WO2017193339A1 - 信号传输的方法、网络设备和终端设备 - Google Patents

信号传输的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2017193339A1
WO2017193339A1 PCT/CN2016/081880 CN2016081880W WO2017193339A1 WO 2017193339 A1 WO2017193339 A1 WO 2017193339A1 CN 2016081880 W CN2016081880 W CN 2016081880W WO 2017193339 A1 WO2017193339 A1 WO 2017193339A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
downlink
information
frequency points
frequency
Prior art date
Application number
PCT/CN2016/081880
Other languages
English (en)
French (fr)
Inventor
唐海
Original Assignee
广东欧珀移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP16901294.5A priority Critical patent/EP3422651B1/en
Priority to BR112018073177-3A priority patent/BR112018073177B1/pt
Priority to SG11201809608XA priority patent/SG11201809608XA/en
Priority to MX2018013518A priority patent/MX2018013518A/es
Priority to KR1020187029743A priority patent/KR20190005834A/ko
Priority to RU2018142982A priority patent/RU2704254C1/ru
Priority to JP2018555514A priority patent/JP7091253B2/ja
Application filed by 广东欧珀移动通信有限公司 filed Critical 广东欧珀移动通信有限公司
Priority to AU2016406274A priority patent/AU2016406274B2/en
Priority to US16/095,322 priority patent/US11076384B2/en
Priority to CA3022660A priority patent/CA3022660C/en
Priority to PCT/CN2016/081880 priority patent/WO2017193339A1/zh
Priority to CN201680084355.0A priority patent/CN109076043B/zh
Priority to EP19150345.7A priority patent/EP3490210B1/en
Priority to TW106115184A priority patent/TWI746549B/zh
Publication of WO2017193339A1 publication Critical patent/WO2017193339A1/zh
Priority to ZA2018/07290A priority patent/ZA201807290B/en
Priority to US16/231,841 priority patent/US10849102B2/en
Priority to HK19100707.3A priority patent/HK1258339A1/zh
Priority to JP2021071676A priority patent/JP7228619B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications, and more particularly to a method of signal transmission, a network device, and a terminal device.
  • the carrier width of the 5G system varies widely, for example, the maximum bandwidth is greater than or equal to 80 MHz.
  • the synchronization signals and broadcast signals in the current Long Term Evolution (LTE)/4G are transmitted only at the center frequency of the carrier.
  • LTE Long Term Evolution
  • the single synchronization channel and the broadcast channel in the LTE/4G are difficult to meet the requirements of the fast search of the terminal device, thereby affecting the communication efficiency of the terminal device.
  • the embodiment of the invention provides a signal transmission method, a network device and a terminal device, which can improve the communication efficiency of the terminal device.
  • a method of signal transmission comprising:
  • the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, where the time-frequency resource location of the downlink signal is located at a predetermined time
  • the multiple frequency points are a part of frequency points within the bandwidth of the carrier
  • the downlink signal is transmitted according to the time-frequency resource location of the downlink signal.
  • the method for signal transmission in the embodiment of the present invention can meet the requirement of fast searching of the terminal device by transmitting the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving the communication efficiency of the terminal device.
  • the downlink signal includes a synchronization signal
  • Transmitting the downlink signal according to the time-frequency resource location of the downlink signal including:
  • the synchronization signal is transmitted periodically at the plurality of frequency points.
  • the period of transmitting the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the downlink signal includes a broadcast signal
  • Transmitting the downlink signal according to the time-frequency resource location of the downlink signal including:
  • the broadcast signal is transmitted periodically at the plurality of frequency points.
  • the broadcast signal and the synchronization signal may have a corresponding relationship.
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located in a radio frame.
  • the plurality of frequency points, and the time domain length of the downlink control region in the radio frame is less than the length of the radio frame.
  • the method further includes:
  • the information of the downlink control area is explicitly or implicitly indicated to the terminal device.
  • the information of the downlink control area is explicitly or implicitly indicated to the terminal device, including:
  • the information of the downlink control area is explicitly or implicitly indicated to the terminal device by using at least one of the following:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the information of the relative time-frequency position of the broadcast signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are transmitted;
  • the downlink signal includes a measurement reference signal
  • Transmitting the downlink signal according to the time-frequency resource location of the downlink signal including:
  • the measurement reference signal is transmitted periodically in a non-downlink control region of the plurality of frequency points.
  • the method further includes:
  • the measurement reference signal or the downlink data is sent by using a puncturing manner.
  • the method for signal transmission in the embodiment of the present invention can improve the speed and accuracy of the terminal device performing cell search and measurement in the standby or connected state, thereby improving the communication efficiency of the terminal device.
  • a method of signal transmission comprising:
  • the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, where the time-frequency resource location of the downlink signal is located at a predetermined time
  • the multiple frequency points are a part of frequency points within the bandwidth of the carrier
  • the method for signal transmission in the embodiment of the present invention can meet the requirement of fast searching of the terminal device by receiving the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving the communication efficiency of the terminal device.
  • the downlink signal includes a synchronization signal
  • Receiving the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal including:
  • the period of transmitting the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the downlink signal includes a broadcast signal
  • Receiving the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal including:
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located in a radio frame.
  • the plurality of frequency points, and the downlink control area The time domain length within the radio frame is less than the length of the radio frame.
  • the method further includes:
  • Determining the downlink control region according to the information of the downlink control region Determining the downlink control region according to the information of the downlink control region.
  • determining the downlink control area according to the information of the downlink control area including:
  • the downlink control region is determined according to at least one of the following:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the information of the relative time-frequency position of the broadcast signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are transmitted;
  • the downlink signal includes a measurement reference signal
  • Receiving the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal including:
  • the method for signal transmission in the embodiment of the present invention can improve the speed and accuracy of the terminal device performing cell search and measurement in the standby or connected state, thereby improving the communication efficiency of the terminal device.
  • a network device comprising means for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal device comprising means for performing the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a network device in a fifth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • Memory for storing instructions, processor
  • the communication interface is used to communicate with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a terminal device in a sixth aspect, includes a processor, a memory, and a communication interface.
  • the processor is coupled to the memory and communication interface.
  • the memory is for storing instructions for the processor to execute, and the communication interface is for communicating with other network elements under the control of the processor.
  • the processor executes the instructions stored by the memory, the execution causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a seventh aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a computer readable medium for storing a computer program comprising instructions for performing the method of the second aspect or any of the possible implementations of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method of signal transmission according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a time-frequency resource location of a downlink signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a time-frequency resource location of a downlink signal according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a time-frequency resource location of a downlink signal according to still another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a time-frequency resource location of a downlink signal according to still another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a time-frequency resource location of a downlink signal according to still another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for signal transmission according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a network device in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • the terminal device in the embodiment of the present invention may also be referred to as a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, or a Personal Digital Assistant ("PDA").
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a handheld device having a wireless communication function, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved PLMN network.
  • the network device in the embodiment of the present invention may be a device for communicating with a terminal device, where the network device may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in a WCDMA system.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • the LTE system may be an evolved Node B (eNB or eNodeB), or may be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be It is a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network.
  • eNB evolved Node B
  • CRAN Cloud Radio Access Network
  • the carrier in the embodiment of the present invention may also be represented as a cell, indicating a communication system.
  • one carrier in the embodiment of the present invention corresponds to one cell and one communication system.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • the communication system in FIG. 1 may comprise a network device, such as an eNodeB 20 and at least one terminal device, such as UE 10, UE 11, UE 12, UE 13, UE 14, UE 15, UE 16, and UE 17.
  • the eNodeB 20 is configured to provide communication services for at least one of the UEs 10 to 17 and access the core network.
  • Each of the UE 10 to the UE 17 accesses the network by searching for a synchronization signal, a broadcast signal, and the like transmitted by the eNodeB 20, thereby performing communication with the network.
  • the single synchronization channel and the broadcast channel are difficult to meet the requirements of the terminal device for fast search, thereby affecting the communication efficiency of the terminal device.
  • multiple sets of synchronization channels, broadcast channels, and the like are set in one carrier/cell to meet the requirements of fast searching of the terminal device, thereby improving the communication efficiency of the terminal device.
  • FIG. 2 shows a schematic flow diagram of a method 200 of signal transmission in accordance with an embodiment of the present invention.
  • the method 200 is performed by a network device, such as the eNodeB 20 of FIG.
  • the network device and the terminal device can communicate in one carrier/cell.
  • the following description is made by taking a carrier as an example, that is, the method in FIG. 2 is directed to one carrier.
  • a number of frequency points are included within the bandwidth of the carrier.
  • the method 200 includes:
  • S210 Determine a time-frequency resource location of the downlink signal, where the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, where the time-frequency resource location of the downlink signal is located. a plurality of frequency points of the carrier within a predetermined time, the plurality of frequency points being a part of the frequency points within the bandwidth of the carrier;
  • S220 Send the downlink signal according to the time-frequency resource location of the downlink signal.
