WO2018176790A1 - 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法 - Google Patents

高碳当量低温高韧性的x80弯管用管线钢板及其制造方法 Download PDF

Info

Publication number
WO2018176790A1
WO2018176790A1 PCT/CN2017/105529 CN2017105529W WO2018176790A1 WO 2018176790 A1 WO2018176790 A1 WO 2018176790A1 CN 2017105529 W CN2017105529 W CN 2017105529W WO 2018176790 A1 WO2018176790 A1 WO 2018176790A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
temperature
rolling
steel plate
controlled
Prior art date
Application number
PCT/CN2017/105529
Other languages
English (en)
French (fr)
Inventor
蒋昌林
许晓红
诸建阳
徐国庆
林涛
吴小林
胡建国
潘贵明
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Priority to RU2019130660A priority Critical patent/RU2724257C1/ru
Priority to DE112017007384.7T priority patent/DE112017007384T5/de
Priority to CA3058488A priority patent/CA3058488C/en
Publication of WO2018176790A1 publication Critical patent/WO2018176790A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention belongs to the technical field of manufacturing line steel plates for X80 elbows, and particularly relates to a steel plate for high carbon equivalent X80 pipe line with high carbon equivalent and low temperature toughness and a manufacturing method thereof.
  • a pipe project includes a bend pipe section for changing the direction of the pipe and a bend pipe for the station yard.
  • the elbow is usually produced by two processes of cold bending and hot bending.
  • the hot bend pipe is usually heated by the induction heating device to the Ac3 or higher. Under the action of the fixed transfer wall and the back pressure, the heating zone is rotated around the fixed center to bend the bend of the desired radius of curvature.
  • the outer ring of the elbow is then cooled by an annular cooling ring, and the heated area is similarly cooled by ACC due to limited cooling capacity. Tempering is required after cooling to allow for uniformity of performance. From the entire process, the entire enthalpy + cooling process is similar to the TMCP process, ie high temperature deformation (bending) + ACC cooling process.
  • the patent application with the patent number CN201110245761.X has the following characteristics: 1) The patent application mainly emphasizes the hot enthalpy process, and does not mention the steel plate production process used for the raw material steel plate; 2) the low temperature toughness of -45 ° C obtained by the patent The impact value is not higher than 200J, and the numerical value is highly volatile.
  • the elbow Since the elbow is considered to be relatively simple and insufficient in the process of the enthalpy, the entire austenite deformation and subsequent cooling are designed.
  • the steel plate for the elbow it is usually only designed with a high carbon equivalent component compared with the steel plate for the straight pipe.
  • the high carbon component design will result in poor impact toughness in the low temperature series.
  • the application is directed to the production characteristics of the hot pipe bending process, and the chemical composition is still designed with high carbon equivalent.
  • the cooling process in the production process a steel plate with high carbon equivalent high temperature and high toughness X80 steel grade bending pipe is obtained, and the process is simple and tidy. The rate of finished products is high.
  • the technical solution adopted by the present invention to solve the above technical problem is a pipeline steel plate for X80 elbows resistant to HIC, the chemical composition of the steel plate is C: ⁇ 0.10%, Mn: 1.55 to 1.90% by mass percentage, Si: ⁇ 0.45%, S: ⁇ 0.001%, P: ⁇ 0.010%, Nb: 0.045-0.08%, Ti: ⁇ 0.015%, V: ⁇ 0.008%, Alt: ⁇ 0.06%, N: ⁇ 0.0040%, O: ⁇ 0.004%, Mo: ⁇ 0.40%, Cu: ⁇ 0.30%, Ni: 0.20 to 1.5%, Cr: ⁇ 0.35%, Mo + Cu + Ni + Cr ⁇ 1.5%, Ceq: 0.35 to 0.53%, Pcm: 0.17 - 0.27%, the balance is Fe and inevitable impurity elements.
  • the thickness of the steel plate is 18.4 - 42 mm; the yield strength is ⁇ 600 Mpa; the tensile strength is ⁇ 710 MPa, the yield ratio is ⁇ 0.93, the plate sample elongation is ⁇ 35%, the impact energy at -30 ° C is ⁇ 350 J, and the impact energy at -50 ° C is ⁇ 250J, -60 °C impact work ⁇ 230J.
  • the steel component of the invention is based on the design principle of high carbon equivalent, and then adopts appropriate amount of C, Mn, by adding micro-alloying elements such as Nb, V, Ti, etc., and adding a small amount of elements such as Mo, Cu, Ni, etc., combined with specific TMCP
  • the rolling process ensures the final mechanical properties, especially the low temperature impact toughness under high carbon equivalent conditions.
  • the main basic elements are added as follows:
  • C:C is the most economical and basic strengthening element in steel. It can significantly improve the strength of steel through solid solution strengthening and precipitation strengthening, but it has adverse effects on the toughness and ductility of steel and welding performance. Therefore, the development trend of pipeline steel It is possible to reduce the C content in the near future, but the C content is controlled to 0.05 to 0.10% in consideration of the matching relationship between the hot enthalpy process and the strength and toughness.
