WO2017193537A1 - 一种经济型抗hic的x90管线钢板及其制造方法 - Google Patents

一种经济型抗hic的x90管线钢板及其制造方法 Download PDF

Info

Publication number
WO2017193537A1
WO2017193537A1 PCT/CN2016/102373 CN2016102373W WO2017193537A1 WO 2017193537 A1 WO2017193537 A1 WO 2017193537A1 CN 2016102373 W CN2016102373 W CN 2016102373W WO 2017193537 A1 WO2017193537 A1 WO 2017193537A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
billet
intermediate billet
cooling
stage
Prior art date
Application number
PCT/CN2016/102373
Other languages
English (en)
French (fr)
Inventor
蒋昌林
高助忠
林涛
胡建国
李经涛
诸建阳
徐伟明
徐国
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Publication of WO2017193537A1 publication Critical patent/WO2017193537A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention belongs to the technical field of steel sheet manufacturing for X90 pipelines, and particularly relates to an economical steel sheet for HIC X90 pipelines and a method for producing the same.
  • the technical problem to be solved by the present invention is to provide an economical anti-HIC X90 pipeline steel plate and a manufacturing method thereof for the above prior art, adopting a low carbon design, and adding a small amount of microalloying such as Nb, V, Ti, etc. Element, and add a small amount of Mo, Cu, Ni and other elements, according to the behavior of H in the organization, through the refining + continuous casting + TMCP improved process, using tissue control technology, the steel has excellent anti-HIC performance of the organization and performance .
  • the technical solution adopted by the present invention to solve the above technical problem is an economical anti-HIC X90 pipeline steel plate whose chemical composition is C: 0.02-0.06% by mass percentage, Mn: 1.7 ⁇ 1.90 ⁇ 3 ⁇ 4 , Si: 0.15 ⁇ 0.35 ⁇ 3 ⁇ 4, S: ⁇ 0.0005%, P: ⁇ 0.010%, Nb: 0.04-0.07%, Ti: 0.008 ⁇ 0.03 ⁇ 3 ⁇ 4, V: ⁇ 0.10%, A1: ⁇ 0.06%, N : ⁇ 0.010% , 0: ⁇ 0.006%, Mo: ⁇ 0.20%, Cu: ⁇ 0.20%, Ni: ⁇ 0.20%, Cr ⁇ 0.20%, Ca: 0.0005 to 0.0015 ⁇ 3 ⁇ 4, and the content ratio of Ca/S is 1.0 to 2.0, and the balance is Fe and an unavoidable impurity element.
  • the anti-HIC steel sheet of the present invention has a maximum thickness of 20 mm.
  • Tongyu has excellent high strength and low temperature toughness, such as the yield ratio is not higher than 0.83, -46 °C low temperature impact is about 300J; -60 °C low temperature impact is around 250J; -30 °C drop hammer shearing area is More than 85%, and excellent anti-HIC performance. .
  • the chemical composition of the steel sheet of the invention is determined as follows:
  • C is the most economical and basic strengthening element in steel. It can significantly improve the strength of steel through solid solution strengthening and precipitation strengthening, but it has adverse effects on the toughness and ductility of steel and welding performance. The development trend is to continuously reduce the C content. HIC is very sensitive to the C content in the steel. Considering that the steel grade of the present invention reaches X90, and the solid solution and precipitation of carbonitrides formed by C and different microalloying elements, the steel is The C content is controlled to be 0.02 to 0.06 ⁇ 3 ⁇ 4.
  • Mn The strength of steel is improved by solid solution strengthening, which is the most important element in the pipeline steel to compensate for the loss of strength due to the decrease of C content. Mn is also an element that expands the ⁇ phase region and can reduce the ⁇ of steel. The ⁇ phase transition temperature helps to obtain fine phase change products, which can improve the toughness of steel. However, too high Mn content will cause Mn segregation. Since the steel grade has reached the X90 level, a certain Mn content is necessary, so only The Mn segregation can be alleviated by the subsequent heating process and the rolling process, so the Mn content is controlled to be 1.7 to 1.90%.
  • Nb is one of the most important microalloying elements in modern microalloyed steels, especially in pipeline steels, and has a significant effect on grain refinement.
  • Nb (C,N) strain induced precipitation by Nb solution dragging and hot rolling can hinder the recovery and recrystallization of deformed austenite, and deformed austenite in the non-recrystallization zone by TMCP in phase transformation
  • the ruthenium is converted into a fine phase change product so that the steel has high strength and high toughness.
  • the present invention mainly determines the Nb content range by the relationship between the contents of C and Nb.
  • V It has a high precipitation strengthening and a weak grain refining effect, and is used in a composite test of Nb, V, and Ti microalloying elements, and V mainly exhibits precipitation strengthening effect.
  • Ti is a strong solid N element, the stoichiometric ratio of Ti/N is 3.42, and about 60 ppm of N in the steel can be fixed by using about 0.02% of Ti, and TiN precipitation can be formed in the slab continuous casting process. Phase, this fine precipitated phase can effectively prevent the growth of austenite grains in the slab during heating, help to improve the solid solubility of Nb in austenite, and improve the heat affected zone of the weld.
  • Impact toughness is an indispensable element in pipeline steel.
  • Mo The ⁇ phase transition can be postponed, the formation of ferrite phase is precipitated first, and the main formation of acicular ferrite is promoted.
  • the element plays an important role in controlling the phase change, and the same is also the hardenability element of the steel. Obtaining acicular ferrite or bainite structure by adding a certain Mo at a certain cooling rate and final cooling temperature
  • S, P is an inevitable impurity element in the pipeline steel. It is desirable that the lower the better, the sulfide form is changed by ultra-low sulfur and Ca treatment, thereby improving the HIC resistance of the steel.
  • Cu, Ni The strength of the steel can be improved by solid solution strengthening, and the addition of Ni can improve the toughness of the steel and improve the hot brittleness of Cu in the steel.
  • the addition of Cu increases the strength of the steel, but Cu has limited performance against HIC in an acidic environment.
  • Another object of the present invention is to provide a method for manufacturing the above-described economical HIC-resistant X90 pipeline steel sheet, the specific process steps are as follows:
  • the smelting raw materials are sequentially pretreated by KR hot metal, converter smelting, LF refining, RH vacuum refining, and the S content in the molten steel is controlled to be ⁇ 0.0005% in the refining process, and then the Ca-Si line is fed to control the Ca/S in the molten steel.
  • the content ratio is 1.0 ⁇ 2.0, and then continuously cast a continuous casting billet satisfying the chemical composition requirement and having a thickness of not less than 350mm.