  • the time-frequency resource location of the downlink signal such as the synchronization signal, the broadcast signal, the common control channel signal, the common reference signal, or the measurement reference signal, is located at multiple frequency points of the carrier within a predetermined time, and the multiple The frequency point is a part of the frequency within the bandwidth of the carrier. That is to say, the downlink signal is not transmitted on a single frequency point of the carrier, nor is it transmitted on all frequency points of the carrier, so that the requirement for fast searching of the terminal device can be satisfied, and the system overhead can be saved, thereby improving Communication efficiency of terminal equipment.
  • the method for signal transmission in the embodiment of the present invention can meet the requirement of fast searching of the terminal device by transmitting the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving the communication efficiency of the terminal device.
  • the predetermined time represents a period of time, which is not limited by the present invention.
  • the predetermined time may be one or more radio frames, or may be one or more subframes or symbols. Sending at multiple frequency points of the carrier within a predetermined time, either by pressing for a period of time The period is repeatedly transmitted at the plurality of frequency points, or may be transmitted at one frequency point in one period in a period and transmitted at another frequency point in the next period.
  • the pattern of the time-frequency resource location of the various downlink signals may be preset, and the network device and the terminal device determine the time-frequency resource location of the downlink signal according to the preset pattern;
  • the pattern of the time-frequency resource location of the signal may also be determined by the network device and sent to the terminal device, which is not limited by the present invention.
  • the downlink signal includes a synchronization signal
  • the network device can transmit the synchronization signal periodically at the plurality of frequency points.
  • the network device periodically sends the synchronization signal at multiple frequency points of the carrier, that is, repeatedly transmits the synchronization signal at multiple frequency points.
  • the embodiment of the present invention sets a plurality of sets of synchronization signals (SS), which are generally specific digital sequences, and are repeatedly transmitted at multiple frequency points.
  • SS synchronization signals
  • the time-frequency resource location of the synchronization signal can be as shown in FIG.
  • a set of synchronization signals repeated in time can be set on every 20 MHz frequency domain resource, and the terminal searches for any set of synchronization signals to acquire and the cell. Synchronize.
  • the period of transmitting the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • sequence of numbers used by the synchronization signals on different frequency domain resources of the same 5G carrier/cell may be different. If the sequence of numbers used is different, the sequence of numbers used by the synchronization signals on different frequency domain resources of the same 5G carrier/cell may have some inherent connection, for example different cyclic shifts of the same root sequence may be used. (cyclic shift), this cyclic shift can use a certain offset (offset) to characterize the same carrier/cell.
  • offset offset
  • the downlink signal includes a broadcast signal
  • the network device can transmit the broadcast signal periodically on the plurality of frequency points.
  • the network device sends a broadcast signal periodically at multiple frequency points of the carrier, that is, repeatedly transmits the broadcast signal at multiple frequency points.
  • the time-frequency resource location of the broadcast signal can be as shown in FIG.
  • a 5G carrier/cell sets multiple sets of basic system information that is repeated in time in different frequency resources in the cell, and may also be referred to as a Master Information Block (MIB), using physics.
  • MIB Master Information Block
  • a physical broadcast channel (PBCH) bearer which may include a downlink/uplink bandwidth, a system frame number (SFN), a number of antennas, a transmission mode of a control signal, and the like, to facilitate fast reception and demodulation of the terminal device.
  • PBCH physical broadcast channel
  • the PBCH and the SS may have a corresponding relationship.
  • each of the frequency domain resources (frequency points) in which the synchronization signal is set may have a PBCH, for example, as shown in FIG. 4 .
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located.
  • the plurality of frequency points in the radio frame, and the time domain length of the downlink control region in the radio frame is less than the length of the radio frame.
  • the downlink control area occupies a limited frequency and time resource, that is, the frequency is smaller than the overall downlink bandwidth of the carrier, and the time is smaller than the length of the radio frame, and the shortest may be one symbol.
  • the location of the downlink control region can be as shown in FIG.
  • the downlink control region which may also be referred to as a downlink common control region, is used to transmit a common control channel and/or a common reference signal.
  • the common control channel can indicate the location of the dedicated control channel, and the dedicated control channel is used for demodulation of a block of user data.
  • the common reference symbol can be used for cell measurement reselection in the IDLE state and cell measurement switching in the CONNECTED state.
  • the speed and accuracy of the measurement of the terminal device in the standby or connected state can be improved.
  • the method further comprises:
  • the information of the downlink control area is explicitly or implicitly indicated to the terminal device.
  • the information of the downlink control area can be displayed or implicitly indicated.
  • the network device may explicitly or implicitly indicate the information of the downlink control region to the terminal device by using at least one of the following:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the relative time-frequency position information of the broadcast signal, the relative time-frequency position information The information is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are sent;
  • the presence or absence of a common control channel on a certain frequency resource within a 5G carrier/cell; if present, its location and the size of the occupied resource may be indicated by one or a different manner (not necessarily all) :
  • the sequence used by the synchronization signal (in this frequency resource) the sequence used by the synchronization signal (such as the sequence length, the number of the root sequence in all sequences, the offset of the cyclic shift, etc.);
  • the content of the physical broadcast channel PBCH including a mask superimposed on the PBCH content and/or check bits;
  • the content of the second level or lower system information indicated by the first level system information (beared by the physical broadcast channel PBCH).
  • the downlink signal includes a measurement reference signal
  • the network device may transmit the measurement reference signal periodically in the non-downlink control region of the multiple frequency points.
  • a 5G carrier/cell may periodically transmit a cell measurement reselection in a standby (IDLE) state and a cell measurement handover in a CONNECTED state on different frequencies in a non-downlink control region in a cell.
  • the density of such a reference signal is generally lower than the reference signal used for demodulation and may be referred to as a measurement reference signal (MRS).
  • MRS measurement reference signal
  • the time-frequency resource location of the measurement reference signal can be as shown in FIG. 6. In this way, the speed and accuracy of the measurement of the terminal device in the standby or connected state can be further improved.
  • the measurement reference signal or the downlink data is sent by using a puncturing manner. For example, as shown in Figure 7.
  • time-frequency resource positions of various downlink signals are shown in FIG. 4 to FIG. 7, but the present invention does not limit the relationship between the time-frequency resource positions of different downlink signals, in other words, the time-frequency of different downlink signals.
  • Resource locations may or may not be associated.
  • the method for signal transmission in the embodiment of the present invention can improve the speed and accuracy of the terminal device performing cell search and measurement in the standby or connected state, thereby improving the communication efficiency of the terminal device.
  • the method for signal transmission in the embodiment of the present invention is described above from the network device side, and the method for signal transmission in the embodiment of the present invention is described below from the terminal device side.
  • FIG. 8 shows a schematic flow diagram of a method 800 of signal transmission in accordance with an embodiment of the present invention.
  • the method 800 is performed by a terminal device, such as any of UE 10 to UE 17 in FIG.
  • the method 800 includes:
  • S810 Determine a time-frequency resource location of the downlink signal, where the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, where the time-frequency resource location of the downlink signal is located. a plurality of frequency points of the carrier within a predetermined time, the plurality of frequency points being a part of the frequency points within the bandwidth of the carrier;
  • S820 Receive the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal.
  • the method for signal transmission in the embodiment of the present invention can meet the requirement of fast searching of the terminal device by receiving the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving the communication efficiency of the terminal device.
  • the downlink signal includes a synchronization signal
  • Receiving the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal including:
  • the period of transmitting the synchronization signal at different frequency points of the plurality of frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the downlink signal includes a broadcast signal
  • Receiving the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal including:
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located.
  • the plurality of frequency points in the radio frame, and the time domain length of the downlink control region in the radio frame is less than the length of the radio frame.
  • the method 800 may further include:
  • Determining the downlink control region according to the information of the downlink control region Determining the downlink control region according to the information of the downlink control region.
  • determining the downlink control area according to the information of the downlink control area including:
  • the downlink control region is determined according to at least one of the following:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the information of the relative time-frequency position of the broadcast signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are transmitted;
  • the downlink signal includes a measurement reference signal
  • Receiving the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal including:
  • the method for signal transmission in the embodiment of the present invention can improve the speed and accuracy of the terminal device performing cell search and measurement in the standby or connected state, thereby improving the communication efficiency of the terminal device.
  • the method of signal transmission according to an embodiment of the present invention has been described in detail above, and a network device and a terminal device according to an embodiment of the present invention will be described below. It should be understood that the network device and the terminal device in the embodiments of the present invention may perform various methods in the foregoing embodiments of the present invention, that is, the specific working processes of the following various devices, and may refer to the corresponding processes in the foregoing method embodiments.
  • FIG. 9 shows a schematic block diagram of a network device 900 in accordance with an embodiment of the present invention.
  • the network device 900 includes:
  • the determining module 910 is configured to determine a time-frequency resource location of the downlink signal, where the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, and the downlink signal timing
  • the frequency resource location is located at a plurality of frequency points of the carrier within a predetermined time, and the multiple frequency points are a part of the frequency points within the bandwidth of the carrier;
  • the sending module 920 is configured to send the downlink signal according to the time-frequency resource location of the downlink signal.
  • the network device of the embodiment of the present invention can meet the requirement of fast searching of the terminal device by transmitting the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving the communication efficiency of the terminal device.
  • the downlink signal includes a synchronization signal
  • the sending module 920 is specifically configured to send the synchronization signal periodically in the multiple frequency points.
