WO2018176694A1 - 摄像镜头 - Google Patents

摄像镜头 Download PDF

Info

Publication number
WO2018176694A1
WO2018176694A1 PCT/CN2017/093502 CN2017093502W WO2018176694A1 WO 2018176694 A1 WO2018176694 A1 WO 2018176694A1 CN 2017093502 W CN2017093502 W CN 2017093502W WO 2018176694 A1 WO2018176694 A1 WO 2018176694A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical axis
wavelength
image pickup
imaging
Prior art date
Application number
PCT/CN2017/093502
Other languages
English (en)
French (fr)
Inventor
王新权
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720325753.9U external-priority patent/CN206757157U/zh
Priority claimed from CN201710202841.4A external-priority patent/CN106680976B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US15/778,665 priority Critical patent/US11280981B2/en
Publication of WO2018176694A1 publication Critical patent/WO2018176694A1/zh
Priority to US17/535,294 priority patent/US20220137334A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/36Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged + -- +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/36Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged + -- +
    • G02B9/44Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged + -- + both - components being biconcave
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present application relates to an imaging lens, and in particular to an imaging lens composed of four lenses.
  • the photosensitive element of a commonly used imaging lens is generally a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor).
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal-Oxide Semiconductor
  • the requirements for lenses suitable for laser range detection cameras have become stricter.
  • the lens of the camera is large in size and cannot meet the demand for miniaturization.
  • the size of the conventional miniaturized lens is generally too small to be used for detecting the distance camera.
  • the imaging lens has a total effective focal length f and an entrance pupil diameter EPD, and the imaging lens sequentially includes a first lens, a second lens, a third lens, and a fourth lens from the object side to the image side along the optical axis.
  • both the first lens and the fourth lens have positive power, and the image side of the first lens is Concave, and the object side of the fourth lens is convex; and the total effective focal length f and the entrance pupil diameter EPD satisfy f/EPD ⁇ 2.
  • the imaging lens includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a fourth lens.
  • the first lens has a positive power and the image side is a concave surface
  • the fourth lens has a positive power and the object side is a convex surface
  • a filter is disposed between the fourth lens and the image side, the filter
  • the light sheet may be a band pass filter, and the band pass wavelength ⁇ of the band pass filter is floating based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ may be longer than the longest wavelength using the source wavelength by 15 nm to 50 nm.
  • the short-wavelength cutoff wavelength of the pass wavelength ⁇ can be shorter than the shortest wavelength using the source wavelength by 15 nm to 50 nm.
  • the object side surface of the first lens of the imaging lens may be a convex surface
  • the image side surface of the fourth lens may be a concave surface
  • the central thickness CT2 of the second lens on the optical axis and the central thickness sum ⁇ CT of the first lens to the fourth lens on the optical axis respectively may satisfy 10 ⁇ CT2*100/ ⁇ CT ⁇ 16.
  • the effective focal length f1 and the total effective focal length f of the first lens may satisfy 1 ⁇ f1/f ⁇ 1.9.
  • a half of the effective pixel area diagonal length ImgH and the total effective focal length f on the imaging surface of the imaging lens may satisfy ImgH/f ⁇ 0.8.
  • the total thickness ⁇ CT of the first to fourth lenses on the optical axis and the distance TTL of the first lens to the imaging surface on the optical axis may satisfy ⁇ CT/TTL ⁇ 0.5.
  • the center thickness CT2 of the second lens on the optical axis, the center thickness CT3 of the third lens on the optical axis, and the center thickness CT4 of the fourth lens on the optical axis may satisfy 0.5 ⁇ (CT2+CT3). /CT4 ⁇ 1.6.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness CT3 of the third lens on the optical axis may satisfy 0.5 ⁇ CT2/CT3 ⁇ 1.
  • the effective radius DT11 of the object side of the first lens and the effective radius DT22 of the image side of the second lens may satisfy 0.7 ⁇ DT11/DT22 ⁇ 1.2.
  • the intersection of the object side and the optical axis of the third lens to the third lens can satisfy 0.5. ⁇ SAG31/SAG32 ⁇ 1.
  • the imaging lens can have at least one of the following advantages:
  • FIG. 1 is a schematic structural view showing an image pickup lens according to Embodiment 1 of the present application.
  • FIG. 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1;
  • 2D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 1;
  • FIG. 3 is a schematic structural view showing an image pickup lens according to Embodiment 2 of the present application.
  • 4D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2;
  • FIG. 5 is a schematic structural view showing an image pickup lens according to Embodiment 3 of the present application.
  • 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3.
  • 6B shows an astigmatism curve of the imaging lens of Embodiment 3.
  • 6C shows a distortion curve of the imaging lens of Embodiment 3.
  • 6D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 3.
  • FIG. 7 is a schematic structural view showing an image pickup lens according to Embodiment 4 of the present application.
  • 8C is a view showing a distortion curve of the image pickup lens of Embodiment 4.
  • FIG. 9 is a schematic structural view showing an image pickup lens according to Embodiment 5 of the present application.
  • FIG. 10A is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 5; FIG.
  • FIG. 10B shows an astigmatism curve of the image pickup lens of Embodiment 5;
  • FIG. 10C is a view showing a distortion curve of the image pickup lens of Embodiment 5.
  • FIG. 10D is a graph showing a magnification chromatic aberration curve of the image pickup lens of Embodiment 5; FIG.
  • FIG. 11 is a schematic structural view showing an image pickup lens according to Embodiment 6 of the present application.