  • the superheat of the continuous casting slag steel is not higher than 15 °C; the continuous casting slab is reheated to 1280 ⁇ 1310 ° C, the insulation is not less than 8 hours; after the furnace is carried out two-stage rolling: the total compression ratio is not less than 15 (ie the ratio of the thickness of the blank to the thickness of the finished product); the two-stage rolling, the first stage is the recrystallization zone Rolling, the finishing temperature is controlled at 118 0 ⁇ 1210 °C, and the rolling pass of the recrystallization zone is controlled by two passes. The single pass reduction rate is not less than 28%; after the first stage rolling, the intermediate blank is used. A moderate cooling system cools the intermediate blank.
  • the intermediate billet cooling adopts Mild cooling system (intermediate billet moderate cooling system). After rolling in the recrystallization zone, the intermediate billet immediately enters the intermediate billet moderate cooling system, and the intermediate billet is cooled to the required second stage by moderate cooling. Rolling temperature. After the intermediate blank enters the mild cooling system, the billet is moderately cooled in the intermediate billet moderate cooling system by means of back and forth swinging, so that the cooling rate is controlled at 9 ⁇ 13 °C/s.
  • the second stage is non-recrystallization zone rolling, the rolling temperature is not higher than 900 ° C, until the final thickness, the final rolling temperature control is not higher than 830 ° C, the non-recrystallization area cumulative deformation rate is not less than 60%;
  • the ACC is cooled, and the cooling temperature is not higher than 500 ° C; the cooling rate is 15 to 25 ° C / s; after cooling to room temperature, the finished steel sheet is obtained.
  • the invention provides moderate cooling of the intermediate billet between the first stage and the second stage of hot rolling, and the intermediate billet cooling mode is to ensure that the austenite grains are no longer grown after the rolling deformation in the recrystallization zone, and the steel sheet is hot in the large thickness plate.
  • Rolled over In the process reduce the temperature difference between the surface of the intermediate blank and the core.
  • the intermediate billet moderate cooling system is disposed between the roughing mill and the finishing mill of the 4300 mm wide plate mill production line.
  • the system is a box structure with a total length of 18 m. At the top of the box, the spray nozzle is densely distributed, and the intermediate billet after rough rolling is moderately cooled. According to the thickness of the intermediate billet, the cooling speed of the intermediate billet is 4 ⁇ 18.
  • the thickness of the intermediate blank is usually about 40 ⁇ 180mm thick according to the product and production requirements.
  • the intermediate billet is less than 40mm thick.
  • the intermediate billet cooling is generally not required.
  • the maximum cooling rate is 4 ° C / s for design limits and 18 ° C / s for thin gauges.
  • the deformation in the thickness direction is uneven, and the steel plate is upturned or buckled under the finish rolling and rolling, which affects the productivity; the second is that the temperature difference along the thickness direction will cause the austenite deformation in the thickness direction to be different, thereby affecting the obtained The final organization.
  • the intermediate billet cooling system is required for moderate cooling
  • the corresponding roller table in the system enters the swing mode, so that the intermediate billet swings back and forth in the system, and the nozzle is sprayed to the middle.
  • the billet is sprayed with water to control the intermediate billet to be cooled to a rolling temperature of the second stage rolling at a specific cooling rate.
  • the intermediate billet is sent out from the intermediate billet moderate cooling system and proceeds to the latter step.
  • H will accumulate in large quantities, eventually forming macroscopic defects.
  • Such hydrogen traps are associated with different tissues, inclusion types and morphology, and different tissue interfaces.
  • the purity of the steel is very important, and it is necessary to control the S content and the S inclusion content and morphology in the steel as much as possible.
  • the present invention controls S to be 0.0005% or less, and the same Ca treatment causes MnS to exist in a spheroidal manner such that the total amount of MnS in the steel is small and substantially spheroidized.
  • the Ca/S ratio is controlled at 1 ⁇ 2 ⁇ , the MnS is completely spheroidized, and the Ca content in the niobium steel is not excessive, so the lining is not excessively eroded.
  • Banded tissue is one of the important causes of HIC.
  • the strength is very high, usually to ensure the resistance of pipeline steel to HIC performance, Mn content does not exceed about 1.45%, in this low Mn situation
  • Mn content does not exceed about 1.45%, in this low Mn situation
  • more alloys are needed, which greatly increases the cost.
  • the present invention still adopts a higher Mn design, but controls the formation of Mn segregation from the process, namely: 1) From the continuous casting, the casting ⁇ adopts low superheat, and the same ⁇ adopts light pressing, As far as possible to improve the original ribbon shape in the slab; 2) in the subsequent reheating process, significantly increase the slab reheating temperature (about 120 °C higher than the conventional pipeline steel heating temperature) and prolong the reheating of the crucible to further slow down Mn Segregation; 3) Through the rough rolling process high temperature and continuous three-pass rough rolling large reduction rate to ensure that the core of the billet is also fully recrystallized, thereby eliminating the original austenite effect of the billet; 4) due to the high temperature of the rough rolling, it is required
  • the intermediate billet is cooled by the mild cooling intermediate billet moderate cooling system to prevent the austenite grains from being coarsened in the intermediate billet.
  • the original and secondary ribbons, especially the core ribbon structure can be controlled in the steel, thereby ensuring the ultra-high strength X90 steel grade steel core at low cost. Excellent anti-HIC energy.
  • the invention has the following characteristics: 1) adopting a low carbon and high Mn component design, and controlling the formation of the band structure by continuous casting and subsequent heating and rolling, thereby obtaining a very economical anti-HIC X90 steel grade steel plate. 2) S O.0005% component treatment and Ca/S ratio 1.0 ⁇ 2.0 are used to spheroidize MnS.
  • the Ca content in molten steel is not excessive, which can greatly reduce the corrosion of Ca on the lining and help to prolong the refining.
  • FIG. 1 is a structural view of a steel sheet according to Embodiment 1 of the present invention.
  • FIG. 2 is an anti-HIC detection diagram of a steel sheet according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the operation of an intermediate billet moderate cooling system according to an embodiment of the present invention.
  • the anti-HIC X90 pipeline steel sheet of the present embodiment has a thickness of 20 mm, and its chemical composition is expressed by mass percentage: C. 0.06%, Mn: 1.70%, Si: 0.15%, S: 0.0005%, P: 0.01 % , Nb: 0.055 % , Ti: 0.018%, V: ⁇ 0.05%, Al: 0.030%, Mo + Cu + Ni + Cr ⁇ 0.6%, N ⁇ 0.010%, O: ⁇ 0.006%, Ca: 0.0008%, The balance is Fe and inevitable impurity elements.