  • Mn Improves the strength of steel by solid solution strengthening. It is the most important element in the pipeline steel to compensate for the loss of strength due to the decrease of C content. Mn also expands the element of ⁇ phase zone and can reduce the ⁇ phase transition temperature of steel. It helps to obtain fine phase change products, which can improve the toughness of steel and lower the transition temperature of toughness and brittleness. Mn is also an element to improve the hardenability of steel. Considering that Mn segregation is found to be detrimental to HIC performance during the inspection process, but considering the thermal enthalpy process and the strength requirement, the Mn content in the present invention is designed in the range of 1.55 to 1.9% to alleviate the center due to the high Mn. Segregation, soft pressing under continuous casting.
  • Nb It is one of the most important microalloying elements in modern microalloyed steel, especially in pipeline steel, and its effect on grain refinement is very obvious.
  • Nb (C, N) strain induced precipitation by Nb solution dragging and hot rolling can hinder the recovery and recrystallization of deformed austenite, and the deformed austenite in the non-recrystallization zone is transformed by TMCP in phase transformation. The time is converted into a fine phase change product to make the steel have high strength and high toughness.
  • the present invention mainly determines the Nb content range by the relationship between the C and Nb content.
  • V high precipitation strengthening and weak grain refinement, three microalloying elements in Nb, V, Ti When used in combination, V mainly acts as a precipitation strengthening.
  • Ti is a strong solid N element, the stoichiometric ratio of Ti/N is 3.42, and about 60 ppm of N in steel can be fixed by using about 0.02% of Ti, and a TiN precipitate phase can be formed in the slab continuous casting process.
  • the fine precipitated phase can effectively prevent the growth of austenite grains in the slab during heating, help to improve the solid solubility of Nb in austenite, and improve the impact toughness of the weld heat affected zone.
  • An indispensable element in pipeline steel, but too high Ti will form a large TiN particle, which affects the drop weight performance. Therefore, the patent of this application controls Ti to ⁇ 0.015%.
  • Mo It can delay the formation of ferrite phase when ⁇ phase transition, promote the formation of acicular ferrite, play an important role in controlling phase change, and also improve the hardenability of steel. Obtaining acicular ferrite or bainite structure by adding a certain Mo at a certain cooling rate and final cooling temperature, the Mo content is controlled to be not less than 0.15% in consideration of the TMCP process and the enthalpy process.
  • S, P is an inevitable impurity element in pipeline steel. It is desirable that the lower the better, the ultra-low sulfur and Ca treatment can change the sulfide form to make the pipeline steel have high impact toughness.
  • Ni The strength of steel can be improved by solid solution strengthening. On the one hand, the addition of Ni can improve the toughness of steel, and at the same time improve the hot brittleness of Cu in steel, and the Ni content is controlled to be not less than 0.2%.
  • Another object of the present invention is to provide a method for preparing the above-mentioned high carbon equivalent low temperature and high toughness X80 elbow pipeline steel plate, the preparation process: preparation ratio ⁇ conversion or electric furnace smelting ⁇ furnace refining ⁇ continuous casting ⁇ slab reheating ⁇ Specific TMCP process + cold stacking after cooling ⁇ straightening.
  • the smelting raw materials are pretreated by KR hot metal, converter smelting, LF refining, RH vacuum refining and continuous casting, Ca treatment during refining, Ca/S is not less than 1, and B type inclusions are controlled to be no higher than 1.5.
  • the soft reduction is used to improve the segregation of the core due to the high Mn content, and a continuous casting billet satisfying the chemical composition requirement and having a thickness of not less than 350 mm is produced, and the compression ratio is not less than 10.
  • the continuous casting slab is reheated, and the temperature of the two-stage heating is controlled at 1250-1300 ° C; after the furnace is discharged, a specific TMCP process including two-stage rolling and intermediate blank cooling is performed: the first stage is recrystallization in the recrystallization zone, and the finishing temperature is not high.
  • the single pass reduction rate of two to three passes is controlled to be not less than 20% during rolling in the recrystallization zone; the intermediate billet cooling is to moderately cool the intermediate billet to the second stage by the Mild cooling system.
  • the re-crystallization zone is opened and rolled, and the cooling method is to use the method of swinging back and forth in the box body to cool, the cooling rate is 6-12 ° C / s, to ensure that the austenite grains do not grow up after rolling deformation in the recrystallization zone, the middle
  • the temperature difference between the surface of the blank and the core is small; the second stage is rolling in the non-recrystallization zone, the rolling temperature is not higher than 880 ° C, until the final thickness, the finishing temperature is controlled at 790-850 ° C.
  • the steel plate After rolling, the steel plate is cooled by water cooling, and the cooling temperature is controlled to be not higher than 810 ° C.
  • the cooling temperature is controlled to be not higher than 500 ° C, and the cooling rate is 10 to 35 ° C / s; after cooling, straightening, and finally directly cooling to room temperature. That is, the finished steel sheet has a high carbon equivalent of the steel plate.
