WO2018176695A1 - 摄像镜头及包括该摄像镜头的摄像装置 - Google Patents

摄像镜头及包括该摄像镜头的摄像装置 Download PDF

Info

Publication number
WO2018176695A1
WO2018176695A1 PCT/CN2017/093503 CN2017093503W WO2018176695A1 WO 2018176695 A1 WO2018176695 A1 WO 2018176695A1 CN 2017093503 W CN2017093503 W CN 2017093503W WO 2018176695 A1 WO2018176695 A1 WO 2018176695A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
image
image pickup
satisfy
Prior art date
Application number
PCT/CN2017/093503
Other languages
English (en)
French (fr)
Inventor
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720303187.1U external-priority patent/CN206671656U/zh
Priority claimed from CN201710187519.9A external-priority patent/CN106772957B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/076,283 priority Critical patent/US11112583B2/en
Publication of WO2018176695A1 publication Critical patent/WO2018176695A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only

Definitions

  • the present application relates to an image pickup lens, and more particularly to an image pickup lens including a plurality of lenses.
  • the present application also relates to an image pickup apparatus in which the above-described image pickup lens is disposed.
  • the optical system tends to be wide-angled and has a higher pixel, and it is necessary to ensure a temperature difference. It still has better image quality when it is larger.
  • the imaging lens further requires high image quality, wide angle, and large brightness.
  • the present application aims to provide an athermalized imaging lens that is miniaturized, wide-angled, and high in image quality.
  • an image pickup lens which is provided with a plurality of lenses in order from an object side to an image side along an optical axis.
  • the imaging lens may include, for example, a first lens having a negative refractive power disposed in order from the object side to the imaging side along the optical axis, the image side being concave; the optical power having the power a second lens having a convex side as the image side; a third lens having a power; a fourth lens having a negative power; and at least one subsequent lens.
  • an imaging lens is provided.
  • the camera lens along The optical axis may be sequentially disposed from the object side to the imaging side: a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens.
  • the first lens may have a negative power
  • the image side may be a concave surface
  • the image side of the second lens may be a convex surface
  • the material of the third lens may be glass and the fourth lens may have a negative power.
  • the effective radius DT21 of the object side of the second lens and the effective radius DT42 of the image side of the fourth lens may satisfy: 0.5 ⁇ DT21/DT42 ⁇ 1, for example, 0.632 ⁇ DT21/DT42 ⁇ 0.953 .
  • the effective focal length f1 of the first lens and the effective focal length f4 of the fourth lens may satisfy: 1 ⁇ f1/f4 ⁇ 1.8, for example, 1.433 ⁇ f1/f4 ⁇ 1.787.
  • the influence rate of the unit temperature of the third lens on the unit refractive index of the third lens may satisfy:
  • a half of the maximum angle of view of the imaging lens HFOV and the total effective focal length f of the imaging lens may satisfy: 5.4 mm ⁇ tan (HFOV) * f ⁇ 10 mm, for example, 5.493 mm ⁇ tan (HFOV ) *f ⁇ 8.061mm.
  • the maximum angle CRAmax of the light incident on the electronic photosensitive component corresponding to the imaging height of the imaging lens should satisfy CRAmax ⁇ 21°, for example, CRAmax ⁇ 20.003°.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy: CT4/CT5 ⁇ 0.5, for example, CT4/CT5 ⁇ 0.262.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may be between the object side of the first lens and the on-axis distance of the imaging surface of the imaging lens. Satisfaction: (CT2+CT5) / TTL ⁇ 0.4, for example, (CT2+CT5) / TTL ⁇ 0.281.
  • the on-axis spacing distance T23 of the second lens and the third lens, the on-axis spacing distance T34 of the third lens and the fourth lens, and the on-axis spacing distance T45 of the fourth lens and the fifth lens are the same
  • the distance between the object side of a lens and the on-axis distance TTL of the imaging surface can be satisfied: 0.04 ⁇ (T23 + T34 + T45) / TTL ⁇ 0.12, for example, 0.048 ⁇ (T23 + T34 + T45) / TTL ⁇ 0.103.
  • the effective radius DT11 of the object side of the first lens and the effective radius DT62 of the image side of the sixth lens may satisfy: 0.8 ⁇ DT11/DT62 ⁇ 1.3, for example, 0.959 ⁇ DT11/DT62 ⁇ 1.167 .
  • the on-axis separation distance T12 of the first lens and the second lens and the on-axis separation distance T56 of the fifth lens and the sixth lens may satisfy: 1.1 ⁇ T12/T56 ⁇ 1.9, for example, 1.199 ⁇ T12 / T56 ⁇ 1.862.
  • the radius of curvature R2 of the image side surface of the first lens and the radius of curvature R11 of the object side surface of the sixth lens may satisfy: 0.8 ⁇ R2/R11 ⁇ 1.8, for example, 0.875 ⁇ R2/R11 ⁇ 1.688 .
  • the effective radius DT62 of the image side of the sixth lens and the half ImgH of the diagonal length of the effective pixel area of the electronic light sensing element may satisfy: 2.5 ⁇ DT62 / ImgH ⁇ 3.5, for example, 2.5 ⁇ DT62 / ImgH ⁇ 3.5.
  • an image pickup apparatus provided with an image pickup lens as described above is also provided.
  • FIG. 1 is a schematic structural view showing an image pickup lens of Embodiment 1 of the present application
  • FIG. 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1;
  • 2D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view showing an image pickup lens of Embodiment 2 of the present application.
  • 4D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2;
  • FIG. 5 is a schematic structural view showing an image pickup lens of Embodiment 3 of the present application.
  • 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3.
  • 6B shows an astigmatism curve of the imaging lens of Embodiment 3.
  • 6C shows a contrast curve of the image pickup lens of Embodiment 3.
  • 6D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view showing an image pickup lens of Embodiment 4 of the present application.
  • FIG. 9 is a schematic structural view showing an image pickup lens of Embodiment 5 of the present application.
  • FIG. 10A is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 5; FIG.
  • FIG. 10B shows an astigmatism curve of the image pickup lens of Embodiment 5;
  • FIG. 10C is a view showing a contrast curve of the image pickup lens of Embodiment 5.
  • FIG. 10D is a graph showing a magnification chromatic aberration curve of the image pickup lens of Embodiment 5; FIG.
  • first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been slightly exaggerated for convenience of explanation, but it should be understood that the dimensions of the respective components are not limited by the drawings, but may be appropriately adjusted within a certain range.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the paraxial region refers to a region near the optical axis.
  • the first lens is the lens closest to the object and the sixth lens is the lens closest to the photosensitive element.
  • the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
  • the application provides an imaging lens.
  • the imaging lens according to an exemplary embodiment of the present application may be sequentially provided with a first lens, a second lens, a third lens, a fourth lens, at least one subsequent lens, and a photosensitive element from the object side to the imaging side along the optical axis.
  • the camera lens can have a total effective focal length f.
  • the first lens may have a negative power
  • the image side may be a concave surface
  • the image side of the second lens may be a convex surface
  • the material of the third lens may be glass
  • the fourth lens may have a negative light Power.
  • the third lens is made of a glass material, which can reduce the influence of temperature difference on the imaging effect of the lens, thereby reducing the thermal difference.
  • the plurality of subsequent lenses may include a fifth lens disposed along an optical axis of the image side of the fourth lens and a sixth lens disposed along an optical axis of the image side of the fifth lens.
  • the effective focal length f1 of the first lens is effective with the fourth lens
  • the focal length f4 can satisfy: 1 ⁇ f1/f4 ⁇ 1.8, and more specifically, 1.433 ⁇ f1/f4 ⁇ 1.787.
  • the effective radius DT11 of the object side of the first lens may be set to be equal to 0.8 ⁇ DT11/DT62 ⁇ 1.3, and more specifically satisfy 0.959 ⁇ DT11/DT62 ⁇ 1.167, Compresses the lateral size of the camera lens to achieve lens miniaturization.
  • the radius of curvature R2 of the image side surface of the first lens and the radius of curvature R11 of the object side surface of the sixth lens may satisfy: 0.8 ⁇ R2 / R11 ⁇ 1.8, and more specifically, 0.875 ⁇ R2 / R11 ⁇ 1.648.
  • the on-axis separation distance T12 of the first lens and the second lens and the on-axis separation distance T56 of the fifth lens and the sixth lens may satisfy: 1.1 ⁇ T12/T56 ⁇ 1.9, more specifically , satisfying 1.199 ⁇ T12 / T56 ⁇ 1.862.
  • the ground lens can be wide-angled.
  • the effective radius DT21 of the object side of the second lens and the effective radius DT42 of the image side of the fourth lens may satisfy: 0.5 ⁇ DT21/DT42 ⁇ 1, and more specifically, 0.632 ⁇ DT21/ DT42 ⁇ 0.953.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may be between the first lens object side and the on-axis distance of the imaging lens imaging surface: (CT2+CT5) / TTL ⁇ 0.4, more specifically, (CT2+CT5) / TTL ⁇ 0.281.
  • CT2+CT5 / TTL ⁇ 0.4
  • CT2+CT5 / TTL ⁇ 0.281.
  • the on-axis spacing distance T23 of the second lens and the third lens, the on-axis spacing distance T34 of the third lens and the fourth lens, and the on-axis spacing distance T45 of the fourth lens and the fifth lens are the same
  • the distance between the object side of a lens and the on-axis distance of the imaging surface can be satisfied: 0.04 ⁇ (T23 + T34 + T45) / TTL ⁇ 0.12, more specifically, 0.048 ⁇ (T23 + T34 + T45) / TTL ⁇ 0.103 .
  • Good assembly efficiency is achieved by having a compact structural layout for each lens.
  • an influence rate of a unit temperature of the third lens on a unit refractive index of the third lens may be configured to satisfy:
  • the third lens thus arranged can reduce the influence of temperature on the image plane drift of the optical system.
  • the center thickness CT4 of the fourth lens on the optical axis and the center thickness CT5 of the fifth lens on the optical axis may satisfy: CT4/CT5 ⁇ 0.5, more specifically, satisfy CT4/CT5 ⁇ 0.262.
  • the effective radius DT62 of the image side of the sixth lens and the half ImgH of the diagonal length of the effective pixel area of the electronic light sensing element may satisfy: 2.5 ⁇ DT62/ImgH ⁇ 3.5, more specifically , satisfying 2.5 ⁇ DT62 / ImgH ⁇ 3.5, in order to compress the lateral dimension of the lens, so that the lens is miniaturized.
  • a half of the maximum angle of view of the imaging lens HFOV and the total effective focal length f of the imaging lens may satisfy: 5.4 ⁇ tan (HFOV) * f ⁇ 10, and more specifically, 5.493 ⁇ tan ( HFOV) *f ⁇ 8.061.
  • the imaging angle of the imaging lens corresponds to a maximum angle CRAmax of light incident on the electronic photosensitive component, which should satisfy CRAmax ⁇ 21, for example, CRAmax ⁇ 20.003, to improve the acceptance efficiency and deviation of the light on the chip, and improve the imaging.