  • the smelting raw materials are sequentially pretreated by KR hot metal, converter smelting, LF refining, RH vacuum refining, and the S content in the molten steel is controlled to be ⁇ 0.0005% in the refining process, and then the Ca-Si line is fed to control the Ca/S in the molten steel.
  • the content ratio is 1.0 ⁇ 2.0, and then continuously cast a continuous casting billet satisfying the chemical composition requirement and having a thickness of not less than 350 mm.
  • the superheat of the continuous casting slag steel is not higher than 15 ° C, and is lightly pressed; the total compression ratio 15, the continuous casting billet is reheated to 1280 ⁇ 1310 ° C, the heat preservation is not less than 8 hours; after the furnace is subjected to two-stage rolling: the first stage is the recrystallization zone rolling, and the finishing rolling temperature is controlled at 1210 ° C, The single pass reduction rate of the rolling enthalpy in the recrystallization zone is not less than 28% for two consecutive passes. After the first stage of rolling, the intermediate blank immediately enters the intermediate blank moderate cooling system, as shown in Fig. 3 as the intermediate blank.
  • the operation diagram of the moderate cooling system, the intermediate blank is moderately cooled in the middle billet moderate cooling system, and the cooling speed is controlled at 12 ° C / s.
  • the intermediate billet is cooled to the required second by a moderate cooling process.
  • Order Rolling temperature the second stage is non-recrystallization zone rolling, the rolling temperature is not higher than 890 ° C, until the final thickness, the finishing temperature is 820 ° C, the cumulative deformation rate of the non-recrystallization zone is not less than 60%; Cooling by ACC, the cooling temperature is terminated not higher than 420 ° C; the cooling rate is 18 ° C / s; after cooling to room temperature, the finished steel sheet is obtained.
  • the 20 mm thick steel plate for X90 pipeline obtained through the above manufacturing process has excellent comprehensive performance, and the mechanical properties are shown in Table 1.
  • the anti-HIC performance is shown in Table 2.
  • the anti-HIC X90 pipeline steel sheet of the present embodiment has a thickness of 19.6 mm, and its chemical composition is expressed by mass percentage: C: 0.04%, Mn: 1.90%, Si: 0.28%, S: 0.0005%, P: 0.01%, Nb: 0.05 8%, Ti: 0.018%, V: ⁇ 0.05%, Al: 0.030%, Mo+Cu+Ni+Cr ⁇ 0.9%, N ⁇ 0.010%, O: ⁇ 0.006%, Ca: 0.0008%, balance Fe And inevitable impurity elements.
  • the smelting raw materials are sequentially pretreated by KR hot metal, converter smelting, LF refining, RH vacuum refining, and the S content in the molten steel is controlled to be ⁇ 0.0005% in the refining process, and then the Ca-Si line is fed to control the Ca/S in the molten steel.
  • the content ratio is 1.0 ⁇ 2.0, and then the continuous casting slab satisfying the chemical composition requirement and having a thickness of 300mm is continuously cast.
  • the superheat of the continuous casting slag steel is not higher than 15 °C, and the soft reduction is performed; Heating to 1290 ⁇ 1300 °C, 8 hours of heat preservation; total compression ratio is 15.3, two-stage rolling after baking: The first stage is rolling in recrystallization zone, the finishing rolling temperature is controlled at 1200 °C, recrystallization zone rolling The single pass reduction rate of two consecutive passes is not less than 28%. After the first stage of rolling, the intermediate blank immediately enters the intermediate blank moderate cooling system, and the intermediate blank swings back and forth in the intermediate billet moderate cooling system.
  • the mode is moderately cooled, the cooling rate is controlled at 10 ° C / s, the intermediate billet is cooled to the required second stage rolling temperature by a moderate cooling process; the second stage is non-recrystallization zone rolling, the rolling temperature is not Above 89 0 ° C, until the final thickness, the final rolling temperature is 800 ° C, the non-recrystallization zone cumulative deformation rate is not less than 60%; then cooled by ACC, the termination cooling temperature is not higher than 480 ° C; cooling rate is 25 ° C /s; After cooling to room temperature, the finished steel sheet is obtained.
  • the 19.6 mm thick steel plate for X90 pipeline obtained through the above-mentioned manufacturing process has excellent comprehensive performance, and the mechanical properties are shown in Table 1.
  • the anti-HIC performance is shown in Table 2.
  • the anti-HIC X90 pipeline steel sheet of the present embodiment has a thickness of 20 mm, and its chemical composition is percentage by mass: C. 0.02%, Mn: 1.85%, Si: 0.35%, S: 0.0005%, P: 0.01 % , Nb: 0.058 % , Ti: 0.018%, V: ⁇ 0.05%, Al: 0.030%, Mo + Cu + Ni + Cr ⁇ 0.9%, N ⁇ 0.010%, O: ⁇ 0.006%, Ca: 0.0008%, The balance is Fe and inevitable impurity elements.
  • the smelting raw materials are sequentially pretreated by KR hot metal, converter smelting, LF refining, RH vacuum refining, and the S content in the molten steel is controlled to be ⁇ 0.0005% in the refining process, and then the Ca-Si line is fed to control the Ca/S in the molten steel.
  • the content ratio is 1.0 ⁇ 2.0, and then continuously cast a continuous casting billet satisfying the chemical composition requirement and having a thickness of 370mm.
  • the superheat of the continuous casting slag steel is not higher than 15 °C, and is lightly pressed; Heating to 1280 ⁇ 1300 °C, 8 hours of heat preservation; total compression ratio is 18.5, two-stage rolling after baking:
  • the first stage is rolling in recrystallization zone, the finishing rolling temperature is controlled at 1180 °C, recrystallization zone rolling
  • the system controls two consecutive passes of one pass The rate is not less than 28%; after the first stage of rolling, the intermediate blank immediately enters the intermediate billet moderate cooling system, and the intermediate billet is moderately cooled in the intermediate billet moderate cooling system, and the cooling rate is controlled at 10 ° C / s , the intermediate billet is cooled to the required second stage rolling temperature by a moderate cooling process; the second stage is non-recrystallization zone rolling, the rolling temperature is not higher than 900 ° C, until the final thickness, the finishing temperature At 800 ° C, the cumulative deformation rate of the non-recrystallization zone is not less than 60%; then cooling by ACC, the cooling
  • the 20 mm thick steel plate for X90 pipeline obtained through the above manufacturing process has excellent comprehensive performance, and the mechanical properties are shown in Table 1.
  • the anti-HIC performance is shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种经济型抗HIC的X90管线钢板,该钢板的化学成分按质量百分比计为该钢板的化学成分按质量百分比计为C:0.02~0.06%,Mn:1.7~1.90%,Si:0.15~0.35%,S:≤0.0005%,P:≤0.010%,Nb:0.04~0.07%,Ti:0.008~0.03%,V:≤0.10%,Al:≤0.06%,N:≤0.010%,O:≤0.006%,Mo:≤0.20%,Cu:≤0.20%,Ni:≤0.20%,Cr≤0.20%,Ca:0.0005~0.0015%,且Ca/S的含量比值为1.0~2.0,余量为Fe及不可避免的杂质元素。根据氢在组织中的行为规律,通过精炼+连铸+高温再加热+TMCP改良工艺,使钢材具有优异的抗HIC性能的组织以及优异的低温韧性。

