WO2018176788A1 - 一种抗hic的x80弯管用管线钢板及其制造方法 - Google Patents

一种抗hic的x80弯管用管线钢板及其制造方法 Download PDF

Info

Publication number
WO2018176788A1
WO2018176788A1 PCT/CN2017/105453 CN2017105453W WO2018176788A1 WO 2018176788 A1 WO2018176788 A1 WO 2018176788A1 CN 2017105453 W CN2017105453 W CN 2017105453W WO 2018176788 A1 WO2018176788 A1 WO 2018176788A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
rolling
steel plate
billet
hic
Prior art date
Application number
PCT/CN2017/105453
Other languages
English (en)
French (fr)
Inventor
蒋昌林
高助忠
诸建阳
林涛
王晓
朱人超
胡建国
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Publication of WO2018176788A1 publication Critical patent/WO2018176788A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention belongs to the technical field of manufacture of pipeline steel plates for X80 bending pipes, and particularly relates to steel plates for X80 elbow pipelines resistant to HIC and a manufacturing method thereof.
  • a pipe project includes a bend pipe section for changing the direction of the pipe and a bend pipe for the station yard.
  • the elbow is usually produced by two processes: cold bending and hot bending.
  • the hot bend pipe is usually heated by the induction heating device to the Ac3 or higher. Under the action of the fixed transfer wall and the back pressure, the heating zone is rotated around the fixed center to bend the bend of the desired radius of curvature.
  • the outer ring of the elbow is then cooled by an annular cooling ring, and the heated area is similarly cooled by ACC due to limited cooling capacity. Tempering is required after cooling to allow for uniformity of performance.
  • the overall enthalpy + cooling process is similar to the TMCP process, ie high temperature deformation (bending) + ACC cooling process.
  • patent applications for steel plates for X80 steel grade bends and bends at home and abroad For example, the patent application number is CN101880818, the patent application CN201410239039.9, and the patent number is CN201010199050.9. These patent applications do not involve bending.
  • the anti-HIC performance of the steel plate or elbow for pipe The patent application number CN201310477888.9 refers to a heat treatment method for improving the HIC resistance of a bend by a heat treatment process, which is completely different from the currently used hot enthalpy process, and involves two large span temperatures. group from the heat treatment, so the actual industrial production is very difficult and the production efficiency is very low, not industrially feasible production.
  • the entire austenite deformation and subsequent cooling are relatively simple and insufficient. Therefore, when designing the steel plate for curved pipe, compared with the steel plate for straight pipe, only the high carbon equivalent component design can be used at present.
  • the high carbon equivalent component design is also highly sensitive to HIC.
  • the invention patent of the present invention will still adopt a high carbon equivalent component design due to the characteristics of the hot enthalpy process, but a pipeline steel plate for anti-HIC X80 bend pipe is obtained through the innovation of the production process.
  • the invention relates to an anti-HIC X80 steel grade pipeline pipe steel plate and a manufacturing method thereof, and relates to a high carbon equivalent component design, improves the production process of the elbow pipeline steel steel plate, has a simple process and a high finished product rate.
  • the technical solution adopted by the present invention to solve the above technical problem is a pipeline steel plate for X80 bending pipe resistant to HIC, the chemical composition of the steel plate is C: ⁇ 0.10%, Mn: 1.45 to 1.80% by mass percentage, Si: ⁇ 0.45%, S: ⁇ 0.001%, P: ⁇ 0.010%, Nb: 0.045-0.08%, Ti: ⁇ 0.012%, V: ⁇ 0.008%, Alt: ⁇ 0.06%, N: ⁇ 0.0040%, O: ⁇ 0.004%, Mo: ⁇ 0.40%, Pb ⁇ 0.0015%, Zn ⁇ 0.003%, Sb ⁇ 0.0015%, Sn ⁇ 0.0015%, Cu: ⁇ 0.30%, Ni:0.20-1.5%,Cr: ⁇ 0.35%,Mo+ Cu+Ni+Cr ⁇ 1.5%, Ca/S ⁇ 1:Ceq: 0.43-0.54%, Pcm: 0.19-0.27%, and the balance is Fe and unavoidable impurity elements.
  • the thickness of the steel plate is 18.4-37.9 mm; the yield strength of the steel plate is ⁇ 600 Mpa; the tensile strength is ⁇ 710 Mpa, the yield ratio is ⁇ 0.93, the plate sample elongation is ⁇ 29%, and the -30°C impact power is ⁇ 300 J,- The impact energy of 40°C is ⁇ 200J, the impact energy of -60°C is ⁇ 150J, and the steel plate has excellent anti-HIC performance.
  • the design principle of the component of the invention is to adopt appropriate amount of C and Mn, and by adding a small amount of microalloying elements such as Nb, V, Ti, etc., and adding a small amount of elements such as Mo, Cu, Ni, etc., combined with a specific TMCP process, in order to finally ensure various mechanical properties.
  • the anti-HIC performance under high carbon equivalent the main basic elements are added as follows:
  • C:C is the most economical and basic strengthening element in steel. It can significantly improve the strength of steel through solid solution strengthening and precipitation strengthening, but it has adverse effects on the toughness and ductility of steel and welding performance. Therefore, the development trend of pipeline steel It is possible to reduce the C content in the near future, but in consideration of the matching relationship between the hot enthalpy process and the strength and toughness, the C content is controlled to be not higher than 0.10%.
