WO2018177029A1 - 基于电场 - 热场复合的电喷射 3d 打印装置及方法 - Google Patents

基于电场 - 热场复合的电喷射 3d 打印装置及方法 Download PDF

Info

Publication number
WO2018177029A1
WO2018177029A1 PCT/CN2018/075329 CN2018075329W WO2018177029A1 WO 2018177029 A1 WO2018177029 A1 WO 2018177029A1 CN 2018075329 W CN2018075329 W CN 2018075329W WO 2018177029 A1 WO2018177029 A1 WO 2018177029A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
ink
substrate
printing
axis
Prior art date
Application number
PCT/CN2018/075329
Other languages
English (en)
French (fr)
Inventor
王大志
李凯
任同群
梁军生
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/303,556 priority Critical patent/US10974442B2/en
Publication of WO2018177029A1 publication Critical patent/WO2018177029A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00373Selective deposition, e.g. printing or microcontact printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0183Selective deposition
    • B81C2201/0185Printing, e.g. microcontact printing

Definitions

  • the invention belongs to the field of advanced manufacturing technology, and relates to an electrospray 3D printing device and method based on electric field-thermal field recombination.
  • 3D printing is an advanced manufacturing technology that has been rapidly developed in recent years. Compared with the traditional “removal” manufacturing technology, it can quickly and accurately manufacture parts with complex shapes, reduce processing steps, and shorten processing cycles in aerospace and biology. Medical and electronic information fields have broad application prospects.
  • M/NEMS devices have evolved from planar, single structures to 3D, complex, flexible structures, and the manufacturing process has been simple.
  • 3D printing enables rapid fabrication of any design structure and meets the needs of M/NEMS devices for complex, 3D, flexible structures.
  • liquid jet printing technology is an important way to achieve 3D M/NEMS device printing manufacturing.
  • the droplet-jet printing technology mainly relies on piezoelectric, ultrasonic, thermal bubbles and the like to generate pressure, and squeezes the liquid in the chamber to the orifice to form droplets.
  • This droplet-jet printing technique relying on "thrust" has a droplet diameter that is approximately twice the diameter of the orifice.
  • the current orifice diameter is 20-50 microns, and the minimum resolution of this "thrust" droplet jet printing technique is greater than 20 microns.
  • inks used in the manufacture of M/NEMS devices include metals, polymers, ceramics, etc., which require curing at a certain temperature. Therefore, in the printing process, the 3D M/NEMS device needs to apply a certain temperature to solidify and accumulate these layers to form a three-dimensional structure.
  • the printing resolution of droplet jet printing technology such as piezoelectric, ultrasonic, thermal bubble, etc. is strongly dependent on the size of the orifice.
  • this heating method easily causes the ink to solidify at the orifice, which in turn leads to The orifice is clogged. Therefore, this type of droplet-jet printing technology relying on piezoelectric, ultrasonic, thermal bubbles and the like is difficult to realize the printing manufacturing of 3D structures at the micro-nano scale, which limits its application on 3D M/NEMS devices.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the above techniques, and to provide an electrospray 3D printing method based on electric field-thermal field recombination.
  • the ink is "drag" to form a micro-nano-scale stable jet that is much smaller than the size of the orifice. Since the orifice has a high potential relative to the grounded substrate, the charge in the ink migrates and aggregates.
  • a micro-nano-scale stable jet which is much smaller than the size of the orifice is formed at the needle opening.
  • a thermal field is applied between the orifice and the substrate to cure the ink printed on the substrate, layer-by-layer printing-curing-forming, and printing to produce a micro-nano scale 3D structure.
  • the method has wide adaptability, high resolution, fast ink curing rate, and can manufacture a complex micro-nano 3D structure, and can be widely applied to the manufacture of 3D M/NEMS devices.
  • An electrospray 3D printing device based on electric field-thermal field recombination firstly, the ink reaches the needle port at a constant flow rate under the combined action of the fluid field and the gravity field; then a high voltage electric field is applied between the needle and the substrate, and the generated electric field is used to shear
  • the shear force “drags” the ink to form a micro-nano stable jet that is much smaller than the size of the orifice; the thermal radiation of the ink combined with the thermal field causes the solvent in the ink to accelerate evaporation; finally, the jet is superimposed on the substrate to form a micro-nano scale 3D structure.
  • An electric injection 3D printing device based on electric field-thermal field recombination comprising an electrodynamic injection module, an XYZ moving module, a thermal field module and a control module;
  • the electrodynamic injection module comprises a precision injection pump 1, a syringe 2, an ink 3, a connecting tube 4, a needle holder 5, a needle 6 and a high-voltage power source 13; a syringe 2 is mounted above the precision syringe pump 1, and the syringe 2 contains ink 3,