  • CRAmax ⁇ 21 for example, CRAmax ⁇ 20.003
  • the contrast of the lens and the color deviation are improved to achieve high image quality.
  • the application also provides an imaging device.
  • the image pickup apparatus may include an image pickup lens as described above.
  • the image pickup lens according to the above embodiment of the present application may employ a plurality of lenses, for example, six sheets are employed in the present application, but it should be understood that this is merely an example and not a limitation.
  • a plurality of lenses for example, six sheets are employed in the present application, but it should be understood that this is merely an example and not a limitation.
  • the power of each lens By appropriately setting the power of each lens, the center thickness, the surface shape, the material, the on-axis spacing between the lenses, etc., it is possible to provide a small-sized, wide-angle, high-image-quality athermalization imaging lens.
  • at least one of the mirror faces of each lens is an aspherical mirror.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery.
  • the aspherical lens Unlike a spherical lens having a certain curvature from the center of the lens to the periphery, the aspherical lens has a better curvature radius characteristic, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. After using an aspherical lens, it can be eliminated as much as possible during imaging The current aberrations improve the image quality.
  • the number of components of the lens can be varied to achieve the various results and advantages described below without departing from the technical solutions claimed herein.
  • the description has been made by taking six lenses as an example in the description in the first embodiment, the image pickup lens is not limited to including six lenses.
  • the camera lens can also include other numbers of lenses if desired.
  • Embodiment 1 of the imaging lens of the above-described embodiment of the present application will be described below with reference to FIGS. 1 to 2D.
  • the first embodiment of the image pickup lens includes a first lens L1 having an object side surface S1 and an image side surface S2, a second lens L2 having an object side surface S3 and an image side surface S4, and an object side surface S5 and an image side surface S6.
  • the first lens may have a negative power and the image side may be a concave surface; the second lens may have a positive power or a negative power, and the image side may be a convex surface; the third lens may be Having positive or negative power, the material may be glass; and the fourth lens may have negative power.
  • the image pickup lens may further include a diaphragm (not shown) and a filter L7 having an object side S13 and an image side surface S14 for filtering out the infrared light.
  • an aperture STO may be disposed between the third lens L3 and the fourth lens L4 to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S14 and is finally imaged on the imaging surface S15.
  • the effective focal lengths f1 to f6 of the lenses in Embodiment 1 the total effective focal length f of the imaging lens, the half of the diagonal length of the effective pixel area of the electronic photosensitive element, ImgH, and the maximum of the imaging lens are shown in Table 1 below.
  • Table 2 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 1.
  • Table 3 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective spherical or aspheric surfaces S1 to S12 which can be used for the respective lenses in the embodiment 1.
  • the influence rate of the unit temperature of the third lens on the unit refractive index of the third lens satisfies:
  • 1.19E-6.
  • the imaging angle of the imaging lens corresponds to a maximum angle CRAmax of the incident light incident on the electronic photosensitive component of 20.003°.
  • FIG. 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the optical system.
  • 2B shows an astigmatism curve of the imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 2C shows a contrast curve of the image pickup lens of Embodiment 1, which shows the brightness of the image on the optical axis of the lens, that is, the image at the center of the screen.
  • FIG. 2D shows the image pickup lens of Embodiment 1.
  • the magnification chromatic aberration curve of the head which indicates the deviation of the different image heights on the imaging surface after the light passes through the imaging lens.
  • the imaging lens according to Embodiment 1 can obtain a high-quality imaging effect while ensuring miniaturization and wide-angle.
  • Embodiment 2 of the above-described image pickup lens of the present application will be described below with reference to FIGS. 3 to 4D.
  • the imaging lens described in the following embodiments is the same as the imaging lens described in Embodiment 1.
  • a description similar to that of Embodiment 1 will be omitted.
  • FIG. 3 is a block diagram showing the structure of an image pickup lens according to Embodiment 2 of the present application.
  • the imaging lens according to Embodiment 2 includes first to sixth lenses L1 to L6 having an object side and an image side, respectively.
  • the effective focal lengths f1 to f6 of the lenses in Embodiment 2 the total effective focal length f of the imaging lens, the half of the diagonal length of the effective pixel area of the electronic photosensitive element, ImgH, and the maximum of the imaging lens are shown in Table 4 below.
  • Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 2.
  • Table 6 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective spherical or aspheric surfaces S1 to S12 which can be used for the respective lenses in the second embodiment.
  • 4A shows an axial chromatic aberration curve of the imaging lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • 4B shows an astigmatism curve of the imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 4C shows a contrast curve of the image pickup lens of Embodiment 2, which shows the brightness of the image on the optical axis of the lens, that is, the image at the center of the screen.
  • 4D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the imaging lens.
  • the camera lens can achieve high-quality imaging results while ensuring miniaturization and wide-angle.
  • FIG. 5 is a block diagram showing the structure of an image pickup lens according to Embodiment 3 of the present application.
  • the imaging lens according to Embodiment 3 includes first to sixth lenses L1 to L6 each having an object side and an image side.
  • the effective focal lengths f1 to f6 of the lenses in Embodiment 3 the total effective focal length f of the imaging lens, the half of the diagonal length of the effective pixel area of the electronic photosensitive element, ImgH, and the maximum of the imaging lens are shown in Table 7 below.
  • Table 8 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 3.
  • Table 9 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective spherical or aspheric surfaces S1 to S12 which can be used for the lenses in the third embodiment.
  • Fig. 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 6B shows an astigmatism curve of the image pickup lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a phase contrast curve of the image pickup lens of Embodiment 3, which shows the brightness of the image on the optical axis of the lens, that is, the image at the center of the screen.
  • Fig. 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 6B shows an astigmatism curve of the image pickup lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a phase
  • FIG. 6D shows a magnification chromatic aberration curve of the image pickup lens of Embodiment 3, which shows deviations of different image heights on the image plane after the light rays pass through the image pickup lens.
  • the imaging lens according to Embodiment 3 can obtain a high-quality imaging effect while ensuring miniaturization and wide-angle.
  • FIG. 7 is a block diagram showing the structure of an image pickup lens according to Embodiment 4 of the present application.
  • the imaging lens according to Embodiment 4 includes first to sixth lenses each having an object side and an image side. L1-L6.
  • the effective focal lengths f1 to f6 of the lenses in Embodiment 4 the total effective focal length f of the imaging lens, the half of the diagonal length of the effective pixel area of the electronic photosensitive element, ImgH, and the maximum of the imaging lens are shown in Table 10 below.
  • Table 11 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 4.
  • Table 12 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective spherical or aspheric surfaces S1 to S12 which can be used for the respective lenses in the embodiment 4.
  • Fig. 8A shows an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8B shows an astigmatism curve of the image pickup lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a contrast curve of the image pickup lens of Embodiment 4, which shows the brightness of the image on the optical axis of the lens, that is, the image at the center of the screen.
  • Fig. 8A shows an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8B shows an astigmatism curve of the image pickup lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a contrast curve
  • the imaging lens according to Embodiment 4 can obtain a high-quality imaging effect while ensuring miniaturization and wide-angle.
  • FIG. 9 is a block diagram showing the structure of an image pickup lens according to Embodiment 5 of the present application.
  • the imaging lens according to Embodiment 5 includes first to sixth lenses L1 to L6 each having an object side and an image side.
  • the effective focal lengths f1 to f6 of the lenses in Embodiment 5 are shown in Table 13 below.
  • Table 14 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this Example 5.
  • Table 15 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective spherical or aspheric surfaces S1 to S12 which can be used for the lenses in the embodiment 5.
  • Fig. 10A shows an axial chromatic aberration curve of the imaging lens of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a contrast curve of the image pickup lens of Embodiment 5, which shows the brightness of the image on the optical axis of the lens, that is, the image at the center of the screen.
  • Fig. 10A shows an axial chromatic aberration curve of the imaging lens of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a
  • FIGS. 10A to 10D are graph showing the magnification chromatic aberration curve of the imaging lens of Embodiment 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens according to Embodiment 5 can obtain a high-quality imaging effect while ensuring miniaturization and wide-angle.
  • the present application also proposes an image pickup device, the photosensitive element of which may be photosensitive coupling Component (CCD) or complementary oxidized metal semiconductor component (CMOS).
  • the camera device may be an independent camera device such as a digital camera, or may be a camera module integrated on a mobile electronic device such as a mobile phone.
  • This image pickup apparatus is equipped with the image pickup lens described in each of the above embodiments.