  • the period of transmitting the synchronization signal at different frequency points of the plurality of frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the downlink signal includes a broadcast signal
  • the sending module 920 is specifically configured to send the broadcast signal periodically in the multiple frequency points.
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located.
  • the plurality of frequency points in the radio frame, and the time domain length of the downlink control region in the radio frame is less than the length of the radio frame.
  • the sending module 920 is further configured to: explicitly or implicitly indicate information of the downlink control area to the terminal device.
  • the sending module 920 is specifically configured to: set the terminal to the terminal by using at least one of the following The information of the downlink control area is explicitly or implicitly indicated:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the information of the relative time-frequency position of the broadcast signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are transmitted;
  • the downlink signal includes a measurement reference signal
  • the sending module 920 is specifically configured to send the measurement reference signal in a period in the non-downlink control area of the multiple frequency points.
  • the sending module 920 is further configured to: if the time-frequency resource location of the measurement reference signal conflicts with the time-frequency resource location of the downlink data, send the measurement reference signal or the downlink data by using a puncturing manner.
  • the network device 900 may correspond to a network device in a method of signal transmission according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the network device 900 respectively implement the foregoing respective methods The corresponding process, for the sake of brevity, will not be described here.
  • the network device in the embodiment of the present invention can improve the speed and accuracy of the terminal device performing cell search and measurement in the standby or connected state, thereby improving the communication efficiency of the terminal device.
  • FIG. 10 shows a schematic block diagram of a terminal device 1000 according to an embodiment of the present invention.
  • the terminal device 1000 includes:
  • the determining module 1010 is configured to determine a time-frequency resource location of the downlink signal, where the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, and the downlink signal timing
  • the frequency resource location is located at a plurality of frequency points of the carrier within a predetermined time, and the multiple frequency points are a part of the frequency points within the bandwidth of the carrier;
  • the receiving module 1020 is configured to receive the downlink signal sent by the network device according to the time-frequency resource location of the downlink signal.
  • the terminal device in the embodiment of the present invention can meet the requirement of fast searching of the terminal device by receiving the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving communication of the terminal device. effectiveness.
  • the downlink signal includes a synchronization signal
  • the receiving module 1020 is specifically configured to receive, at the multiple frequency points, the synchronization signal that is sent by the network device in a periodic manner.
  • the period of transmitting the synchronization signal at different frequency points of the plurality of frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the downlink signal includes a broadcast signal
  • the receiving module 1020 is specifically configured to receive, at the multiple frequency points, the broadcast signal that is sent by the network device in a periodic manner.
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located.
  • the plurality of frequency points in the radio frame, and the time domain length of the downlink control region in the radio frame is less than the length of the radio frame.
  • the receiving module 1020 is further configured to: obtain information about the downlink control area that is explicitly or implicitly indicated by the network device;
  • the determining module 1010 is specifically configured to determine the downlink control region according to the information of the downlink control region.
  • the determining module 1010 is specifically configured to determine the downlink control area according to at least one of the following:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the information of the relative time-frequency position of the broadcast signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are transmitted;
  • the downlink signal includes a measurement reference signal
  • the receiving module 1020 is specifically configured to receive the measurement reference signal that is sent by the network device in a period in the non-downlink control area of the multiple frequency points.
  • the terminal device 1000 may correspond to a terminal device in a method of signal transmission according to an embodiment of the present invention, and the above-described and other operations and/or functions of respective modules in the terminal device 1000 respectively implement the foregoing respective methods The corresponding process, for the sake of brevity, will not be described here.
  • the terminal device in the embodiment of the present invention can improve the speed and accuracy of the terminal device performing cell search and measurement in the standby or connected state, thereby improving the communication efficiency of the terminal device.
  • FIG. 11 shows a structure of a network device according to still another embodiment of the present invention, including at least one processor 1102 (for example, a CPU), at least one network interface 1105 or other communication interface, a memory 1106, and at least one communication bus 1103. Used to implement connection communication between these devices.
  • the processor 1102 is configured to execute executable modules, such as computer programs, stored in the memory 1106.
  • the memory 1106 may include a high speed random access memory (RAM), and may also include a non-volatile memory such as at least one disk memory.
  • a communication connection with at least one other network element is achieved by at least one network interface 1105 (which may be wired or wireless).
  • the memory 1106 stores a program 11061, and the processor 1102 executes the program 11061 for performing the following operations:
  • the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, where the time-frequency resource location of the downlink signal is located at a predetermined time
  • the multiple frequency points are a part of frequency points within the bandwidth of the carrier
  • the downlink signal is transmitted according to the time-frequency resource location of the downlink signal.
  • the downlink signal includes a synchronization signal
  • the processor 1102 is specifically configured to send the synchronization signal periodically in the multiple frequency points.
  • the period of transmitting the synchronization signal at different frequency points of the plurality of frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the downlink signal includes a broadcast signal
  • the processor 1102 is specifically configured to send the broadcast signal periodically in the multiple frequency points.
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located in the multiple frames in the radio frame.
  • the time domain length of the downlink control region in the radio frame is less than the length of the radio frame.
  • the processor 1102 is further configured to: explicitly or implicitly indicate information about the downlink control area to the terminal device.
  • the processor 1102 is specifically configured to: explicitly or implicitly indicate information about the downlink control area to the terminal device by using at least one of the following:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the information of the relative time-frequency position of the broadcast signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are transmitted;
  • the downlink signal includes a measurement reference signal
  • the processor 1102 is specifically configured to send the measurement reference signal periodically in a non-downlink control region of the multiple frequency points.
  • the processor 1102 is further configured to: if the time-frequency resource location of the measurement reference signal conflicts with the time-frequency resource location of the downlink data, send the measurement reference signal or the downlink data by using a puncturing manner.
  • the embodiment of the present invention can meet the requirement of fast searching of the terminal device by transmitting the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving communication of the terminal device. effectiveness.
  • FIG. 12 shows a structure of an MME according to still another embodiment of the present invention, including at least one processor 1202 (eg, a CPU), at least one network interface 1205 or other communication interface, a memory 1206, and at least one communication bus 1203. To achieve connection communication between these devices.
  • the processor 1202 is configured to execute executable modules, such as computer programs, stored in the memory 1206.
  • the memory 1206 may include a high speed random access memory (RAM: Random Access Memory). It may also include non-volatile memory, such as at least one disk storage.
  • a communication connection with at least one other network element is achieved by at least one network interface 1205, which may be wired or wireless.
  • the memory 1206 stores a program 12061, and the processor 1202 executes the program 12061 for performing the following operations:
  • the downlink signal includes at least one of a synchronization signal, a broadcast signal, a common control channel signal, a common reference signal, and a measurement reference signal, where the time-frequency resource location of the downlink signal is located at a predetermined time
  • the multiple frequency points are a part of frequency points within the bandwidth of the carrier
  • the downlink signal includes a synchronization signal
  • the processor 1202 is specifically configured to receive, at the multiple frequency points, the synchronization signal that is sent by the network device in a periodic manner.
  • the period of transmitting the synchronization signal at different frequency points of the plurality of frequency points is the same or different.
  • the sequence used to transmit the synchronization signal at different frequency points of the multiple frequency points is the same or different.
  • the downlink signal includes a broadcast signal
  • the processor 1202 is specifically configured to receive, at the multiple frequency points, the broadcast signal that is sent by the network device in a periodic manner.
  • the downlink signal includes a common control channel signal or a common reference signal, where a time-frequency resource location of the common control channel signal or a common reference signal is located in a downlink control region, where the downlink control region is located in the multiple frames in the radio frame.
  • the time domain length of the downlink control region in the radio frame is less than the length of the radio frame.
  • the processor 1202 is configured to obtain information about the downlink control area that is explicitly or implicitly indicated by the network device.
  • Determining the downlink control region according to the information of the downlink control region Determining the downlink control region according to the information of the downlink control region.
  • the processor 1202 is specifically configured to determine the downlink control area according to at least one of the following:
  • the information of the sequence used by the synchronization signal, and the information of the sequence used by the synchronization signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal is transmitted;
  • the synchronization signal and the information of the relative time-frequency position of the broadcast signal is used to indicate whether the downlink control region is located at a frequency point at which the synchronization signal and the broadcast signal are transmitted;
  • the downlink signal includes a measurement reference signal
  • the processor 1202 is specifically configured to receive the measurement reference signal that is sent by the network device in a period in the non-downlink control area of the multiple frequency points.
  • the embodiment of the present invention can meet the requirement of fast searching of the terminal device by receiving the downlink signal at multiple frequency points of the carrier within a predetermined time, thereby improving communication of the terminal device. effectiveness.
  • the term "and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships.
  • a and/or B may indicate that A exists separately, and A and B exist simultaneously, and B cases exist alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another The system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号传输的方法、网络设备和终端设备。该方法包括:确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;根据该下行信号的时频资源位置发送该下行信号。本发明实施例的信号传输的方法、网络设备和终端设备,能够提高终端设备的通信效率。

