WO2018177119A1 - 光隔离器及其控制方法 - Google Patents

光隔离器及其控制方法 Download PDF

Info

Publication number
WO2018177119A1
WO2018177119A1 PCT/CN2018/078860 CN2018078860W WO2018177119A1 WO 2018177119 A1 WO2018177119 A1 WO 2018177119A1 CN 2018078860 W CN2018078860 W CN 2018078860W WO 2018177119 A1 WO2018177119 A1 WO 2018177119A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical isolator
temperature
wave plate
bracket
disposed
Prior art date
Application number
PCT/CN2018/078860
Other languages
English (en)
French (fr)
Inventor
傅谦
邓剑钦
黄汉凯
张大鹏
肖祥初
张大龙
肖媚
刘侠
王兴龙
Original Assignee
珠海光库科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海光库科技股份有限公司 filed Critical 珠海光库科技股份有限公司
Publication of WO2018177119A1 publication Critical patent/WO2018177119A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/278Controlling polarisation mode dispersion [PMD], e.g. PMD compensation or emulation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to an optical isolator.
  • the present application is based on a Chinese patent application filed on March 31, 2017, the application number of which is incorporated herein by reference.
  • the existing optical isolator is provided with an optical rotatory device and a polarization splitting device. When strong reflected light returns, the light can not be returned to the laser by the cooperation of the optical rotatory device and the polarization splitting device.
  • the core components of the optical isolator are Faraday rotation crystals and magnets.
  • the optical rotation coefficient and magnetic field strength of the Faraday rotation crystal are affected by temperature.
  • the isolation of the isolator at the wavelength ⁇ 0 is about 40 dB at room temperature and ambient temperature of 25 °C. When the ambient temperature drops to 0 °C in winter, the isolation of the isolator at the wavelength ⁇ 0 will drop to about 20 dB. Therefore, the temperature change seriously affects the isolation effect of the optical isolator, and in severe cases, the laser is damaged.
  • High-power laser systems require high repair costs and increased maintenance costs.
  • a first object of the present invention is to provide an optical isolator that realizes adaptive adjustment of an operating state according to temperature.
  • a second object of the present invention is to provide a control method for realizing an optical isolator that adaptively adjusts an operating state according to temperature.
  • the present invention provides an isolator having a first polarization splitting device, a Faraday rotator, and a second polarization splitting device disposed along an optical path; the optical isolator is on the optical path and located at the first polarization splitting A half wave plate is disposed between the device and the second polarization splitting device; the optical isolator further includes an angular temperature compensation device, the half wave plate is disposed on the angular temperature compensation device, and the angular temperature compensation device rotates the half wave plate according to the temperature.
  • the angular temperature compensation device comprises an adjustment unit, the adjustment unit is made of a hot bimetal material, and the half wave plate is disposed on the adjustment unit.
  • a further solution is that the adjusting unit is arranged in a spiral shape, the fixed end of the adjusting unit is fixedly arranged, and the half wave plate is connected on the free end of the adjusting unit.
  • the angular temperature compensating device further comprises a bracket and a positioning ring, the bracket is provided with a through hole penetrating along the optical path, the positioning ring is disposed in the through hole and can rotate in the through hole, and the half wave plate is disposed on the positioning ring On the axial end, the fixed end of the adjusting unit is fixedly connected with the bracket, and the free end of the adjusting unit is fixedly connected with the positioning ring.
  • the adjusting device is spirally extended along the optical path, and the adjusting device is disposed in the through hole.
  • the angular temperature compensating device comprises a bracket and an adjusting unit, the expansion coefficient of the bracket is smaller than the expansion coefficient of the adjusting unit; the half wave plate is disposed on the free end of the bracket, and the adjusting unit is adjacent to the free end of the bracket.
  • a further solution is that a connecting portion is provided between the fixed end of the bracket and the free end of the bracket, and the free end of the bracket is rotatable around the connecting portion.
  • the adjustment unit abuts between the fixed end of the bracket and the free end of the bracket.
  • the optical isolator further includes a housing and a cover body, the housing is formed with a receiving cavity, and the cover body is covered on the receiving cavity; the first polarization beam splitting device, the Faraday rotator, the second polarization beam splitting device, and a half Both the waveplate and the angular temperature compensation device are disposed within the housing cavity.
  • the present invention provides an optical isolator that adopts the optical isolator in the above solution;
  • the control method includes: the angular temperature compensating device acquires the current temperature; and the angular temperature compensating device drives the half according to the current temperature.
  • the wave plate rotates to deflect the optical axis of the half wave plate.
  • the optical isolator and the control method thereof provided by the invention acquire the current temperature through an angle and temperature-related compensation device, and the isolation of the isolator is generated due to the large influence of the temperature on the rotation angle of the Faraday rotator Larger influence, so the compensation device is used to rotate the half-wave plate to deflect the optical axis of the half-wave plate, compensating for the temperature influence of the Faraday rotator, and then adaptively adjusting the working state according to the temperature, so that the optical isolator can self-temperature Adaptably adjust and maintain good isolation.
  • the adjustment unit made of bimetal material enables the adjustment unit to be deformed, rotated or offset according to the current temperature, and then the rotation of the half wave plate is achieved, and the bimetal material is used as the angle-temperature related material, and the sensitivity thereof is adopted.
  • the height can precisely control the rotation angle of the half wave plate.
  • the wave plate can be stably rotated in the through hole during the deformation, rotation or offset of the adjusting unit, thereby avoiding the deflection movement in other directions and affecting the optical path transmission. Improve job stability.
  • the adjusting unit can be made of a material with a high expansion coefficient, that is, when the temperature is changed, the deformation amplitude of the adjusting unit is larger than that of the bracket, and then the free end of the bracket can be offset, so that the half-wave plate is rotated, and then realized. Angle compensation, the solution is simple and low cost.
  • the optical device can maintain a relatively stable working environment, avoid interference of water vapor and dust, and can improve the working stability of the device.
  • Figure 1 is a structural view showing a first embodiment of an optical isolator of the present invention.
  • Fig. 2 is a structural view showing the first embodiment of the optical isolator of the present invention with the cover omitted.
  • Fig. 3 is a structural view showing the first embodiment of the optical isolator of the present invention with the housing omitted.
  • Fig. 4 is a structural view showing an angular temperature compensating apparatus in the first embodiment of the optical isolator of the present invention.
  • Figure 5 is a structural view of the angle temperature compensating device of the first embodiment of the optical isolator of the present invention at another viewing angle.
  • Figure 6 is a cross-sectional view showing a first embodiment of the optical isolator of the present invention.