Abstract

一种摄像镜头,沿着光轴从物侧至成像侧依次设置有:第一透镜(L1),具有负光焦度,其像侧面(S2)为凹面;第二透镜(L2),其像侧面(S4)为凸面;第三透镜(L3);第四透镜(L4),具有负光焦度;以及至少一个后续透镜,其中,第二透镜(L2)的物侧面(S3)的有效半径DT21与第四透镜(L4)的像侧面(S8)的有效半径DT42之间满足:0.5<DT21/DT42<1。

Description

摄像镜头及包括该摄像镜头的摄像装置
相关申请的交叉引用
本申请要求于2017年3月27日提交至中华人民共和国知识产权局(SIPO)的第201710187519.9号中国专利申请以及于2017年3月27日提交至SIPO的第201720303187.1号中国专利申请的优先权和权益,以上中国专利申请的全部内容通过引用并入本文。
技术领域
本申请涉及一种摄像镜头,更具体地,涉及一种包括多片镜片的摄像镜头。本申请还涉及一种配置有上述摄像镜头的摄像装置。
背景技术
随着科技的发展,便携式电子产品逐步兴起,特别是具有摄像功能的便携式电子产品得到人们更多的青睐。对于搭载在运动类设备上的摄像装置(特别是车载摄像装置、监控摄像装置、无人机用摄像装置等)来说,其光学系统趋向于广角化并具有更高像素,并且需要保证在温差较大时仍具有较好的成像质量。为了满足该需求,摄像镜头也进一步需要高像质、广角化及具有较大光亮度。
发明内容
本申请旨在提供一种小型化、广角化、高成像品质的消热差摄像镜头。
根据本申请的一个方面,提供了一种摄像镜头,该摄像镜头沿着光轴从物侧至成像侧可依次设置有多个透镜。在本申请的示例性实施方式中,摄像镜头例如可包括沿着光轴从物侧至成像侧依次设置的具有负光焦度的第一透镜,其像侧面为凹面;具有光焦度的第二透镜,其像侧面为凸面;具有光焦度的第三透镜;具有负光焦度的第四透镜;以及至少一个后续透镜。
根据本申请的另一方面,提供了一种摄像镜头。该摄像镜头沿着 光轴从物侧至成像侧可依次设置有:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。其中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜的像侧面可为凸面;第三透镜的材料可为玻璃以及第四透镜可具有负光焦度。
根据本申请的实施方式,第二透镜的物侧面的有效半径DT21与第四透镜的像侧面的有效半径DT42之间可满足:0.5<DT21/DT42<1,例如,0.632≤DT21/DT42≤0.953。
根据本申请的实施方式,第一透镜的有效焦距f1与第四透镜的有效焦距f4之间可满足:1<f1/f4<1.8,例如,1.433≤f1/f4≤1.787。
根据本申请的实施方式,第三透镜的单位温度对第三透镜的单位折射率的影响率可满足:|dn3/dt|<10-5,其中第三透镜的折射率为n3,以及第三透镜的温度为t。
根据本申请的实施方式,摄像镜头的最大视场角的一半HFOV与摄像镜头的总有效焦距f之间可满足:5.4mm<tan(HFOV)*f<10mm,例如,5.493mm≤tan(HFOV)*f≤8.061mm。
根据本申请的实施方式,摄像镜头的成像高度对应的光线入射电子感光组件的最大角度CRAmax应满足CRAmax<21°,例如,CRAmax≤20.003°。
根据本申请的实施方式,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间可满足:CT4/CT5<0.5,例如,CT4/CT5≤0.262。
根据本申请的实施方式,第二透镜在光轴上的中心厚度CT2和第五透镜在光轴上的中心厚度CT5与第一透镜的物侧面至摄像镜头的成像面的轴上距离之间可满足:(CT2+CT5)/TTL<0.4,例如,(CT2+CT5)/TTL≤0.281。
根据本申请的实施方式,第二透镜和第三透镜的轴上间隔距离T23、第三透镜和第四透镜的轴上间隔距离T34以及第四透镜和第五透镜的轴上间隔距离T45与第一透镜的物侧面至成像面的轴上距离TTL之间可满足:0.04<(T23+T34+T45)/TTL<0.12,例如,0.048≤(T23+T34+T45)/TTL≤0.103。
根据本申请的实施方式,第一透镜的物侧面的有效半径DT11与第六透镜的像侧面的有效半径DT62之间可满足:0.8<DT11/DT62<1.3,例如,0.959≤DT11/DT62≤1.167。
根据本申请的实施方式,第一透镜和第二透镜的轴上间隔距离T12与第五透镜和第六透镜的轴上间隔距离T56之间可满足:1.1<T12/T56<1.9,例如,1.199≤T12/T56≤1.862。
根据本申请的实施方式,第一透镜的像侧面的曲率半径R2与第六透镜的物侧面的曲率半径R11之间可满足:0.8<R2/R11<1.8,例如,0.875≤R2/R11≤1.688。
根据本申请的实施方式,第六透镜的像侧面的有效半径DT62与电子光感元件的有效像素区域的对角线长的一半ImgH之间可满足:2.5<DT62/ImgH<3.5,例如,2.5≤DT62/ImgH≤3.5。
根据本发明的又一方面,还提供了一种设置有如上所述的摄像镜头的摄像装置。
附图说明
通过参照以下附图进行的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1示出了本申请的实施例1的摄像镜头的示意性结构图;
图2A示出了实施例1的摄像镜头的轴上色差曲线;
图2B示出了实施例1的摄像镜头的象散曲线;
图2C示出了实施例1的摄像镜头的相对照度曲线;
图2D示出了实施例1的摄像镜头的倍率色差曲线;
图3示出了本申请的实施例2的摄像镜头的示意性结构图;
图4A示出了实施例2的摄像镜头的轴上色差曲线;
图4B示出了实施例2的摄像镜头的象散曲线;
图4C示出了实施例2的摄像镜头的相对照度曲线;
图4D示出了实施例2的摄像镜头的倍率色差曲线;
图5示出了本申请的实施例3的摄像镜头的示意性结构图;
图6A示出了实施例3的摄像镜头的轴上色差曲线;
图6B示出了实施例3的摄像镜头的象散曲线;
图6C示出了实施例3的摄像镜头的相对照度曲线;
图6D示出了实施例3的摄像镜头的倍率色差曲线;
图7示出了本申请的实施例4的摄像镜头的示意性结构图;
图8A示出了实施例4的摄像镜头的轴上色差曲线;
图8B示出了实施例4的摄像镜头的象散曲线;
图8C示出了实施例4的摄像镜头的相对照度曲线;
图8D示出了实施例4的摄像镜头的倍率色差曲线;
图9示出了本申请的实施例5的摄像镜头的示意性结构图;
图10A示出了实施例5的摄像镜头的轴上色差曲线;
图10B示出了实施例5的摄像镜头的象散曲线;
图10C示出了实施例5的摄像镜头的相对照度曲线;
图10D示出了实施例5的摄像镜头的倍率色差曲线;
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状,但应理解各部件的尺寸不由附图限制,而是可在一定的范围内适当调整。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
此外,近轴区域是指光轴附近的区域。第一透镜是最靠近物体的透镜而第六透镜是最靠近感光元件的透镜。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以/可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本发明所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
以下对本申请的特征、原理和其他方面进行详细描述。
本申请提供了一种摄像镜头。根据本申请的示例性实施方式的摄像镜头沿着光轴从物侧至成像侧可依次设置有第一透镜、第二透镜、第三透镜、第四透镜、至少一个后续透镜以及感光元件。该摄像镜头可具有总有效焦距f。
在示例性实施方式中,第一透镜可具有负光焦度,其像侧面可为凹面;第二透镜的像侧面可为凸面;第三透镜的材料可为玻璃以及第四透镜可具有负光焦度。第三透镜采用玻璃材料,能够减小温度差异对镜头成像效果的影响,从而减小热差。
在示例性实施方式中,多个后续透镜可包括沿着光轴设置在第四透镜的像侧面的第五透镜以及沿着光轴设置在第五透镜的像侧面的第六透镜。
在示例性实施方式中,第一透镜的有效焦距f1与第四透镜的有效 焦距f4之间可满足:1<f1/f4<1.8,更具体地,满足1.433≤f1/f4≤1.787。通过合理配置光焦度与面型,可有效提升镜头成像品质,实现高像素功能和广角功能。第一透镜的物侧面的有效半径DT11可设置成与第六透镜的像侧面的有效半径DT62之间满足:0.8<DT11/DT62<1.3,更具体地,满足0.959≤DT11/DT62≤1.167,以压缩摄像镜头的横向尺寸,从而实现镜头小型化的功效。此外,第一透镜的像侧面的曲率半径R2与第六透镜的物侧面的曲率半径R11之间可满足:0.8<R2/R11<1.8,更具体地,满足0.875≤R2/R11≤1.688。通过合理地配置曲率半径和镜片形状,能够提升相对照度,从而使得摄像镜头具有高成像品质。
在示例性实施方式中,第一透镜和第二透镜的轴上间隔距离T12与第五透镜和第六透镜的轴上间隔距离T56之间可满足:1.1<T12/T56<1.9,更具体地,满足1.199≤T12/T56≤1.862。通过合理地布置镜片的位置,能够使地镜头广角化。
在示例性实施方式中,第二透镜的物侧面的有效半径DT21与第四透镜的像侧面的有效半径DT42之间可满足:0.5<DT21/DT42<1,更具体地,满足0.632≤DT21/DT42≤0.953。通过合理地配置镜片的尺寸,能够实现良好的组立工艺性。
在示例性实施方式中,第二透镜在光轴上的中心厚度CT2和第五透镜在光轴上的中心厚度CT5与第一透镜物侧面至摄像镜头成像面的轴上距离之间可满足:(CT2+CT5)/TTL<0.4,更具体地,满足(CT2+CT5)/TTL≤0.281。镜片尺寸的合理配置可实现良好的工艺效果。
在示例性实施方式中,第二透镜和第三透镜的轴上间隔距离T23、第三透镜和第四透镜的轴上间隔距离T34以及第四透镜和第五透镜的轴上间隔距离T45与第一透镜的物侧面至成像面的轴上距离TTL之间可满足:0.04<(T23+T34+T45)/TTL<0.12,更具体地,满足0.048≤(T23+T34+T45)/TTL≤0.103。通过使各镜片具有紧凑的结构布局来实现良好的组立功效。