  • the syringe 2 and the needle 6 are connected by a connecting tube 4; the needle 6 is mounted on the needle holder 5; the needle holder 5 is fixed on the Z-axis, and the fitting portion with the needle 6 is a conductor, and the Z-axis mating portion An insulator; the output end of the high voltage power supply 13 is connected to the conductor portion of the needle holder 5 through a wire;
  • the XYZ moving module comprises an optical platform 9, a printing platform substrate 10 and a substrate 11; an optical platform 9 has an XYZ motion axis, the power line is connected to a 220V AC power source, and the XYZ is moved in three directions; the Y axis is fixed to the optical platform by bolts.
  • the X-axis is fixed above the Y-axis, and the needle clamp 5 is mounted on the Z-axis to adjust the printing height of the needle 6;
  • the printing platform substrate 10 is connected to the ground and can be made of ceramic or metal;
  • the substrate 11 is placed on the printing platform substrate. 10, and with the movement, in conjunction with the movement of the needle 6 in the Z-axis direction, the printing of the 3D structure 12 is effected on the substrate 11.
  • the thermal field module includes a 3D structure 12, a power source 14, a temperature controller 15, a heating rod 16, a heating lamp 17, and a heating wire 18 that supplies voltage to the temperature controller 15, the heating rod 16, the heating lamp 17, and the heating wire 18.
  • the heating rod 16 is embedded in the printing platform substrate 10, and the heating lamp 17 is placed between the substrate 11 and the needle 6.
  • the heating wire 18 surrounds the outer wall of the needle 6.
  • Different heat sources can generate three different thermal fields;
  • the controller 15 detects the temperature of the thermal field and adjusts the output current of the power source 14 to change the actual power of the heating rod 16, the heating lamp 17, and the heating wire 18, thereby adjusting the temperature of the thermal field; the fine jet formed by the electric power injection module of the ink 3, the heated field As a result, the solvent in the jet rapidly evaporates, and the semi-cured or solidified fine droplets continuously reach the substrate 11, and the layers are accumulated to produce the micro/nano 3D structure 12.
  • the control module includes a host computer 7 and a motion controller 8, and the host computer 7 uses the monitoring software to feed back the 3D printing process and adjust the printing parameters in real time.
  • the motion controller 8 receives the control command issued by the host computer 7 through the USB data line, and outputs the motion parameter to the XYZ motion axis.
  • the syringe 2 sucks the ink 3, and under the push of the precision syringe pump 1, the ink 3 reaches the needle 6 through the connecting tube 4, wherein the precision syringe pump 1 adjusts the flow rate of the ink 3 during printing, and moves the needle through the Z-axis to adjust the needle.
  • the nozzle hole is perpendicular to the substrate 11, the high voltage power source 13 applies a high voltage between the needle 6 and the printing platform substrate 10, and generates an electric field force.
  • the ink 3 is sprayed under the combined action of electric field force, mechanical force and body surface tension.
  • the micro-nano stable droplets formed at the orifice of the needle 6 are much smaller than the size of the orifice.
  • the power source 14, the temperature controller 15 and the heat source (the heating rod 16 or the heating lamp 17 or the heating wire 18) generate a stable thermal field, the temperature controller 15 adjusts the temperature of the thermal field, the ink 3 is in the needle 6, in the jet, and the substrate 11 can be exposed to thermal field radiation.
  • an XYZ-axis motion control program is programmed in the host computer 7, and the motion state of the printing platform substrate 10 and the needle 6 is controlled by the motion controller 8, and the ink 3 flow rate is set.
  • the solvent in the fine jet rapidly evaporates, and the tiny droplets gradually become semi-cured-solidified, reaching the back layer accumulation of the substrate 11, and forming a micro-nano scale 3D structure with the movement of the XYZ axis.
  • the electric field, the thermal field, the XYZ axis motion state, and the ink 3 flow rate between the printing platform substrate 10 and the needle 6 affect the micro/nano 3D structure 12.
  • the invention has the beneficial effects that the 3D structure is manufactured by the electro-jet 3D printing method based on the thermal field-electric field recombination, which uses the electric field force to drag the functional ink and form a micro-nano-level stable jet, and the thermal field acts on the micro-droplet to make it rapidly solidified.
  • a new approach to 3D structure. This method has the advantages of strong material adaptability and complex micro-nano 3D structure.
  • FIG. 1 is a schematic diagram of an electrospray 3D printing apparatus based on electric field-thermal field recombination.
  • FIG. 2 is a schematic diagram of a heating rod embedded in a substrate of a printing platform.
  • Figure 3 is a schematic diagram of irradiation of a heat lamp.
  • Figure 4 is a schematic view of the outer wall of the needle surrounding the heating wire.
  • the electric field-thermal field composite electrospray 3D printing device of the embodiment mainly comprises four parts: an electric power injection module, an XYZ movement module, a thermal field module and a control module.
  • the syringe 2 is placed above the precision syringe pump 3, the ink 3 is contained in the syringe 2, and the ink 3 is a polyethylene glycol solution, wherein the solvent is a mixture of ethanol and deionized water, and the quality of the polyethylene glycol