Description

信号传输的方法、网络设备和终端设备 技术领域
本发明涉及通信领域,并且更具体地,涉及一种信号传输的方法、网络设备和终端设备。
背景技术
5G系统的载波宽度变化范围较大,例如,最大带宽大于或等于80MHz。目前的长期演进(Long Term Evolution,LTE)/4G中的同步信号、广播信号只在载波的中心频点上发送。对于大带宽载波的5G系统,LTE/4G中的单一同步信道、广播信道的方式难以满足终端设备快速搜索的要求,从而影响终端设备的通信效率。
因此,提高终端设备的通信效率成为大带宽载波通信系统亟待解决的一个技术问题。
发明内容
本发明实施例提供了一种信号传输的方法、网络设备和终端设备,能够提高终端设备的通信效率。
第一方面,提供了一种信号传输的方法,包括:
确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
根据该下行信号的时频资源位置发送该下行信号。
本发明实施例的信号传输的方法,通过在预定时间内载波的多个频点上发送下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信效率。
在预定时间内载波的多个频点上发送,既可以是在一段时间内按周期在该多个频点上重复发送,也可以是在一段时间内的一个周期在一个频点上发送,在下一个周期在另一频点上发送。
在一些可能的实现方式中,该下行信号包括同步信号;
根据该下行信号的时频资源位置发送该下行信号,包括:
在该多个频点上按周期发送该同步信号。
在一些可能的实现方式中,在该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
在一些可能的实现方式中,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
在一些可能的实现方式中,该下行信号包括广播信号;
根据该下行信号的时频资源位置发送该下行信号,包括:
在该多个频点上按周期发送该广播信号。
可选地,广播信号和同步信号可以有对应关系。
在一些可能的实现方式中,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域在该无线帧内的时域长度小于该无线帧的长度。
在一些可能的实现方式中,该方法还包括:
向终端设备显式或隐式指示该下行控制区域的信息。
在一些可能的实现方式中,向终端设备显式或隐式指示该下行控制区域的信息,包括:
通过以下中的至少一项向该终端设备显式或隐式指示该下行控制区域的信息:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
在一些可能的实现方式中,该下行信号包括测量参考信号;
根据该下行信号的时频资源位置发送该下行信号,包括:
在该多个频点的非下行控制区域内按周期发送该测量参考信号。
在一些可能的实现方式中,该方法还包括:
若该测量参考信号的时频资源位置与下行数据的时频资源位置冲突,则采用打孔方式发送该测量参考信号或者该下行数据。
本发明实施例的信号传输的方法,能够提高终端设备进行小区搜索、在待机或连接状态下测量的速度和准确性,从而能够提高终端设备的通信效率。
第二方面,提供了一种信号传输的方法,包括:
确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号。
本发明实施例的信号传输的方法,通过在预定时间内载波的多个频点上接收下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信效率。
在一些可能的实现方式中,该下行信号包括同步信号;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号,包括:
在该多个频点上接收该网络设备按周期发送的该同步信号。
在一些可能的实现方式中,在该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
在一些可能的实现方式中,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
在一些可能的实现方式中,该下行信号包括广播信号;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号,包括:
在该多个频点上接收该网络设备按周期发送的该广播信号。
在一些可能的实现方式中,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域 在该无线帧内的时域长度小于该无线帧的长度。
在一些可能的实现方式中,该方法还包括:
获取该网络设备显式或隐式指示的该下行控制区域的信息;
确定下行信号的时频资源位置,包括:
根据该下行控制区域的信息确定该下行控制区域。
在一些可能的实现方式中,根据该下行控制区域的信息确定该下行控制区域,包括:
根据以下中的至少一项确定该下行控制区域:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
在一些可能的实现方式中,该下行信号包括测量参考信号;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号,包括:
在该多个频点的非下行控制区域内接收该网络设备按周期发送的该测量参考信号。
本发明实施例的信号传输的方法,能够提高终端设备进行小区搜索、在待机或连接状态下测量的速度和准确性,从而能够提高终端设备的通信效率。
第三方面,提供了一种网络设备,包括执行第一方面或第一方面的任意可能的实现方式中的方法的模块。
第四方面,提供了一种终端设备,包括执行第二方面或第二方面的任意可能的实现方式中的方法的模块。
第五方面,提供了一种网络设备。该网络设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用 于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种终端设备。该终端设备包括处理器、存储器和通信接口。处理器与存储器和通信接口连接。存储器用于存储指令,处理器用于执行该指令,通信接口用于在处理器的控制下与其他网元进行通信。该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的应用场景的示意图。
图2是本发明一个实施例的信号传输的方法的示意性流程图。
图3是本发明一个实施例的下行信号的时频资源位置的示意图。
图4是本发明另一实施例的下行信号的时频资源位置的示意图。
图5是本发明又一实施例的下行信号的时频资源位置的示意图。
图6是本发明又一实施例的下行信号的时频资源位置的示意图。
图7是本发明又一实施例的下行信号的时频资源位置的示意图。
图8是本发明另一实施例的信号传输的方法的示意性流程图。
图9是本发明一个实施例的网络设备的示意性框图。
图10是本发明一个实施例的终端设备的示意性框图。
图11是本发明另一实施例的网络设备的示意性结构图。
图12是本发明另一实施例的终端设备的示意性结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、等目前的通信系统,以及,尤其应用于未来的5G系统。
本发明实施例中的终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本发明实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
本发明实施例中的载波,也可以表示为小区,表示一个通信系统。换句话说,本发明实施例中的一个载波对应一个小区,一个通信系统。
图1是本发明实施例的应用场景的示意图。图1中的通信系统可以包括网络设备,例如eNodeB 20和至少一个终端设备,例如UE 10,UE 11,UE 12,UE 13,UE 14,UE 15,UE 16和UE 17。eNodeB 20用于为UE 10至UE 17中的至少一个终端设备提供通信服务,并接入核心网。UE 10至UE 17中的每一个终端设备通过搜索eNodeB 20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。对于大带宽载波的系统,单一同步信道、广播信道的方式难以满足终端设备快速搜索的要求,从而影响终端设备的通信效率。本发明实施例通过在一个载波/小区中设置多组同步信道、广播信道等,以满足终端设备快速搜索的要求,从而提高终端设备的通信效率。
图2示出了根据本发明实施例的信号传输的方法200的示意性流程图。该方法200由网络设备执行,例如图1中的eNodeB 20。该网络设备和终端设备可以在一个载波/小区中进行通信。为了简洁,以下以载波为例进行描述,即图2中的方法针对一个载波。在该载波的带宽内包括许多频点。如图2所示,该方法200包括:
S210,确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
S220,根据该下行信号的时频资源位置发送该下行信号。
在本发明实施例中,下行信号,例如同步信号、广播信号、公共控制信道信号、公共参考信号或测量参考信号,的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点。也就是说,该下行信号既不是在载波的单一频点上发送,也不是在载波的全部频点上发送,这样,既能满足终端设备快速搜索的要求,又能节省系统开销,从而能够提高终端设备的通信效率。
因此,本发明实施例的信号传输的方法,通过在预定时间内载波的多个频点上发送下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信效率。
应理解,在本发明实施例中,预定时间表示一段时间,本发明对此不做限定,例如,该预定时间可以是一个或多个无线帧,也可以是一个或多个子帧或符号。在预定时间内载波的多个频点上发送,既可以是在一段时间内按 周期在该多个频点上重复发送,也可以是在一段时间内的一个周期在一个频点上发送,在下一个周期在另一频点上发送。
还应理解,在本发明实施例中,各种下行信号的时频资源位置的图样可以预先设定,网络设备和终端设备根据预先设定的图样确定下行信号的时频资源位置;各种下行信号的时频资源位置的图样也可以由网络设备确定并发送给终端设备,本发明对此并不限定。
下面针对各种下行信号,对本发明实施例进行具体描述。
可选地,在本发明一个实施例中,该下行信号包括同步信号;
在这种情况下,网络设备可以在该多个频点上按周期发送该同步信号。
具体而言,为了能够使终端设备能够快速搜索到同步信号,在本发明实施例中,网络设备在载波的多个频点上按周期发送同步信号,即在多个频点上重复发送同步信号。也就是说,本发明实施例设置多组同步信号(synchronization signal,SS),一般为特定的数字序列,分别在多个频点上重复发送。例如,同步信号的时频资源位置可以如图3所示。
例如,如果一个5G载波/小区的频率带宽是80MHz,则可以在每20MHz的频域资源上设置一组在时间上周期重复的同步信号,终端搜索到任何一组同步信号都可以获取和小区的同步。
可选地,该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
可选地,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
具体而言,同一个5G载波/小区的不同频域资源上的同步信号使用的数字序列可以不同。如果使用的数字序列不同,则同一个5G载波/小区的不同频域资源上的同步信号使用的数字序列可以具有某种内在联系,例如可以使用同一个根序列(root sequence)的不同循环移位(cyclic shift),此循环移位可以使用某种特定的偏移量(offset)以表征属于同一个载波/小区。
可选地,在本发明一个实施例中,该下行信号包括广播信号;
在这种情况下,网络设备可以在该多个频点上按周期发送该广播信号。
具体而言,为了能够使终端设备能够快速搜索到广播信号,在本发明实施例中,网络设备在载波的多个频点上按周期发送广播信号,即在多个频点上重复发送广播信号。例如,广播信号的时频资源位置可以如图4所示。
例如,一个5G载波/小区在小区内不同的频率资源上设置多组在时间上周期重复的基本系统信息(basic system information),也可称为主信息块(Master Information Block,MIB),使用物理广播信道(Physical Broadcast Channel,PBCH)承载,其中可以包括下行/上行带宽、系统帧号(System Frame Number,SFN)、天线数量、控制信号的传输模式等,以便于终端设备快速接收和解调。
可选地,PBCH和SS可以有对应关系,例如每一个设置了同步信号的频域资源(频点)中可以有一个PBCH,例如图4所示。
可选地,在本发明一个实施例中,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域在该无线帧内的时域长度小于该无线帧的长度。
具体而言,在本发明实施例中,下行控制区域占用有限频率和时间资源,即频率上小于此载波的整体下行带宽,时间上小于无线帧的长度,最短可以为一个符号。例如,下行控制区域的位置可以如图5所示。
下行控制区域,也可以称为下行公共控制区域,用以传输公共控制信道和/或公共参考信号。公共控制信道可以指示专用控制信道的位置,专用控制信道用于某一块用户数据的解调。公共参考符号可以用于待机(IDLE)状态下的小区测量重选和连接(CONNECTED)状态下的小区测量切换。
采用本发明实施例的技术方案,可以提高终端设备在待机或连接状态下测量的速度和准确性。
可选地,该方法还以包括:
向终端设备显式或隐式指示该下行控制区域的信息。
也就是说,下行控制区域的信息可以显示或隐式指示。
具体地,网络设备可以通过以下中的至少一项向该终端设备显式或隐式指示该下行控制区域的信息:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信 息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
例如,一个5G载波/小区内某个频率资源上公共控制信道的存在与否;如果存在,其位置和所占资源大小,可以由以下一种方式或不同方式(不一定是全部方式)进行指示:
5G载波/小区内不同频率资源的起始和终止的位置;
5G载波/小区内不同频率资源上的无线帧和无线子帧的时间分配;
(本频率资源中)同步信号所使用的序列(如序列长度、根序列在全部序列中的编号、循环移位的偏移量等);
同步信号和物理广播信道PBCH的相对时频位置;
物理广播信道PBCH的内容,包括叠加在PBCH内容和/或校验位上的掩码(mask);
由第一级系统信息(由物理广播信道PBCH承载)所指示的第二级或更低级系统信息的内容。
可选地,在本发明一个实施例中,该下行信号包括测量参考信号;