  • a stepwise gradient cooling process is adopted, that is, the cooling water amount of each cooling unit of the ACC is set to be different: the amount of cooling water in the first 1-6 segments is the largest, and the corresponding cooling rate is 25-35 ° C / s, after The amount of cooling water in the 7-12 section ACC cooling unit decreases in turn, and the corresponding cooling rate changes are 10-20 ° C / s.
  • the steel plate After the finishing temperature is over, the steel plate is cooled to the vicinity of the Ac3 line in the front 1-6ACC cooling section by a stepwise gradient cooling process in combination with the CCT curve.
  • the steel plate can obtain a large degree of subcooling by the rapid cooling rate. In order to obtain more phase deformation nuclei, a finer phase change grain will eventually be obtained.
  • the time is shortened in order to obtain the same average cooling rate and final cooling temperature.
  • a lower cooling rate can be used to mitigate the phase transition stress and temperature stress sensitivity due to high carbon equivalents. Thereby, the steel sheet structure is relatively small and the final residual stress is relatively small, and finally has low temperature and high toughness.
  • the Mild cooling system used in the present invention is disposed between the roughing mill and the finishing mill of the rolling mill production line.
  • the system is a box structure with a total length of 18 m.
  • the intermediate billet cooling speed is 4 ⁇ 18 ° C / s
  • the thickness of the intermediate billet is usually about 40 ⁇ 180mm thick according to product and production needs, less than 40mm thick intermediate billet due to thinner, unless Need, generally do not need to open the intermediate billet moderate cooling; for thick gauge intermediate billet, considering the design limit, the maximum cooling rate is 4 ° C / s, for thin specifications, the maximum cooling rate can reach 18 ° C / s.
  • the operation flow of the Mild cooling system after the blank is rolled by the recrystallization zone, the intermediate blank is obtained, and after the intermediate blank enters the Mild cooling system, the corresponding roller path in the system enters the swing mode, so that the intermediate blank is returned to and from the system. Swinging, while the nozzle sprays the water to the intermediate billet, and controls the intermediate billet to be cooled at a specific cooling rate to the rolling temperature of the second stage rolling. After the intermediate billet is cooled to the rolling temperature of the second stage rolling, the intermediate billet is It will be sent out from the intermediate billet moderate cooling system and enter the second stage rolling process.
  • the stepwise gradient cooling process is adopted in the cooling of the steel plate, which can be realized through the process site without additional equipment investment, has high production efficiency characteristics, and has simple process.
  • 1 is a comparison diagram of ACC stage gradient cooling and conventional cooling according to an embodiment of the present invention
  • FIG. 2 is a view showing the structure of a steel sheet according to an embodiment of the present invention.
  • the manufacturing process of high carbon equivalent low temperature and high toughness X80 steel grade pipe steel pipe is: mixing preparation ⁇ converter or electric furnace smelting ⁇ furnace refining ⁇ continuous casting ⁇ slab reheating ⁇ rolling ⁇ ACC gradient cooling ⁇ straightening .
  • the specific process steps are as follows: the smelting raw materials are sequentially subjected to KR hot metal pretreatment, converter smelting, LF refining, RH vacuum refining and continuous casting, and the Ca/S ratio is controlled to be not less than 1 during refining, and the B-type inclusions are controlled at 1.5 and the following,
  • a suitable process is employed in continuous casting to improve core segregation due to high Mn content.
  • the specific TMCP process includes two-stage rolling and intermediate billet cooling: the first stage is recrystallization in the recrystallization zone, the final rolling temperature is controlled to be no higher than 1200 ° C, and the single pass of two to three passes is controlled during recrystallization.
  • the secondary reduction rate is not less than 20%;
  • the intermediate billet cooling is to rapidly cool the intermediate billet to the second stage of the non-recrystallization zone by the Mild cooling system.
  • the cooling method is to use the back and forth swing in the mild cooling box to cool the cooling rate. 12 ° C / s, to ensure that the austenite grains no longer grow after rolling deformation in the recrystallization zone, the temperature difference between the surface of the intermediate blank and the core is small;
  • the second stage is rolling in the non-recrystallization zone, the rolling temperature is not higher than 900 ° C, and the finishing rolling temperature is controlled not higher than 850 ° C.
  • the steel sheet After rolling, the steel sheet is cooled by water cooling, and the cooling temperature is controlled to be not higher than 800 ° C.
  • the termination cooling temperature is controlled to be not higher than 500 ° C, and the cooling rate is 10 to 35 ° C / s.
  • cooling In the case of the stepwise gradient cooling process, the cooling water volume of each ACC cooling unit is set to be different: the first 1-6 sections have the largest amount of cooling water, the corresponding cooling rate is 25-35 ° C / s, and the rear 7-12 section ACC cooling unit The amount of cooling water is successively decreased, and the corresponding cooling temperature change is 10-20 ° C / s; after cooling, straightening, and finally directly cooling to room temperature to obtain the finished steel sheet.