Description

一种经济型抗 HIC的 X90管线钢板及其制造方法 技术领域
[0001] 本发明属于 X90管线用钢板制造技术领域, 具体涉及经济型抗 HIC X90管线用 钢板及其制造方法。
背景技术
[0002] 目前世界需求的能源中化石能源还占能源结构中的主体地位, 近年来世界经济 的急速增长极大带动了化石能源需求的急速增长。 陆地及碱性石油天然气等资 源已幵采上百年, 面临日益枯竭。 因此人类已逐渐将目光投向酸性石油天然气 地域, 酸性油气田的特性是在石油或天然气中含有一定 H 2S等酸性气体, 给输送 管道造成腐蚀, 其腐蚀方式主要有 HIC (氢致裂纹) 及 SSCC (应力腐蚀) 两种 方式, 目前抗 HIC及抗 SSCC管线钢应用的最高钢级在 X65钢级。 为降低管道建设 成本, 管道工程的发展方向是高强度大管径, 目前国内外已幵始进行 X90钢级管 道铺设的试验段, 但 X90钢级抗 HIC钢板或钢管还未见报到。
技术问题
[0003] 本发明所要解决的技术问题是针对上述现有技术提供一种经济型抗 HIC的 X90 管线钢板及制造方法, 采用低碳设计, 同吋加入微量的 Nb、 V、 Ti等微合金化元 素, 并加入少量的 Mo、 Cu、 Ni等元素, 根据 H在组织中的行为规律, 通过精炼 + 连铸 +TMCP改良工艺, 利用组织控制技术, 使钢材具有优异的抗 HIC性能的组 织及性能。
问题的解决方案
技术解决方案
[0004] 本发明解决上述技术问题所采用的技术方案为, 一种经济型抗 HIC的 X90管线 钢板, 该钢板的化学成分按质量百分比计为 C: 0.02—0.06%, Mn: 1.7〜1.90<¾ , Si: 0.15〜0.35<¾, S: <0.0005%, P: <0.010% , Nb: 0.04—0.07%, Ti: 0.008 〜0.03<¾, V: <0.10%, A1: < 0.06% , N: < 0.010% , 0: < 0.006%, Mo: < 0.20% , Cu: < 0.20% , Ni: < 0.20% , Cr< 0.20%, Ca: 0.0005〜0.0015<¾, 且 Ca/S的含量比值为 1.0〜2.0, 余量为 Fe及不可避免的 杂质元素。
[0005] 进一步地, 本发明的抗 HIC钢板最厚度规格在 20mm。 同吋具有优异的高强度 高低温韧性, 如屈强比不高于 0.83, -46°C低温冲击为 300J左右; -60°C低温冲击 在 250J左右; -30°C落锤剪切面积在 85%以上, 并获得优异的抗 HIC性能。 。
[0006] 本发明钢板的化学成分是这样确定的:
[0007] C: 是钢中最经济、 最基本的强化元素, 通过固溶强化和析出强化可明显提高 钢的强度, 但对钢的韧性及延性以及焊接性能带来不利影响, 因此管线钢的发 展趋势是不断降低 C含量, HIC对钢中 C含量很敏感, 考虑到本发明钢级达到 X90 , 且通过 C与不同微合金元素形成碳氮化物的固溶及析出等关系, 故将钢中 C含 量控制在 0.02〜0.06<¾。
[0008] Mn: 通过固溶强化提高钢的强度, 是管线钢中弥补因 C含量降低而引起强度损 失的最主要的元素, Mn同吋还是扩大 γ相区的元素, 可降低钢的 γ→α相变温度, 有助于获得细小的相变产物, 可提高钢的韧性, 但过高的 Mn含量会导致 Mn偏析 , 鉴于钢级已达到 X90级别, 一定的 Mn含量是必须的, 因此只能通过后续加热 工艺及轧制工艺来缓解 Mn偏析, 因此将 Mn含量控制在 1.7〜1.90%。
[0009] Nb: 是现代微合金化钢特别是管线钢中最主要的微合金化元素之一, 对晶粒细 化的作用非常明显。 通过 Nb的固溶拖曳及热轧过程中的 Nb (C,N) 应变诱导析 出可阻碍形变奥氏体的回复、 再结晶, 经 TMCP使未再结晶区轧制的形变奥氏体 在相变吋转变为细小相变产物, 以使钢具有高强度和高韧性, 本发明主要是通 过 C与 Nb等含量的关系来确定 Nb含量范围。
[0010] V: 具有较高的析出强化和较弱的晶粒细化作用, 在 Nb、 V、 Ti三种微合金化 元素中复合试用吋, V主要其析出强化作用。
[0011] Ti: 是强的固 N元素, Ti/N的化学计量比为 3.42, 利用 0.02%左右的 Ti就可固定 钢中 60ppm以下的 N,在板坯连铸过程中即可形成 TiN析出相, 这种细小的析出相 可有效阻止板坯在加热过程中奥氏体晶粒的长大, 有助于提高 Nb在奥氏体中的 固溶度, 同吋可改善焊接热影响区的冲击韧性, 是管线钢中不可缺少的元素。
[0012] Mo: 可推迟 γ→α相变吋先析出铁素体相的形成, 促进针状铁素体形成的主要 元素, 对控制相变起到重要作用, ,同吋也是提高钢的淬透性元素。 在一定的冷 却速度和终冷温度下通过添加一定 Mo即可获得明显的针状铁素体或贝氏体组织
[0013] S、 P: 是管线钢中不可避免的杂质元素, 希望越低越好, 通过超低硫及 Ca处理 改变硫化物形态, 从而提高钢的抗 HIC性能。
[0014] Cu、 Ni: 可通过固溶强化提高钢的强度, Ni的加入一方面可提高钢的韧性, 另 同吋改善 Cu在钢中易引起的热脆性。 Cu的加入可提高钢的强度, 但在酸性环境 下 Cu对抗 HIC性能有限。
[0015] Cr : Cr的加入可提高钢的淬透性, 同吋一定的 Cr含量可提高抗 HIC性能。
[0016] 本发明的另一目的是提供上述经济型抗 HIC的 X90管线钢板的制造方法, 具体 工艺步骤如下:
[0017] 首先将冶炼原料依次经 KR铁水预处理, 转炉冶炼, LF精炼、 RH真空精炼, 精炼过程中控制钢水中 S含量≤0.0005%, 随后喂入 Ca-Si线, 控制钢水中 Ca/S的 含量比值为 1.0〜2.0, 然后连铸出满足化学成分要求、 厚度为不小于 350mm的连 铸坯, 连铸吋钢水的过热度不高于 15°C; 将连铸坯再加热至 1280〜1310°C, 保温 不小于 8小吋; 出炉后进行两阶段轧制: 总压缩比不低于 15 (即坯料厚度与成品 厚度的比值) ; 分两阶段轧制, 第一阶段为再结晶区轧制, 终轧温度控制在 118 0〜1210°C, 再结晶区轧制吋控制连续两道次的单道次压下率不低于 28%; 第一 阶段轧制结束后, 采用中间坯适度冷却系统冷却中间坯。 中间坯冷却采用 Mild cooling冷却系统 (中间坯适度冷却系统) , 在再结晶区轧制完成后, 中间坯立 即进入中间坯适度冷却系统, 通过适度冷却将中间坯较快冷却到需要的第二阶 段幵轧温度。 中间坯进入 mild cooling系统后, 坯料采用来回摆动方式在中间坯 适度冷却系统内适度冷却, 使冷却速度控制在 9〜13°C/s。 第二阶段为非再结晶 区轧制, 幵轧温度不高于 900°C, 直到最终厚度, 终轧温度控制不高于 830°C, 非再结晶区累计变形率不小于 60%; 随后通过 ACC进行冷却, 终止冷却温度不高 于 500°C; 冷却速度为 15〜25°C/s; 之后冷却到室温即得钢板成品。
本发明通过在热轧第一阶段和第二阶段之间设置中间坯适度冷却, 此中间坯冷 却方式是保证再结晶区轧制变形后奥氏体晶粒不再长大, 在大厚度钢板热轧过 程中, 缩小中间坯表面与心部温差。 如图 3所示, 中间坯适度冷却系统设置在 43 00mm宽厚板轧机生产线的粗轧机和精轧机之间。 该系统为箱体结构, 共计长 18 m, 在箱体顶部, 密集分布喷淋喷嘴, 对粗轧后的中间坯进行适度冷却, 根据不 同中间坯厚度, 获得的中间坯冷却速度为 4〜18°C/s, 中间坯厚度根据产品和生 产需要, 通常在 40〜 180mm厚左右, 小于 40mm厚中间坯由于较薄, 除非需要, 一般不需进行中间坯冷却。 对于厚规格中间坯, 考虑到设计极限, 最大冷却速 度在 4°C/s, 对于薄规格, 最大冷却速度可达到 18°C/s。 之所以不能采用更高冷速 , 有两个因素需要考虑到: 一是由于更高冷速下, 中间坯沿厚度方向会产生较 大的温度差, 这种温度差在轧制吋由于温度差造成厚度方向变形不均匀, 精轧 轧制吋会产生钢板上翘或下扣, 影响生产率; 二是这种沿厚度方向温度差将会 造成沿厚度方向区域奥氏体变形不一样, 从而影响获得最终组织。
[0019] 坯料经第一阶段轧制完成后, 根据生产需要, 判断是否幵启中间坯适度冷却。
对于需要采用中间坯冷却系统进行适度冷却的情况, 中间坯在进入中间坯适度 冷却系统后, 系统内相应的辊道进入摆动模式, 使中间坯在系统内来回摆动, 同吋喷嘴喷淋对中间坯喷水, 控制中间坯以特定的冷却速度冷却至第二阶段轧 制的幵轧温度。
[0020] 待中间坯冷却到第二阶段轧制的幵轧温度后, 中间坯将从中间坯适度冷却系统 内送出, 进入后一工序。
[0021] 根据 H原子或离子的特性, 在钢中的扩散是必然的, H进入钢中后会形成 H陷阱
, 有些氢陷阱内 H将会大量聚集, 最终形成宏观缺陷。 这类氢陷阱与不同组织, 夹杂物类型及形貌、 不同组织界面有关。
[0022] 为保证优良的抗 HIC性能, 钢的纯净度非常重要, 其中需要尽可能控制钢中 S 含量及 S夹杂物含量和形貌, 本发明将 S控制在 0.0005%及以下, 同吋通过 Ca处理 来使 MnS以球化方式存在, 这样 MnS在钢中总量很少, 且基本上被球化。 实践表 明当钢中 S含量低至 0.0005%及以下, Ca/S比控制在 1〜2吋, MnS已球化完全, 此吋钢中 Ca含量不会过量, 因而不会对炉衬过分侵蚀。
[0023] 带状组织是导致 HIC的重要原因之一。 对于管线钢 X90钢级, 强度已非常高, 通常为保证管线钢抗 HIC性能, Mn含量均不超过 1.45%左右, 在这种低 Mn情况 下, 为确保 X90钢级强度及抗 HIC性能, 需要较多的合金, 从而大大增加成本。 而本发明从成本考虑, 则仍然采用较高的 Mn设计, 但从工艺上来控制 Mn偏析形 成, 即: 1) 从连铸幵始, 浇注吋采用低过热度, 同吋采用轻压下, 可尽可能改 善铸坯中的原始带状; 2) 后续再加热工序中大幅提高板坯再加热温度 (比常规 管线钢加热温度提高了 120°C左右) 和延长再加热吋间, 来进一步减缓 Mn偏析; 3) 通过粗轧工艺高温及连续 3道次粗轧大压下率保证坯料心部也充分发生再结 晶, 从而消除坯料原奥氏体影响; 4) 由于粗轧结束温度很高, 需要通过 mild cooling中间坯适度冷却系统进行中间坯冷却, 从而防止中间坯奥氏体晶粒粗大 。 也就是说通过连铸 +高温加热工艺以及特定的 TMCP工艺可控制钢中原始及二 次带状特别是心部带状组织, 从而在低成本情况下保证了超高强度 X90钢级钢板 心部优良的抗 HIC能。
发明的有益效果
有益效果
[0024] 本发明具有如下特点: 1) 采用低碳较高 Mn成分设计, 并通过从连铸及后续加 热和轧制来控制带状组织形成, 从而可获得很经济的抗 HIC X90钢级钢板; 2) 采用 S O.0005%成分处理以及控制 Ca/S的比值 1.0〜2.0, 使 MnS球化, 钢水中 Ca 含量不过量, 可大大减小 Ca对炉衬的侵蚀, 有助于延长了精炼炉的使用寿命, 和降低成本; 3) 采用低过热度及轻压下进行连铸, 改善原始带状组织形成; 4 ) 在后续板坯加热及轧制吋采用特定 TMCP工艺, 获得特定的组织, 同吋通过特 定 TMCP工艺控制钢中的二次带状组织形成, 从而使钢板获得优异的抗 HIC性能 , 并具有优异的低温韧性; 3) 采用这种成分设计及工艺设计, 可生产 20mm厚 度规格的 X90管线钢板。
对附图的简要说明
附图说明
[0025] 图 1为本发明实施例 1中钢板的组织结构图;
[0026] 图 2为本发明实施例钢板的抗 HIC检测图;
[0027] 图 3为本发明实施例中中间坯适度冷却系统的作业简图。 实施该发明的最佳实施例
本发明的最佳实施方式
[0028] 以下结合附图、 实施例对本发明作进一步详细描述。
[0029] 实施例 1
[0030] 本实施例的抗 HIC的 X90管线钢板的厚度为 20mm, 其化学成分按质量百分比计 为: C. 0.06% , Mn: 1.70% , Si: 0.15% , S: 0.0005% , P: 0.01% , Nb: 0.055 % , Ti: 0.018% , V: < 0.05% , Al: 0.030% , Mo+Cu+Ni+Cr< 0.6% , N< 0.010% , O: < 0.006% , Ca: 0.0008% , 余量为 Fe及不可避免的杂质元素。