  • Fig. 7 is a structural view showing the second embodiment of the optical isolator of the present invention with the cover omitted.
  • Fig. 8 is a structural view showing the second embodiment of the optical isolator of the present invention with the housing omitted.
  • Figure 9 is a structural view of an angular temperature compensating apparatus in a second embodiment of the optical isolator of the present invention.
  • Figure 10 is a cross-sectional view showing a second embodiment of the optical isolator of the present invention.
  • Fig. 11 is a structural view showing the third embodiment of the optical isolator of the present invention with the housing omitted.
  • Figure 12 is a structural view showing an angular temperature compensating apparatus in a third embodiment of the optical isolator of the present invention.
  • Figure 13 is a graph showing the isolation versus temperature for a 1064 nm isolator in the prior art.
  • Figure 14 is a graph showing the relationship between insertion loss and temperature of a 1064 nm isolator in the prior art.
  • Figure 15 is a graph showing the relationship between the rotation angle and temperature of the TGG and the half-wave plate of the present invention.
  • Figure 16 is a graph showing the relationship between the optical axis compensation rotation angle and temperature of the 1064 nm half-wave plate of the present invention.
  • Figure 17 is a graph showing the relationship between the isolation and temperature of the 1064 nm isolator of the present invention.
  • Figure 18 is a graph showing the relationship between insertion loss and temperature of the 1064 nm isolator of the present invention.
  • the optical isolator includes a housing 11 and a cover 12, and the housing 11 is formed with a receiving cavity 111, and the cover 12 is covered on the receiving cavity 111.
  • the optical isolator is provided with an optical fiber 13, a collimator 21, a polarization splitting device 23, a half wave plate 25, a Faraday rotator 27, a polarization splitting device 28, a collimator 22 and an optical fiber 14 along the optical path, and the Faraday rotator 27 is provided outside
  • the magnetic ring 26, the Faraday rotator 27 can employ a magneto-optical crystal.
  • the optical isolator further includes an angular temperature compensating device 24 including an adjusting unit 243, a bracket 241, a positioning ring 247 and a fixing ring 248.
  • the adjusting unit 24 is made of a hot bimetal material, and the adjusting unit 24 is in a piece. And extending in the direction of the optical path, the adjusting unit 24 has a fixed end and a free end.
  • the bracket 241 is disposed in an arch shape and is provided with a through groove 246 in the middle portion, and is provided through the optical path on both side walls of the through groove 246.
  • the hole 242, the positioning ring 247 is disposed in one side through hole 242 and rotatable in the through hole, the half wave plate 25 is disposed on the axial end of the positioning ring 247, and the free end of the adjusting unit 24 is connected with the positioning ring 247.
  • the retaining ring is fixedly coupled between the free end of the adjustment unit 24 and the other side wall of the channel 246.
  • the through holes 242, the positioning ring 247, the adjusting unit 243, and the holes of the fixing ring 248 are all disposed in communication so that the optical path can pass through the half wave plate 25 and pass through without blocking the optical path.
  • the adjusting unit 243 of the hot bimetal material can acquire the temperature in the current accommodating cavity, and according to the current problem and the material cooperation of different expansion coefficients, the adjusting unit 243 can spirally rotate around its axis and drive the positioning.
  • the rotation of the ring 247 drives the rotation of the half wave plate 25.
  • a mounting groove 112, a mounting groove 113, a mounting groove 114, and a mounting groove 115 are provided in the accommodating cavity 111 of the housing 11, respectively.
  • the mounting groove 112 is for placing the polarization beam splitting device 23, and the mounting groove 114 is for placing the angular temperature.
  • the compensating device 24, the mounting groove 115 is for placing the magnetic ring 27, and the mounting groove 115 is for placing the polarization beam splitting device 28.
  • the second embodiment mainly improves the angular temperature compensating device 34 based on the substantially same structure of the first embodiment.
  • the optical isolator is provided with a polarization beam splitting means 33, a half wave plate 35, a Faraday rotator 36, an optical rotatory crystal 39, and a polarization splitting means 38 along the optical path in the accommodating chamber.
  • a magnetic ring 37 is disposed outside the Faraday rotator 36. Since the optically active crystal has a 45° optical rotation, the optical axis direction of the half-wave plate 35 is set to be 0 degrees and 90 degrees with respect to two mutually perpendicular polarization states, respectively, and the half-wave plate is used to adaptively adjust the deflection angle with temperature.
  • the angle temperature compensating device 34 includes a bracket 341 and an adjusting unit 342.
  • the bracket 341 is disposed in a substantially arch shape
  • the adjusting unit 342 is disposed in an elongated shape
  • the bracket 341 and the adjusting unit 342 are formed in a rectangular shape
  • the bracket 341 includes a fixed end 342 at the lower end. a free end 344 at the upper end and a connecting portion 343 connected between the fixed end 342 and the free end 344.
  • the connecting portion 343 is provided with a plurality of recesses having opposite openings, so that the connecting portion 343 is provided with a buffer deformation.
  • the performance causes the free end 344 to rotate about the connecting portion 343, and at the lower portion of the free end 344 is also provided with a mounting position, the half wave plate 35 is disposed in the mounting position, and the adjusting unit is supported at the fixed end 342 of the bracket and the free end of the bracket Between 344.
  • the expansion coefficient of the bracket 341 is smaller than the expansion coefficient of the adjustment unit 344, so in the same temperature environment, the deformation amplitude of the adjustment unit 344 will be larger than that of the bracket 341, so the adjustment unit 344 becomes larger or smaller to the free end 344.
  • the thrust is applied, which in turn causes the free end 344 to rotate about the joint 343.
  • the connecting portion may also be hingedly engaged with the elastic member such that the free end can be pressed against the adjusting unit 344, or the bracket is also arranged in a strip shape and
  • the fixing unit is fixedly connected in the casing, and the adjusting unit is connected between the bracket and the casing.
  • the deformation of the adjusting unit can push the bracket and send the rotation, or the half wave plate is disposed on the upper side of the free end, and these changes can be realized. Purpose of the invention.
  • the third embodiment mainly utilizes an adjustment unit of a large expansion coefficient and different brackets for angle adjustment.
  • the optical isolator is provided with a polarization beam splitting device 43, a half wave plate 45, a Faraday rotator 46, an optical rotation crystal 49 and a polarization beam splitting device 48 along the optical path in the accommodating cavity, and a magnetic ring 47 is disposed outside the Faraday rotator 46.
  • the angular temperature compensating device 44 includes a bracket 441 and a regulating unit 446.
  • the bracket 441 is substantially rectangular and has a hollow mounting position at the middle.
  • the bracket 441 includes a fixed end 441 at the lower end, a free end 443 at the upper end, and a fixed end 441.
  • the connecting portion 442 is surrounded by a through groove which is opened through both sides, and the two through grooves are disposed away from the back, and the through groove provides a rotation avoidance for the connecting portion 442.