  • the score is 40%; the two ends of the connecting tube 4 are respectively connected with the syringe 2, the needle 6; the needle 6 is mounted and fixed on the needle holder 5, and the needle 6 has an inner diameter of 80 ⁇ 5 ⁇ m;
  • the needle holder 5 is mounted on the Z-axis, and the fitting portion with the needle 6 is a conductor, and the mating portion with the Z-axis is an insulator.
  • the input voltage of the high-voltage power source 13 is 220V AC power, the output voltage is 1000V, and the output end thereof is connected to the conductor portion of the needle clamp 5 through a wire.
  • the power cable is connected to a 220V AC power supply, and the XYZ can be moved in three directions.
  • the Y axis is fixed on the optical platform 9 by bolts, and the X axis is fixed on the Y axis, and the Z axis is fixed on the Z axis.
  • the needle clamp 5 is installed, and the printing height of the needle 6 is adjusted in time, that is, the vertical distance between the needle 6 and the printing platform substrate 10, and the height during printing is 200 ⁇ m;
  • the printing platform substrate 10 is grounded, and can be made of ceramic or metal, and
  • the Y-axis is fixed by an insulating material screw or a gasket;
  • the substrate 11 is placed on the printing platform substrate 10, and moves along with the movement of the needle 6 in the Z-axis direction to realize a 3D structure on the substrate 11. 12 print manufacturing.
  • the power source 14 is a 220V AC power source, and supplies voltage to the temperature controller 15, the heating rod 16, the heating lamp 17, and the heating wire 18.
  • the heating rod 16 is embedded in the printing platform substrate 10, and the heating lamp 17 is placed on the substrate 11. Between the needle 6 and the needle 6, the heating wire 18 surrounds the outer wall of the needle 6. Different heat sources can generate three different thermal fields, and the maximum output power of the heat source is 400W.
  • the temperature controller 15 has a temperature monitoring range of 25-500 ° C for detecting the thermal field temperature and adjusting the output current of the power source 14 to change the actual power of the heating rod 16, the heating lamp 17, and the heating wire 18, thereby adjusting the thermal field temperature.
  • micro-nano-scale fine jet formed by the electro-pneumatic jetting module is heated by the hot field, the solvent in the jet is rapidly volatilized, and the semi-cure or solidified fine droplets continuously reach the substrate 11, and the layers are accumulated to produce a complex micro-nano 3D structure. .
  • the motion controller 8 receives the control command issued by the host computer 7 through the USB data line, and outputs the motion parameter to the XYZ motion axis by using the 232 interface, that is, controls the motion direction and speed of the printing platform substrate 10, the Z motion axis.
  • the syringe 2 having a measuring range of 250 ⁇ L sucks ink 3 (polyethylene glycol solution), and under the push of the precision syringe pump 1, the ink 3 reaches the needle 6 through the connecting tube 4, and the inner diameter of the nozzle of the needle 6 is 200 ⁇ 5 ⁇ m.
  • the precision syringe pump 1 regulates the flow of ink 3 during printing.
  • the vertical distance between the nozzle hole of the needle 6 and the substrate 11 is adjusted by the Z-axis up and down, and the height is 200-500 ⁇ m.
  • the high voltage power source 13 applies a voltage of 2000 to 4000 V between the needle 6 and the printing platform substrate 10, and generates a strong electric field force.
  • the ink 3 Under the combined action of electric field force, mechanical force and body surface tension, the ink 3 forms a micro-nano-sized stable droplet at the orifice of the needle 6 which is much smaller than the size of the orifice, and the droplet diameter is 80 nm-50 ⁇ m.
  • the power source 14, the temperature controller 15 and the heat source produce a stable thermal field, and the temperature controller 15 regulates the thermal field temperature, and the temperature is maintained at 100 °C.
  • the ink 3 can be subjected to thermal field radiation in the needle 6, in the jet, and on the substrate 11.
  • the XYZ axis motion control program is programmed in the upper computer 7, and the control command is first transmitted to the motion controller 8 by using the USB data line, and the motion controller 8 then sends a motion command to the XYZ motion axis to control the printing platform substrate. 10.
  • the solvent in the fine jet rapidly evaporates, and the tiny droplets gradually become semi-cured-solidified, reaching the layer accumulation of the substrate 11, forming a micro-nano scale 3D structure 12 .
  • the electric field, the thermal field, the XYZ axis motion state, and the ink 3 flow rate between the printing platform substrate 10 and the needle 6 collectively affect the complex micro/nano 3D structure 12.
  • the remarkable effect of the invention is that the 3D structure is fabricated by the electro-jet 3D printing method based on the thermal field-electric field recombination, which uses the electric field force to drag the functional ink and form a micro-nano-level stable jet, and the thermal field acts on the micro-droplet to make it quickly solidify.
  • This method has the advantages of strong material adaptability and complex micro-nano 3D structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