在示例性实施方式中,第三透镜的单位温度对第三透镜的单位折射率的影响率可配置为满足:|dn3/dt|<10-5,其中第三透镜的折射率为 n3,以及第三透镜的温度为t。这样设置的第三透镜能够降低温度对光学系统像面漂移的影响。
在示例性实施方式中,第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间可满足:CT4/CT5<0.5,更具体地,满足CT4/CT5≤0.262。通过合理设置第四透镜和第五透镜在光轴上的中心厚度,能够缓和光线角度,降低像差,从而提升成像质量。
在示例性实施方式中,第六透镜的像侧面的有效半径DT62与电子光感元件的有效像素区域的对角线长的一半ImgH之间可满足:2.5<DT62/ImgH<3.5,更具体地,满足2.5≤DT62/ImgH≤3.5,以压缩镜头横向尺寸,使得镜头小型化。
在示例性实施方式中,摄像镜头的最大视场角的一半HFOV与摄像镜头的总有效焦距f之间可满足:5.4<tan(HFOV)*f<10,更具体地,满足5.493≤tan(HFOV)*f≤8.061。通过调节摄像镜头的最大视场角与摄像镜头的总有效焦距,能够保证镜头的广角化,实现大像面和高像素的功效。
在示例性实施方式中,该摄像镜头的成像高度对应的光线入射电子感光组件的最大角度CRAmax应满足CRAmax<21,例如,CRAmax≤20.003,以改善光线在芯片上的接受效率和偏差,提升摄像镜头的相对照度并改善颜色偏差,从而获得高的成像品质。
本申请还提供了一种摄像装置。该摄像装置可包括如上所述的摄像镜头。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如在本申请中采用6片,但应理解这只是示例而非限制。通过合理设置各透镜的光焦度、中心厚度、面型、材料、各透镜之间的轴上间距等,可提供一种小型化、广角化、高成像品质的消热差摄像镜头。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有一定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出 现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在不背离本申请要求保护的技术方案的情况下,可改变镜头的构成数量,来获得下面描述的各种结果和优点。例如,虽然在第一实施方式中的描述中采用由六个透镜为例进行了描述,但是该摄像镜头不限于包括六个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。
下面参照图1至图10D进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图2D描述本申请上述实施方式的摄像镜头的实施例1。
如图1所示,摄像镜头的实施例1包括具有物侧面S1和像侧面S2的第一透镜L1、具有物侧面S3和像侧面S4的第二透镜L2、具有物侧面S5和像侧面S6的第三透镜L3、具有物侧面S7和像侧面S8的第四透镜L4、具有物侧面S9和像侧面S10的第五透镜L5以及具有物侧面S11和像侧面S12的第五透镜L6。在该实施例中,第一透镜可具有负光焦度,且其像侧面可为凹面;第二透镜可具有正光焦度或负光焦度,且其像侧面可为凸面;第三透镜可具有正光焦度或负光焦度,其材料可以为玻璃;以及第四透镜可具有负光焦度。该摄像镜头还可包括光阑(未示出)以及用于滤除红外光的具有物侧面S13和像侧面S14的滤光片L7。在本实施例的摄像镜头中,还可在第三透镜L3与第四透镜L4之间设置有光圈STO以调解进光量。来自物体的光依次穿过各表面S1至S14并最终成像在成像表面S15上。
下表1中示出了实施例1中的各透镜的有效焦距f1至f6、摄像镜头的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、摄像镜头的最大视场角的一半HFOV、摄像镜头的光圈数Fno以及摄像透镜的总长度TTL。
参照表1,第一透镜的有效焦距f1与第四透镜的有效焦距f4之间满足f1/f4=1.625。摄像镜头的最大视场角的一半HFOV与摄像镜头的总有效焦距f之间满足:tan(HFOV)*f=8.061mm。
f(mm) 3.557 ImgH(mm) 4.10
f1(mm) -6.362 HFOV(deg) 66.188
f2(mm) 10.964 Fno 2.018
f3(mm) 5.457 TTL(mm) 16.003
f4(mm) -3.916    
f5(mm) 5.453    
f6(mm) 16.989    
表1
表2示出了该实施例1中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 球面 13.5744 0.7000 1.489/70.42  
S2 球面 2.4872 2.0855    
S3 非球面 -5.7754 1.5937 1.668/20.37 3.9151
S4 非球面 -3.5818 -0.2055   -0.7980
STO 球面 无穷 0.5596    
S5 球面 -46.4346 2.1047 1.758/52.33  
S6 球面 -3.8709 0.2721    
S7 非球面 381.1331 0.6000 1.668/20.37 5.0000
S8 非球面 2.5906 0.1861   -6.0433
S9 非球面 4.0901 2.8609 1.547/56.11 -8.2251
S10 非球面 -8.2359 1.5532   3.4331
S11 非球面 2.6496 1.2564 1.547/56.11 -3.9336
S12 非球面 3.0881 0.5000   -1.1139
S13 球面 无穷 0.3000 1.517/64.17  
S14 球面 无穷 1.6362    
S15 球面 无穷      
表2
参照表2,第二透镜在光轴上的中心厚度CT2和第五透镜在光轴上的中心厚度CT5与第一透镜的物侧面至摄像镜头的成像面的轴上距离TTL之间满足:(CT2+CT5)/TTL=0.278。第四透镜在光轴上的中心厚度CT4与第五透镜在光轴上的中心厚度CT5之间满足:CT4/CT5=0.210。第一透镜和第二透镜的轴上间隔距离T12与第五透镜和第六透镜的轴上间隔距离T56之间满足:T12/T56=1.343。第一透 镜的像侧面的曲率半径R2与第六透镜的物侧面的曲率半径R11之间满足:R2/R11=0.939。第二透镜和第三透镜的轴上间隔距离T23、第三透镜和第四透镜的轴上间隔距离T34以及第四透镜和第五透镜的轴上间隔距离T45与第一透镜的物侧面至成像面的轴上距离TTL之间满足:(T23+T34+T45)/TTL=0.051。
表3示出了可用于该实施例1中的各透镜的各球面或非球面S1-S12的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 A4 A6 A8 A10 A12 A14 A16
S3 -4.6781E-03 -4.1231E-04 9.2000E-04 -9.2728E-04 4.9165E-04 -1.2761E-04 1.3164E-05
S4 -1.1572E-03 1.5106E-03 -2.2392E-03 1.6510E-03 -5.6940E-04 6.7146E-05 3.3438E-06
S7 -3.0888E-02 9.1987E-03 -2.7940E-03 5.6396E-04 -7.0973E-05 5.0144E-06 -1.7184E-07
S8 -1.0477E-02 5.8437E-03 -2.0009E-03 4.0271E-04 -4.8319E-05 3.1605E-06 -8.7873E-08
S9 -4.3759E-03 3.5385E-03 -1.0837E-03 1.9124E-04 -1.9468E-05 1.0797E-06 -2.5195E-08
S10 -1.5960E-02 3.2813E-03 -6.1495E-04 9.6831E-05 -1.0225E-05 6.3945E-07 -1.5899E-08
S11 2.2907E-04 -2.8331E-03 2.6129E-04 1.3143E-05 -4.6734E-06 3.8223E-07 -1.1627E-08
S12 -1.1147E-02 -2.1755E-03 5.0928E-04 -5.4263E-05 3.4242E-06 -1.2269E-07 1.8333E-09
表3
参照表1至表3,第一透镜的物侧面的有效半径DT11与第六透镜的像侧面的有效半径DT62之间满足:DT11/DT62=0.959。第二透镜的物侧面的有效半径DT21与第四透镜的像侧面的有效半径DT42之间满足:DT21/DT42=0.632。第六透镜的像侧面的有效半径DT62与电子光感元件的有效像素区域的对角线长的一半ImgH之间满足:DT62/ImgH=3.382。
此外,在该实施例1中,第三透镜的单位温度对第三透镜的单位折射率的影响率满足:|dn3/dt|=1.19E-6。摄像镜头的成像高度对应的光线入射电子感光组件的最大角度CRAmax为20.003°。
图2A示出了实施例1的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像镜头的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。图2D示出了实施例1的摄像镜 头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。综上所述并参照图2A至图2D可以看出,根据实施例1的摄像镜头在保证小型化、广角化的情况下可获得高质量的成像效果。
实施例2
以下参照图3至图4D描述本申请的上述摄像镜头的实施例2。除了摄像镜头的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、材料、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的摄像镜头与实施例1中描述的摄像镜头的布置结构相同。为了简洁起见,将省略部分与实施例1相似的描述。
图3示出了根据本申请实施例2的摄像镜头的结构示意图。如图3所示,根据实施例2的摄像镜头包括分别具有物侧面和像侧面的第一至第六透镜L1-L6。