  • Mn Improves the strength of steel by solid solution strengthening. It is the most important element in the pipeline steel to compensate for the loss of strength due to the decrease of C content. Mn also expands the element of ⁇ phase zone and can reduce the ⁇ phase transition temperature of steel. It helps to obtain fine phase change products, which can improve the toughness of steel and lower the transition temperature of toughness and brittleness. Mn is also an element to improve the hardenability of steel. Considering that the Mn segregation is found to be detrimental to the HIC performance during the inspection process, but considering the thermal enthalpy process and the strength requirement, the Mn content in the present invention is designed in the range of 1.45 to 1.85%, in order to alleviate the center due to the high Mn. Segregation, soft pressing under continuous casting.
  • Nb It is one of the most important microalloying elements in modern microalloyed steel, especially in pipeline steel, and its effect on grain refinement is very obvious.
  • Nb (C, N) strain induced precipitation by Nb solution dragging and hot rolling can hinder the recovery and recrystallization of deformed austenite, and the deformed austenite in the non-recrystallization zone is transformed by TMCP in phase transformation. The time is converted into a fine phase change product to make the steel have high strength and high toughness.
  • the present invention mainly determines the Nb content range by the relationship between the C and Nb content.
  • V It has high precipitation strengthening and weak grain refinement. When it is used in combination of Nb, V and Ti microalloying elements, V mainly plays a precipitation strengthening effect.
  • Ti is a strong solid N element, the stoichiometric ratio of Ti/N is 3.42, and it can be fixed by using about 0.02% Ti.
  • TiN precipitation phase can be formed during the slab continuous casting process. This fine precipitated phase can effectively prevent the growth of austenite grains during the heating process of the slab, and help to improve Nb.
  • the solid solubility in austenite can also improve the impact toughness of the weld heat affected zone, which is an indispensable element in pipeline steel, but too high Ti will form a large TiN particle, which affects the drop hammer performance, so this application The patent controls Ti to no more than 0.015%.
  • Mo It can delay the formation of ferrite phase when ⁇ phase transition, promote the formation of acicular ferrite, play an important role in controlling phase change, and also improve the hardenability of steel. Obtaining acicular ferrite or bainite structure by adding a certain Mo at a certain cooling rate and final cooling temperature, the Mo content is controlled to be not less than 0.15% in consideration of the TMCP process and the enthalpy process.
  • S, P is an inevitable impurity element in pipeline steel. It is desirable that the lower the better, the ultra-low sulfur and Ca treatment can change the sulfide form to make the pipeline steel have high impact toughness.
  • Ni The strength of steel can be improved by solid solution strengthening. On the one hand, the addition of Ni can improve the toughness of steel, and at the same time improve the hot brittleness of Cu in steel, and the Ni content is controlled to be not less than 0.2%.
  • Another object of the present invention is to provide a method for preparing the above-mentioned anti-HIC X80 elbow pipeline steel sheet,
  • the smelting raw materials are pretreated by KR hot metal, converter smelting, LF refining, RH vacuum refining and continuous casting, Ca treatment during refining, Ca/S is not less than 1, and B type inclusions are controlled to be no higher than 1.0.
  • the soft pressing is used to improve the core segregation caused by the high Mn content, and the continuous casting billet satisfying the chemical composition requirement and having a thickness of not more than 350 mm is produced, and the compression ratio is not less than 10;
  • the continuous casting slab is reheated, the temperature of the two-stage is controlled to be no higher than 1300 ° C, and the residence time of the heating section is not less than 4 hours; after the furnace is discharged, a specific TMCP process including two-stage rolling and intermediate blank cooling is performed: the first stage For the recrystallization zone rolling, the finishing temperature is not higher than 1200 ° C, and the single pass reduction rate of two to three passes is controlled to be not less than 22% during the recrystallization zone rolling; the intermediate billet cooling is cooled by Mild cooling The system moderately cools the intermediate billet to the non-recrystallization zone of the second stage, and the cooling method is to use the method of swinging back and forth in the box body to cool, the cooling rate is 6-12 ° C / s, to ensure the rolling deformation of the recrystallization zone After the austenite grain no longer grows, the temperature difference between the surface of the intermediate blank and the core is small; the second stage is rolling in the non-recrystallization zone, the rolling temperature
  • the Mild cooling system used in the present invention is disposed between the roughing mill and the finishing mill of the rolling mill production line.
  • the system is a box structure with a total length of 18 m.
  • the intermediate billet cooling speed is 4 ⁇ 18 ° C / s
  • the thickness of the intermediate billet is usually about 40 ⁇ 180mm thick according to product and production needs, less than 40mm thick intermediate billet due to thinner, unless Need, generally do not need to open the intermediate billet moderate cooling; for thick gauge intermediate billet, considering the design limit, the maximum cooling rate is 4 ° C / s, for thin specifications, the maximum cooling rate can reach 18 ° C / s.