  • the space, the free end 443 is rotated about the connecting portion 442, and the end of the free end 442 is connected to the fixed end 441 on the other side by the elastic member 445, and the elastic member 445 can be connected by a flexible hinge structure.
  • the expansion coefficient of the bracket 441 is smaller than the expansion coefficient of the adjustment unit 446, the adjustment unit 446 is disposed in an elongated shape, the adjustment unit 446 is disposed in the control installation position, and the adjustment unit 446 is abutted between the free end 443 and the fixed end 441, specifically
  • the connection point of the adjustment unit 446 and the free end 443 is closer to the connection portion 42 than the half-wave plate 45, and the lateral deformation of the adjustment unit 446 applies a thrust to the free end 443, which in turn makes it free.
  • the end 443 rotates about the connecting portion 442.
  • the elastic member 445 provides a certain preload force to the free end 443 to stabilize the whole.
  • the adjusting unit 446 When the adjusting unit 446 is provided, the adjusting unit 446 is brought into pressure between the free end 443 and the fixed end 441 with a preset pressure, and is in contact with both ends even when the temperature is contracted at a low temperature.
  • the half wave plate 45 is disposed at the axial end of the sleeve 444, and the sleeve 444 is fixedly disposed in the mounting hole of the free end 443.
  • the optical axis direction of the half wave plate is adjusted by adjusting the sleeve, and finally fixed by dispensing.
  • the material of the above-mentioned bracket and adjusting unit can be applied, for example, the material of high expansion coefficient of the adjusting unit can be made of organic material, and the bracket can be made of spring steel. Of course, a well-known high expansion coefficient material or a common expansion coefficient material can also be used.
  • the angular temperature compensation device has more forms.
  • the angular temperature compensation device can manually rotate the half wave plate, specifically, a larger roller is provided, and the half wave plate is set to follow the roller. Rotating, the corresponding angle scale or sensor is set on the roller to display the specific angle of rotation, and a temperature sensor is arranged in the housing, so that the user can know the current temperature and adjust the rotation of the roller according to the current temperature, and then realize the optical axis rotation of the half wave plate.
  • the processing unit outputs a corresponding control signal according to the temperature, so that the servo motor drives the gear to rotate, and finally the half-wave plate disposed on the gear rotates accordingly.
  • the adjusting unit in the first embodiment may be provided by a spiral-shaped bimetallic adjusting unit, that is, substantially in the form of a mosquito-repellent disk, and is also capable of rotating the half-wave plate according to temperature, and the object of the present invention is achieved.
  • the half-wave plate may be disposed between the polarization beam splitting means and the Faraday rotator, or may be disposed at any position between the polarization beam splitting means on the optical path.
  • the polarization splitting device the Faraday rotator, and the half-wave plate polarize the light, polarize the polarization, and the like, and the opposite light is not rotated back into the laser after being polarized, and the principle is due to the existing Conventional technical means and well-known principles are not described here. Changes in these practical applications should be within the scope of this case.
  • both the magnet and the Faraday rotator are temperature-dependent and affected by temperature during actual use, both the magnetic field strength and the Faraday crystal Feld constant decrease with increasing temperature, and thus the Faraday rotation angle increases with temperature. reduce.
  • the rotation angle of the TGG changes at different temperatures, which in turn affects the isolator isolation. For example, for an optical isolator with a center wavelength of 1064 nm, the relationship between isolation and temperature is as shown in Figure 13. The isolation at 25 °C is better, and the colder or hotter operating temperature will affect the optical isolator. Isolation.
  • the temperature is inserted, so as shown in Figure 14, the effect is relatively small.
  • the angle between the optical axis of the half wave plate and the polarization state of the reverse transmission light is set at 22.5°, so that the reverse light passes through the half wave plate.
  • the rotation angle is always 45° (the middle straight line is shown), and the rotation angle of the half-wave plate is not sensitive to temperature, so it does not change with temperature.
  • the TGG is affected by the temperature, and the rotation angle becomes smaller as the temperature rises (the diagonal line shown).
  • the half-wave plate In order to compensate for the temperature characteristics of the TGG, the half-wave plate is fixed to the angular temperature compensating device.
  • the rotation When the temperature is changed by 1 ° C, the rotation will be 0.108 °, that is, the optical axis of the half-wave plate will be rotated by 0.108 ° for every 1 ° change in temperature.
  • the angle between the optical axis direction of the half wave plate and the polarization state of the reverse transmitted light is temperature dependent, thereby compensating for the temperature characteristics of the TGG.
  • the relationship between the compensation rotation angle of the half wave plate and the temperature is shown in Fig. 16.
  • the optical isolator is controlled by first setting the initial position of the half-wave plate according to the preset operating temperature and the preset half-wave plate optical axis direction, and performing zero adjustment or debugging steps.
  • the adjusting unit in the optical isolator that is, the adjusting unit of the bimetal material, the adjusting unit of the high expansion coefficient, the temperature sensor, the adjusting unit of the gear and the motor, the current working temperature in the housing is obtained, and then the angular temperature is obtained.
  • the compensating device drives the half-wave plate to rotate according to the current temperature, so that the optical axis of the half-wave plate can be deflected as shown in the above table, that is, as shown in the above figure, for example, the preset temperature is 25 ° C, and the optical axis rotation angle is 0 degrees, such as Above the preset temperature of 25 ° C, it is rotated toward a negative angle, such as lower than the preset temperature of 25 ° C, then rotated toward a positive angle, and then the angle compensation is achieved. After the final compensation, the relationship between the isolation and temperature of the optical isolator with a center wavelength of 1064 nm is shown in Fig. 17.
  • the isolation of the optical isolator in this case is independent of temperature, and most of the use environment can be used, and the isolation is maintained at a good level.
  • the influence of the insertion loss is between 0 and -0.14, and the influence of this very small loss can be neglected, which will not affect the normal operation of the optical isolator.
  • the optical isolator and the control method thereof are applicable to an optical device requiring isolation of return light, and the product and method of the invention are applied to realize adaptive adjustment of working state according to temperature, so that the optical isolator can adaptively adapt to temperature Adjust and maintain good isolation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光隔离器及其控制方法,涉及光学技术领域,其沿光路设置的第一偏振分光装置(23,33,43)、法拉第旋光装置(26,36,46)和第二偏振分光装置(28,38,48);光隔离器在光路上并位于第一偏振分光装置(23,33,43)和第二偏振分光装置(28,38,48)之间设置有半波片(25,35,45);光隔离器还包括角度温度补偿装置(24,34,44),半波片(25,35,45)设置在角度温度补偿装置(24,34,44)上,角度温度补偿装置(24,34,44)根据温度使半波片(25,35,45)旋转。通过角度和温度相关的补偿装置(24,34,44),获取当前的温度,由于温度对法拉第旋光装置(26,36,46)的旋转角度产生较大的影响,也会对隔离器的隔离度产生较大的影响,故利用补偿装置(24,34,44)对半波片(25,35,45)旋转使得半波片(25,35,45)的光轴偏振,补偿法拉第旋光装置(26,36,46)的温度影响,继而实现根据温度自适应调整工作状态,使光隔离器能够随着温度自适应地调整,并维持良好的隔离度。