Abstract

一种高碳当量低温高韧性X80钢级弯管用管线钢板及其制造方法,该方法具有工艺简练及成材率高等特点。钢板的厚度为18.4‑42mm。其制造流程如下:配比备料→进行转炉或电炉冶炼→炉外精炼→连铸→板坯再加热→轧制+ACC梯度冷却→矫直。该钢板具有优异的低温韧性,其制造方法简单易实现、成材率高。

Description

高碳当量低温高韧性的X80弯管用管线钢板及其制造方法 技术领域
本发明属于X80弯管用管线钢板制造技术领域,具体涉及高碳当量、低温韧性优的高碳当量X80弯管管线用钢板及其制造方法。
背景技术
目前世界需求的能源中石化能源还占能源结构中的主体地位,近年来世界经济的急速增长极大带动了石化能源需求的急速增长,这也极大地促进了长距离输送管线的发展,为提高输送效率,降低投资,长距离石油天然气输送管线用钢的发展趋势是向高强度或超高钢级发展。目前世界各国使用的管线钢最高钢级为X80钢级。一项管道工程除直管段外,还包括用来改变管道方向的弯管段及站场用弯管等。弯管通常采用冷弯和热煨弯管两种工艺生产,由于冷弯管受制作工艺以及服役环境的影响已逐渐被热煨工艺替代。热煨弯管通常是通过感应加热设备将母管加热到Ac3以上,在固定转壁和后推力作用下,使加热区绕固定中心旋转从而弯制出所需曲率半径的弯管,弯成型后再通过环形冷却圈对弯管外圈进行冷却,由于冷却能力有限,因此对已加热的区域进行类似于ACC加速冷却。冷却完后考虑到性能均匀性,还需进行回火处理。从整个工艺上来说,整个热煨+冷却工艺类似于TMCP工艺,即高温变形(弯曲)+ACC冷却过程。由于整个热煨过程在较高温度变形,同时变形程度较小,同时后续冷却能力较弱,因此弯管用热煨 钢板只能采用高碳当量的成分设计!高碳当量设计将给整个生产带来两个主要问题:1)冲击韧性降低;2)由于冷却过程中组织应力较大,造成钢板板形较差,给后续矫直带来困难,同时影响生产效率
国内外有申请X80钢级弯管及弯管用钢板专利报道,如CN201410239039.9申请专利、该专利提到一种X80钢级弯管用热轧平板钢,具有如下特点:1)该申请专利只提到钢板-20℃冲击韧性,实际上目前更多弯管用钢板更多需要-30℃甚至更低温度低温冲击韧性;2)该申请专利在钢板轧制后需要堆缓冷,这对钢板大批量生产效率不利。同时给后续生产工序带来不便。申请专利号为CN201110245761.X的专利申请,具有如下特点:1)该申请专利主要强调热煨工艺,对原料钢板采用何种钢板生产工艺未提及;2)该专利获得的-45℃低温韧性冲击值不高于200J,且数值波动性较大。
弯管由于考虑到其热煨工艺过程中,整个奥氏体变形及后续冷却相对简单和不足,因此在设计弯管用钢板时与直管用钢板相比,通常只能采用高碳当量成分设计。高碳当 量成分设计将带来低温系列冲击韧性较差。
发明内容
本申请针对弯管热煨工艺生产特点,化学成分仍采用高碳当量设计,但通过生产过程中冷却工艺的创新,获得一种高碳当量低温高韧性X80钢级弯管用钢板,工艺简练、成材率高。
本发明解决上述技术问题所采用的技术方案为,一种抗HIC的X80弯管用管线钢板,该钢板的化学成分按质量百分比计为C:≤0.10%、Mn:1.55~1.90%,Si:≤0.45%,S:≤0.001%,P:≤0.010%,Nb:0.045~0.08%、Ti:≤0.015%、V:≤0.008%,Alt:≤0.06%,N:≤0.0040%,O:≤0.004%,Mo:≤0.40%,Cu:≤0.30%、Ni:0.20~1.5%,Cr:≤0.35%,Mo+Cu+Ni+Cr≤1.5%,Ceq:0.35~0.53%,Pcm:0.17~0.27%,余量为Fe及不可避免的杂质元素。
进一步地,钢板的厚度为18.4-42mm;屈服强度≥600Mpa;抗拉强度≥710Mpa,屈强比≤0.93,板样延伸率≥35%,-30℃冲击功≥350J,-50℃冲击功≥250J,-60℃冲击功≥230J。
本发明钢材成分是基于高碳当量的设计原则,再采用适量的C、Mn,通过加入微量Nb、V、Ti等微合金化元素,同时加入少量Mo、Cu、Ni等元素,结合特定TMCP的轧制工艺,确保最终各项力学性能,尤其是高碳当量条件下的低温冲击韧性,主要基本元素的添加原理如下:
C:C是钢中最经济、最基本的强化元素,通过固溶强化和析出强化可明显提高钢的强度,但对钢的韧性及延性以及焊接性能带来不利影响,因此管线钢的发展趋势是近可能降低C含量,但考虑到热煨工艺及强度及韧性的匹配关系,将C含量控制在0.05~0.10%。
Mn:通过固溶强化提高钢的强度,是管线钢中弥补因C含量降低而引起强度损失的最主要的元素,Mn同时还是扩大γ相区的元素,可降低钢的γ→α相变温度,有助于获得细小的相变产物,可提高钢的韧性,降低韧脆性转变温度,Mn也是提高钢的淬透性元素。考虑到检验过程中发现Mn偏析对抗HIC性能不利,但同时考虑到热煨工艺同时兼顾到强度要求,本发明中Mn含量设计在1.55~1.9%范围,为缓解因Mn较高所带来的中心偏析,连铸时采用轻压下。
Nb:是现代微合金化钢特别是管线钢中最主要的微合金化元素之一,对晶粒细化的作用非常明显。通过Nb的固溶拖曳及热轧过程中的Nb(C,N)应变诱导析出可阻碍形变奥氏体的回复、再结晶,经TMCP使未再结晶区轧制的形变奥氏体在相变时转变为细小相变产物,以使钢具有高强度和高韧性,本发明主要是通过C与Nb含量的关系来确定Nb含量范围,
V:具有较高的析出强化和较弱的晶粒细化作用,在Nb、V、Ti三种微合金化元素 中复合使用时,V主要起析出强化作用。
Ti:是强的固N元素,Ti/N的化学计量比为3.42,利用0.02%左右的Ti就可固定钢中60ppm以下的N,在板坯连铸过程中即可形成TiN析出相,这种细小的析出相可有效阻止板坯在加热过程中奥氏体晶粒的长大,有助于提高Nb在奥氏体中的固溶度,同时可改善焊接热影响区的冲击韧性,是管线钢中不可缺少的元素,但过高的Ti会形成大的TiN质点,影响落锤性能,因此本申请专利将Ti控制在≤0.015%之间。
Mo:可推迟γ→α相变时先析出铁素体相的形成,促进针状铁素体形成的主要元素,对控制相变起到重要作用,同时也是提高钢的淬透性元素。在一定的冷却速度和终冷温度下通过添加一定Mo即可获得明显的针状铁素体或贝氏体组织,考虑到TMCP工艺和热煨工艺,Mo含量控制在不低于0.15%。