[0031] 首先将冶炼原料依次经 KR铁水预处理, 转炉冶炼, LF精炼、 RH真空精炼, 精炼过程中控制钢水中 S含量≤0.0005%, 随后喂入 Ca-Si线, 控制钢水中 Ca/S的 含量比值为 1.0〜2.0, 然后连铸出满足化学成分要求、 厚度为不小于 350mm的连 铸坯, 连铸吋钢水的过热度不高于 15°C, 且进行轻压下; 总压缩比为 15, 将连铸 坯再加热至 1280〜1310°C, 保温不小于 8小吋; 出炉后进行两阶段轧制: 第一阶 段为再结晶区轧制, 终轧温度控制在 1210°C, 再结晶区轧制吋控制连续两道次的 单道次压下率不低于 28% ; 第一阶段轧制结束后, 中间坯立即进入中间坯适度冷 却系统, 如图 3所示为中间坯适度冷却系统的作业简图, 中间坯在中间坯适度冷 却系统内以来回摆动的方式适度冷却, 冷却速度控制在 12°C/s, 通过适度冷却工 艺将中间坯较快冷却到需要的第二阶段幵轧温度; 第二阶段为非再结晶区轧制 , 幵轧温度不高于 890°C, 直到最终厚度, 终轧温度为 820°C, 非再结晶区累计变 形率不小于 60% ; 随后通过 ACC进行冷却, 终止冷却温度不高于 420°C; 冷却速 度为 18°C/s; 之后冷却到室温即得钢板成品。
[0032] 经由上述制造工艺制得的 20mm厚的 X90管线用钢板, 综合性能优异, 机械性 能详见表 1, 抗 HIC性能见表 2。
本发明的实施方式
[0033] 实施例 2
[0034] 本实施例的抗 HIC的 X90管线钢板的厚度为 19.6mm, 其化学成分按质量百分比 计为: C: 0.04% , Mn: 1.90% , Si: 0.28% , S: 0.0005% , P: 0.01% , Nb: 0.05 8% , Ti: 0.018% , V: < 0.05% , Al: 0.030% , Mo+Cu+Ni+Cr< 0.9% , N< 0.010% , O: < 0.006% , Ca: 0.0008% , 余量为 Fe及不可避免的杂质元素。
[0035] 首先将冶炼原料依次经 KR铁水预处理, 转炉冶炼, LF精炼、 RH真空精炼, 精炼过程中控制钢水中 S含量≤0.0005%, 随后喂入 Ca-Si线, 控制钢水中 Ca/S的 含量比值为 1.0〜2.0, 然后连铸出满足化学成分要求、 厚度为 300mm的连铸坯, 连铸吋钢水的过热度不高于 15°C, 且进行轻压下; 将连铸坯再加热至 1290〜1300 °C, 保温 8小吋; 总压缩比为 15.3, 出炉后进行两阶段轧制: 第一阶段为再结晶 区轧制, 终轧温度控制在 1200°C, 再结晶区轧制吋控制连续两道次的单道次压下 率不低于 28% ; 第一阶段轧制结束后, 中间坯立即进入中间坯适度冷却系统, 中 间坯在中间坯适度冷却系统内以来回摆动的方式适度冷却, 冷却速度控制在 10°C /s , 通过适度冷却工艺将中间坯较快冷却到需要的第二阶段幵轧温度; 第二阶段 为非再结晶区轧制, 幵轧温度不高于 890°C, 直到最终厚度, 终轧温度为 800°C, 非再结晶区累计变形率不小于 60% ; 随后通过 ACC进行冷却, 终止冷却温度不高 于 480°C; 冷却速度为 25°C/s; 之后冷却到室温即得钢板成品。
[0036] 经由上述制造工艺制得的 19.6mm厚的 X90管线用钢板, 综合性能优异, 机械性 能详见表 1, 抗 HIC性能见表 2。
[0037]
[0038] 实施例 3
[0039] 本实施例的抗 HIC的 X90管线钢板的厚度为 20mm, 其化学成分按质量百分比计 为: C. 0.02% , Mn: 1.85% , Si: 0.35% , S: 0.0005% , P: 0.01% , Nb: 0.058 % , Ti: 0.018% , V: < 0.05% , Al: 0.030% , Mo+Cu+Ni+Cr< 0.9% , N< 0.010% , O: < 0.006% , Ca: 0.0008% , 余量为 Fe及不可避免的杂质元素。
[0040] 首先将冶炼原料依次经 KR铁水预处理, 转炉冶炼, LF精炼、 RH真空精炼, 精炼过程中控制钢水中 S含量≤0.0005%, 随后喂入 Ca-Si线, 控制钢水中 Ca/S的 含量比值为 1.0〜2.0, 然后连铸出满足化学成分要求、 厚度为 370mm的连铸坯, 连铸吋钢水的过热度不高于 15°C, 且进行轻压下; 将连铸坯再加热至 1280〜1300 °C, 保温 8小吋; 总压缩比为 18.5, 出炉后进行两阶段轧制: 第一阶段为再结晶 区轧制, 终轧温度控制在 1180°C, 再结晶区轧制吋控制连续两道次的单道次压下 率不低于 28%; 第一阶段轧制结束后, 中间坯立即进入中间坯适度冷却系统, 中 间坯在中间坯适度冷却系统内以来回摆动的方式适度冷却, 冷却速度控制在 10°C /s , 通过适度冷却工艺将中间坯较快冷却到需要的第二阶段幵轧温度; 第二阶段 为非再结晶区轧制, 幵轧温度不高于 900°C, 直到最终厚度, 终轧温度为 800°C, 非再结晶区累计变形率不小于 60%; 随后通过 ACC进行冷却, 终止冷却温度不高 于 400°C; 冷却速度为 15°C/s; 之后冷却到室温即得钢板成品。
工业实用性
[0041] 经由上述制造工艺制得的 20mm厚的 X90管线用钢板, 综合性能优异, 机械性 能详见表 1, 抗 HIC性能见表 2。
[0042]
[0043] 表 1各实施例所生产的钢板的机械性能
[]
Figure imgf000010_0001
[0044]
[0045] 表 2各实施例所生产钢板的抗 HIC以及抗 SSCC性能
[]
Figure imgf000011_0001
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims

权利要求书
[权利要求 1] 一种经济型抗 HIC的 X90管线钢板, 该钢板的化学成分按质量百分比 计为 C: 0.02—0.06%, Mn: 1.7 1.90<¾ Si: 0.15 0.35<¾ S: <0.0 005%, P: <0.010%, Nb: 0.04 0.07<¾ Ti: 0.008^0.03%, V <0. 10%, Al: <0.06%, N: < 0.010%, 0 < 0.006%, Mo: <0.20%, Cu: <0.20%, Ni: <0.20%, Cr< 0.20%, Ca: 0.0005 15% 且 Ca/S的含量比值为 1.0 2.0, 余量为 Fe及不可避免的杂质元素。
[权利要求 2] —种制造如权利要求 1所述的经济型抗 HIC的 X90管线钢板的方法, 其 特征在于: 工艺步骤如下:
将冶炼原料依次经 KR铁水预处理, 转炉冶炼, LF精炼、 RH真空精 炼, 精炼过程中控制钢水中 S含量≤0.0005%, 随后喂入 Ca-Si线, 控制 钢水中 Ca/S的含量比值为 1.0 2.0, 然后连铸出满足化学成分要求、 厚度不小于 350mm的连铸坯, 连铸吋钢水的过热度不高于 15°C;
将连铸坯再加热至 1280 1310°C, 保温不小于 8小吋; 出炉后进行两 阶段轧制: 坯料厚度与成品厚度的总压缩比不低于 15; 分两阶段轧制 , 第一阶段为再结晶区轧制, 终轧温度控制在 1180 1210°C, 再结晶 区轧制吋控制连续两道次的单道次压下率不低于 28%; 第一阶段轧制 结束后, 中间坯立即进入中间坯适度冷却系统, 中间坯在中间坯适度 冷却系统内以来回摆动的方式适度冷却, 冷却速度控制在 9 13°C/s , 通过适度冷却工艺将中间坯较快冷却到需要的第二阶段幵轧温度; 第二阶段为非再结晶区轧制, 幵轧温度不高于 900°C, 直到最终厚度 , 终轧温度控制不高于 830°C, 非再结晶区累计变形率不小于 60%; 随后通过 ACC进行冷却, 终止冷却温度不高于 500°C; 冷却速度为 15 25°C/s; 之后冷却到室温即得钢板成品。
[权利要求 3] 根据权利要求 2所述的经济型抗 HIC的 X90管线钢板的制造方法, 其特 征在于: 所述中间坯适度冷却系统设置在 4300mm宽厚板轧机生产线 的粗轧机和精轧机之间, 该系统为箱体结构, 共计长 18m, 在箱体顶 部, 密集分布喷淋喷嘴, 对粗轧后的中间坯进行适度冷却, 根据不同 中间坯厚度, 获得的中间坯冷却速度为 4〜18°C/s, 中间坯厚度根据 产品和生产需要通常在 40〜180mm厚左右, 小于 40mm厚中间坯由于 较薄, 除非需要, 一般不需进行幵启中间坯适度冷却; 对于厚规格中 间坯, 考虑到设计极限, 最大冷却速度在 4°C/s, 对于薄规格, 最大 冷却速度可达到 18°C/s。
[权利要求 4] 根据权利要求 3所述的经济型抗 HIC的 X90管线钢板的制造方法, 其特 征在于: 所述中间坯适度冷却系统的作业流程: 坯料经粗轧完成后得 到中间坯, 根据生产需要, 判断是否幵启中间坯适度冷却, 对于需要 采用中间坯冷却系统进行适度冷却的情况, 中间坯在进入中间坯适度 冷却系统后, 系统内相应的辊道进入摆动模式, 使中间坯在系统内来 回摆动, 同吋喷嘴喷淋对中间坯喷水, 控制中间坯以特定的冷却速度 冷却至第二阶段轧制的幵轧温度, 待中间坯冷却到第二阶段轧制的幵 轧温度后, 中间坯将从中间坯适度冷却系统内送出, 进入后一工序。
PCT/CN2016/102373 2016-05-13 2016-10-18 一种经济型抗hic的x90管线钢板及其制造方法 WO2017193537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610314574.5 2016-05-13
CN201610314574.5A CN105803327B (zh) 2016-05-13 2016-05-13 一种经济型抗hic的x90管线钢板及其制造方法