Description

光隔离器及其控制方法 技术领域
本发明涉及光学技术领域,尤其涉及一种光隔离器。本申请是基于申请日为2017年3月31日,申请号为CN201710208914.0的中国发明专利申请,该申请的内容引入本文作为参考。
背景技术
在高功率激光器系统中,为了防止返回光返回系统内影响激光器的稳定运转甚至破坏激光器内部元器件,常需加入光隔离器,使光只能单向通过。
现有的光隔离器通过设置有旋光装置和偏振分光装置,当有强反射光返回时,通过旋光装置和偏振分光装置的配合使光线不能够原路返回至激光器中。光隔离器的核心部件是法拉第旋光晶体和磁铁,其中法拉第旋光晶体的旋光系数和磁场强度由于受温度的影响,在室温环境温度25℃时设计隔离器在波长λ 0处的隔离度为40dB左右,当冬季环境温度下降到0℃时,隔离器在波长λ 0处的隔离度将下降到20dB左右,因此,温度的改变严重影响了光隔离器的隔离效果,严重时会导致激光器损坏,使得高功率激光器系统需要附上高额的修护费用,增加维护成本。
技术问题
本发明的第一目的是提供一种实现根据温度自适应调整工作状态的光隔离器。
本发明的第二目的是提供一种实现根据温度自适应调整工作状态的光隔离器的控制方法。
技术解决方案
为了实现本发明的第一目的,本发明提供一种隔离器,其沿光路设置的第一偏振分光装置、法拉第旋光装置和第二偏振分光装置;光隔离器在光路上并位于第一偏振分光装置和第二偏振分光装置之间设置有半波片;光隔离器还包括角度温度补偿装置,半波片设置在角度温度补偿装置上,角度温度补偿装置根据温度使半波片旋转。
更进一步的方案是,角度温度补偿装置包括调节单元,调节单元由热双金属材料制作而成,半波片设置在调节单元上。
更进一步的方案是,调节单元呈螺旋状设置,调节单元的固定端固定设置,半波片连接在调节单元的自由端上。
更进一步的方案是,角度温度补偿装置还包括支架和定位环,支架沿光路贯穿地设置有通孔,定位环设置在通孔内并可在通孔内旋转,半波片设置在定位环的轴向端部上,调节单元的固定端与支架固定连接,调节单元的自由端与定位环固定连接。
更进一步的方案是,调节装置呈沿光路方向螺旋延伸设置,调节装置设置在通孔内。
更进一步的方案是,角度温度补偿装置包括支架和调节单元,支架的膨胀系数小于调节单元的膨胀系数;半波片设置在支架的自由端上,调节单元与支架的自由端邻接。
更进一步的方案是,支架的固定端和支架的自由端之间设置有连接部,支架的自由端可绕连接部旋转。
更进一步的方案是,调节单元抵接在支架的固定端和支架的自由端之间。
更进一步的方案是,光隔离器还包括壳体和盖体,壳体形成有容纳腔,盖体盖合在容纳腔上;第一偏振分光装置、法拉第旋光装置、第二偏振分光装置、半波片和角度温度补偿装置均设置在容纳腔内。
为了实现本发明的第二目的,本发明提供了一种光隔离器,其采用上述方案中的光隔离器;控制方法包括:角度温度补偿装置获取当前温度;角度温度补偿装置根据当前温度驱动半波片旋转,使半波片的光轴偏转。
有益效果
本发明提供的光隔离器及其控制方法,通过角度和温度相关的补偿装置,获取当前的温度,由于温度对法拉第旋光装置的旋转角度产生较大的影响,也会会隔离器的隔离度产生较大的影响,故利用补偿装置对半波片旋转使得半波片的光轴偏转,补偿法拉第旋光装置的温度影响,继而实现根据温度自适应调整工作状态,使光隔离器能够随着温度自适应地调整,并维持良好的隔离度。
此外,通过双金属材料制作的调节单元,使得调节单元能够根据当前温度进行形变、旋转或偏移,继而实现半波片的旋转,而采用双金属材料作为角度-温度相关联的材料,其灵敏度度高能够精确地控制半波片的旋转角度。
并且,通过支架、通孔和定位环的定位,在调节单元的形变、旋转或偏移过程中,使得波片能够稳定地在通孔中旋转,避免发生其他方向的偏转移动,影响光路传输,提高工作稳定性。
此外,调节单元可采用高膨胀系数的材料制作而成,即在温度变换时,调节单元的形变幅度大于支架的,继而能够使支架的自由端发生偏移,使半波片发生旋转,继而实现角度补偿,该方案简单成本低。
另外,通过壳体和盖体的设置,能够使光学器件能够保持一个相对稳定的工作环境,避免水汽、灰尘的干扰,能够提高器件的工作稳定性。
附图说明
图1是本发明光隔离器第一实施例的结构图。
图2是本发明光隔离器第一实施例省略盖体后的结构图。
图3是本发明光隔离器第一实施例省略壳体后的结构图。
图4是本发明光隔离器第一实施例中角度温度补偿装置的结构图。
图5是本发明光隔离器第一实施例中角度温度补偿装置在另一视角下的结构图。
图6是本发明光隔离器第一实施例的剖视图。
图7是本发明光隔离器第二实施例省略盖体后的结构图。
图8是本发明光隔离器第二实施例省略壳体后的结构图。
图9是本发明光隔离器第二实施例中角度温度补偿装置的结构图。
图10是本发明光隔离器第二实施例的剖视图。
