respect to the mother SS.
  25. The method of claim 18, wherein the configuration information includes a periodicity, transmission slot offset, and duration for each of the mother SS and the at least one mirrored SS.
  26. The method of claim 1, wherein monitoring for the PDCCH transmissions within the one or more CORESET repetitions is based on a blind decoding and channel estimation (BD/CE) limit.
  27. The method of claim 26, further comprising determining the BD/CE limit for a first transmission slot based on a number of CORESETs to which the one or more 
    CORESET repetitions correspond.
  28. The method of claim 27, wherein the BD/CE limit for the first transmission slot is higher than the BD/CE limit for a second transmission slot when the one or more  CORESET repetitions in the first transmission slot correspond to a greater number of CORESETs as compared to the second transmission slot.
  29. The method of claim 26, further comprising determining the BD/CE limit for a first transmission slot of a plurality of transmission slots, wherein:
    the first transmission slot includes CORESET repetitions of the one or more CORESET repetitions corresponding to a first CORESET and CORESET repetitions of the one or more CORESET repetitions corresponding to a second CORESET; and
    determining the BD/CE limit for the first transmission slot is based on:
    a first number of other transmission slots of the plurality of transmission slots that include only the CORESET repetitions of the one or more CORESET repetitions corresponding to the first CORESET; and
    a second number of other transmission slots of the plurality of transmission slots that include only the CORESET repetitions of the one or more CORESET repetitions corresponding to the second CORESET.
  30. The method of claim 26, further comprising determining the BD/CE limit based on explicit signaling indicating the BD/CE limit.
  31. The method of claim 30, wherein the explicit signaling indicating the BD/CE limit applies to one of a single transmission slot or multiple transmission slots.
  32. The method of claim 1, wherein the wireless network comprises a 5th generation new radio (5G NR) network.
  33. The method of claim 1, further comprising determining a first PDCCH transmission within a first CORESET repetition of the one or more CORESET repetitions and a second PDCCH transmission within a second CORESET repetition of the one or more CORESET repetitions comprise repeated PDCCH transmissions based on one or more criteria.
  34. The method of claim 33, wherein the one or more criteria comprise at least one of:
    the first PDCCH transmission occupying same control channel elements (CCEs) as the second PDCCH transmission;
    the first PDCCH transmission and the second PDCCH transmission are associated with a same aggregation level;
    the first PDCCH transmission and the second PDCCH transmission are radio resource control (RRC) configured by the at least one SS associated with a first CORESET; or
    arbitrary PDCCH transmissions in the first CORESET repetition are identifiable as the first PDCCH transmission and arbitrary PDCCH transmissions within the second CORESET repetition are identifiable as the second PDCCH transmission.
  35. The method of claim 33, wherein the first CORESET repetition and the second CORESET repetition are associated with a same set of CORESET repetitions, and the PDCCH transmissions within the one or more CORESET repetitions are identifiable from configuration of the at least one SS associated with a CORESET to which the one or more CORESET repetitions correspond.
  36. A method for wireless communication in a wireless network by a base station (BS) , comprising:
    transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern; and
    transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  37. The method of claim 36, wherein:
    the CORESET repetition pattern comprises a periodicity and an offset corresponding to the one or more CORESET repetitions; and
    transmitting the PDCCH transmissions within the one or more CORESET repetitions is based on the periodicity and offset corresponding to the one or more CORESET repetitions.
  38. The method of claim 37, wherein:
    the periodicity indicates a number of transmission slots between instances of the CORESET repetition pattern; and
    the offset indicates a starting slot of the one or more CORESET repetitions within the number of transmission slots indicated in the periodicity.
  39. The method of claim 37, wherein:
    the CORESET repetition pattern further comprises an indication of one or more transmission slots within the periodicity corresponding to the one or more CORESET repetitions; and
    transmitting the PDCCH transmissions within the one or more CORESET repetitions comprises transmitting the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots.
  40. The method of claim 39, wherein:
    the CORESET repetition pattern comprises a pattern of symbols within at least a first transmission slot of the one or more transmission slots corresponding to the one or more CORESET repetitions; and
    transmitting the PDCCH transmissions within the one or more CORESET repetitions in the indicated one or more transmission slots comprises transmitting the PDCCH transmissions within the one or more CORESET repetitions in one or more symbols of at least the first transmission slot of the one or more transmission slots based on the pattern of symbols.
  41. The method of claim 40, wherein the configuration information comprises an indication of the pattern of symbols within at least the first transmission slot of the one or more transmission slots.
  42. The method of claim 41, wherein the indication of the pattern of symbols comprises a bitmap indicating which symbols of at least the first transmission slot correspond to  the one or more CORESET repetitions.
  43. The method of claim 40, wherein the CORESET repetition pattern comprises an intra-transmission-slot repetition pattern where each transmission slot of the one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs.
  44. The method of claim 43, wherein the pattern of symbols indicates:
    symbols within the first transmission slot to monitor for the PDCCH transmission within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETS; and
    symbols within a second transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  45. The method of claim 44, wherein:
    the first transmission slot does not include the one or more CORESET repetitions corresponding to CORESETs other than the first CORESET; and
    the second transmission slot does not include the one or more CORESET repetitions corresponding to CORESETs other than the second CORESET.
  46. The method of claim 40, wherein the CORESET repetition pattern comprises an inter-transmission-slot repetition pattern where each transmission slot of the one or more transmission slots includes CORESET repetitions of the one or more CORESET repetitions corresponding to a plurality of CORESETs.
  47. The method of claim 46, wherein the pattern of symbols indicates:
    a first set of symbols within the first transmission slot to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETs; and
    a second set of symbols within the first transmission slot to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs.
  48. The method of claim 40, wherein the CORESET repetition pattern comprises an intra-and-inter-transmission-slot repetition pattern where:
    each transmission slot of the one or more transmission slots corresponds to a different CORESET of a plurality of CORESETs; and
    the one or more CORESET repetitions corresponding to each different CORESET of the plurality of CORESETs are included in a plurality of transmission slots of the one or more transmission slots.
  49. The method of claim 48, wherein the pattern of symbols indicates:
    a first set of symbols within the first transmission slot to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a first CORESET of the plurality of CORESETs; and
    a second set of symbols within a second transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the first CORESET of the plurality of CORESETs.
  50. The method of claim 49, wherein the pattern of symbols further indicates:
    a third set of symbols within a third transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to a second CORESET of the plurality of CORESETs; and
    a fourth set of symbols within a fourth transmission slot of the one or more transmission slots to monitor for the PDCCH transmissions within the one or more CORESET repetitions corresponding to the second CORESET of the plurality of CORESETs.
  51. The method of claim 50, wherein:
    the first transmission slot is adjacent to the second transmission slot; or
    the first transmission slot is adjacent to the third transmission slot.
  52. The method of claim 36, wherein the CORESET repetition pattern indicates that the one or more CORESET repetitions will be transmitted across a plurality of SSs of the at least one SS.
  53. The method of claim 52, wherein:
    the plurality of SSs comprise a mother SS and at least one mirrored SS; and
    transmitting the PDCCH transmissions within the one or more CORESET repetitions comprises transmitting the PDCCH transmissions within the one or more CORESET repetitions in the mother SS and the at least one mirrored SS.
  54. The method of claim 53, wherein the at least one mirrored SS is based on a legacy SS configuration.
  55. The method of claim 53, wherein the at least one mirrored SS depends on the mother SS.
  56. The method of claim 55, wherein the at least one mirrored SS is based on a transmission slot offset with respect to a transmission slot offset of the mother SS.
  57. The method of claim 55, wherein the at least one mirrored SS is based on a symbol offset with respect to the mother SS.
  58. The method of claim 57, wherein the symbol offset is based on a number of bit shifts compared to a bitmap corresponding to the mother SS, wherein the bitmap indicates which symbols of a transmission slot include the one or more CORESET repetitions corresponding to the mother SS.
  59. The method of claim 55, wherein the at least one mirrored § is based on a combination of:
    a transmission slot offset with respect to a transmission slot offset of the mother SS;and
    a symbol offset with respect to the mother SS.
  60. The method of claim 53, wherein the configuration information includes a periodicity, transmission slot offset, and duration for each of the mother SS and the at least one mirrored SS.
  61. The method of claim 36, wherein the configuration information comprises explicit signaling indicating a blind decoding and channel estimation (BD/CE) limit for one or more transmission slots associated with the PDCCH transmissions within the one or more CORESET repetitions.
  62. The method of claim 61, wherein the explicit signaling indicating the BD/CE limit applies to one of a single transmission slot of the one or more transmission slots or multiple transmission slots of the one or more transmission slots.
  63. The method of claim 36, wherein the wireless network comprises a 5th generation new radio (5G NR) network.
  64. An apparatus for wireless communication in a wireless network by a user equipment (UE) , comprising:
    at least one processor configured to:
    receive configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ;
    determine a CORESET repetition pattern based on the configuration information; and
    monitor for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern; and
    a memory coupled with the at least one processor.
  65. An apparatus for wireless communication in a wireless network by a user equipment (UE) , comprising:
    means for receiving configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ;
    means for determining a CORESET repetition pattern based on the configuration information; and
    means for monitoring for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  66. A non-transitory computer-readable medium for wireless communication in a wireless network by a user equipment (UE) , comprising:
    instructions that, when executed by at least one processor, cause at least one processor to:
    receive configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) ;
    determine a CORESET repetition pattern based on the configuration information; and
    monitor for physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  67. An apparatus for wireless communication in a wireless network by a base station (BS) , comprising:
    at least one processor configured to:
    transmit configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern; and
    transmit physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern; and
    a memory coupled with the at least one processor.
  68. An apparatus for wireless communication in a wireless network by a base station (BS) , comprising:
    means for transmitting configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern; and
    means for transmitting physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
  69. A non-transitory computer-readable medium for wireless communication in a wireless network by a base station (BS) , comprising:
    instructions that, when executed by at least one processor, cause at least one processor to:
    transmit configuration information for one or more control resource set (CORESET) repetitions within at least one search space (SS) , wherein the configuration information provides an indication of a CORESET repetition pattern; and
    transmit physical downlink control channel (PDCCH) transmissions within the one or more CORESET repetitions in the at least one SS according to the CORESET repetition pattern.
PCT/CN2020/075228 2020-02-14 2020-02-14 New radio physical downlink control channel repetition WO2021159451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075228 WO2021159451A1 (en) 2020-02-14 2020-02-14 New radio physical downlink control channel repetition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075228 WO2021159451A1 (en) 2020-02-14 2020-02-14 New radio physical downlink control channel repetition