下表4中示出了实施例2中的各透镜的有效焦距f1至f6、摄像镜头的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、摄像镜头的最大视场角的一半HFOV、摄像镜头的光圈数Fno以及摄像透镜的总长度TTL。
f(mm) 3.557 ImgH(mm) 4.08
f1(mm) -6.498 HFOV(deg) 65.881
f2(mm) 11.146 Fno 2.018
f3(mm) 5.163 TTL(mm) 16.002
f4(mm) -3.750    
f5(mm) 5.209    
f6(mm) 28.659    
表4
表5示出了该实施例2中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表6示出了可用于该实施例2中的各透镜的各球面或非球面S1-S12的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷
S1 球面 13.1802 0.7000 1.489/70.42
S2 球面 2.5147 2.2235
S3 非球面 -5.8102 1.6513 1.668/20.37 3.8118
S4 非球面 -3.6307 -0.1590 -0.6212
STO 球面 无穷 0.6491
S5 球面 61.3623 2.1634 1.758/52.33
S6 球面 -4.1141 0.1107
S7 非球面 -52.9368 0.6000 1.668/20.37 -99.0000
S8 非球面 2.6345 0.1719 -6.0959
S9 非球面 3.8794 2.8467 1.547/56.11 -8.0499
S10 非球面 -7.8935 1.4587 2.9231
S11 非球面 2.8469 1.3215 1.547/56.11 -4.3452
S12 非球面 2.9096 0.5000 -1.1118
S13 球面 无穷 0.3000 1.517/64.17
S14 球面 无穷 1.4641
S15 球面 无穷
表5
面号 A4 A6 A8 A10 A12 A14 A16
S3 -4.1717E-03 7.5018E-06 2.3691E-04 -3.2480E-04 1.8816E-04 -5.0032E-05 5.1875E-06
S4 -1.1996E-03 1.2252E-03 -1.9672E-03 1.5526E-03 -6.4411E-04 1.3050E-04 -9.5345E-06
S7 -2.9121E-02 8.9179E-03 -2.7142E-03 5.3480E-04 -6.2643E-05 3.7348E-06 -9.0881E-08
S8 -1.1134E-02 6.5152E-03 -2.2370E-03 4.5095E-04 -5.4189E-05 3.5621E-06 -9.9638E-08
S9 -4.2761E-03 3.5844E-03 -1.0974E-03 1.9213E-04 -1.9485E-05 1.0826E-06 -2.5416E-08
S10 -1.5637E-02 3.4540E-03 -6.5921E-04 1.0146E-04 -1.0192E-05 5.9330E-07 -1.3639E-08
S11 -5.5243E-03 -2.0407E-03 1.8458E-04 3.2682E-05 -8.7641E-06 7.6427E-07 -2.5241E-08
S12 -1.7253E-02 -7.7323E-04 3.6199E-04 -4.6957E-05 3.3303E-06 -1.2908E-07 2.0526E-09
表6
图4A示出了实施例2的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像镜头的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。图4D示出了实施例2的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。综上所述并参照图4A至图4D可以看出,根据实施例2 的摄像镜头在保证小型化、广角化的情况下可获得高质量的成像效果。
实施例3
以下参照图5至图6D描述本申请的上述摄像镜头的实施例3。图5示出了根据本申请实施例3的摄像镜头的结构示意图。如图5所示,根据实施例3的摄像镜头包括分别具有物侧面和像侧面的第一至第六透镜L1-L6。
下表7中示出了实施例3中的各透镜的有效焦距f1至f6、摄像镜头的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、摄像镜头的最大视场角的一半HFOV、摄像镜头的光圈数Fno以及摄像透镜的总长度TTL。
f(mm) 2.966 ImgH(mm) 4.08
f1(mm) -6.808 HFOV(deg) 61.633
f2(mm) 14.342 Fno 2.023
f3(mm) 6.039 TTL(mm) 16.008
f4(mm) -4.027    
f5(mm) 5.285    
f6(mm) 8.769    
表7
表8示出了该实施例3中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 -105.3403 0.7000 1.547/56.11 -73.9054
S2 非球面 3.8619 2.1204   0.1024
S3 非球面 -8.7111 2.1538 1.668/20.37 5.0000
S4 非球面 -5.0082 1.1662   -0.4033
STO 球面 无穷 0.0300    
S5 球面 13.0715 1.6839 1.758/52.33  
S6 球面 -6.6487 0.3257    
S7 非球面 -14.3842 0.6000 1.668/20.37 0.0306
S8 非球面 3.3544 0.1223   -6.6779
S9 非球面 3.9348 2.2883 1.547/56.11 -8.2972
S10 非球面 -8.5977 1.1386   4.9590
面号 表面类型 曲率半径 厚度 材料 圆锥系数
S11 非球面 2.2880 1.5734 1.547/56.11 -3.6593
S12 非球面 3.3184 0.5000 -3.6047
S13 球面 无穷 0.3000 1.517/64.17
S14 球面 无穷 1.3060
S15 球面 无穷
表8
表9示出了可用于该实施例3中的各透镜的各球面或非球面S1-S12的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.6712E-03 -6.7759E-05 -1.6406E-06 1.2563E-07 -2.5548E-10 0.0000E+00 0.0000E+00
S2 -3.7972E-04 -1.1845E-04 1.3412E-04 -2.8417E-05 1.6645E-06 0.0000E+00 0.0000E+00
S3 -6.9807E-03 1.7455E-03 -8.4728E-04 2.9996E-04 -6.3998E-05 7.3814E-06 -3.5153E-07
S4 -1.7250E-03 7.4300E-04 -2.9141E-04 7.0964E-05 -1.0265E-05 8.2144E-07 -2.7247E-08
S7 -1.4692E-02 7.6947E-04 4.7956E-04 -1.8403E-04 2.9110E-05 -1.5401E-06 -1.8030E-08
S8 -5.3466E-03 8.2075E-04 -4.1073E-05 -1.4125E-05 2.9469E-06 -2.1692E-07 5.6236E-09
S9 -5.7421E-04 4.8724E-04 -1.2058E-04 1.6966E-05 -1.3126E-06 5.2490E-08 -8.4429E-10
S10 -2.8327E-02 6.3257E-03 -1.0976E-03 1.5434E-04 -1.4744E-05 8.3556E-07 -2.0210E-08
S11 3.1549E-03 -4.4061E-03 3.5084E-04 2.5528E-05 -5.2572E-06 1.6475E-07 1.5886E-09
S12 1.0117E-02 -8.3674E-03 1.6025E-03 -1.5662E-04 8.2646E-06 -2.2676E-07 2.5424E-09
表9
图6A示出了实施例3的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像镜头的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。图6D示出了实施例3的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。综上所述并参照图6A至图6D可以看出,根据实施例3的摄像镜头在保证小型化、广角化的情况下可获得高质量的成像效果。
实施例4
以下参照图7至图8D描述本申请的上述摄像镜头的实施例4。图7示出了根据本申请实施例4的摄像镜头的结构示意图。如图7所示,根据实施例4的摄像镜头包括分别具有物侧面和像侧面的第一至第六透镜 L1-L6。
下表10中示出了实施例4中的各透镜的有效焦距f1至f6、摄像镜头的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、摄像镜头的最大视场角的一半HFOV、摄像镜头的光圈数Fno以及摄像透镜的总长度TTL。
f(mm) 3.221 ImgH(mm) 4.08
f1(mm) -6.650 HFOV(deg) 64.355
f2(mm) 10.446 Fno 2.030
f3(mm) 6.444 TTL(mm) 16.009
f4(mm) -3.721    
f5(mm) 4.648    
f6(mm) 14.629    
表10