图11是本发明光隔离器第三实施例省略壳体后的结构图。
图12是本发明光隔离器第三实施例中角度温度补偿装置的结构图。
图13是现有技术中1064nm隔离器的隔离度与温度的关系图。
图14是现有技术中1064nm隔离器的插损与温度的关系图。
图15是本发明TGG和半波片的旋转角与温度的关系图。
图16是本发明1064nm 半波片的光轴补偿旋转角与温度的关系图。
图17是本发明1064nm隔离器的隔离度与温度的关系图。
图18是本发明1064nm隔离器的插损与温度的关系图。
以下结合附图及实施例对本发明作进一步说明。
本发明的实施方式
光隔离器第一实施例:
参照图1至图6,光隔离器包括壳体11和盖体12,11壳体形成有容纳腔111,盖体12盖合在容纳腔111上。光隔离器沿光路设置有光纤13、准直器21、偏振分光装置23、半波片25、法拉第旋光装置27、偏振分光装置28、准直器22和光纤14,法拉第旋光装置27外设置有磁环26,法拉第旋光装置27可采用磁旋光晶体。
光隔离器还包括角度温度补偿装置24,角度温度补偿装置24包括调节单元243、支架241、定位环247和固定环248,调节单元24由热双金属材料制作而成,且调节单元24呈片状并沿光路方向螺旋延伸设置,调节单元24具有固定端和自由端,支架241呈拱形设置并在中部设置有通槽246,在通槽246的两侧壁上沿光路贯穿地设置有通孔242,定位环247设置在一侧通孔242中并可在通孔内旋转,半波片25设置在定位环247的轴向端部上,调节单元24的自由端与定位环247连接,固定环固定连接在调节单元24的自由端和通槽246的另一侧壁之间。通孔242、定位环247、调节单元243和固定环248的孔均连通地设置,使得光路能够透出半波片25后依次穿过而不阻挡光路。
由于热双金属材料的调节单元243能够获取当前容纳腔内的温度,并根据当前的问题和不同膨胀系数的材料配合作用下,使得调节单元243能够绕其轴线发生螺旋卷绕旋转,并驱动定位环247的旋转,从而带动半波片25的旋转。
在壳体11的容纳腔111内分别沿光路方向设置有安装槽112、安装槽113、安装槽114、安装槽115,安装槽112用于放置偏振分光装置23,安装槽114用于放置角度温度补偿装置24、安装槽115用于放置磁环27,安装槽115用于放置偏振分光装置28。
光隔离器第二实施例:
基于第一实施例大致相同的结构,第二实施例主要对角度温度补偿装置34进行改进。具体地,光隔离器在容纳腔内沿光路地设置有偏振分光装置33、半波片35、法拉第旋光装置36、旋光晶体39和偏振分光装置38。法拉第旋光装置36外设置有磁环37。由于旋光晶体已有45°旋光作用,半波片35光轴方向设置为与两个相互垂直偏振态的方向分别为0度和90度,半波片用于随温度自适应调节偏转角度。
角度温度补偿装置34包括支架341和调节单元342,支架341呈大致拱形地设置,调节单元342呈长条状设置,支架341和调节单元342组成矩形状,支架341包括位于下端的固定端342、位于上端的自由端344和连接在固定端342和自由端344之间的连接部343,本实施例中连接部343设置有多个反向开口的凹槽,使得连接部343具备缓冲形变的性能,继而使得自由端344可绕连接部343转动,在自由端344的下部还设置有安装位,半波片35设置在安装位中,调节单元支撑在支架的固定端342和支架的自由端344之间。
并且,支架341的膨胀系数小于调节单元344的膨胀系数,故在相同的温度环境下,调节单元344的形变幅度将大于支架341的,故调节单元344通过变大或变小来对自由端344施加推力,继而使自由端344绕连接部343发生旋转。
当然第二实施例还有一些应用上的变化,如连接部还可以采用铰接配合弹性件的方式,使得自由端可朝向调节单元344地施压抵接,又或者支架也是呈长条状设置并固定连接在壳体内,而调节单元则连接在支架和壳体之间,通过调节单元的形变可推动支架并发送旋转,又或者半波片设置在自由端的上侧,这些改变均是可以实现本发明目的。
光隔离器第三实施例:
参照图11和图12,基于第二实施例大致相同的结构,第三实施例主要是利用较大膨胀系数的调节单元和不同的支架进行角度的调节。具体地,光隔离器在容纳腔内沿光路地设置有偏振分光装置43、半波片45、法拉第旋光装置46、旋光晶体49和偏振分光装置48,法拉第旋光装置46外设置有磁环47。
角度温度补偿装置44包括支架441和调节单元446,支架441大致呈矩形设置并在中部设置中空安装位,支架441包括位于下端的固定端441、位于上端的自由端443和连接在固定端441和自由端443之间的连接部442,本实施例中,连接部442是通过两侧贯穿开设的通槽所围成,两个通槽背向地设置,通槽为连接部442提供转动的避让空间,自由端443绕连接部442转动,自由端442的端部通过弹性件445在另外一侧与固定端441连接,弹性件445可采用柔性铰链结构来进行连接。