在这种情况下,网络设备可以在该多个频点的非下行控制区域内按周期发送该测量参考信号。
例如,一个5G载波/小区在小区内非下行控制区域内可以在不同频率上周期性的发送用于待机(IDLE)状态下的小区测量重选和连接(CONNECTED)状态下的小区测量切换的参考信号,这种参考信号的密度一般低于用于解调的参考信号,可以称为测量参考信号(measurement reference signal,MRS)。例如,测量参考信号的时频资源位置可以如图6所示。这样,能够进一步提高终端设备在待机或连接状态下测量的速度和准确性。
可选地,若该测量参考信号的时频资源位置与下行数据的时频资源位置冲突,则采用打孔方式发送该测量参考信号或者该下行数据。例如图7所示。
应理解,图4至图7中示出了多种下行信号的时频资源位置,但本发明并不限制不同下行信号的时频资源位置间的关系,换句话说,不同下行信号的时频资源位置之间可以有关联,也可以没有关联。
还应理解,本发明实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
本发明实施例的信号传输的方法,能够提高终端设备进行小区搜索、在待机或连接状态下测量的速度和准确性,从而能够提高终端设备的通信效率。
以上从网络设备侧描述了本发明实施例的信号传输的方法,下面从终端设备侧描述本发明实施例的信号传输的方法。
图8示出了根据本发明实施例的信号传输的方法800的示意性流程图。该方法800由终端设备执行,例如图1中的UE 10至UE 17中的任一个。如图8所示,该方法800包括:
S810,确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
S820,根据该下行信号的时频资源位置接收网络设备发送的该下行信号。
本发明实施例的信号传输的方法,通过在预定时间内载波的多个频点上接收下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信效率。
可选地,在本发明一个实施例中,该下行信号包括同步信号;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号,包括:
在该多个频点上接收该网络设备按周期发送的该同步信号。
可选地,在该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
可选地,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
可选地,在本发明一个实施例中,该下行信号包括广播信号;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号,包括:
在该多个频点上接收该网络设备按周期发送的该广播信号。
可选地,在本发明一个实施例中,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域在该无线帧内的时域长度小于该无线帧的长度。
可选地,该方法800还可以包括:
获取该网络设备显式或隐式指示的该下行控制区域的信息;
确定下行信号的时频资源位置,包括:
根据该下行控制区域的信息确定该下行控制区域。
可选地,根据该下行控制区域的信息确定该下行控制区域,包括:
根据以下中的至少一项确定该下行控制区域:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
可选地,在本发明一个实施例中,该下行信号包括测量参考信号;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号,包括:
在该多个频点的非下行控制区域内接收该网络设备按周期发送的该测量参考信号。
应理解,在本发明实施例中,网络设备侧描述的网络设备和终端设备之间的交互及相关特性、功能等与终端设备侧的描述相应,为了简洁,在此不再赘述。
本发明实施例的信号传输的方法,能够提高终端设备进行小区搜索、在待机或连接状态下测量的速度和准确性,从而能够提高终端设备的通信效率。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味 着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文详细描述了根据本发明实施例的信号传输的方法,下面将描述根据本发明实施例的网络设备和终端设备。应理解,本发明实施例的网络设备和终端设备可以执行前述本发明实施例的各种方法,即以下各种设备的具体工作过程,可以参考前述方法实施例中的对应过程。
图9示出了根据本发明实施例的网络设备900的示意性框图。如图9所示,该网络设备900包括:
确定模块910,用于确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
发送模块920,用于根据该下行信号的时频资源位置发送该下行信号。
本发明实施例的网络设备,通过在预定时间内载波的多个频点上发送下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信效率。
可选地,在本发明一个实施例中,该下行信号包括同步信号;
该发送模块920具体用于,在该多个频点上按周期发送该同步信号。
可选地,在该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
可选地,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
可选地,在本发明一个实施例中,该下行信号包括广播信号;
该发送模块920具体用于,在该多个频点上按周期发送该广播信号。
可选地,在本发明一个实施例中,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域在该无线帧内的时域长度小于该无线帧的长度。
可选地,在本发明一个实施例中,该发送模块920还用于,向终端设备显式或隐式指示该下行控制区域的信息。
可选地,该发送模块920具体用于,通过以下中的至少一项向该终端设 备显式或隐式指示该下行控制区域的信息:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
可选地,在本发明一个实施例中,该下行信号包括测量参考信号;
该发送模块920具体用于,在该多个频点的非下行控制区域内按周期发送该测量参考信号。
可选地,该发送模块920还用于,若该测量参考信号的时频资源位置与下行数据的时频资源位置冲突,则采用打孔方式发送该测量参考信号或者该下行数据。
根据本发明实施例的网络设备900可对应于根据本发明实施例的信号传输的方法中的网络设备,并且网络设备900中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
本发明实施例的网络设备,能够提高终端设备进行小区搜索、在待机或连接状态下测量的速度和准确性,从而能够提高终端设备的通信效率。
图10示出了根据本发明实施例的终端设备1000的示意性框图。如图10所示,该终端设备1000包括:
确定模块1010,用于确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
接收模块1020,用于根据该下行信号的时频资源位置接收网络设备发送的该下行信号。
本发明实施例的终端设备,通过在预定时间内载波的多个频点上接收下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信 效率。
可选地,在本发明一个实施例中,该下行信号包括同步信号;
该接收模块1020具体用于,在该多个频点上接收该网络设备按周期发送的该同步信号。
可选地,在该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
可选地,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
可选地,在本发明一个实施例中,该下行信号包括广播信号;
该接收模块1020具体用于,在该多个频点上接收该网络设备按周期发送的该广播信号。
可选地,在本发明一个实施例中,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域在该无线帧内的时域长度小于该无线帧的长度。
可选地,在本发明一个实施例中,该接收模块1020还用于,获取该网络设备显式或隐式指示的该下行控制区域的信息;
该确定模块1010具体用于,根据该下行控制区域的信息确定该下行控制区域。
可选地,该确定模块1010具体用于,根据以下中的至少一项确定该下行控制区域:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
可选地,在本发明一个实施例中,该下行信号包括测量参考信号;
该接收模块1020具体用于,在该多个频点的非下行控制区域内接收该网络设备按周期发送的该测量参考信号。
根据本发明实施例的终端设备1000可对应于根据本发明实施例的信号传输的方法中的终端设备,并且终端设备1000中的各个模块的上述和其它操作和/或功能分别为了实现前述各个方法的相应流程,为了简洁,在此不再赘述。
本发明实施例的终端设备,能够提高终端设备进行小区搜索、在待机或连接状态下测量的速度和准确性,从而能够提高终端设备的通信效率。
图11示出了本发明的又一实施例提供的网络设备的结构,包括至少一个处理器1102(例如CPU),至少一个网络接口1105或者其他通信接口,存储器1106,和至少一个通信总线1103,用于实现这些装置之间的连接通信。处理器1102用于执行存储器1106中存储的可执行模块,例如计算机程序。存储器1106可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口1105(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1106存储了程序11061,处理器1102执行程序11061,用于执行以下操作:
确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
根据该下行信号的时频资源位置发送该下行信号。
可选地,该下行信号包括同步信号;
处理器1102具体用于,在该多个频点上按周期发送该同步信号。
可选地,在该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
可选地,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
可选地,该下行信号包括广播信号;
处理器1102具体用于,在该多个频点上按周期发送该广播信号。
可选地,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域在该无线帧内的时域长度小于该无线帧的长度。
可选地,处理器1102还用于,向终端设备显式或隐式指示该下行控制区域的信息。
可选地,处理器1102具体用于,通过以下中的至少一项向该终端设备显式或隐式指示该下行控制区域的信息:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
可选地,该下行信号包括测量参考信号;
处理器1102具体用于,在该多个频点的非下行控制区域内按周期发送该测量参考信号。
可选地,处理器1102还用于,若该测量参考信号的时频资源位置与下行数据的时频资源位置冲突,则采用打孔方式发送该测量参考信号或者该下行数据。
从本发明实施例提供的以上技术方案可以看出,本发明实施例通过在预定时间内载波的多个频点上发送下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信效率。
图12示出了本发明的又一实施例提供的MME的结构,包括至少一个处理器1202(例如CPU),至少一个网络接口1205或者其他通信接口,存储器1206,和至少一个通信总线1203,用于实现这些装置之间的连接通信。处理器1202用于执行存储器1206中存储的可执行模块,例如计算机程序。存储器1206可能包含高速随机存取存储器(RAM:Random Access Memory), 也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个网络接口1205(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1206存储了程序12061,处理器1202执行程序12061,用于执行以下操作:
确定下行信号的时频资源位置,其中,该下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,该下行信号的时频资源位置位于预定时间内载波的多个频点上,该多个频点为该载波的带宽内的一部分频点;
根据该下行信号的时频资源位置接收网络设备发送的该下行信号。
可选地,该下行信号包括同步信号;
处理器1202具体用于,在该多个频点上接收该网络设备按周期发送的该同步信号。
可选地,在该多个频点中的不同频点上发送该同步信号的周期相同或者不同。
可选地,在该多个频点中的不同频点上发送该同步信号使用的序列相同或者不同。
可选地,该下行信号包括广播信号;
处理器1202具体用于,在该多个频点上接收该网络设备按周期发送的该广播信号。
可选地,该下行信号包括公共控制信道信号或公共参考信号,该公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,该下行控制区域位于无线帧内的该多个频点上,且该下行控制区域在该无线帧内的时域长度小于该无线帧的长度。
可选地,处理器1202用于,获取该网络设备显式或隐式指示的该下行控制区域的信息;
根据该下行控制区域的信息确定该下行控制区域。
可选地,处理器1202具体用于,根据以下中的至少一项确定该下行控制区域:
该多个频点中每个频点的起始和终止的位置的信息;
该下行控制区域位于的该无线帧和该无线帧中的子帧的信息;
该同步信号所使用的序列的信息,该同步信号所使用的序列的信息用于指示该下行控制区域是否位于发送该同步信号的频点上;
该同步信号和该广播信号的相对时频位置的信息,该相对时频位置的信息用于指示该下行控制区域是否位于发送该同步信号和该广播信号的频点上;
该广播信号的内容;
该广播信号所指示的基本系统信息的内容。
可选地,该下行信号包括测量参考信号;
处理器1202具体用于,在该多个频点的非下行控制区域内接收该网络设备按周期发送的该测量参考信号。
从本发明实施例提供的以上技术方案可以看出,本发明实施例通过在预定时间内载波的多个频点上接收下行信号,能够满足终端设备快速搜索的要求,从而能够提高终端设备的通信效率。
应理解,在本发明实施例中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (38)