  • the operation flow of the Mild cooling system after the blank is rolled by the recrystallization zone, the intermediate blank is obtained, and after the intermediate blank enters the Mild cooling system, the corresponding roller path in the system enters the swing mode, so that the intermediate blank is returned to and from the system. Swinging, while the nozzle sprays the water to the intermediate billet, and controls the intermediate billet to be cooled at a specific cooling rate to the rolling temperature of the second stage rolling. After the intermediate billet is cooled to the rolling temperature of the second stage rolling, the intermediate billet is It will be sent out from the intermediate billet moderate cooling system and enter the second stage rolling process.
  • H According to the characteristics of H atoms or ions, the diffusion in steel is inevitable. H enters the steel and forms H traps. In some hydrogen traps, H will aggregate in large quantities, eventually forming macroscopic defects. Such hydrogen traps are associated with different tissues, inclusion types and morphology, and different tissue interfaces.
  • the purity of the steel is very important. Among them, it is necessary to control the S content and S inclusion content and morphology in the steel as much as possible.
  • the present invention controls S to be 0.0005% or less, and is treated by Ca treatment.
  • MnS exists in a spheroidal manner such that the total amount of MnS in the steel is small and substantially spheroidized.
  • the S content in the steel is as low as 0.0005% or less, and the Ca/S ratio is controlled at 1-2, the MnS is completely spheroidized.
  • the Ca content in the steel is not excessive, so the lining will not be excessively eroded;
  • By controlling the class B inclusion level it is extremely advantageous to improve the anti-HIC performance.
  • Banded tissue is one of the important causes of HIC.
  • the strength is very high, usually to ensure the resistance of pipeline steel to HIC performance, Mn content is not more than about 1.45%, in this low Mn case, in order to ensure the strength of X80 steel grade and anti-HIC performance, need More alloys, which greatly increase the cost.
  • the present invention still adopts a higher Mn design, and controls the formation of Mn segregation from the process, that is, controls the original and secondary bands in the steel through continuous casting + high temperature heating process and specific TMCP process.
  • the core band structure ensures excellent HIC resistance in the core of the pipeline steel plate for X80 steel grade bends under low alloy cost conditions.
  • the X80 elbow pipeline steel plate has excellent anti-HIC performance.
  • the invention completely solves the problem of anti-HIC performance of the steel plate for bending pipe by the process only, without additional investment of equipment and chemical raw materials, the field process is easy to realize, and has the characteristics of high production efficiency and simple process.
  • Figure 1 is a structural view of the X80 elbow pipeline steel of the present invention
  • Fig. 2 is an external view of the steel sheet according to the embodiment of the present invention after the HIC test.
  • the manufacturing process of the pipeline steel plate for anti-HIC X80 steel grade elbow is: proportioning preparation ⁇ converting furnace or electric furnace smelting ⁇ furnace refining ⁇ continuous casting ⁇ slab reheating ⁇ specific TMCP process+cold cooling after water cooling ⁇ straightening.
  • the specific process steps are as follows: the smelting raw materials are sequentially subjected to KR hot metal pretreatment, converter smelting, LF refining, RH vacuum refining and continuous casting, and the Ca/S ratio is controlled to be not less than 1 during refining, and the B-type inclusions are controlled at 1.0 and
  • a soft reduction process is employed in continuous casting in order to improve core segregation due to a high Mn content.
  • the specific TMCP process includes two-stage rolling and intermediate billet cooling: the first stage is recrystallization in the recrystallization zone, the final rolling temperature is controlled to be no higher than 1200 ° C, and the single pass of two to three passes is controlled during recrystallization.
  • the secondary reduction rate is not less than 22%;
  • the intermediate billet cooling is to cool the intermediate billet to the second stage of the non-recrystallization zone by the Mild cooling system.
  • the cooling method is to use the back and forth swinging cooling in the mild cooling box, and the cooling speed is 6-12. °C/s, to ensure that the austenite grains no longer grow after rolling deformation in the recrystallization zone, and the temperature difference between the surface of the intermediate blank and the core is small;
  • the second stage is rolling in the non-recrystallization zone, the rolling temperature is not higher than 900 ° C, and the finishing rolling temperature is controlled not higher than 850 ° C.
  • the steel plate After rolling, the steel plate is cooled by water cooling, and the cooling temperature is controlled to be not higher than 800 ° C.
  • the cooling temperature is controlled to be not higher than 450 ° C, and the cooling rate is 10 to 35 ° C / s; after cooling, straightening, and finally directly cooling to room temperature. That is, the finished steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种抗HIC的X80弯管用管线钢板,其化学成分按质量百分比计为C:≤0.10%、Mn:1.45~1.80%,Si:≤0.45%,S:≤0.001%,P:≤0.010%,Nb:0.045~0.08%、Ti:≤0.012%、V:≤0.008%,Alt:≤0.06%,N: ≤0.0040%,O:≤0.004%,Mo:≤0.40%,Pb≤0.0015%,Zn≤0.003%,Sb≤0.0015%,Sn≤0.0015%,Cu:≤0.30%、Ni:0.20-1.5%,Cr:≤0.35%,Mo+Cu+Ni+Cr≤1.5%,Ca/S≥1:Ceq:0.43-0.54%,Pcm:0.19-0.27%,余量为Fe 及不可避免的杂质。其制造方法为:配比备料→进行转炉或电炉冶炼→炉外精炼→连铸→板坯再加热→特定TMCP工艺+水冷后堆冷→矫直,特定的TMCP是包括两阶段轧制和中间坯冷却。