表11示出了该实施例4中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 非球面 13.8394 0.7000 1.547/56.11 0.6307
S2 非球面 2.8247 2.5433   -0.0562
S3 非球面 -7.7111 1.8894 1.668/20.37 4.1584
S4 非球面 -4.0171 0.4765   -0.8460
STO 球面 无穷 0.1469    
S5 球面 2355.0630 1.8012 1.758/52.33  
S6 球面 -4.8908 0.1349    
S7 非球面 -77.3084 0.6000 1.668/20.37 -99.0000
S8 非球面 2.5701 0.1359   -6.5821
S9 非球面 3.3513 2.3856 1.547/56.11 -8.1262
S10 非球面 -7.8229 1.4335   1.7201
S11 非球面 2.6391 1.4269 1.547/56.11 -3.4683
S12 非球面 3.1889 0.5000   -1.2939
S13 球面 无穷 0.3000 1.517/64.17  
S14 球面 无穷 1.5352    
S15 球面 无穷      
表11
表12示出了可用于该实施例4中的各透镜的各球面或非球面S1-S12的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 A4 A6 A8 A10 A12 A14
S1 8.5551E-04 -2.6728E-05 -5.8061E-06 3.7387E-07 -6.5031E-09 0.0000E+00
S2 6.6621E-04 -5.0855E-04 1.7193E-04 -4.0995E-05 1.8360E-06 0.0000E+00
S3 -4.2282E-03 -8.1525E-05 3.0997E-05 4.2960E-06 -7.2546E-07 0.0000E+00
S4 1.5655E-04 -1.5308E-04 8.4884E-05 -1.9981E-05 1.5383E-06 0.0000E+00
S7 -2.4867E-02 7.0535E-03 -1.7446E-03 2.3056E-04 -1.1946E-05 0.0000E+00
S8 -7.2300E-03 3.0309E-03 -7.3225E-04 8.1554E-05 -3.8958E-06 0.0000E+00
S9 -1.7195E-03 1.4944E-03 -2.9642E-04 3.0007E-05 -1.1968E-06 0.0000E+00
S10 -1.8243E-02 3.5126E-03 -5.2416E-04 5.2900E-05 -1.8612E-06 0.0000E+00
S11 -4.2873E-03 -1.9207E-03 8.8066E-05 1.3020E-05 -1.2182E-06 0.0000E+00
S12 -9.3295E-03 -2.0345E-03 3.9784E-04 -3.1158E-05 1.1485E-06 -1.7735E-08
表12
图8A示出了实施例4的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄像镜头的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。图8D示出了实施例4的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。综上所述并参照图8A至图8D可以看出,根据实施例4的摄像镜头在保证小型化、广角化的情况下可获得高质量的成像效果。
实施例5
以下参照图9至图10D描述本申请的上述摄像镜头的实施例5。图9示出了根据本申请实施例5的摄像镜头的结构示意图。如图9所示,根据实施例5的摄像镜头包括分别具有物侧面和像侧面的第一至第六透镜L1-L6。
下表13中示出了实施例5中的各透镜的有效焦距f1至f6、摄像镜头的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、摄像镜头的最大视场角的一半HFOV、摄像镜头的光圈数Fno以及摄像透镜的总长度TTL。
f(mm) 3.518 ImgH(mm) 4.08
f1(mm) -6.424 HFOV(deg) 63.940
f2(mm) -1544.130 Fno 2.066
f3(mm) 5.049 TTL(mm) 16.005
f4(mm) -4.484    
f5(mm) 4.169    
f6(mm) -69.983    
表13
表14示出了该实施例5中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 无穷    
S1 球面 12.2698 0.7000 1.489/70.42  
S2 球面 2.4531 2.4040    
S3 非球面 -5.2988 1.5522 1.668/20.37 2.7442
S4 非球面 -5.9502 0.2092   -0.4869
STO 球面 无穷 0.0300    
S5 球面 12.6515 1.9619 1.758/52.33  
S6 球面 -5.1163 0.9914    
S7 非球面 18.0280 0.6000 1.668/20.37 -9.90E+01
S8 非球面 2.5291 0.1540   -8.4099
S9 非球面 3.9826 2.6645 1.547/56.11 -16.4075
S10 非球面 -4.0570 2.0048   -0.9379
S11 非球面 2.8034 0.6826 1.547/56.11 -5.7210
S12 非球面 2.3872 0.5000   -1.1926
S13 球面 无穷 0.3000 1.517/64.17  
S14 球面 无穷 1.2500    
S15 球面 无穷      
表14
表15示出了可用于该实施例5中的各透镜的各球面或非球面S1-S12的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 A4 A6 A8 A10 A12 A14 A16
S3 -1.3285E-03 -6.9612E-04 7.9467E-04 -4.6332E-04 1.5093E-04 -2.6717E-05 2.0698E-06
S4 -1.5083E-03 -3.5127E-04 3.7899E-04 -1.3643E-04 2.7224E-06 8.7468E-06 -1.2407E-06
S7 -3.8968E-02 1.3364E-02 -5.2252E-03 1.5132E-03 -2.9846E-04 3.5078E-05 -1.8441E-06
面号 A4 A6 A8 A10 A12 A14 A16
S8 -6.5997E-03 2.9776E-03 -1.1488E-03 2.4846E-04 -3.2861E-05 2.3950E-06 -7.5970E-08
S9 6.6963E-03 -1.3068E-04 -3.1786E-04 9.4493E-05 -1.2400E-05 8.2885E-07 -2.2940E-08
S10 -4.9897E-03 9.5441E-04 -1.2380E-04 1.6287E-05 -1.3559E-06 2.0053E-07 -1.1390E-08
S11 -1.4996E-04 -5.7729E-03 1.3598E-03 -1.7567E-04 1.2481E-05 -4.0183E-07 2.1835E-09
S12 -2.7704E-02 3.1640E-04 3.9392E-04 -7.5556E-05 7.0332E-06 -3.2703E-07 5.8644E-09
表15
图10A示出了实施例5的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像镜头的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。图10D示出了实施例5的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。综上所述并参照图10A至图10D可以看出,根据实施例5的摄像镜头在保证小型化、广角化的情况下可获得高质量的成像效果。
综上所述,参照表1至表15,实施例1至实施例5的各参数之间分别可满足下表16所示的关系。
关系式\实施例 1 2 3 4 5
f1/f4 1.625 1.733 1.691 1.787 1.433
|dn/dt| 1.19E-06 1.19E-06 1.19E-06 1.19E-06 1.19E-06
tan(HFOV)*f(mm) 8.061 7.945 5.493 6.710 7.195
CRAmax(°) 20.003 15.947 17.564 20.003 18.278
CT4/CT5 0.210 0.211 0.262 0.252 0.225
DT11/DT62 0.959 1.014 1.167 1.137 1.055
(CT2+CT5)/TTL 0.278 0.281 0.277 0.267 0.263
T12/T56 1.343 1.524 1.862 1.774 1.199
DT21/DT42 0.632 0.676 0.953 0.924 0.686
R2/R11 0.939 0.883 1.688 1.070 0.875
(T23+T34+T45)/TTL 0.051 0.048 0.103 0.056 0.087
DT62/ImgH 3.382 3.305 2.703 2.919 3.205
表16
此外,本申请还提出了一种摄像装置,其感光元件可以是感光耦合 元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有如上各实施例所述的摄像镜头。
以上参照附图对本申请的示例性实施例进行了描述。本领域技术人员应该理解,上述实施例仅是为了说明的目的而所举的示例,而不是用来限制本申请的范围。凡在本申请的教导和权利要求保护范围下所作的任何修改、等同替换等,均应包含在本申请要求保护的范围内。