一种基于电场-热场复合的电喷射3D打印装置及方法。该方法在电场-热场复合作用下电喷射打印微纳3D过程中,墨水(3)在流体场和重力场复合作用下以恒定流速到达喷针(6)口,然后利用喷针(6)与衬底(11)间的电场剪切力将墨水(3)"拖拽"形成远小于喷孔尺寸的微纳米稳定射流,同时结合热场对墨水(3)的热辐射促使墨水(3)中溶剂加速蒸发,最后射流在衬底(11)上层层叠加,形成微纳尺度3D结构。该方法与液滴喷射式打印技术相比,具有材料适应性强、复杂微纳3D结构可制造等优势。

Description

基于电场-热场复合的电喷射3D打印装置及方法 技术领域
本发明属于先进制造技术领域,涉及一种基于电场-热场复合的电喷射3D打印装置及方法。
背景技术
3D打印是近年来快速发展起来的先进制造技术,相比传统的“去除式”制造技术,它可以快速精密制造出形状复杂的零件,并减小加工工序,缩短加工周期,在航空航天、生物医疗、电子信息等领域具有广阔的应用前景。
M/NEMS器件已从平面、单一结构发展为3D、复杂、柔性结构,而且制造工艺力求简单。3D打印可以实现任意设计结构的快速制造,可以满足M/NEMS器件对复杂、3D、柔性结构的需求。在打印技术中,液体式喷射打印技术是实现3D M/NEMS器件打印制造的重要途径。液滴喷射式打印技术主要依靠压电、超声、热泡等方式产生压力,将腔室内液体挤压至喷孔形成液滴。这种依靠“推力”的液滴喷射式打印技术的液滴直径约为喷孔直径的两倍。由于受到喷孔尺寸限制,目前喷孔直径为20-50微米,这种依靠“推力”的液滴喷射式打印技术的最小分辨率大于20微米。此外,用于M/NEMS器件制造的墨水包括金属、聚合物、陶瓷等,这些墨水需要在一定温度下固化。因此,3D M/NEMS器件在打印过程中,需要施加一定温度,使这些墨水逐层固化并累加形成三维结构。但是,压电、超声、热泡等液滴喷射式打印技术的打印分辨率强依赖喷孔尺寸,在微米级结构打印过程中,这种加热方式极易使墨水在喷孔处固化,进而导致喷孔堵塞。所以,这种依靠压电、超声、热泡等方式的液滴喷射式打印技术难以实现微纳米尺度下3D结构的打印制造,限制了其在3D M/NEMS器件上的应用。
技术问题
本发明要解决的技术难题是克服上述技术的不足之处,提供一种基于电场-热场复合的电喷射3D打印方法。利用施加在喷孔处的电场力,将墨水“拖拽”形成远小于喷孔尺寸的微纳米尺度稳定射流,由于喷孔相对于接地的衬底具有高电势,墨水中电荷发生迁移,且聚集在锥形墨水表面,在电场力、机械力、体液表面张力等共同驱动作用下,在喷针口处形成远小于喷孔尺寸的微纳米尺度稳定射流。同时在喷孔和衬底之间施加热场,将打印到衬底上的墨水固化,逐层打印-固化-成型,打印制造微纳米尺度3D结构。所述方法材料适应性广、分辨率高、墨水固化速率快、可制造复杂微纳3D结构,可广泛应用于3D M/NEMS器件的制造。
技术解决方案
本发明的技术方案:
一种基于电场-热场复合的电喷射3D打印装置,首先墨水在流体场和重力场复合作用下以恒定流速到达喷针口;然后喷针与衬底间施加高压电场,利用产生的电场剪切力将墨水“拖拽”形成远小于喷孔尺寸的微纳米稳定射流;结合热场对墨水的热辐射促使墨水中溶剂加速蒸发;最后射流在衬底上层层叠加,形成微纳尺度3D结构。
基于电场-热场复合的电喷射3D打印装置,包括电动力喷射模块、XYZ移动模块、热场模块和控制模块;
电动力喷射模块包括精密注射泵1、注射器2、墨水3、连接管4、喷针夹具5、喷针6和高压电源13;精密注射泵1上方装有注射器2,注射器2内含墨水3,注射器2与喷针6通过连接管4连接;所述的喷针6安装于喷针夹具5上;喷针夹具5固定在Z轴上,与喷针6配合部分为导体,与Z轴配合部分为绝缘体;高压电源13输出端通过导线与喷针夹具5的导体部分连接;
XYZ移动模块包括光学平台9、打印平台基板10和衬底11;光学平台9上方有XYZ运动轴,其电源线连接220V交流电源,实现XYZ三个方向运动;Y轴通过螺栓固定在光学平台9上,X轴固定在Y轴上方,Z轴上安装喷针夹具5,调节喷针6打印高度;打印平台基板10与地接通,可为陶瓷或金属材质;衬底11置于打印平台基板10上,并随之运动,结合喷针6在Z轴方向的移动,在衬底11上实现3D结构12的打印制造。
热场模块包括3D结构12、电源14、温度控制器15、加热棒16、加热灯17和加热丝18,电源14为温度控制器15、加热棒16、加热灯17和加热丝18提供电压,加热棒16内嵌在打印平台基板10内,加热灯17置于衬底11与喷针6之间,加热丝18环绕在喷针6外壁,不同热源可产生三种位置不同的热场;温度控制器15检测热场温度并调节电源14输出电流,以改变加热棒16、加热灯17、加热丝18实际功率,进而调节热场温度;墨水3经电动力喷射模块形成的精细射流,受热场作用,射流中溶剂迅速挥发,半固化或固化的细小液滴不断到达衬底11,层层累积制造出微纳3D结构12。
控制模块包括上位机7和运动控制器8,上位机7利用监控软件反馈3D打印过程,并实时调节打印参数。所述的运动控制器8通过USB数据线接受上位机7发出的控制命令,并将运动参数输出XYZ运动轴。
一种基于电场-热场复合的电喷射3D打印方法,步骤如下:
1) 电喷射稳定液滴形成
注射器2吸入墨水3,在精密注射泵1推压下,墨水3通过连接管4到达喷针6,其中,精密注射泵1调节打印过程中墨水3的流量,通过Z轴上下运动,调节喷针6喷孔与衬底11垂直距离,高压电源13在喷针6与打印平台基板10之间施加高电压,并产生电场力,墨水3在电场力、机械力、体液表面张力复合作用下于喷针6喷孔处形成远小于喷孔尺寸的微纳米级稳定液滴。