Description

一种抗HIC的X80弯管用管线钢板及其制造方法 技术领域
本发明属于X80弯管用管线钢板制造技术领域,具体涉及抗HIC的X80弯管管线用钢板及其制造方法。
背景技术
目前世界需求的能源中化石能源还占能源结构中的主体地位,近年来世界经济的急速增长极大带动了化石能源需求的急速增长,这也极大地促进了长距离输送管线的发展,为提高输送效率,降低投资,长距离石油天然气输送管线用钢的发展趋势是向高强度或超高钢级发展。目前世界各国使用的管线钢最高钢级为X80钢级。一项管道工程除直管段外,还包括用来改变管道方向的弯管段及站场用弯管等。弯管通常采用冷弯和热煨弯管两种工艺生产,由于冷弯管受制作工艺以及服役环境的影响已逐渐被热煨工艺所替代。热煨弯管通常是通过感应加热设备将母管加热到Ac3以上,在固定转壁和后推力作用下,使加热区绕固定中心旋转从而弯制出所需曲率半径的弯管,弯成型后再通过环形冷却圈对弯管外圈进行冷却,由于冷却能力有限,因此对已加热的区域进行类似于ACC加速冷却。冷却完后考虑到性能均匀性,还需进行回火处理。整个工艺采用,整体热煨+冷却工艺类似于TMCP工艺,即高温变形(弯曲)+ACC冷却过程。
目前国内外有申请X80钢级弯管及弯管用钢板专利报道,如申请专利号为CN101880818申请专利、CN201410239039.9申请专利、申请专利号为CN201010199050.9等,这些申请专利均没有涉及到弯管用钢板或弯管的抗HIC性能。申请专利号为CN201310477888.9申请专利提到一种通过热处理工艺提高弯管抗HIC性能的一种热处理方法,这种方法与目前普遍采用的热煨工艺完全不同,且由于涉及两种大跨度温度组 距进行热处理,因而实际工业生产非常困难且生产效率非常低下,不具备工业生产可行性。
弯管由于考虑到其热煨工艺过程中,整个奥氏体变形及后续冷却相对简单和不足,因此在设计弯管用钢板时与直管用钢板相比,目前只能采用高碳当量成分设计。高碳当量成分设计又存在HIC高度敏感性。
本发明申请发明专利由于热煨工艺特点,仍将采用高碳当量成分设计,但通过生产工艺创新,获得一种抗HIC X80弯管用管线钢板。
发明内容
本发明涉及抗HIC的X80钢级弯管用管线钢板及其制造方法,针对高碳当量成分设计,对弯管管线钢钢板的生产工艺进行改进,工艺简练、成材率高。
本发明解决上述技术问题所采用的技术方案为,一种抗HIC的X80弯管用管线钢板,该钢板的化学成分按质量百分比计为C:≤0.10%、Mn:1.45~1.80%,Si:≤0.45%,S:≤0.001%,P:≤0.010%,Nb:0.045~0.08%、Ti:≤0.012%、V:≤0.008%,Alt:≤0.06%,N:≤0.0040%,O:≤0.004%,Mo:≤0.40%,Pb≤0.0015%,Zn≤0.003%,Sb≤0.0015%,Sn≤0.0015%,Cu:≤0.30%、Ni:0.20-1.5%,Cr:≤0.35%,Mo+Cu+Ni+Cr≤1.5%,Ca/S≥1:Ceq:0.43-0.54%,Pcm:0.19-0.27%,余量为Fe及不可避免的杂质元。
进一步地,钢板的厚度为18.4-37.9mm;所述钢板的屈服强度≥600Mpa;抗拉强度≥710Mpa,屈强比≤0.93,板样延伸率≥29%,-30℃冲击功≥300J,-40℃冲击功≥200J,-60℃冲击功≥150J,钢板具有优异的抗HIC性能。
本发明成分设计原理是采用适量的C、Mn,通过加入微量Nb、V、Ti等微合金化元素,同时加入少量Mo、Cu、Ni等元素,结合特定TMCP工艺,以便最终保证各项力学性能,尤其是高碳当量下的抗HIC性能,其主要的基本元素的添加原理如下:
C:C是钢中最经济、最基本的强化元素,通过固溶强化和析出强化可明显提高钢的强度,但对钢的韧性及延性以及焊接性能带来不利影响,因此管线钢的发展趋势是近可能降低C含量,但考虑到热煨工艺及强度及韧性的匹配关系,将C含量控制在不高于0.10%。