  1. 一种信号传输的方法,其特征在于,包括:
    确定下行信号的时频资源位置,其中,所述下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,所述下行信号的时频资源位置位于预定时间内载波的多个频点上,所述多个频点为所述载波的带宽内的一部分频点;
    根据所述下行信号的时频资源位置发送所述下行信号。
  2. 根据权利要求1所述的方法,其特征在于,所述下行信号包括同步信号;
    所述根据所述下行信号的时频资源位置发送所述下行信号,包括:
    在所述多个频点上按周期发送所述同步信号。
  3. 根据权利要求2所述的方法,其特征在于,在所述多个频点中的不同频点上发送所述同步信号的周期相同或者不同。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述多个频点中的不同频点上发送所述同步信号使用的序列相同或者不同。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述下行信号包括广播信号;
    所述根据所述下行信号的时频资源位置发送所述下行信号,包括:
    在所述多个频点上按周期发送所述广播信号。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述下行信号包括公共控制信道信号或公共参考信号,所述公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,所述下行控制区域位于无线帧内的所述多个频点上,且所述下行控制区域在所述无线帧内的时域长度小于所述无线帧的长度。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    向终端设备显式或隐式指示所述下行控制区域的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述向终端设备显式或隐式指示所述下行控制区域的信息,包括:
    通过以下中的至少一项向所述终端设备显式或隐式指示所述下行控制区域的信息:
    所述多个频点中每个频点的起始和终止的位置的信息;
    所述下行控制区域位于的所述无线帧和所述无线帧中的子帧的信息;
    所述同步信号所使用的序列的信息,所述同步信号所使用的序列的信息用于指示所述下行控制区域是否位于发送所述同步信号的频点上;
    所述同步信号和所述广播信号的相对时频位置的信息,所述相对时频位置的信息用于指示所述下行控制区域是否位于发送所述同步信号和所述广播信号的频点上;
    所述广播信号的内容;
    所述广播信号所指示的基本系统信息的内容。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述下行信号包括测量参考信号;
    所述根据所述下行信号的时频资源位置发送所述下行信号,包括:
    在所述多个频点的非下行控制区域内按周期发送所述测量参考信号。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    若所述测量参考信号的时频资源位置与下行数据的时频资源位置冲突,则采用打孔方式发送所述测量参考信号或者所述下行数据。
  11. 一种信号传输的方法,其特征在于,包括:
    确定下行信号的时频资源位置,其中,所述下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,所述下行信号的时频资源位置位于预定时间内载波的多个频点上,所述多个频点为所述载波的带宽内的一部分频点;
    根据所述下行信号的时频资源位置接收网络设备发送的所述下行信号。
  12. 根据权利要求11所述的方法,其特征在于,所述下行信号包括同步信号;
    所述根据所述下行信号的时频资源位置接收网络设备发送的所述下行信号,包括:
    在所述多个频点上接收所述网络设备按周期发送的所述同步信号。
  13. 根据权利要求12所述的方法,其特征在于,在所述多个频点中的不同频点上发送所述同步信号的周期相同或者不同。
  14. 根据权利要求12或13所述的方法,其特征在于,在所述多个频点中的不同频点上发送所述同步信号使用的序列相同或者不同。
  15. 根据权利要求11至14中任一项所述的方法,其特征在于,所述下 行信号包括广播信号;
    所述根据所述下行信号的时频资源位置接收网络设备发送的所述下行信号,包括:
    在所述多个频点上接收所述网络设备按周期发送的所述广播信号。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述下行信号包括公共控制信道信号或公共参考信号,所述公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,所述下行控制区域位于无线帧内的所述多个频点上,且所述下行控制区域在所述无线帧内的时域长度小于所述无线帧的长度。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    获取所述网络设备显式或隐式指示的所述下行控制区域的信息;
    所述确定下行信号的时频资源位置,包括:
    根据所述下行控制区域的信息确定所述下行控制区域。
  18. 根据权利要求17所述的方法,其特征在于,所述根据所述下行控制区域的信息确定所述下行控制区域,包括:
    根据以下中的至少一项确定所述下行控制区域:
    所述多个频点中每个频点的起始和终止的位置的信息;
    所述下行控制区域位于的所述无线帧和所述无线帧中的子帧的信息;
    所述同步信号所使用的序列的信息,所述同步信号所使用的序列的信息用于指示所述下行控制区域是否位于发送所述同步信号的频点上;
    所述同步信号和所述广播信号的相对时频位置的信息,所述相对时频位置的信息用于指示所述下行控制区域是否位于发送所述同步信号和所述广播信号的频点上;
    所述广播信号的内容;
    所述广播信号所指示的基本系统信息的内容。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述下行信号包括测量参考信号;
    所述根据所述下行信号的时频资源位置接收网络设备发送的所述下行信号,包括:
    在所述多个频点的非下行控制区域内接收所述网络设备按周期发送的所述测量参考信号。
  20. 一种网络设备,其特征在于,包括:
    确定模块,用于确定下行信号的时频资源位置,其中,所述下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,所述下行信号的时频资源位置位于预定时间内载波的多个频点上,所述多个频点为所述载波的带宽内的一部分频点;
    发送模块,用于根据所述下行信号的时频资源位置发送所述下行信号。
  21. 根据权利要求20所述的网络设备,其特征在于,所述下行信号包括同步信号;
    所述发送模块具体用于,在所述多个频点上按周期发送所述同步信号。
  22. 根据权利要求21所述的网络设备,其特征在于,在所述多个频点中的不同频点上发送所述同步信号的周期相同或者不同。
  23. 根据权利要求21或22所述的网络设备,其特征在于,在所述多个频点中的不同频点上发送所述同步信号使用的序列相同或者不同。
  24. 根据权利要求20至23中任一项所述的网络设备,其特征在于,所述下行信号包括广播信号;
    所述发送模块具体用于,在所述多个频点上按周期发送所述广播信号。
  25. 根据权利要求20至24中任一项所述的网络设备,其特征在于,所述下行信号包括公共控制信道信号或公共参考信号,所述公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,所述下行控制区域位于无线帧内的所述多个频点上,且所述下行控制区域在所述无线帧内的时域长度小于所述无线帧的长度。
  26. 根据权利要求25所述的网络设备,其特征在于,所述发送模块还用于,向终端设备显式或隐式指示所述下行控制区域的信息。
  27. 根据权利要求26所述的网络设备,其特征在于,所述发送模块具体用于,通过以下中的至少一项向所述终端设备显式或隐式指示所述下行控制区域的信息:
    所述多个频点中每个频点的起始和终止的位置的信息;
    所述下行控制区域位于的所述无线帧和所述无线帧中的子帧的信息;
    所述同步信号所使用的序列的信息,所述同步信号所使用的序列的信息用于指示所述下行控制区域是否位于发送所述同步信号的频点上;
    所述同步信号和所述广播信号的相对时频位置的信息,所述相对时频位 置的信息用于指示所述下行控制区域是否位于发送所述同步信号和所述广播信号的频点上;
    所述广播信号的内容;
    所述广播信号所指示的基本系统信息的内容。
  28. 根据权利要求20至27中任一项所述的网络设备,其特征在于,所述下行信号包括测量参考信号;
    所述发送模块具体用于,在所述多个频点的非下行控制区域内按周期发送所述测量参考信号。
  29. 根据权利要求28所述的网络设备,其特征在于,所述发送模块还用于,若所述测量参考信号的时频资源位置与下行数据的时频资源位置冲突,则采用打孔方式发送所述测量参考信号或者所述下行数据。
  30. 一种终端设备,其特征在于,包括:
    确定模块,用于确定下行信号的时频资源位置,其中,所述下行信号包括同步信号、广播信号、公共控制信道信号、公共参考信号和测量参考信号中的至少一种,所述下行信号的时频资源位置位于预定时间内载波的多个频点上,所述多个频点为所述载波的带宽内的一部分频点;
    接收模块,用于根据所述下行信号的时频资源位置接收网络设备发送的所述下行信号。
  31. 根据权利要求30所述的终端设备,其特征在于,所述下行信号包括同步信号;
    所述接收模块具体用于,在所述多个频点上接收所述网络设备按周期发送的所述同步信号。
  32. 根据权利要求31所述的终端设备,其特征在于,在所述多个频点中的不同频点上发送所述同步信号的周期相同或者不同。
  33. 根据权利要求31或32所述的终端设备,其特征在于,在所述多个频点中的不同频点上发送所述同步信号使用的序列相同或者不同。
  34. 根据权利要求30至33中任一项所述的终端设备,其特征在于,所述下行信号包括广播信号;
    所述接收模块具体用于,在所述多个频点上接收所述网络设备按周期发送的所述广播信号。
  35. 根据权利要求30至34中任一项所述的终端设备,其特征在于,所 述下行信号包括公共控制信道信号或公共参考信号,所述公共控制信道信号或公共参考信号的时频资源位置位于下行控制区域内,所述下行控制区域位于无线帧内的所述多个频点上,且所述下行控制区域在所述无线帧内的时域长度小于所述无线帧的长度。
  36. 根据权利要求35所述的终端设备,其特征在于,所述接收模块还用于,获取所述网络设备显式或隐式指示的所述下行控制区域的信息;
    所述确定模块具体用于,根据所述下行控制区域的信息确定所述下行控制区域。
  37. 根据权利要求36所述的终端设备,其特征在于,所述确定模块具体用于,根据以下中的至少一项确定所述下行控制区域:
    所述多个频点中每个频点的起始和终止的位置的信息;
    所述下行控制区域位于的所述无线帧和所述无线帧中的子帧的信息;
    所述同步信号所使用的序列的信息,所述同步信号所使用的序列的信息用于指示所述下行控制区域是否位于发送所述同步信号的频点上;
    所述同步信号和所述广播信号的相对时频位置的信息,所述相对时频位置的信息用于指示所述下行控制区域是否位于发送所述同步信号和所述广播信号的频点上;
    所述广播信号的内容;
    所述广播信号所指示的基本系统信息的内容。
  38. 根据权利要求30至37中任一项所述的终端设备,其特征在于,所述下行信号包括测量参考信号;
    所述接收模块具体用于,在所述多个频点的非下行控制区域内接收所述网络设备按周期发送的所述测量参考信号。
PCT/CN2016/081880 2016-05-12 2016-05-12 信号传输的方法、网络设备和终端设备 WO2017193339A1 (zh)