Publications (1)

Publication Number Publication Date
WO2021159451A1 true WO2021159451A1 (en) 2021-08-19

Family

ID=77291959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075228 WO2021159451A1 (en) 2020-02-14 2020-02-14 New radio physical downlink control channel repetition

Country Status (1)

Country Link
WO (1) WO2021159451A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226033A1 (en) * 2017-06-08 2018-12-13 엘지전자 주식회사 Downlink control channel reception method performed by terminal in wireless communication system, and terminal using same
CN109691206A (en) * 2017-09-14 2019-04-26 Oppo广东移动通信有限公司 Method for transmitting information, terminal device and the network equipment
CN110166197A (en) * 2018-02-12 2019-08-23 北京展讯高科通信技术有限公司 Sending, receiving method, device, equipment and the base station of Physical Downlink Control Channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226033A1 (en) * 2017-06-08 2018-12-13 엘지전자 주식회사 Downlink control channel reception method performed by terminal in wireless communication system, and terminal using same
CN109691206A (en) * 2017-09-14 2019-04-26 Oppo广东移动通信有限公司 Method for transmitting information, terminal device and the network equipment
CN110166197A (en) * 2018-02-12 2019-08-23 北京展讯高科通信技术有限公司 Sending, receiving method, device, equipment and the base station of Physical Downlink Control Channel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On multi-TRP and multi-panel", 3GPP DRAFT; R1-1907418 ON MULTI-TRP AND MULTI-PANEL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051709433 *
ZTE, SANECHIPS: "Discussion of PDCCH repetition", 3GPP DRAFT; R1-1801633 DISCUSSION OF PDCCH REPETITION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 16 February 2018 (2018-02-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051396976 *

Similar Documents

Publication Publication Date Title
US11382127B2 (en) Time domain resource allocation (TDRA) for multi-transmission time interval (TTI) grants
US20230208598A1 (en) Qcl assumptions for combined single-dci and multi-dci multi-trp
US11843502B2 (en) Configuration of physical uplink control channel (PUCCH)-beam failure recovery (BFR) for transmission reception point (TRP) specific BFR
US20210289455A1 (en) Synchronization signal block pattern with gaps
US20220103233A1 (en) User equipment (ue) capability for transmission reception point (trp) specific beam failure recovery (bfr)
US11695501B2 (en) Adaptive control channel blind detection limits
US20210328710A1 (en) Rate matching for layer 1 (l1) or layer 2 (l2) mobility protocol
CN115552975A (en) Low complexity physical downlink control channel
US11595966B2 (en) Time domain positions for demodulation reference signal in a multi-slot transport block
WO2022155945A1 (en) Ulci enhancement for reduced capability ue
WO2021196148A1 (en) Physical downlink control channel (pdcch) aggregation across monitoring occasions
KR20230169116A (en) Multi-slot transmissions to multi-transmit reception points
US20220190988A1 (en) Control channel demodulation reference signal bundling
US20230224940A1 (en) Dynamic slot management of radio frames
EP4173199A1 (en) Hybrid automatic repeat request (harq) process sharing across carriers
WO2021159451A1 (en) New radio physical downlink control channel repetition
US11863325B2 (en) Finite field parity for feedback codebook
US20240007256A1 (en) Downlink control information cooperation
WO2022213296A1 (en) Allocating channel state information (csi) processing unit (cpu) for user equipment (ue) -initiated csi feedback
US20230139555A1 (en) Signaling and scheduling to enable network configured small gaps in intra-band inter-frequency measurement
EP4214885A1 (en) Multi-slot sounding reference signal (srs) resource

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919222

Country of ref document: EP

Kind code of ref document: A1