Mn:通过固溶强化提高钢的强度,是管线钢中弥补因C含量降低而引起强度损失的最主要的元素,Mn同时还是扩大γ相区的元素,可降低钢的γ→α相变温度,有助于获得细小的相变产物,可提高钢的韧性,降低韧脆性转变温度,Mn也是提高钢的淬透性元素。考虑到检验过程中发现Mn偏析对抗HIC性能不利,但同时考虑到热煨工艺同时兼顾到强度要求,本发明中Mn含量设计在1.45~1.85%范围,为缓解因Mn较高所带来的中心偏析,连铸时采用轻压下。
Nb:是现代微合金化钢特别是管线钢中最主要的微合金化元素之一,对晶粒细化的作用非常明显。通过Nb的固溶拖曳及热轧过程中的Nb(C,N)应变诱导析出可阻碍形变奥氏体的回复、再结晶,经TMCP使未再结晶区轧制的形变奥氏体在相变时转变为细小相变产物,以使钢具有高强度和高韧性,本发明主要是通过C与Nb含量的关系来确定Nb含量范围,
V:具有较高的析出强化和较弱的晶粒细化作用,在Nb、V、Ti三种微合金化元素中复合使用时,V主要起析出强化作用。
Ti:是强的固N元素,Ti/N的化学计量比为3.42,利用0.02%左右的Ti就可固定 钢中60ppm以下的N,在板坯连铸过程中即可形成TiN析出相,这种细小的析出相可有效阻止板坯在加热过程中奥氏体晶粒的长大,有助于提高Nb在奥氏体中的固溶度,同时可改善焊接热影响区的冲击韧性,是管线钢中不可缺少的元素,但过高的Ti会形成大的TiN质点,影响落锤性能,因此本申请专利将Ti控制在不高于0.015%之间。
Mo:可推迟γ→α相变时先析出铁素体相的形成,促进针状铁素体形成的主要元素,对控制相变起到重要作用,同时也是提高钢的淬透性元素。在一定的冷却速度和终冷温度下通过添加一定Mo即可获得明显的针状铁素体或贝氏体组织,考虑到TMCP工艺和热煨工艺,Mo含量控制在不低于0.15%。
S、P:是管线钢中不可避免的杂质元素,希望越低越好,通过超低硫及Ca处理改变硫化物形态可使管线钢具有很高的冲击韧性。
Cu、Ni:可通过固溶强化提高钢的强度,Ni的加入一方面可提高钢的韧性,同时改善Cu在钢中易引起的热脆性,Ni含量控制在不低于0.2%。
Cr:Cr的加入可提高钢的淬透性,且相对经济。
本发明的另一目的是提供上述抗HIC的X80弯管用管线钢板的制备方法,
将冶炼原料依次经KR铁水预处理,转炉冶炼,LF精炼、RH真空精炼和连铸,精炼时采用Ca处理,Ca/S不低于1,并将B类夹杂控制在不高于1.0级,连铸时采用轻压下以改善因Mn含量高造成的芯部偏析,制造出满足化学成分要求、厚度不高于350mm的连铸坯,同时压缩比不低于10;
将连铸坯再加热,二加段温度控制在不高于1300℃,此加热段停留时间不低于4小时;出炉后进行包括两阶段轧制和中间坯冷却的特定TMCP工艺:第一阶段为再结晶区轧制,终轧温度不高于1200℃,再结晶区轧制时控制连续两至三道次的单道次压下率不低于22%;中间坯冷却是通过Mild cooling冷却系统对中间坯适度冷却至第二阶段的非再结晶区开轧温度,冷却方式是在箱体内采用来回摆动的方式进行冷却,冷速为6-12℃/s,保证再结晶区轧制变形后奥氏体晶粒不再长大,中间坯表面与心部温差较小;第二阶段为非再结晶区轧制,开轧温度不高于900℃,直到最终厚度,终轧温度控制不高于850℃;轧后以水冷方式冷却钢板,开始冷却温度控制为不高于800℃,终止冷却温度控制为不高于450℃,冷却速度为10~35℃/s;冷却后矫直,最后直接冷却到室温即得钢板成品。
本发明采用的Mild cooling冷却系统设置在轧机生产线的粗轧机和精轧机之间,该系统为箱体结构,共计长18m,在箱体顶部,密集分布喷淋喷嘴,对粗轧后的中间坯进行适度冷却,根据不同中间坯厚度,获得的中间坯冷却速度为4~18℃/s,中间坯厚度根据产品和生产需要通常在40~180mm厚左右,小于40mm厚中间坯由于较薄,除非需要,一般不需进行开启中间坯适度冷却;对于厚规格中间坯,考虑到设计极限,最大冷却速度在4℃/s,对于薄规格,最大冷却速度可达到18℃/s。
进一步地,Mild cooling冷却系统的作业流程:坯料经再结晶区轧制完成后得到中间坯,中间坯进入Mild cooling冷却系统后,系统内相应的辊道进入摆动模式,使中间坯在系统内来回摆动,同时喷嘴喷淋对中间坯喷水,控制中间坯以特定的冷却速度冷却至第二阶段轧制的开轧温度,待中间坯冷却到第二阶段轧制的开轧温度后,中间坯将从中间坯适度冷却系统内送出,进入第二阶段轧制工序。