Priority Applications (18)

Application Number Priority Date Filing Date Title
EP19150345.7A EP3490210B1 (en) 2016-05-12 2016-05-12 Transmission method for determining a time-frequency resource location
SG11201809608XA SG11201809608XA (en) 2016-05-12 2016-05-12 Signal transmission method, network device, and terminal device
MX2018013518A MX2018013518A (es) 2016-05-12 2016-05-12 Metodo de transmision de se?al, dispositivo de red y dispositivo terminal.
KR1020187029743A KR20190005834A (ko) 2016-05-12 2016-05-12 신호 전송 방법, 네트워크 기기 및 단말 기기
RU2018142982A RU2704254C1 (ru) 2016-05-12 2016-05-12 Способ передачи сигналов, сетевое оборудование и терминальное оборудование
JP2018555514A JP7091253B2 (ja) 2016-05-12 2016-05-12 信号伝送方法、ネットワーク設備及び端末設備
CA3022660A CA3022660C (en) 2016-05-12 2016-05-12 Signal transmission method, network device, and terminal device
AU2016406274A AU2016406274B2 (en) 2016-05-12 2016-05-12 Signal transmission method, network device, and terminal device
US16/095,322 US11076384B2 (en) 2016-05-12 2016-05-12 Signal transmission method, network device, and terminal device
EP16901294.5A EP3422651B1 (en) 2016-05-12 2016-05-12 Signal transmission method and corresponding signal reception method
PCT/CN2016/081880 WO2017193339A1 (zh) 2016-05-12 2016-05-12 信号传输的方法、网络设备和终端设备
CN201680084355.0A CN109076043B (zh) 2016-05-12 2016-05-12 信号传输的方法、网络设备和终端设备
BR112018073177-3A BR112018073177B1 (pt) 2016-05-12 2016-05-12 Método de transmissão de sinais
TW106115184A TWI746549B (zh) 2016-05-12 2017-05-08 訊號傳輸的方法、網路設備和終端設備
ZA2018/07290A ZA201807290B (en) 2016-05-12 2018-10-31 Signal transmission method, network device, and terminal device
US16/231,841 US10849102B2 (en) 2016-05-12 2018-12-24 Signal transmission method, network device, and terminal device
HK19100707.3A HK1258339A1 (zh) 2016-05-12 2019-01-16 信號傳輸的方法、網絡設備和終端設備
JP2021071676A JP7228619B2 (ja) 2016-05-12 2021-04-21 信号伝送方法、ネットワーク設備及び端末設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081880 WO2017193339A1 (zh) 2016-05-12 2016-05-12 信号传输的方法、网络设备和终端设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/095,322 A-371-Of-International US11076384B2 (en) 2016-05-12 2016-05-12 Signal transmission method, network device, and terminal device
US16/231,841 Continuation US10849102B2 (en) 2016-05-12 2018-12-24 Signal transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2017193339A1 true WO2017193339A1 (zh) 2017-11-16

Family

ID=60266867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081880 WO2017193339A1 (zh) 2016-05-12 2016-05-12 信号传输的方法、网络设备和终端设备