支架441的膨胀系数小于调节单元446的膨胀系数,调节单元446呈长条状设置,调节单元446设置在控制安装位中,调节单元446抵接在自由端443和固定端441之间,具体地,为了提供更大的旋转角,故调节单元446与自由端443的连接点相比于半波片45更加靠近连接部42,利用调节单元446的横向形变对自由端443施加推力,继而使得自由端443绕连接部442发生转动。而弹性件445为自由端443提供一定的预紧力,使整体稳定。在设置调节单元446时,使调节单元446预置压力地抵接在自由端443和固定端441之间,即便是低温收缩时仍然和两端接触。半波片45设置在套管444的轴向端部,套管444固定设置在自由端443的安装孔中,通过调节套管而调节半波片的光轴方向,最后通过点胶固定。
上述支架和调节单元的材料在应用上,如调节单元的高膨胀系数材料可采用有机材料,而支架可采用弹簧钢,当然也可采用公知的高膨胀系数材料或普通膨胀系数材料。
除此之外,关于角度温度补偿装置还具备更多的形式,如角度温度补偿装置可采用手动的形式对半波片进行旋转,具体为设置一较大的滚轮,半波片设置为随滚轮转动,滚轮上设置相应的角度刻度或传感器以显示转动的具体角度,并在壳体内设置温度传感器,使得用户能够获知当前温度并根据当前温度调节滚轮转动,继而实现半波片的光轴转动。
又或者利用齿轮和伺服电机的配合,同时通过温度传感器获知当前温度,处理单元根据温度输出对应的控制信号,使得伺服电机带动齿轮转动,最后设置在齿轮上的半波片也相应地转动。
又或者第一实施例中的调节单元还可以采用螺旋盘状的双金属调节单元,即大致呈蚊香盘状地设置,也是能够根据温度使半波片发生旋转的,继而实现本发明的目的。
又或者对与半波片的位置,半波片除了设置在偏振分光装置和法拉第旋光装置之间,还可以设置在位于光路上偏振分光装置之间任一位置即可。
关于光隔离器通过偏振分光装置、法拉第旋光装置和半波片对光进行偏振分光、偏振角度偏振等器件,对反向的光旋转偏振后不再返回到激光器内,其原理由于是现有的常规技术手段和公知的原理,故这里不再赘述。上述这些实际应用的变化应均在本案的保护范围之内。
然而,由于在实际使用过程中磁体和法拉第旋光装置都与温度相关并受温度影响,磁场强度和法拉第晶体费尔德常数都随着温度的升高而降低,从而法拉第旋转角随温度升高而降低。由于磁场强度和TGG的费尔德系数受温度的影响,在不同的温度下,TGG的旋转角会相应改变,进而会影响隔离器隔离度。例如对于中心波长为1064nm的光隔离器,隔离度与温度的关系如下图13所示,位于25℃左右的隔离度是较好的,较冷或较热的工作温度都会影响到光隔离器的隔离度。
而温度对于插损,则如图14所示,影响是比较小的。
对于反向隔离光路旋转角的温度特性,如图15所示,将半波片的光轴与反向传输光的偏振态的夹角呈22.5°地设置,故反向光经过半波片后的旋转角恒为45°(图示中间直线),且半波片的旋转角对温度不敏感,故不随温度变化。而TGG则会受到温度的影响,旋转角随温度升高变小(图示的斜线)。
为了补偿TGG的温度特性,将半波片固定于角度温度补偿装置上,温度每改变1℃,将旋转0.108°,即温度每改变1°,半波片的光轴将旋转0.108°。
半波片的光轴方向和反向传输光的偏振态的夹角与温度有关,由此来补偿TGG的温度特性。半波片的补偿旋转角与温度的关系如图16所示。
故光隔离器的控制方法为,首先根据预设工作温度和预设半波片光轴方向设置半波片的初始位置,并做好调零或调试步骤。
然后通过上述的光隔离器中的调节单元,即双金属材料的调节单元、高膨胀系数的调节单元、温度传感器、齿轮和电机配合的调节单元,获取壳体内当前的工作温度,然后,角度温度补偿装置根据当前温度驱动半波片旋转,使半波片的光轴可按照上表所示地偏转,即如上图所示,例如预设温度在25℃,光轴旋转角为0度,如高于预设温度25℃,则朝向负角度旋转,如低于预设温度25℃,则朝向正角度旋转,继而实现角度补偿。最后经过补偿后,中心波长为1064nm的光隔离器的隔离度与温度的关系如图17所示。
经过半波片的角度补偿,使得本案的光隔离器的隔离度与温度无关,能够使用绝大部分的使用环境,且使隔离度均保持在较佳水平。
然而本方案在一定程度会对插损有影响,中心波长为1064nm的光隔离器的插损与温度的关系如图18所示。
由上图可见,插损的影响在0至-0.14之间,可忽略这部分非常小的损耗的影响,不会对光隔离器正常工作造成影响。
工业实用性
本发明的光隔离器及其控制方法,适用于需要隔离返回光的光学器件场合,应用本发明的产品和方法,实现根据温度自适应调整工作状态,使光隔离器能够随着温度自适应地调整,并维持良好的隔离度。