S、P:是管线钢中不可避免的杂质元素,希望越低越好,通过超低硫及Ca处理改变硫化物形态可使管线钢具有很高的冲击韧性。
Cu、Ni:可通过固溶强化提高钢的强度,Ni的加入一方面可提高钢的韧性,同时改善Cu在钢中易引起的热脆性,Ni含量控制在不低于0.2%。
Cr:Cr的加入可提高钢的淬透性,且相对经济。
本发明的另一目的是提供上述高碳当量低温高韧性的X80弯管用管线钢板的制备方法,制备流程:配比备料→进行转炉或电炉冶炼→炉外精炼→连铸→板坯再加热→特定TMCP工艺+冷却后堆冷→矫直。
具体工艺步骤如下:
将冶炼原料依次经KR铁水预处理,转炉冶炼,LF精炼、RH真空精炼和连铸,精炼时采用Ca处理,Ca/S不低于1,并将B类夹杂控制在不高于1.5级,连铸时采用轻压下以改善因Mn含量高造成的芯部偏析,制造出满足化学成分要求、厚度不小于350mm的连铸坯,同时压缩比不低于10。
将连铸坯再加热,二加段温度控制在1250-1300℃;出炉后进行包括两阶段轧制和中间坯冷却的特定TMCP工艺:第一阶段为再结晶区轧制,终轧温度不高于1200℃,再结晶区轧制时控制连续两至三道次的单道次压下率不低于20%;中间坯冷却是通过Mild cooling冷却系统对中间坯适度冷却至第二阶段的非再结晶区开轧温度,冷却方式是在箱体内采用来回摆动的方式进行冷却,冷速为6-12℃/s,保证再结晶区轧制变形后奥氏体晶粒不再长大,中间坯表面与心部温差较小;第二阶段为非再结晶区轧制,开轧温度不高于880℃,直到最终厚度,终轧温度控制在790-850℃。
轧后以水冷方式冷却钢板,开始冷却温度控制为不高于810℃,终止冷却温度控制为不高于500℃,冷却速度为10~35℃/s;冷却后矫直,最后直接冷却到室温即得钢板成品,考虑到钢板的碳当量较高,冷却时,采用分段梯度冷却工艺,即ACC各冷却单元冷却水量设置为不同:前1-6段的冷却水量最大,对应的冷却速度为25-35℃/s,后 7-12段ACC冷却单元冷却水量依次递减,对应的冷却速度变化是10-20℃/s。
终轧温度结束后,通过分段梯度冷却工艺,结合CCT曲线,在前1-6ACC冷却段,将钢板冷却到Ac3线附近,一方面可以通过快冷却速度,使得钢板获得较大的过冷度,从而为获得更多相变形核,最终会获得更细小相变晶粒。另一方面,为在同样获平均冷却速度和终冷温度缩短时间。一旦温度达到Ar3线附近后,采用较低冷却速度,可以减缓因高碳当量下,相变时产生相变应力和温度应力敏感性。从而获得钢板组织相对较小且最终残余应力相对较小,最终仍具有低温高韧性。
本发明采用的Mild cooling冷却系统设置在轧机生产线的粗轧机和精轧机之间,该系统为箱体结构,共计长18m,在箱体顶部,密集分布喷淋喷嘴,对粗轧后的中间坯进行适度冷却,根据不同中间坯厚度,获得的中间坯冷却速度为4~18℃/s,中间坯厚度根据产品和生产需要通常在40~180mm厚左右,小于40mm厚中间坯由于较薄,除非需要,一般不需进行开启中间坯适度冷却;对于厚规格中间坯,考虑到设计极限,最大冷却速度在4℃/s,对于薄规格,最大冷却速度可达到18℃/s。
进一步地,Mild cooling冷却系统的作业流程:坯料经再结晶区轧制完成后得到中间坯,中间坯进入Mild cooling冷却系统后,系统内相应的辊道进入摆动模式,使中间坯在系统内来回摆动,同时喷嘴喷淋对中间坯喷水,控制中间坯以特定的冷却速度冷却至第二阶段轧制的开轧温度,待中间坯冷却到第二阶段轧制的开轧温度后,中间坯将从中间坯适度冷却系统内送出,进入第二阶段轧制工序。
本发明具有如下特点:
1)采用合适的成分和特定生产工艺,解决了高碳当量下低温冲击性能差或不稳定的技术难题,使得弯管用钢板具有优异低温冲击韧性。
2)该方面在钢板冷却时采用分段梯度冷却工艺,无需额外增加设备投资,通过工艺现场即可实现,具有高生产效率特点,且工艺简单。
附图说明
图1为本发明实施例ACC分段梯度冷却与常规冷却的对比图;
图2为本发明实施例钢板的组织结构图。
具体实施方式
以下结合附图、实施例对本发明作进一步详细描述。
高碳当量低温高韧性X80钢级弯管用管线钢板的制造流程为:配比备料→进行转炉或电炉冶炼→炉外精炼→连铸→板坯再加热→轧制→ACC梯度冷却→矫直。
具体工艺步骤如下:将冶炼原料依次经KR铁水预处理、转炉冶炼、LF精炼、RH真空精炼和连铸,精炼时控制Ca/S比不低于1,同时将B类夹杂控制在1.5级及以下, 连铸时采用适当工艺,目的在于改善因Mn含量较高造成的芯部偏析。制造出满足化学成分要求、厚度350mm的连铸坯;板坯加热时二加段温度控制在不高于1300℃,并在此加热段停留时间不低于4小时;随后进行轧制+ACC梯度冷却+矫直。
特定TMCP工艺包括两阶段轧制和中间坯冷却:第一阶段为再结晶区轧制,终轧温度控制在不高于1200℃,再结晶区轧制时控制连续两至三道次的单道次压下率不低于20%;
中间坯冷却是通过Mild cooling冷却系统对中间坯快速冷却至第二阶段的非再结晶区开轧温度,冷却方式为是在mild cooling箱体内采用来回摆动的方式进行冷却,冷速速度为6~12℃/s,保证再结晶区轧制变形后奥氏体晶粒不再长大,中间坯表面与心部温差较小;
第二阶段为非再结晶区轧制,开轧温度不高于900℃,终轧温度控制在不高于850℃。
轧后以水冷方式冷却钢板,开始冷却温度控制为不高于800℃,终止冷却温度控制为不高于500℃,冷却速度为10~35℃/s;考虑到钢板的碳当量较高,冷却时,采用分段梯度冷却工艺,即ACC各冷却单元冷却水量设置为不同:前1-6段的冷却水量最大,对应的冷却速度为25-35℃/s,后7-12段ACC冷却单元冷却水量依次递减,对应的冷却温度变化是10-20℃/s;冷却后矫直,最后直接冷却到室温即得钢板成品。
各实施例所涉及钢板的具体化学成分见表1,具体TMCP工艺参数见表2,主要力学性能见表3。
表1
Figure PCTCN2017105529-appb-000001
表2
Figure PCTCN2017105529-appb-000002
表3
Figure PCTCN2017105529-appb-000003