根据H原子或离子的特性,在钢中的扩散是必然的,H进入钢中后会形成H陷阱,有些氢陷阱内H将会大量聚集,最终形成宏观缺陷。这类氢陷阱与不同组织,夹杂物类型及形貌、不同组织界面有关。
为保证优良的抗HIC性能,钢的纯净度非常重要,其中需要尽可能控制钢中S含量及S夹杂物含量和形貌,本发明将S控制在0.0005%及以下,同时通过Ca处理来使MnS以球化方式存在,这样MnS在钢中总量很少,且基本上被球化。实践表明当钢中S含量低至0.0005%及以下,Ca/S比控制在1~2时,MnS已球化完全,此时钢中Ca含量不会过量,因而不会对炉衬过分侵蚀;另外通过控制B类夹杂级别,对改善抗HIC性能极其有利。
带状组织是导致HIC的重要原因之一。对于管线钢X80钢级,强度已非常高,通常为保证管线钢抗HIC性能,Mn含量均不超过1.45%左右,在这种低Mn情况下,为确保X80钢级强度及抗HIC性能,需要较多的合金,从而大大增加成本。而本发明从成本考虑,仍然采用较高的Mn设计,采用从工艺上对Mn偏析形成进行控制,也就是说通过连铸+高温加热工艺以及特定的TMCP工艺来控制钢中原始及二次带状特别是心部带状组织,从而在低合金成本条件下保证X80钢级弯管用管线钢板心部优良的抗HIC能。
本发明具有如下特点:
1)采用合适的成分和特定工艺,解决高碳当量下的抗HIC性能问题,使得X80弯管用管线钢板具有优异的抗HIC性能。
2)该发明仅通过工艺完全解决弯管用钢板抗HIC性能的问题,没有设备和化学原料的额外投资,现场工艺容易实现,具有生产效率高、工艺简单的特点。
3)大厚壁且高碳当量下及含Mo、Cr较高情况下,通常情况下很容易得到聚集状粒贝组织,这种组织对HIC性能非常不利,而本申请专利通过工艺创新,在高碳当量和含Mo及Cr较高情况下,获得较小粒贝组织,且这种粒贝组织是不连续,这是具有优异抗HIC性能的主要原因。参见图1。
附图说明
图1为本发明X80弯管管线钢的组织结构图;
图2为本发明实施例钢板的HIC试验后的外形图。
具体实施方式
以下结合附图、实施例对本发明作进一步详细描述。
抗HIC X80钢级弯管用管线钢板的制造流程为:配比备料→进行转炉或电炉冶炼→炉外精炼→连铸→板坯再加热→特定TMCP工艺+水冷后堆冷→矫直。
具体工艺步骤如下:将冶炼原料依次经KR铁水预处理、转炉冶炼、LF精炼、RH真空精炼和连铸,精炼时控制Ca/S比不低于1,同时将B类夹杂控制在1.0级及以下,连铸时采用轻压下工艺,目的在于改善因Mn含量较高造成的芯部偏析。制造出满足化学成分要求、350mm厚的连铸坯;板坯加热时二加段温度控制在不高于1300℃,并在此加热段停留时间不低于4小时;随后进行特定TMCP工艺+水冷+矫直。
特定TMCP工艺包括两阶段轧制和中间坯冷却:第一阶段为再结晶区轧制,终轧温度控制在不高于1200℃,再结晶区轧制时控制连续两至三道次的单道次压下率不低于22%;
中间坯冷却是通过Mild cooling冷却系统对中间坯快速冷却至第二阶段的非再结晶区开轧温度,冷却方式为是在mild cooling箱体内采用来回摆动式进行冷却,冷速速度为6-12℃/s,保证再结晶区轧制变形后奥氏体晶粒不再长大,中间坯表面与心部温差较小;
第二阶段为非再结晶区轧制,开轧温度不高于900℃,终轧温度控制在不高于850℃。
轧后以水冷方式冷却钢板,开始冷却温度控制为不高于800℃,终止冷却温度控制为不高于450℃,冷却速度为10~35℃/s;冷却后矫直,最后直接冷却到室温即得钢板成品。
各实施例所涉及钢板的具体化学成分见表1,具体TMCP工艺参数见表2,主要力学性能见表3。
表1
Figure PCTCN2017105453-appb-000001
表2
Figure PCTCN2017105453-appb-000002
表3
Figure PCTCN2017105453-appb-000003
各实施例所生产钢板的抗HIC性能如表4。
表4
Figure PCTCN2017105453-appb-000004