Publications (1)

Publication Number Publication Date
WO2017193537A1 true WO2017193537A1 (zh) 2017-11-16

Family

ID=56457020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102373 WO2017193537A1 (zh) 2016-05-13 2016-10-18 一种经济型抗hic的x90管线钢板及其制造方法

Country Status (2)

Country Link
CN (1) CN105803327B (zh)
WO (1) WO2017193537A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836683A (zh) * 2022-03-22 2022-08-02 江阴兴澄特种钢铁有限公司 一种适用于湿硫化氢环境的高强度高韧性低屈强比管线钢钢板及其制造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105803327B (zh) * 2016-05-13 2018-02-23 江阴兴澄特种钢铁有限公司 一种经济型抗hic的x90管线钢板及其制造方法
CN107099744A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 一种抗hic的x80弯管用管线钢板及其制造方法
CN107460407B (zh) * 2017-08-25 2019-02-19 中冶华天包头设计研究总院有限公司 稀土强化长输管线钢及其制备方法与应用
CN109055868B (zh) * 2018-10-10 2020-02-18 鞍钢股份有限公司 一种x80厚规格超宽直缝埋弧焊管线钢的生产方法
CN110284066B (zh) * 2019-07-24 2021-04-16 宝钢湛江钢铁有限公司 一种薄规格低屈强比管线钢及其制造方法
CN113637922A (zh) * 2020-04-27 2021-11-12 宝山钢铁股份有限公司 一种经济型低屈强比高强度钢及其制造方法
CN111607750A (zh) * 2020-06-30 2020-09-01 武汉钢铁有限公司 一种厚度≥20mm的X90级高强度管线钢板卷及其制造方法
CN112063918B (zh) * 2020-07-29 2021-09-07 江阴兴澄特种钢铁有限公司 一种低温高韧性x90钢级热煨弯管用管线钢板及其制造方法
CN112680659B (zh) * 2020-12-04 2022-04-22 安阳钢铁股份有限公司 一种低压缩比经济型x70管线钢及其生产方法
CN114411065A (zh) * 2021-12-08 2022-04-29 唐山中厚板材有限公司 一种大规格耐低温高强角钢及其生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986861A (zh) * 2005-12-22 2007-06-27 宝山钢铁股份有限公司 超高强度x100管线钢及其热轧板制造方法
JP4254551B2 (ja) * 2003-07-31 2009-04-15 Jfeスチール株式会社 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法
CN101642780A (zh) * 2009-06-05 2010-02-10 中冶赛迪工程技术股份有限公司 一种中间坯冷却系统及冷却控制工艺
JP5278188B2 (ja) * 2009-06-19 2013-09-04 新日鐵住金株式会社 耐水素誘起割れ性および脆性亀裂伝播停止特性に優れた厚鋼板
CN104805375A (zh) * 2015-04-02 2015-07-29 江阴兴澄特种钢铁有限公司 一种超厚规格高韧性x80管线用钢板及其制造方法
CN104831182A (zh) * 2015-04-02 2015-08-12 江阴兴澄特种钢铁有限公司 一种低屈强比抗hic及抗ssccx70管线钢板及其制造方法
CN105803327A (zh) * 2016-05-13 2016-07-27 江阴兴澄特种钢铁有限公司 一种经济型抗hic的x90管线钢板及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627461B1 (ko) * 1999-12-28 2006-09-22 주식회사 포스코 고강도 라인파이프용 열연강판의 제조방법
JP4276480B2 (ja) * 2003-06-24 2009-06-10 新日本製鐵株式会社 変形性能に優れたパイプライン用高強度鋼管の製造方法
CN101376947A (zh) * 2007-08-28 2009-03-04 宝山钢铁股份有限公司 一种高强度x90管线钢及其生产方法
CN101886222B (zh) * 2010-07-05 2012-07-11 中国石油集团渤海石油装备制造有限公司 一种高强度x90钢级螺旋缝埋弧焊管制造方法
CN102397941A (zh) * 2011-11-14 2012-04-04 中国石油集团渤海石油装备制造有限公司 一种x90管线钢直缝埋弧焊管制造方法
CN103243278B (zh) * 2013-05-10 2015-05-13 武汉钢铁(集团)公司 一种x90管线用钢及其生产方法
CN103981461B (zh) * 2014-05-30 2016-08-03 秦皇岛首秦金属材料有限公司 一种x90管线钢宽厚板的生产方法
CN104532155B (zh) * 2014-12-19 2017-02-22 山东钢铁股份有限公司 一种直缝焊管用x90级别多相组织管线钢

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254551B2 (ja) * 2003-07-31 2009-04-15 Jfeスチール株式会社 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法
CN1986861A (zh) * 2005-12-22 2007-06-27 宝山钢铁股份有限公司 超高强度x100管线钢及其热轧板制造方法
CN101642780A (zh) * 2009-06-05 2010-02-10 中冶赛迪工程技术股份有限公司 一种中间坯冷却系统及冷却控制工艺
JP5278188B2 (ja) * 2009-06-19 2013-09-04 新日鐵住金株式会社 耐水素誘起割れ性および脆性亀裂伝播停止特性に優れた厚鋼板
CN104805375A (zh) * 2015-04-02 2015-07-29 江阴兴澄特种钢铁有限公司 一种超厚规格高韧性x80管线用钢板及其制造方法
CN104831182A (zh) * 2015-04-02 2015-08-12 江阴兴澄特种钢铁有限公司 一种低屈强比抗hic及抗ssccx70管线钢板及其制造方法
CN105803327A (zh) * 2016-05-13 2016-07-27 江阴兴澄特种钢铁有限公司 一种经济型抗hic的x90管线钢板及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114836683A (zh) * 2022-03-22 2022-08-02 江阴兴澄特种钢铁有限公司 一种适用于湿硫化氢环境的高强度高韧性低屈强比管线钢钢板及其制造方法
CN114836683B (zh) * 2022-03-22 2023-09-15 江阴兴澄特种钢铁有限公司 一种适用于湿硫化氢环境的高强度高韧性低屈强比管线钢钢板及其制造方法

Also Published As

Publication number Publication date
CN105803327B (zh) 2018-02-23
CN105803327A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2017193537A1 (zh) 一种经济型抗hic的x90管线钢板及其制造方法
CA3058488C (en) A x80 pipeline steel plate with high carbon equivalent and high toughness at low temperatures used for bent pipes as well as a manufacturing method thereof
WO2020169075A1 (zh) 一种高强度耐候钢薄带及其生产方法
CN101161847B (zh) 高韧性热煨弯管用钢及其热轧平板的生产方法
CN104789887B (zh) 一种超厚规格抗hic及抗ssccx65管线钢板及其制造方法
CN104831182B (zh) 一种低屈强比抗hic及抗ssccx70管线钢板及其制造方法
WO2018176788A1 (zh) 一种抗hic的x80弯管用管线钢板及其制造方法
CN103866204B (zh) 一种低温大压下工艺生产的大应变x80双相钢板
CN104805374B (zh) 一种厚度超过120mm的Q460E钢板及其制造方法
WO2021017521A1 (zh) 一种低屈强比薄规格管线钢的制造方法
WO2020259715A1 (zh) 一种低碳当量厚度超40mm低温高韧性X80钢级管线钢板及其制造方法
CN104805375A (zh) 一种超厚规格高韧性x80管线用钢板及其制造方法
CN110777296B (zh) 一种超厚规格x52管线钢热轧卷板及其生产方法
WO2018040246A1 (zh) 深海钻探隔水管用x80及以下钢级管线钢及其制备方法
CN107604249A (zh) 一种经济型抗hic及抗ssccx80ms管线钢及其制造方法
CN109957712A (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN109957714B (zh) 强度和低温韧性优良的管线用钢及其制造方法
CN103981463A (zh) 一种韧性优良的x70弯管用热轧平板及其生产方法
WO2021115263A1 (zh) 一种基于异型坯轧制成型的热轧h型钢及其制备方法
CN109536847B (zh) 屈服强度390MPa级焊管用热轧钢板及其制造方法
CN102234742B (zh) 一种直缝焊管用钢板及其制造方法
CN113430467B (zh) 一种薄规格1400MPa级贝氏体钢及其制造方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
CN111996461A (zh) 一种微合金化电阻焊管用x70管线卷板及其生产方法
CN111607750A (zh) 一种厚度≥20mm的X90级高强度管线钢板卷及其制造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901492

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901492

Country of ref document: EP

Kind code of ref document: A1