Claims (10)

  1. 光隔离器,沿光路设置有第一偏振分光装置、法拉第旋光装置和第二偏振分光装置;
    其特征在于:
    所述光隔离器在所述光路上并位于所述第一偏振分光装置和所述第二偏振分光装置之间设置有半波片;
    所述光隔离器还包括角度温度补偿装置,所述半波片设置在所述角度温度补偿装置上,所述角度温度补偿装置根据温度使所述半波片旋转。
  2. 根据权利要求1所述的光隔离器,其特征在于:
    所述角度温度补偿装置包括调节单元,所述调节单元由热双金属材料制作而成,所述半波片设置在所述调节单元上。
  3. 根据权利要求2所述的光隔离器,其特征在于:
    所述调节单元呈螺旋状设置,所述调节单元的固定端固定设置,所述半波片连接在所述调节单元的自由端上。
  4. 根据权利要求3所述的光隔离器,其特征在于:
    所述角度温度补偿装置还包括支架和定位环,所述支架沿所述光路贯穿地设置有通孔,所述定位环设置在所述通孔内并可在通孔内旋转,所述半波片设置在定位环的轴向端部上,所述调节单元的固定端与所述支架固定连接,所述调节单元的自由端与所述定位环固定连接。
  5. 根据权利要求4所述的光隔离器,其特征在于:
    所述调节装置呈沿所述光路方向螺旋延伸设置,所述调节装置设置在所述通孔内。
  6. 根据权利要求1所述的光隔离器,其特征在于:
    所述角度温度补偿装置包括支架和调节单元,所述支架的膨胀系数小于所述调节单元的膨胀系数;
    所述半波片设置在所述支架的自由端上,所述调节单元与所述支架的自由端邻接。
  7. 根据权利要求6所述的光隔离器,其特征在于:
    所述支架的固定端和所述支架的自由端之间设置有连接部,所述支架的自由端可绕所述连接部旋转。
  8. 根据权利要求7所述的光隔离器,其特征在于:
    所述调节单元抵接在所述支架的固定端和所述支架的自由端之间。
  9. 根据权利要求1至8任一项所述的光隔离器,其特征在于:
    所述光隔离器还包括壳体和盖体,所述壳体形成有容纳腔,所述盖体盖合在所述容纳腔上;
    所述第一偏振分光装置、所述法拉第旋光装置、所述第二偏振分光装置、所述半波片和所述角度温度补偿装置均设置在所述容纳腔内。
  10. 光隔离器的控制方法,其特征在于:
    所述光隔离器采用上述权利要求1至9任一项所述的光隔离器;
    所述控制方法包括:
    所述角度温度补偿装置获取当前温度;
    所述角度温度补偿装置根据所述当前温度驱动所述半波片旋转,使所述半波片的光轴偏转。
PCT/CN2018/078860 2017-03-31 2018-03-13 光隔离器及其控制方法 WO2018177119A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710208914.0A CN108663752A (zh) 2017-03-31 2017-03-31 光隔离器及其控制方法
CN201710208914.0 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018177119A1 true WO2018177119A1 (zh) 2018-10-04