2) 热场辅助下3D结构制造
电源14、温度控制器15与热源(加热棒16或加热灯17或加热丝18)产生稳定热场,温度控制器15调节热场温度,墨水3在喷针6内、流喷射中、衬底11上均可受到热场辐射。依据微纳3D结构12,在上位机7编写XYZ轴运动控制程序,通过运动控制器8控制打印平台基板10、喷针6的运动状态,同时设定墨水3流量。经过电场拖拽与热场辐射,精细射流中溶剂快速挥发,微小液滴逐渐变为半固化-固化,达到衬底11后层层累积,配合XYZ轴的运动形成微纳米尺度3D结构12。打印平台基板10与喷针6间的电场、热场、XYZ轴运动状态、墨水3流量等共同影响微纳3D结构12。
有益效果
本发明的有益效果:基于热场-电场复合的电喷射3D打印方法制造3D结构,是利用电场力拖拽功能墨水并形成微纳米级稳定射流,同时热场作用微小液滴使其快速固化制造3D结构的一种新方法。此方法具有材料适应性强、复杂微纳3D结构可制造等优势。
附图说明
图1为基于电场-热场复合的电喷射3D打印装置简图。
图2为打印平台基板内嵌加热棒简图。
图3为加热灯辐照简图。
图4为喷针外壁环绕加热丝简图。
图中:1精密注射泵;2注射器;3墨水;4连接管;5喷针夹具;6喷针;7上位机;8运动控制器;9光学平台;10打印平台基板;11衬底;
12 3D结构;13高压电源;14电源;15温度控制器;16加热棒;
17加热灯;18加热丝。
本发明的实施方式
以下结合技术方案和附图详细说明本发明的具体实施方式。实施例的电场-热场复合的电喷射3D打印装置主要包括电动力喷射模块、XYZ移动模块、热场模块、控制模块四部分。
所述的注射器2置于精密注射泵3上方,墨水3装于注射器2内,所述的墨水3为聚乙二醇溶液,其中溶剂为乙醇与去离子水的混合液,聚乙二醇质量分数为40%;连接管4两端分别与注射器2、喷针6连接;所述的喷针6安装固定在喷针夹具5上,喷针6含有内径为80±5μm喷孔;所述的喷针夹具5安装在Z轴上,与喷针6配合部分为导体,与Z轴上配合部分为绝缘体。所述的高压电源13输入电压为220V交流电源,输出电压1000V,其输出端通过导线与喷针夹具5的导体部分连接。
所述的光学平台9上方有三个运动轴,其电源线连接220V交流电源,可实现XYZ三个方向运动,Y轴通过螺栓固定在光学平台9上,X轴固定于Y轴上,Z轴上安装喷针夹具5,适时调整喷针6打印高度,即喷针6与打印平台基板10的垂直距离,打印时高度为200μm;所述的打印平台基板10接地,可为陶瓷或金属材质,且通过绝缘材质螺钉、垫圈固定Y轴上;所述的衬底11置于打印平台基板10上,并随之运动,结合喷针6在Z轴方向的移动,可在衬底11上实现3D结构12的打印制造。
所述的电源14是220V交流电源,为温度控制器15、加热棒16、加热灯17、加热丝18提供电压,加热棒16内嵌在打印平台基板10内,加热灯17置于衬底11与喷针6之间,加热丝18环绕在喷针6外壁,不同热源可产生三种位置不同的热场,热源的最大输出功率为400W。所述的温度控制器15温度监控范围25-500℃,用于检测热场温度并调节电源14输出电流,以改变加热棒16、加热灯17、加热丝18实际功率,进而调节热场温度。墨水3经电动力喷射模块形成的微纳米级精细射流,受热场作用,射流中溶剂迅速挥发,半固化或固化的细小液滴不断到达衬底11,层层累积制造出复杂微纳3D结构12。
所述的运动控制器8通过USB数据线接受上位机7发出的控制命令,并利用232接口将运动参数输出XYZ运动轴,即控制打印平台基板10、Z运动轴运动方向和速度。
实施例的具体实施步骤如下:
1) 电喷射稳定液滴形成
量程为250μL的注射器2吸入墨水3(聚乙二醇溶液),在精密注射泵1推压下,墨水3通过连接管4到达喷针6,喷针6的喷孔内径为200±5μm,其中,精密注射泵1调节打印过程中墨水3流量。通过Z轴上下运动,调节喷针6喷孔与衬底11垂直距离,高度为200-500μm。高压电源13在喷针6与打印平台基板10之间施加2000-4000V电压,并产生强电场力。墨水3在电场力、机械力、体液表面张力复合作用下于喷针6喷孔处形成远小于喷孔尺寸的微纳米级稳定液滴,液滴直径为80nm-50μm。
2) 热场辅助3D结构制造
电源14、温度控制器15与热源(加热棒16或加热灯17或加热丝18)产生稳定热场,温度控制器15调节热场温度,温度保持在100℃。墨水3在喷针6内、流喷射中、衬底11上均可受到热场辐射。依据微纳3D结构,在上位机7编写XYZ轴运动控制程序,并利用USB数据线先将控制命令传输给运动控制器8,运动控制器8再向XYZ运动轴发出运动命令,控制打印平台基板10、喷针6的运动方向和速度,XY轴的运动速度为5mm/s,Z轴的运动速度为1mm/s,此外,墨水3流量设定为0.5μL/min。经过电场拖拽出与热场辐射,精细射流中溶剂快速挥发,微小液滴逐渐变为半固化-固化,达到衬底11后层层累积,形成微纳米尺度3D结构12。打印平台基板10与喷针6间的电场、热场、XYZ轴运动状态、墨水3流量等共同影响复杂微纳3D结构12。
本发明的显著效果是:基于热场-电场复合的电喷射3D打印方法制造3D结构,是利用电场力拖拽功能墨水并形成微纳米级稳定射流,同时热场作用微小液滴使其快速固化制造3D结构的一种新方法。此方法具有材料适应性强、复杂微纳3D结构可制造等优势。