Country Status (15)

Country Link
US (2) US11076384B2 (zh)
EP (2) EP3422651B1 (zh)
JP (2) JP7091253B2 (zh)
KR (1) KR20190005834A (zh)
CN (1) CN109076043B (zh)
AU (1) AU2016406274B2 (zh)
BR (1) BR112018073177B1 (zh)
CA (1) CA3022660C (zh)
HK (1) HK1258339A1 (zh)
MX (1) MX2018013518A (zh)
RU (1) RU2704254C1 (zh)
SG (1) SG11201809608XA (zh)
TW (1) TWI746549B (zh)
WO (1) WO2017193339A1 (zh)
ZA (1) ZA201807290B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016406274B2 (en) * 2016-05-12 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, network device, and terminal device
CN107734596B (zh) * 2016-08-12 2023-06-16 华为技术有限公司 一种物理广播信道发送和接收方法及装置
CN113133090B (zh) * 2019-12-30 2023-03-31 大唐移动通信设备有限公司 信号传输方法及装置
CN117858027A (zh) * 2022-09-29 2024-04-09 大唐移动通信设备有限公司 广播消息反馈和公共配置信息获取方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155978A1 (zh) * 2012-04-20 2013-10-24 电信科学技术研究院 一种信号传输方法及装置
CN103428143A (zh) * 2012-05-22 2013-12-04 普天信息技术研究院有限公司 一种同步信号发送方法
CN103685119A (zh) * 2012-09-12 2014-03-26 中国移动通信集团公司 上行数据传输方法及演进基站和用户设备
CN105451341A (zh) * 2015-11-06 2016-03-30 北京佰才邦技术有限公司 非授权频段中配置参考信号的方法和装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101489285B (zh) * 2008-01-17 2010-09-22 大唐移动通信设备有限公司 用户设备接入方法及系统
CN101616360B (zh) 2009-07-24 2012-05-09 中兴通讯股份有限公司 一种定位参考信号的发送方法及系统
US8885541B2 (en) * 2009-08-04 2014-11-11 Qualcomm Incorporated Extension of UE-RS to DWPTS
US9144037B2 (en) * 2009-08-11 2015-09-22 Qualcomm Incorporated Interference mitigation by puncturing transmission of interfering cells
US20110244877A1 (en) 2009-10-08 2011-10-06 Qualcomm Incorporated Method and apparatus for using channel state information reference signal in wireless communication system
US8824384B2 (en) * 2009-12-14 2014-09-02 Samsung Electronics Co., Ltd. Systems and methods for transmitting channel quality information in wireless communication systems
CN102742238A (zh) 2010-02-17 2012-10-17 中兴通讯(美国)公司 用于lte-advance系统中csi-rs传输的方法和系统
KR101376635B1 (ko) 2011-01-14 2014-03-24 한국생명공학연구원 Rex1을 포함하는 세포 리프로그래밍 조성물 및 이를 이용한 유도만능줄기세포 제조방법
EP2683098B1 (en) 2011-03-01 2019-05-15 LG Electronics Inc. Method and apparatus for searching control information by terminal in multinode system
US10638464B2 (en) 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
JP6026082B2 (ja) 2011-04-05 2016-11-16 シャープ株式会社 端末、基地局、通信方法および集積回路
KR101818584B1 (ko) 2011-06-15 2018-01-15 삼성전자 주식회사 전용 기준 신호를 위한 공통 제어 채널 자원 할당 방법 및 장치
GB2493702B (en) * 2011-08-11 2016-05-04 Sca Ipla Holdings Inc OFDM subcarrier allocations in wireless telecommunications systems
EP2742716A1 (en) * 2011-08-12 2014-06-18 Interdigital Patent Holdings, Inc. Interference measurement in wireless networks
GB2493780B (en) * 2011-08-19 2016-04-20 Sca Ipla Holdings Inc Telecommunications apparatus and methods
US9681456B2 (en) * 2011-12-15 2017-06-13 Lg Electronics Inc. Method for reducing interference of user equipment in wireless access system, and the user equipment for the same
EP2663001B1 (en) 2012-05-07 2015-07-01 MStar Semiconductor, Inc OFDM symbol receiving and demodulating apparatus and demodulating method
WO2014021247A1 (ja) * 2012-07-30 2014-02-06 シャープ株式会社 基地局装置、移動局装置、通信方法、および集積回路
GB2506583A (en) 2012-08-31 2014-04-09 Sony Corp Inserting a virtual narrowband carrier in wideband carrier of a mobile communications system
US9769807B2 (en) * 2012-09-28 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) User equipment, radio network node and methods therein
CN103716841A (zh) 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
KR102020342B1 (ko) 2013-02-28 2019-09-10 삼성전자 주식회사 새로운 반송파 형식에서의 간섭 측정 방법 및 장치
CN104052532B (zh) 2013-03-15 2019-02-22 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
CN103402251B (zh) 2013-08-09 2017-02-22 上海瀚讯无线技术有限公司 同步信息收发方法、信道映射解析方法、控制信息发送方法
CN108900274B (zh) 2013-09-27 2021-02-05 三星电子株式会社 用于先进lte的发现信号的方法和装置
EP2919407B1 (en) * 2014-03-14 2020-08-26 Fujitsu Limited Coverage extension in wireless communication
EP3139682A4 (en) 2014-04-28 2017-04-19 Sharp Kabushiki Kaisha Terminal device, communication method, and integrated circuit
WO2016043555A1 (en) * 2014-09-18 2016-03-24 Lg Electronics Inc. Method and apparatus for using smaller bandwidth for low cost user equipment in wireless communication system
CN106304097B (zh) * 2015-05-15 2021-09-03 中兴通讯股份有限公司 资源使用方法、装置及系统
CN106937361A (zh) 2015-12-31 2017-07-07 电信科学技术研究院 无线小区中高频段同步信号的收发方法及装置
US9894602B1 (en) 2016-03-29 2018-02-13 Sprint Spectrum L.P. Management of cell selection in a communications system
AU2016406274B2 (en) * 2016-05-12 2021-07-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, network device, and terminal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155978A1 (zh) * 2012-04-20 2013-10-24 电信科学技术研究院 一种信号传输方法及装置
CN103428143A (zh) * 2012-05-22 2013-12-04 普天信息技术研究院有限公司 一种同步信号发送方法
CN103685119A (zh) * 2012-09-12 2014-03-26 中国移动通信集团公司 上行数据传输方法及演进基站和用户设备
CN105451341A (zh) * 2015-11-06 2016-03-30 北京佰才邦技术有限公司 非授权频段中配置参考信号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3422651A4 *

Also Published As

Publication number Publication date
US20190141674A1 (en) 2019-05-09
EP3490210B1 (en) 2021-10-06
JP7091253B2 (ja) 2022-06-27
EP3422651A4 (en) 2019-04-03
US20190132168A1 (en) 2019-05-02
EP3490210A1 (en) 2019-05-29
TWI746549B (zh) 2021-11-21
TW201740751A (zh) 2017-11-16
EP3422651B1 (en) 2021-10-06
BR112018073177B1 (pt) 2024-01-09
US10849102B2 (en) 2020-11-24
HK1258339A1 (zh) 2019-11-08
CA3022660C (en) 2021-12-07
SG11201809608XA (en) 2018-11-29
AU2016406274A1 (en) 2018-11-22
JP7228619B2 (ja) 2023-02-24
CN109076043B (zh) 2021-09-07
CN109076043A (zh) 2018-12-21
MX2018013518A (es) 2019-03-14
BR112018073177A2 (pt) 2019-02-19
JP2021121107A (ja) 2021-08-19
RU2704254C1 (ru) 2019-10-25
KR20190005834A (ko) 2019-01-16
JP2019521539A (ja) 2019-07-25
CA3022660A1 (en) 2017-11-16
US11076384B2 (en) 2021-07-27
ZA201807290B (en) 2019-07-31
AU2016406274B2 (en) 2021-07-22
EP3422651A1 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
TWI812603B (zh) 數據傳輸方法和裝置
US11153927B2 (en) Transition method, network device, and terminal device
JP7228619B2 (ja) 信号伝送方法、ネットワーク設備及び端末設備
TW201836410A (zh) 傳輸訊號的方法、終端設備和網路設備
TWI756255B (zh) 導頻信號的傳輸方法和設備
TWI759560B (zh) 傳輸訊息的方法和設備
US11425703B2 (en) Method for transmitting signal, network device and terminal device
US11191066B2 (en) Method for transmitting data, terminal device and network device
TWI757382B (zh) 傳輸信息的方法、網路設備和終端設備
WO2017156711A1 (zh) 信号发送的方法和基站
WO2022188649A1 (zh) 通信方法和装置
WO2022028474A1 (zh) Pdcch重复的配置确定方法及相关产品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016901294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016901294

Country of ref document: EP

Effective date: 20180925

ENP Entry into the national phase

Ref document number: 20187029743

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018555514

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3022660

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018073177

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016406274

Country of ref document: AU

Date of ref document: 20160512

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018073177

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181109