Claims (4)

  1. 一种高碳当量低温高韧性的X80弯管用管线钢板,该钢板的化学成分按质量百分比计为C:≤0.10%、Mn:1.55~1.90%,Si:≤0.45%,S:≤0.001%,P:≤0.010%,Nb:0.045~0.08%、Ti:≤0.015%、V:≤0.008%,Alt:≤0.06%,N:≤0.0040%,O:≤0.004%,Mo:≤0.40%,Cu:≤0.30%、Ni:0.20~1.5%,Cr:≤0.35%,Mo+Cu+Ni+Cr≤1.5%,Ceq:0.35~0.53%,Pcm:0.17~0.27%,余量为Fe及不可避免的杂质元素。
  2. 根据权利要求1所述的高碳当量低温高韧性的X80弯管用管线钢板,其特征在于:所述钢板的厚度为18.4-42mm;屈服强度≥600Mpa;抗拉强度≥710Mpa,屈强比≤0.93,板样延伸率≥35%,-30℃冲击功≥350J,-50℃冲击功≥250J,-60℃冲击功≥230J。
  3. 一种制造如权利要求1或2所述高碳当量低温高韧性的X80弯管用管线钢板的方法,其特征在于:工艺步骤如下:
    将冶炼原料依次经KR铁水预处理,转炉冶炼,LF精炼、RH真空精炼和连铸,精炼时采用Ca处理,Ca/S不低于1,并将B类夹杂控制在不高于1.5级,连铸时采用轻压下以改善因Mn含量高造成的芯部偏析,制造出满足化学成分要求、厚度不小于350mm的连铸坯,同时压缩比不低于10;
    将连铸坯再加热,二加段温度控制在1250-1300℃;出炉后进行包括两阶段轧制和中间坯冷却的特定TMCP工艺:
    第一阶段为再结晶区轧制,终轧温度不高于1200℃,再结晶区轧制时控制连续两至三道次的单道次压下率不低于20%;
    中间坯冷却是通过Mild cooling冷却系统对中间坯适度冷却至第二阶段的非再结晶区开轧温度,冷却方式是在箱体内采用来回摆动的方式进行冷却,冷速为6-12℃/s,保证再结晶区轧制变形后奥氏体晶粒不再长大,中间坯表面与心部温差较小;
    第二阶段为非再结晶区轧制,开轧温度不高于880℃,直到最终厚度,终轧温度控制在790-850℃;
    轧后以水冷方式冷却钢板,开始冷却温度控制为不高于810℃,终止冷却温度控制为不高于500℃,冷却速度为10~35℃/s;冷却后矫直,最后直接冷却到室温即得钢板成品,考虑到钢板的碳当量较高,冷却时,采用分段梯度冷却工艺,即ACC各冷却单元冷却水量设置为不同:前1-6段的冷却水量最大,对应的冷却速度为25-35℃/s,后7-12段ACC冷却单元冷却水量依次递减,对应的冷却速度变化是10-20℃/s。
  4. 根据权利要求3所述高碳当量低温高韧性的X80弯管用管线钢板的制造方法,其特征在于:所述Mild cooling冷却系统的作业流程:坯料经再结晶区轧制完成后得到中间坯,中间坯进入Mild cooling冷却系统后,系统内相应的辊道进入摆动模式,使中间坯在系统内来回摆动,同时喷嘴喷淋对中间坯喷水,控制中间坯以特定的冷却速度冷 却至第二阶段轧制的开轧温度,待中间坯冷却到第二阶段轧制的开轧温度后,中间坯将从中间坯适度冷却系统内送出,进入第二阶段轧制工序。
PCT/CN2017/105529 2017-04-01 2017-10-10 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法 WO2018176790A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2019130660A RU2724257C1 (ru) 2017-04-01 2017-10-10 Трубопроводная листовая сталь класса х80 с высоким эквивалентным содержанием углерода и высокой ударной вязкостью при низких температурах для применения в гнутых трубах и способ ее изготовления
DE112017007384.7T DE112017007384T5 (de) 2017-04-01 2017-10-10 Eine X80-Rohrleitungsstahlplatte mit hoher Kohlenstoffäquivalenz und hoher Zähigkeit bei niedrigen Temperaturen, die für gebogene Rohre verwendet wird, sowie ein Herstellungsverfahren dafür
CA3058488A CA3058488C (en) 2017-04-01 2017-10-10 A x80 pipeline steel plate with high carbon equivalent and high toughness at low temperatures used for bent pipes as well as a manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710213372.6 2017-04-01
CN201710213372.6A CN107099745B (zh) 2017-04-01 2017-04-01 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2018176790A1 true WO2018176790A1 (zh) 2018-10-04