Claims (3)

  1. 一种基于电场-热场复合的电喷射3D打印装置,其特征在于,所述的电喷射3D打印装置包括电动力喷射模块、XYZ移动模块、热场模块和控制模块;
    电动力喷射模块包括精密注射泵(1)、注射器(2)、墨水(3)、连接管(4)、喷针夹具(5)、喷针(6)和高压电源(13);精密注射泵(1)上方装有注射器(2),注射器(2)内含墨水(3),注射器(2)与喷针(6)通过连接管(4)连接;所述的喷针(6)安装于喷针夹具(5)上;喷针夹具(5)固定在Z轴上,与喷针(6)配合部分为导体,与Z轴配合部分为绝缘体;高压电源(13)输出端通过导线与喷针夹具(5)的导体部分连接;
    XYZ移动模块包括光学平台(9)、打印平台基板(10)和衬底(11);光学平台(9)上方有XYZ运动轴,其电源线连接220V交流电源,实现XYZ三个方向运动;Y轴通过螺栓固定在光学平台(9)上,X轴固定在Y轴上方,Z轴上安装喷针夹具(5),调节喷针(6)打印高度;打印平台基板(10)与地接通,可为陶瓷或金属材质;衬底(11)置于打印平台基板(10)上,并随之运动,结合喷针(6)在Z轴方向的移动,在衬底(11)上实现3D结构(12)的打印制造;
    热场模块包括3D结构(12)、电源(14)、温度控制器(15)、加热棒(16)、加热灯(17)和加热丝(18),电源(14)为温度控制器(15)、加热棒(16)、加热灯(17)和加热丝(18)提供电压,加热棒(16)内嵌在打印平台基板(10)内,加热灯(17)置于衬底(11)与喷针(6)之间,加热丝(18)环绕在喷针(6)外壁,不同热源可产生三种位置不同的热场;温度控制器(15)检测热场温度并调节电源(14)输出电流,以改变加热棒(16)、加热灯(17)、加热丝(18)实际功率,进而调节热场温度;墨水(3)经电动力喷射模块形成的精细射流,受热场作用,射流中溶剂迅速挥发,半固化或固化的细小液滴不断到达衬底(11),层层累积制造出微纳3D结构(12);
    控制模块包括上位机(7)和运动控制器(8),上位机(7)利用监控软件反馈3D打印过程,并实时调节打印参数;所述的运动控制器(8)通过USB数据线接受上位机(7)发出的控制命令,并将运动参数输出XYZ运动轴。
  2. 一种基于电场-热场复合的电喷射3D打印方法,其特征在于,步骤如下:
    1) 电喷射稳定液滴形成
    注射器(2)吸入墨水(3),在精密注射泵(1)推压下,墨水(3)通过连接管(4)到达喷针(6),其中,精密注射泵(1)调节打印过程中墨水(3)的流量,通过Z轴上下运动,调节喷针(6)喷孔与衬底(11)垂直距离,高压电源(13)在喷针(6)与打印平台基板(10)之间施加高电压,并产生电场力,墨水(3)在电场力、机械力、体液表面张力复合作用下于喷针(6)喷孔处形成远小于喷孔尺寸的微纳米级稳定液滴;
    2) 热场辅助下3D结构制造
    电源(14)、温度控制器(15)与热源产生稳定热场,温度控制器(15)调节热场温度,墨水(3)在喷针(6)内、流喷射中、衬底(11)上均受到热场辐射;依据微纳3D结构(12),在上位机(7)编写XYZ轴运动控制程序,通过运动控制器(8)控制打印平台基板(10)、喷针(6)的运动状态,同时设定墨水(3)流量;经过电场拖拽与热场辐射,精细射流中溶剂快速挥发,微小液滴逐渐变为半固化-固化,达到衬底(11)后层层累积,配合XYZ轴的运动形成微纳米尺度3D结构(12);打印平台基板(10)与喷针(6)间的电场、热场、XYZ轴运动状态、墨水(3)流量共同影响微纳3D结构(12)。
  3. 根据权利要求2所述的电喷射3D打印方法,其特征在于,所述的热源为加热棒(16)或加热灯(17)或加热丝(18)。
PCT/CN2018/075329 2017-03-30 2018-02-05 基于电场 - 热场复合的电喷射 3d 打印装置及方法 WO2018177029A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/303,556 US10974442B2 (en) 2017-03-30 2018-02-05 Set-up and method of electrohydrodynamic jet 3D printing based on resultant effect of electric field and thermal field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710198238.3 2017-03-30
CN201710198238.3A CN107053653B (zh) 2017-03-30 2017-03-30 基于电场-热场复合的电喷射3d打印装置及方法