Claims (17)

  1. 一种摄像镜头,所述摄像镜头沿着光轴从物侧至成像侧依次设置有第一透镜、第二透镜、第三透镜、第四透镜和至少一个后续透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;
    所述第二透镜的像侧面为凸面;
    所述第四透镜具有负光焦度;以及
    所述第二透镜的物侧面的有效半径DT21与所述第四透镜的像侧面的有效半径DT42之间满足:0.5<DT21/DT42<1。
  2. 如权利要求1所述的摄像镜头,其特征在于,所述多个后续透镜包括第五透镜,所述第五透镜沿着所述光轴设置在所述第四透镜的像侧面,以及
    所述第四透镜在所述光轴上的中心厚度CT4与所述第五透镜在所述光轴上的中心厚度CT5之间满足:CT4/CT5<0.5。
  3. 如权利要求2所述的摄像镜头,其特征在于,所述多个后续透镜还包括第六透镜,所述第六透镜沿着所述光轴设置在所述第五透镜的像侧面,以及
    所述第一透镜的物侧面的有效半径DT11与所述第六透镜的像侧面的有效半径DT62之间满足:0.8<DT11/DT62<1.3。
  4. 如权利要求3所述的摄像镜头,其特征在于,所述第六透镜的像侧面的有效半径DT62与电子光感元件的有效像素区域的对角线长的一半ImgH之间满足:2.5<DT62/ImgH<3.5。
  5. 一种摄像镜头,所述摄像镜头沿着光轴从物侧至成像侧依次设置有:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;
    所述第二透镜的像侧面为凸面;
    所述第四透镜具有负光焦度;以及
    所述第一透镜的物侧面的有效半径DT11与所述第六透镜的像侧面的有效半径DT62之间满足:0.8<DT11/DT62<1.3。
  6. 一种摄像镜头,所述摄像镜头沿着光轴从物侧至成像侧依次设置有:第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,
    其特征在于,
    所述第一透镜具有负光焦度,其像侧面为凹面;
    所述第二透镜的像侧面为凸面;
    所述第四透镜具有负光焦度;以及
    所述第六透镜的像侧面的有效半径DT62与电子光感元件的有效像素区域的对角线长的一半ImgH之间满足:2.5<DT62/ImgH<3.5。
  7. 如权利要求5或6所述的摄像镜头,其特征在于,所述第二透镜的物侧面的有效半径DT21与所述第四透镜的像侧面的有效半径DT42之间满足:0.5<DT21/DT42<1。
  8. 如权利要求1、5和6中任一项所述的摄像镜头,其特征在于,所述第三透镜的材料为玻璃。
  9. 如权利要求1、5和6中任一项所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第四透镜的有效焦距f4之间满足:1<f1/f4<1.8。
  10. 如权利要求1、5和6中任一项所述的摄像镜头,其特征在于,所述第三透镜的单位温度对所述第三透镜的单位折射率的影响率满 足:|dn3/dt|<10-5
    其中,所述第三透镜的折射率为n3,所述第三透镜的温度为t。
  11. 如权利要求1、5和6中任一项所述的摄像镜头,其特征在于,所述摄像镜头的最大视场角的一半HFOV与所述摄像镜头的总有效焦距f之间满足:5.4mm<tan(HFOV)*f<10mm。
  12. 如权利要求1、5和6中任一项所述的摄像镜头,其特征在于,所述摄像镜头的成像高度对应的光线入射电子感光组件的最大角度CRAmax满足CRAmax<21°。
  13. 如权利要求2、5和6中任一项所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2和所述第五透镜在所述光轴上的中心厚度CT5与所述第一透镜的物侧面至所述摄像镜头的成像面的轴上距离之间满足:(CT2+CT5)/TTL<0.4。
  14. 如权利要求2、5和6中任一项所述的摄像镜头,其特征在于,所述第二透镜和所述第三透镜的轴上间隔距离T23、所述第三透镜和所述第四透镜的轴上间隔距离T34以及所述第四透镜和所述第五透镜的轴上间隔距离T45与所述第一透镜的物侧面至所述成像面的轴上距离TTL之间满足:0.04<(T23+T34+T45)/TTL<0.12。
  15. 如权利要求3、5和6中任一项所述的摄像镜头,其特征在于,所述第一透镜和所述第二透镜的轴上间隔距离T12与所述第五透镜和所述第六透镜的轴上间隔距离T56之间满足:1.1<T12/T56<1.9。
  16. 如权利要求3、5和6中任一项所述的摄像镜头,其特征在于,所述第一透镜的像侧面的曲率半径R2与所述第六透镜的物侧面的曲率半径R11之间满足:0.8<R2/R11<1.8。
  17. 一种摄像装置,包括如权利要求1至16中任一项所述的摄像镜头。
PCT/CN2017/093503 2017-03-27 2017-07-19 摄像镜头及包括该摄像镜头的摄像装置 WO2018176695A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/076,283 US11112583B2 (en) 2017-03-27 2017-07-19 Camera lens assembly and camera device comprising the camera lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720303187.1 2017-03-27
CN201710187519.9 2017-03-27
CN201720303187.1U CN206671656U (zh) 2017-03-27 2017-03-27 摄像镜头及包括该摄像镜头的摄像装置
CN201710187519.9A CN106772957B (zh) 2017-03-27 2017-03-27 摄像镜头及包括该摄像镜头的摄像装置