Family

ID=59675132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105529 WO2018176790A1 (zh) 2017-04-01 2017-10-10 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法

Country Status (5)

Country Link
CN (1) CN107099745B (zh)
CA (1) CA3058488C (zh)
DE (1) DE112017007384T5 (zh)
RU (1) RU2724257C1 (zh)
WO (1) WO2018176790A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403459A (zh) * 2021-05-25 2021-09-17 中国科学院金属研究所 一种通过织构控制来提高x80管线钢低温冲击韧性的轧制方法
CN113832394A (zh) * 2021-08-18 2021-12-24 日照钢铁控股集团有限公司 一种低屈强比、高断裂韧性管线钢及其制造方法
CN114480809A (zh) * 2022-04-18 2022-05-13 江苏省沙钢钢铁研究院有限公司 500MPa级止裂钢板及其生产方法
CN115418459A (zh) * 2022-08-26 2022-12-02 河钢股份有限公司 一种钢板的生产方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099745B (zh) * 2017-04-01 2019-12-27 江阴兴澄特种钢铁有限公司 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法
CN109234622B (zh) * 2018-09-29 2020-08-18 南京钢铁股份有限公司 X80m深海抗应变管线钢及冶炼工艺
CN109338213B (zh) * 2018-09-29 2021-01-26 南京钢铁股份有限公司 X80m深海抗应变管线钢及轧制工艺
CN110760757B (zh) * 2019-08-14 2021-12-03 钢铁研究总院 一种热轧钢筋的低成本强化工艺
CN110527809B (zh) * 2019-08-26 2020-12-22 武汉科技大学 降低残余应力的热轧高强度带钢制备方法
CN115261716B (zh) * 2021-04-30 2023-06-16 宝山钢铁股份有限公司 一种稠油开发用高强度耐热套管及其制造方法
CN113652615A (zh) * 2021-07-27 2021-11-16 包头钢铁(集团)有限责任公司 一种高效的管线钢l245n生产工艺
CN114381664B (zh) * 2021-12-22 2022-11-22 南阳汉冶特钢有限公司 一种耐腐蚀管线用厚规格x80ms钢板的生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080060091A (ko) * 2006-12-26 2008-07-01 주식회사 포스코 조관후 강도변화가 작은 스파이럴 강관용 후물 열연 고강도api-x80 급 강재 및 제조방법
CN103014553A (zh) * 2011-09-26 2013-04-03 宝山钢铁股份有限公司 一种屈服强度630MPa级高强度高韧性钢板及其制造方法
CN104404378A (zh) * 2014-12-19 2015-03-11 山东钢铁股份有限公司 一种x65-x80级别热煨弯管用宽厚钢板及其制造方法
CN105950972A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 缩短工序时间的厚规格x80管线用钢板及其制造方法
CN106367685A (zh) * 2016-08-30 2017-02-01 江阴兴澄特种钢铁有限公司 深海钻探隔水管用x80及以下钢级管线钢及其制备方法
CN107099745A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579307B2 (ja) * 1999-08-19 2004-10-20 Jfeスチール株式会社 溶接性及び歪時効後の靭性に優れた60キロ級直接焼入れ焼戻し鋼
KR101111023B1 (ko) * 2006-07-13 2012-02-13 수미도모 메탈 인더스트리즈, 리미티드 벤드관 및 그 제조 방법
US8039118B2 (en) * 2006-11-30 2011-10-18 Nippon Steel Corporation Welded steel pipe for high strength line pipe superior in low temperature toughness and method of production of the same
RU2518830C1 (ru) * 2010-06-30 2014-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячекатаный стальной лист и способ его изготовления
RU2465346C1 (ru) * 2011-08-25 2012-10-27 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства высокопрочного штрипса для труб магистральных трубопроводов
CN103740925B (zh) * 2013-12-26 2015-03-25 秦皇岛首秦金属材料有限公司 采用喷射和层流冷却联动生产高强韧性管线钢的方法
CN104250713B (zh) * 2014-09-19 2017-01-11 江阴兴澄特种钢铁有限公司 一种x80级抗大变形管线钢板及其制造方法
CN104404387B (zh) * 2014-10-29 2017-04-26 江苏沙钢集团有限公司 一种超低温高压力服役输送管用钢板及其制造方法
CN105950973B (zh) * 2016-05-13 2018-08-31 江阴兴澄特种钢铁有限公司 超低温落锤性能优异的厚规格x80管线用钢板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080060091A (ko) * 2006-12-26 2008-07-01 주식회사 포스코 조관후 강도변화가 작은 스파이럴 강관용 후물 열연 고강도api-x80 급 강재 및 제조방법
CN103014553A (zh) * 2011-09-26 2013-04-03 宝山钢铁股份有限公司 一种屈服强度630MPa级高强度高韧性钢板及其制造方法
CN104404378A (zh) * 2014-12-19 2015-03-11 山东钢铁股份有限公司 一种x65-x80级别热煨弯管用宽厚钢板及其制造方法
CN105950972A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 缩短工序时间的厚规格x80管线用钢板及其制造方法
CN106367685A (zh) * 2016-08-30 2017-02-01 江阴兴澄特种钢铁有限公司 深海钻探隔水管用x80及以下钢级管线钢及其制备方法
CN107099745A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113403459A (zh) * 2021-05-25 2021-09-17 中国科学院金属研究所 一种通过织构控制来提高x80管线钢低温冲击韧性的轧制方法
CN113832394A (zh) * 2021-08-18 2021-12-24 日照钢铁控股集团有限公司 一种低屈强比、高断裂韧性管线钢及其制造方法
CN114480809A (zh) * 2022-04-18 2022-05-13 江苏省沙钢钢铁研究院有限公司 500MPa级止裂钢板及其生产方法
CN114480809B (zh) * 2022-04-18 2022-08-19 江苏省沙钢钢铁研究院有限公司 500MPa级止裂钢板及其生产方法
CN115418459A (zh) * 2022-08-26 2022-12-02 河钢股份有限公司 一种钢板的生产方法
CN115418459B (zh) * 2022-08-26 2024-03-22 河钢股份有限公司 一种钢板的生产方法