Publications (1)

Publication Number Publication Date
WO2018177029A1 true WO2018177029A1 (zh) 2018-10-04

Family

ID=59620531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075329 WO2018177029A1 (zh) 2017-03-30 2018-02-05 基于电场 - 热场复合的电喷射 3d 打印装置及方法

Country Status (3)

Country Link
US (1) US10974442B2 (zh)
CN (1) CN107053653B (zh)
WO (1) WO2018177029A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096552A3 (en) * 2018-11-06 2020-06-11 Bolgul Nezih Mert Liquid cooled three dimensional printer
CN113547739A (zh) * 2021-06-08 2021-10-26 青岛理工大学 用于多材料微纳复合薄膜制备的3d打印机及其工作方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107053653B (zh) * 2017-03-30 2019-04-09 大连理工大学 基于电场-热场复合的电喷射3d打印装置及方法
CN106944626B (zh) * 2017-04-14 2019-10-18 华南理工大学 一种用于汽车细密封涂覆pvc材料的复杂流管及制造方法
CN108526468B (zh) * 2018-04-25 2020-07-14 西北工业大学 模拟微重力环境中金属液滴3d打印的物理系统及模拟方法
CN109094199B (zh) * 2018-09-28 2020-01-17 大连理工大学 一种同轴电喷射打印的液体电极装置
CN109228304B (zh) * 2018-09-28 2020-05-19 大连理工大学 一种电场诱导辅助电喷射的三维打印装置
CN109228305B (zh) * 2018-09-28 2020-04-28 大连理工大学 一种电场诱导辅助电喷射的三维打印方法
CN109129821B (zh) * 2018-10-10 2020-09-11 大连理工大学 一种电喷射三维打印原位热处理装置
KR102205232B1 (ko) * 2019-02-20 2021-01-21 한국에너지기술연구원 슈퍼커패시터 및 2차전지 제조를 위한 3d프린터 장치
CN110484913B (zh) * 2019-08-22 2020-11-17 山东大学 温控装置辅助电场力作用喷射沉积MoS2/Ti复合薄膜
CN110834474A (zh) * 2019-11-29 2020-02-25 大连理工大学 一种微热板上滴涂纳米材料立体结构的打印装置及方法
CN112157906B (zh) * 2020-09-21 2022-05-27 青岛理工大学 一种基于自激发静电场驱动熔融喷射3d打印制备导电生物支架的方法
CN112454883A (zh) * 2020-10-20 2021-03-09 大连理工大学 一种低温辅助电喷印方法
CN112599419B (zh) * 2020-12-16 2022-10-11 河南大学 一种微纳半导体器件的打印式构筑方法
CN112895426B (zh) * 2021-01-20 2022-03-11 青岛理工大学 一种单平板电极电场驱动喷射沉积微纳3d打印方法
CN113352600B (zh) * 2021-04-04 2023-03-28 宁波大学 一种热气流加热固定的电喷印装置及方法
CN113172877B (zh) * 2021-04-26 2022-11-08 北京纳米能源与系统研究所 基于3d打印制备摩擦纳米发电机的方法及装置
CN113619102A (zh) * 2021-07-04 2021-11-09 宁波大学 一种变压气流疏通喷头的电喷印方法
CN113619108A (zh) * 2021-07-04 2021-11-09 宁波大学 一种变压气流疏通喷头的电喷印装置
CN113907058B (zh) * 2021-09-08 2022-12-13 安徽农业大学 一种基于流动聚焦的农药喷雾装置及其操作方法
CN114734626A (zh) * 2022-04-06 2022-07-12 大连理工大学 一种三维结构的诱导流变电流体喷印装置及方法
CN115366537B (zh) * 2022-08-04 2023-05-23 宁波大学 一种用于实现墨水分区的电喷打印装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341989A (zh) * 2013-07-08 2013-10-09 上海大学 基于3d打印综合成形的再生骨支架成形系统与方法
CN105058786A (zh) * 2015-07-14 2015-11-18 大连理工大学 一种同轴聚焦电射流打印方法
CN105196550A (zh) * 2015-10-30 2015-12-30 兰红波 一种单喷头多材料多尺度3d打印装置及其工作方法
CN105730006A (zh) * 2016-02-25 2016-07-06 东南大学 一种基于电流体动力的多功能微加工平台
CN105772722A (zh) * 2016-03-11 2016-07-20 嘉兴学院 一种控制电流体动力学打印分辨率的控制装置及设备与方法
CN106142843A (zh) * 2016-07-06 2016-11-23 大连理工大学 一种同轴电流体动力打印喷头装置
CN106191933A (zh) * 2014-12-11 2016-12-07 江苏理工学院 一种基于超临界流体3d电沉积加工零部件的方法
CN106222085A (zh) * 2016-07-28 2016-12-14 西安交通大学 一种高精度的生物复合3d打印装置及打印方法
WO2017008891A1 (de) * 2015-07-13 2017-01-19 Eos Gmbh Electro Optical Systems Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
WO2017035228A1 (en) * 2015-08-24 2017-03-02 Desktop Metal, Inc. Three-dimensional electrohydrodynamic printing of metallic objects
CN107053653A (zh) * 2017-03-30 2017-08-18 大连理工大学 基于电场‑热场复合的电喷射3d打印装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849208A (zh) * 2013-10-17 2016-08-10 Xjet有限公司 用于3d喷墨打印的碳化钨/钴油墨组合物
WO2016178545A1 (ko) * 2015-05-07 2016-11-10 주식회사 엘지화학 3d 프린터
CN105300006B (zh) 2015-10-15 2017-11-17 江苏智胜医疗器械科技有限公司 医疗血液存储系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341989A (zh) * 2013-07-08 2013-10-09 上海大学 基于3d打印综合成形的再生骨支架成形系统与方法
CN106191933A (zh) * 2014-12-11 2016-12-07 江苏理工学院 一种基于超临界流体3d电沉积加工零部件的方法
WO2017008891A1 (de) * 2015-07-13 2017-01-19 Eos Gmbh Electro Optical Systems Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
CN105058786A (zh) * 2015-07-14 2015-11-18 大连理工大学 一种同轴聚焦电射流打印方法
WO2017035228A1 (en) * 2015-08-24 2017-03-02 Desktop Metal, Inc. Three-dimensional electrohydrodynamic printing of metallic objects
CN105196550A (zh) * 2015-10-30 2015-12-30 兰红波 一种单喷头多材料多尺度3d打印装置及其工作方法
CN105730006A (zh) * 2016-02-25 2016-07-06 东南大学 一种基于电流体动力的多功能微加工平台
CN105772722A (zh) * 2016-03-11 2016-07-20 嘉兴学院 一种控制电流体动力学打印分辨率的控制装置及设备与方法
CN106142843A (zh) * 2016-07-06 2016-11-23 大连理工大学 一种同轴电流体动力打印喷头装置
CN106222085A (zh) * 2016-07-28 2016-12-14 西安交通大学 一种高精度的生物复合3d打印装置及打印方法
CN107053653A (zh) * 2017-03-30 2017-08-18 大连理工大学 基于电场‑热场复合的电喷射3d打印装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020096552A3 (en) * 2018-11-06 2020-06-11 Bolgul Nezih Mert Liquid cooled three dimensional printer
CN113547739A (zh) * 2021-06-08 2021-10-26 青岛理工大学 用于多材料微纳复合薄膜制备的3d打印机及其工作方法