Family

ID=63674161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078860 WO2018177119A1 (zh) 2017-03-31 2018-03-13 光隔离器及其控制方法

Country Status (2)

Country Link
CN (1) CN108663752A (zh)
WO (1) WO2018177119A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114547A (zh) * 2021-12-08 2022-03-01 睿克光电科技(东莞)有限公司 一种便于安装的光纤隔离器
CN114273159B (zh) * 2021-12-20 2022-10-04 江苏永鼎光电子技术有限公司 一种双芯尾纤及其辅助胶粘工装

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001255A1 (en) * 2002-06-28 2004-01-01 Integrated Photonics, Inc. Polarization compensators and optical devices and systems incorporating polarization compensators
CN101581837A (zh) * 2009-03-26 2009-11-18 南京大学 一种双向光隔离器的设置方法
CN101666920A (zh) * 2009-09-21 2010-03-10 深圳朗光科技有限公司 一种光隔离器
CN101872076A (zh) * 2010-06-17 2010-10-27 西北工业大学 光学实验及光纤通信系统中实现光学隔离的方法及其装置
CN204496045U (zh) * 2015-03-13 2015-07-22 福州高意通讯有限公司 一种阵列型光隔离器
CN105842883A (zh) * 2016-05-12 2016-08-10 深圳市芯思杰智慧传感技术有限公司 光隔离器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395126B1 (en) * 1998-02-06 2002-05-28 Horizon Photonics, Inc. Method of micro-fabrication
CN102608712B (zh) * 2011-12-20 2015-01-14 武汉光迅科技股份有限公司 一种波长选择开关中波长漂移的补偿方法及其装置
CN102692681A (zh) * 2012-06-07 2012-09-26 符建 具有温度偏振补偿的反射型阵列波导光栅
DE102014219515A1 (de) * 2014-09-26 2016-03-31 Siemens Aktiengesellschaft Optischer Stromwandler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001255A1 (en) * 2002-06-28 2004-01-01 Integrated Photonics, Inc. Polarization compensators and optical devices and systems incorporating polarization compensators
CN101581837A (zh) * 2009-03-26 2009-11-18 南京大学 一种双向光隔离器的设置方法
CN101666920A (zh) * 2009-09-21 2010-03-10 深圳朗光科技有限公司 一种光隔离器
CN101872076A (zh) * 2010-06-17 2010-10-27 西北工业大学 光学实验及光纤通信系统中实现光学隔离的方法及其装置
CN204496045U (zh) * 2015-03-13 2015-07-22 福州高意通讯有限公司 一种阵列型光隔离器
CN105842883A (zh) * 2016-05-12 2016-08-10 深圳市芯思杰智慧传感技术有限公司 光隔离器

Also Published As

Publication number Publication date
CN108663752A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
US7630081B2 (en) Interferometer maintaining optical relationship between elements
WO2018177119A1 (zh) 光隔离器及其控制方法
US10120213B2 (en) Temperature-compensated optical isolator
TW434427B (en) Fiber coupler variable optical attenuator
US6842467B1 (en) Fiber optic laser transmitter with reduced near end reflections
US20110317170A1 (en) Wedge pair for phase shifting
EP1197764A2 (en) Strain-stabilized birefringent crystal
KR20040078657A (ko) 편광변환기 및 편광모드분산 보상기
JP4596460B2 (ja) 可変光アッテネータ
US6347164B1 (en) Variable polarization dependent loss source
JP2000295175A (ja) 光リモートアンテナ
RU2660290C1 (ru) Кольцевой резонатор лазерного гироскопа
WO2003032055A1 (fr) Variateur de lumiere a reflexion
WO1991014193A1 (en) Optical isolator
JP2564689B2 (ja) 光アイソレータの製造方法
EP3759537B1 (en) Mounting ring for maintaining optical device alignment
JP2005235867A (ja) レーザダイオードモジュール
US11960130B2 (en) Method and system for stabilizing fiber grating optical parameters
JP2015225184A (ja) ロータリージョイント
CN112439640B (zh) 扭力杆式压电致动装置
KR102531700B1 (ko) 카메라 렌즈 어셈블리
JP2016024357A (ja) 光アイソレータ
JP2957611B2 (ja) コネクタ型光アイソレータ
JP3881532B2 (ja) 可変光アッテネータ
JP2551877B2 (ja) ファイバ入出力型光部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775307

Country of ref document: EP

Kind code of ref document: A1