Also Published As

Publication number Publication date
CA3058488A1 (en) 2018-10-04
CN107099745B (zh) 2019-12-27
DE112017007384T5 (de) 2019-12-12
CN107099745A (zh) 2017-08-29
RU2724257C1 (ru) 2020-06-22
CA3058488C (en) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2018176790A1 (zh) 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法
WO2018176788A1 (zh) 一种抗hic的x80弯管用管线钢板及其制造方法
CN104805375B (zh) 一种超厚规格高韧性x80管线用钢板及其制造方法
CN101161847B (zh) 高韧性热煨弯管用钢及其热轧平板的生产方法
CN110656288B (zh) 超宽特厚高韧性x80直缝焊管用钢及其生产方法
CN110777296B (zh) 一种超厚规格x52管线钢热轧卷板及其生产方法
WO2017193537A1 (zh) 一种经济型抗hic的x90管线钢板及其制造方法
CN104141099B (zh) 一种超厚规格x70热轧板卷的制造方法
CN104805374B (zh) 一种厚度超过120mm的Q460E钢板及其制造方法
WO2020259715A1 (zh) 一种低碳当量厚度超40mm低温高韧性X80钢级管线钢板及其制造方法
CN107604249A (zh) 一种经济型抗hic及抗ssccx80ms管线钢及其制造方法
CN1318631C (zh) 高强度高韧性x80管线钢及其热轧板制造方法
CN109957714B (zh) 强度和低温韧性优良的管线用钢及其制造方法
CN109536847B (zh) 屈服强度390MPa级焊管用热轧钢板及其制造方法
WO2023274218A1 (zh) 一种热连轧极限厚度规格高强管线钢板卷及其制造方法
CN101994059A (zh) 一种低成本生产厚壁x70管线钢卷板的方法
CN111996461A (zh) 一种微合金化电阻焊管用x70管线卷板及其生产方法
CN104328357B (zh) 一种Ni-Mo低温高韧性X100管件用钢板及其制造方法
CN104357749A (zh) 一种螺旋埋弧焊管用高强韧性x90热轧钢带及生产方法
CN110205551A (zh) 提高厚规格l555m级别管线钢dwtt性能的方法
CN110468332A (zh) 一种薄规格直缝低屈强比高韧性管线卷板及其制造方法
CN104073744B (zh) 厚度≥18.5mm的高韧性X80管线钢板卷及生产方法
CN112063918B (zh) 一种低温高韧性x90钢级热煨弯管用管线钢板及其制造方法
CN104451446B (zh) 一种厚规格高强韧性贝氏体工程用钢及其生产方法
CN106811699A (zh) 一种erw用x65热轧卷板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3058488

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 17903572

Country of ref document: EP

Kind code of ref document: A1