Publications (1)

Publication Number Publication Date
WO2018176695A1 true WO2018176695A1 (zh) 2018-10-04

Family

ID=63674080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093503 WO2018176695A1 (zh) 2017-03-27 2017-07-19 摄像镜头及包括该摄像镜头的摄像装置

Country Status (2)

Country Link
US (1) US11112583B2 (zh)
WO (1) WO2018176695A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796761B2 (en) * 2019-12-18 2023-10-24 Logitech Europe S.A. High resolution, wide FOV static lens assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175198A (ja) * 2010-02-25 2011-09-08 Ricoh Co Ltd 撮像レンズ・ツインステレオカメラおよび距離測定装置
CN103605200A (zh) * 2013-10-30 2014-02-26 宁波舜宇车载光学技术有限公司 一种光学镜头
CN105204144A (zh) * 2015-10-20 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN205049802U (zh) * 2015-10-20 2016-02-24 浙江舜宇光学有限公司 超广角镜头
CN106019535A (zh) * 2016-07-12 2016-10-12 浙江舜宇光学有限公司 摄像镜头
CN206039008U (zh) * 2016-08-24 2017-03-22 协益电子(苏州)有限公司 光学镜头及车载镜头组件
CN106772957A (zh) * 2017-03-27 2017-05-31 浙江舜宇光学有限公司 摄像镜头及包括该摄像镜头的摄像装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585450B (zh) 2015-05-22 2017-06-01 先進光電科技股份有限公司 光學成像系統
TWI606255B (zh) * 2015-08-26 2017-11-21 大立光電股份有限公司 光學成像鏡頭組、取像裝置及電子裝置
CN206671656U (zh) 2017-03-27 2017-11-24 浙江舜宇光学有限公司 摄像镜头及包括该摄像镜头的摄像装置
US10921557B2 (en) * 2017-04-12 2021-02-16 Zhejiang Sunny Optical Co., Ltd Optical imaging system of camera lens assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175198A (ja) * 2010-02-25 2011-09-08 Ricoh Co Ltd 撮像レンズ・ツインステレオカメラおよび距離測定装置
CN103605200A (zh) * 2013-10-30 2014-02-26 宁波舜宇车载光学技术有限公司 一种光学镜头
CN105204144A (zh) * 2015-10-20 2015-12-30 浙江舜宇光学有限公司 超广角镜头
CN205049802U (zh) * 2015-10-20 2016-02-24 浙江舜宇光学有限公司 超广角镜头
CN106019535A (zh) * 2016-07-12 2016-10-12 浙江舜宇光学有限公司 摄像镜头
CN206039008U (zh) * 2016-08-24 2017-03-22 协益电子(苏州)有限公司 光学镜头及车载镜头组件
CN106772957A (zh) * 2017-03-27 2017-05-31 浙江舜宇光学有限公司 摄像镜头及包括该摄像镜头的摄像装置

Also Published As

Publication number Publication date
US20210033820A1 (en) 2021-02-04
US11112583B2 (en) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2018076630A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2020082814A1 (zh) 成像镜头
WO2019169853A1 (zh) 光学成像镜头
WO2019210738A1 (zh) 光学成像镜头
WO2019192180A1 (zh) 光学成像镜头
WO2018090609A1 (zh) 光学成像系统及摄像装置
WO2018153012A1 (zh) 摄像镜头
WO2020001066A1 (zh) 摄像镜头
WO2019210672A1 (zh) 光学成像系统
WO2018103250A1 (zh) 摄像镜头及摄像装置
WO2019210739A1 (zh) 光学成像镜头
WO2018126587A1 (zh) 摄远镜头以及摄像装置
WO2018192126A1 (zh) 摄像镜头
WO2019137246A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
US10401594B2 (en) Camera lens assembly and camera device equipped with camera lens assembly
CN106772957B (zh) 摄像镜头及包括该摄像镜头的摄像装置
WO2019233142A1 (zh) 光学成像镜头
WO2019052220A1 (zh) 光学成像镜头
US20190121064A1 (en) Optical imaging lens assembly
WO2019056758A1 (zh) 摄像透镜组
WO2019218628A1 (zh) 光学成像镜头
WO2020134027A1 (zh) 光学成像镜头
WO2019080610A1 (zh) 摄像镜头
WO2018209855A1 (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902774

Country of ref document: EP

Kind code of ref document: A1