Also Published As

Publication number Publication date
US10974442B2 (en) 2021-04-13
CN107053653A (zh) 2017-08-18
CN107053653B (zh) 2019-04-09
US20190308366A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018177029A1 (zh) 基于电场 - 热场复合的电喷射 3d 打印装置及方法
CN107214945B (zh) 一种电场驱动喷射沉积3d打印装置及其工作方法
CN109228304B (zh) 一种电场诱导辅助电喷射的三维打印装置
CN105772722B (zh) 一种控制电流体动力学打印分辨率的控制装置及设备与方法
CN106738896A (zh) 一种微纳尺度3d打印机及方法
CN105058786A (zh) 一种同轴聚焦电射流打印方法
JP2015189007A (ja) 造形物の製造方法
TW200307577A (en) Ultra-fine fluid jet device
JP2009513842A5 (zh)
CN104014790A (zh) 一种超声波雾化纳米悬浮液的电子线路板3d喷墨打印机
CN106891414A (zh) 微滴喷射打印装置及利用该装置制备石墨烯超材料微结构的方法
Han et al. High-resolution electrohydrodynamic (EHD) direct printing of molten metal
WO2022151539A1 (zh) 功能梯度材料和三维结构一体化制造的3d打印设备及方法
CN112895441A (zh) 连续功能梯度材料和结构一体化制造的3d打印装置及方法
CN109366980A (zh) 一种激光辅助电喷射原位打印制造方法
WO2021031649A1 (zh) 一种电喷射打印曲面压电陶瓷的方法
CN109228305B (zh) 一种电场诱导辅助电喷射的三维打印方法
CN113650285B (zh) 热熔电流体动力学喷印三维微结构的喷印方法及设备
CN113580565A (zh) 一种预印功能层诱导射流的电喷印方法
Kim et al. On-demand electrohydrodynamic jetting with meniscus control by a piezoelectric actuator for ultra-fine patterns
Yang et al. The study of electrohydrodynamic printing by numerical simulation
Han et al. Design of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing
WO2019019033A1 (zh) 3d打印机及其打印方法
CN109159422B (zh) 一种激光辅助电喷射原位打印装置
CN109703023B (zh) 基于热释电效应的电场驱动式微滴喷射喷头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774660

Country of ref document: EP

Kind code of ref document: A1