Claims (5)

  1. 一种抗HIC的X80弯管用管线钢板,该钢板的化学成分按质量百分比计为C:≤0.10%、Mn:1.45~1.80%,Si:≤0.45%,S:≤0.001%,P:≤0.010%,Nb:0.045~0.08%、Ti:≤0.012%、V:≤0.008%,Alt:≤0.06%,N:≤0.0040%,O:≤0.004%,Mo:≤0.40%,Pb≤0.0015%,Zn≤0.003%,Sb≤0.0015%,Sn≤0.0015%,Cu:≤0.30%、Ni:0.20-1.5%,Cr:≤0.35%,Mo+Cu+Ni+Cr≤1.5%,Ca/S≥1:Ceq:0.43-0.54%,Pcm:0.19-0.27%,余量为Fe及不可避免的杂质元。
  2. 根据权利要求1所述的抗HIC的X80弯管用管线钢板,其特征在于:所述钢板的厚度为18.4-37.9mm;所述钢板的屈服强度≥600Mpa;抗拉强度≥710Mpa,屈强比≤0.93,板样延伸率≥29%,-30℃冲击功≥300J,-40℃冲击功≥200J,-60℃冲击功≥150J,钢板具有优异的抗HIC性能。
  3. 一种制造如权利要求1或2所述抗HIC的X80弯管用管线钢板的方法,其特征在于:工艺步骤如下:
    将冶炼原料依次经KR铁水预处理,转炉冶炼,LF精炼、RH真空精炼和连铸,精炼时采用Ca处理,Ca/S不低于1,并将B类夹杂控制在不高于1.0级,连铸时采用轻压下以改善因Mn含量高造成的芯部偏析,制造出满足化学成分要求、厚度不高于350mm的连铸坯,同时压缩比不低于10;
    将连铸坯再加热,二加段温度控制在不高于1300℃,此加热段停留时间不低于4小时;出炉后进行包括两阶段轧制和中间坯冷却的特定TMCP工艺:
    第一阶段为再结晶区轧制,终轧温度不高于1200℃,再结晶区轧制时控制连续两至三道次的单道次压下率不低于22%;
    中间坯冷却是通过Mild cooling冷却系统对中间坯适度冷却至第二阶段的非再结晶区开轧温度,冷却方式是在箱体内采用来回摆动的方式进行冷却,冷速为6-12℃/s,保证再结晶区轧制变形后奥氏体晶粒不再长大,中间坯表面与心部温差较小;
    第二阶段为非再结晶区轧制,开轧温度不高于900℃,直到最终厚度,终轧温度控制不高于850℃;
    轧后以水冷方式冷却钢板,开始冷却温度控制为不高于800℃,终止冷却温度控制为不高于450℃,冷却速度为10~35℃/s;冷却后矫直,最后直接冷却到室温即得钢板成品。
  4. 根据权利要求3所述的抗HIC的X80弯管用管线钢板的制造方法,其特征在于:所述Mild cooling冷却系统设置在轧机生产线的粗轧机和精轧机之间,该系统为箱体结构,共计长18m,在箱体顶部,密集分布喷淋喷嘴,对粗轧后的中间坯进行适度冷却,根据不同中间坯厚度,获得的中间坯冷却速度为4~18℃/s,中间坯厚度根据产品和生 产需要通常在40~180mm厚左右,小于40mm厚中间坯由于较薄,除非需要,一般不需进行开启中间坯适度冷却;对于厚规格中间坯,考虑到设计极限,最大冷却速度在4℃/s,对于薄规格,最大冷却速度可达到18℃/s。
  5. 根据权利要求3所述抗HIC的X80弯管用管线钢板的制造方法,其特征在于:所述Mild cooling冷却系统的作业流程:坯料经再结晶区轧制完成后得到中间坯,中间坯进入Mild cooling冷却系统后,系统内相应的辊道进入摆动模式,使中间坯在系统内来回摆动,同时喷嘴喷淋对中间坯喷水,控制中间坯以特定的冷却速度冷却至第二阶段轧制的开轧温度,待中间坯冷却到第二阶段轧制的开轧温度后,中间坯将从中间坯适度冷却系统内送出,进入第二阶段轧制工序。
PCT/CN2017/105453 2017-04-01 2017-10-10 一种抗hic的x80弯管用管线钢板及其制造方法 WO2018176788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710213371.1 2017-04-01
CN201710213371.1A CN107099744A (zh) 2017-04-01 2017-04-01 一种抗hic的x80弯管用管线钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2018176788A1 true WO2018176788A1 (zh) 2018-10-04

Family

ID=59675182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105453 WO2018176788A1 (zh) 2017-04-01 2017-10-10 一种抗hic的x80弯管用管线钢板及其制造方法

Country Status (2)

Country Link
CN (1) CN107099744A (zh)
WO (1) WO2018176788A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107099744A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 一种抗hic的x80弯管用管线钢板及其制造方法
CN109234618B (zh) * 2018-09-18 2020-11-10 江阴兴澄特种钢铁有限公司 一种经济型抗hic管线钢板x70ms及其制造方法
CN109234622B (zh) * 2018-09-29 2020-08-18 南京钢铁股份有限公司 X80m深海抗应变管线钢及冶炼工艺
CN109234623B (zh) * 2018-09-29 2020-10-27 南京钢铁股份有限公司 一种x80m深海抗应变管线钢板及轧制工艺
CN109338213B (zh) * 2018-09-29 2021-01-26 南京钢铁股份有限公司 X80m深海抗应变管线钢及轧制工艺
CN112063918B (zh) * 2020-07-29 2021-09-07 江阴兴澄特种钢铁有限公司 一种低温高韧性x90钢级热煨弯管用管线钢板及其制造方法
CN114381664B (zh) * 2021-12-22 2022-11-22 南阳汉冶特钢有限公司 一种耐腐蚀管线用厚规格x80ms钢板的生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209037A (ja) * 1996-01-31 1997-08-12 Nkk Corp 耐hic性に優れた高強度ラインパイプ用鋼板の製造方法
JP2002129288A (ja) * 2000-10-30 2002-05-09 Nippon Steel Corp 高強度ベンド管およびその製造法
CN103225047A (zh) * 2013-05-10 2013-07-31 武汉钢铁(集团)公司 厚度≥26.5mm的X80管线用钢及其生产方法
CN104073744A (zh) * 2014-05-30 2014-10-01 武汉钢铁(集团)公司 厚度≥18.5mm的高韧性X80管线钢板卷及生产方法
CN105950973A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 超低温落锤性能优异的厚规格x80管线用钢板及其制造方法
CN105950972A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 缩短工序时间的厚规格x80管线用钢板及其制造方法
CN107099744A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 一种抗hic的x80弯管用管线钢板及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913021A (ja) * 1982-07-12 1984-01-23 Nippon Kokan Kk <Nkk> 高強度高強靭性鋼材の製造方法
CN101161847B (zh) * 2006-10-13 2011-04-13 鞍钢股份有限公司 高韧性热煨弯管用钢及其热轧平板的生产方法
CN101880818B (zh) * 2010-06-04 2012-05-30 中国石油天然气集团公司 一种x80弯管和管件的制备方法
CN103981460A (zh) * 2014-05-30 2014-08-13 秦皇岛首秦金属材料有限公司 高韧性x80弯管用热轧平板钢及其生产方法
CN105803327B (zh) * 2016-05-13 2018-02-23 江阴兴澄特种钢铁有限公司 一种经济型抗hic的x90管线钢板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209037A (ja) * 1996-01-31 1997-08-12 Nkk Corp 耐hic性に優れた高強度ラインパイプ用鋼板の製造方法
JP2002129288A (ja) * 2000-10-30 2002-05-09 Nippon Steel Corp 高強度ベンド管およびその製造法
CN103225047A (zh) * 2013-05-10 2013-07-31 武汉钢铁(集团)公司 厚度≥26.5mm的X80管线用钢及其生产方法
CN104073744A (zh) * 2014-05-30 2014-10-01 武汉钢铁(集团)公司 厚度≥18.5mm的高韧性X80管线钢板卷及生产方法
CN105950973A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 超低温落锤性能优异的厚规格x80管线用钢板及其制造方法
CN105950972A (zh) * 2016-05-13 2016-09-21 江阴兴澄特种钢铁有限公司 缩短工序时间的厚规格x80管线用钢板及其制造方法
CN107099744A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 一种抗hic的x80弯管用管线钢板及其制造方法

Also Published As

Publication number Publication date
CN107099744A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2018176788A1 (zh) 一种抗hic的x80弯管用管线钢板及其制造方法
WO2018176790A1 (zh) 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法
CN101161847B (zh) 高韧性热煨弯管用钢及其热轧平板的生产方法
CN105803327B (zh) 一种经济型抗hic的x90管线钢板及其制造方法
CN107604249A (zh) 一种经济型抗hic及抗ssccx80ms管线钢及其制造方法
WO2020259715A1 (zh) 一种低碳当量厚度超40mm低温高韧性X80钢级管线钢板及其制造方法
CN109957712A (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
WO2011150687A1 (zh) 一种x80弯管和管件用刚的制备方法
CN104141099B (zh) 一种超厚规格x70热轧板卷的制造方法
WO2021115263A1 (zh) 一种基于异型坯轧制成型的热轧h型钢及其制备方法
WO2012113119A1 (zh) 一种x90钢级弯管和管件的制备方法
CN101649425A (zh) 低裂纹敏感性高韧性x120管线钢及其制造方法
CN109957714B (zh) 强度和低温韧性优良的管线用钢及其制造方法
CN104805374A (zh) 一种厚度超过120mm的Q460E钢板及其制造方法
CN1318631C (zh) 高强度高韧性x80管线钢及其热轧板制造方法
CN110777296A (zh) 一种超厚规格x52管线钢热轧卷板及其生产方法
CN111996461A (zh) 一种微合金化电阻焊管用x70管线卷板及其生产方法
CN103602913B (zh) 用于天然气管道的x80钢热轧板卷及其制备方法
CN109536847A (zh) 屈服强度390MPa级焊管用热轧钢板及其制造方法
CN104328357B (zh) 一种Ni-Mo低温高韧性X100管件用钢板及其制造方法
CN102400062A (zh) 低屈强比超高强度x130管线钢及其热轧平板的制造方法
CN112375967B (zh) 一种强韧性优良热煨弯管钢带及其生产方法
CN110819890A (zh) 一种长时间较高温度回火性能稳定的x100超高钢级管线钢板及其制造方法
CN104357749A (zh) 一种螺旋埋弧焊管用高强韧性x90热轧钢带及生产方法
CN112063918B (zh) 一种低温高韧性x90钢级热煨弯管用管线钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903795

Country of ref document: EP

Kind code of ref document: A1