  • FIG. 12A is a view showing an axial chromatic aberration curve of the image pickup lens of Embodiment 6; FIG.
  • FIG. 13 is a schematic structural view showing an image pickup lens according to Embodiment 7 of the present application.
  • FIG. 15 is a schematic structural view showing an image pickup lens according to Embodiment 8 of the present application.
  • 16A shows an axial chromatic aberration curve of the image pickup lens of Embodiment 8.
  • 16B shows an astigmatism curve of the image pickup lens of Embodiment 8.
  • 16C shows a distortion curve of the image pickup lens of Embodiment 8.
  • 16D shows a magnification chromatic aberration curve of the image pickup lens of Embodiment 8.
  • FIG. 17 is a schematic structural view showing an image pickup lens according to Embodiment 9 of the present application.
  • FIG. 19 shows a transmittance spectrum of a filter according to an embodiment of the present application.
  • first, second, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
  • first lens discussed below may also be referred to as a second lens without departing from the teachings of the present application.
  • the thickness, size, and shape of the lens have been somewhat exaggerated for convenience of explanation.
  • the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
  • the drawings are only examples and are not to scale.
  • the image pickup lens according to an exemplary embodiment of the present application has, for example, four lenses, that is, a first lens, a second lens, a third lens, and a fourth lens.
  • the four lenses are sequentially arranged from the object side to the image side along the optical axis.
  • the first lens has a positive power and the image side may be a concave surface.
  • the first lens having positive refractive power has a large refractive power, and setting the image side surface of the first lens to a concave surface is advantageous for shortening the overall length of the imaging lens and reducing the volume of the imaging lens, thereby achieving miniaturization of the lens.
  • the object side of the first lens may be convex.
  • the first lens whose convex side is convex has a large refractive power, which helps to shorten the overall length of the imaging lens and reduce the volume of the imaging lens.
  • the focal length distribution of the lens can be optimized to improve the performance of the photographic lens. For example, 1 ⁇ f1/f ⁇ 1.9 may be satisfied between the effective focal length f1 of the first lens and the total effective focal length f of the imaging lens.
  • the photographic lens according to the exemplary embodiment of the present application satisfies 1 ⁇ f1/f ⁇ 1.9, the focal length configuration of the first lens can be balanced, thereby effectively controlling the total optical length of the photographic lens system, and miniaturizing the lens. .
  • the effective focal length f1 of the first lens and the total effective focal length f may further satisfy 1.161 ⁇ f1/f ⁇ 1.870.
  • the second lens has a power.
  • the second lens having power can correct the spherical aberration and coma of the first lens.
  • the third lens has a power.
  • the third lens with power can reduce the angle between the light and the optical axis of the off-axis field of view, thereby improving the astigmatism of the off-axis field of view and providing the imaging quality of the camera lens.
  • the fourth lens has a positive power and the object side may be a convex surface. Configuring the fourth lens to have a positive power favors the dispersion of the power, thereby improving the concentrating power of the lens and shortening The overall length of the camera lens.
  • the image side of the fourth lens may be a concave surface. Setting the image side surface of the fourth lens to a concave surface is advantageous for increasing the chief ray angle of the imaging surface, thereby contributing to shortening the overall length of the imaging lens and reducing the volume of the imaging lens.
  • a filter is disposed between the fourth lens and the imaging surface, and the filter may be a band pass filter.
  • 19 is a transmittance spectrum diagram of a filter according to an embodiment of the present application. As can be seen from the figure, the band pass filter is in a certain band, only a small segment in the middle is a high transmittance pass band, and on both sides of the pass band, a high reflectance cutoff band.
  • the band pass wavelength ⁇ of the band pass filter is based on floating using the wavelength of the light source, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by about 15 nm to about 50 nm, and the short pass cutoff of the band pass wavelength ⁇ The wavelength is about 15 nm to about 50 nm shorter than the shortest wavelength using the wavelength of the source.
  • the proper passage of the infrared band can help the system not to introduce the influence of chromatic aberration, control the diameter of the diffuse spot, and the infrared band is beneficial to eliminate the interference of ambient visible light, thereby improving the imaging quality of the lens.
  • the total effective focal length f and the entrance pupil diameter EPD of the imaging lens according to the exemplary embodiment of the present application may be satisfied, f/EPD ⁇ 2.
  • the image surface energy density can be effectively improved on the imaging surface, thereby facilitating the improvement of the signal-to-noise ratio of the image side sensor output signal, that is, the accuracy of the measurement distance.
  • the total effective focal length f and the entrance pupil diameter EPD can further satisfy 1.500 ⁇ f / EPD ⁇ 1.600.
  • the center thickness of each lens on the optical axis can be optimized.
  • Reasonable layout of the size and structure of each lens in the camera lens is beneficial to achieve compression of the lateral dimension of the lens, thereby ensuring miniaturization of the lens.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness sum ⁇ CT of the first lens to the fourth lens on the optical axis respectively satisfy 10 ⁇ CT2*100/ ⁇ CT ⁇ 16, more specifically CT2 and ⁇ CT can further satisfy 13.374 ⁇ CT2*100/ ⁇ CT ⁇ 15.924.
  • the center thickness CT2 of the second lens on the optical axis, the center thickness CT3 of the third lens on the optical axis, and the center thickness CT4 of the fourth lens on the optical axis may satisfy 0.5 ⁇ (CT2+CT3)/ CT4 ⁇ 1.6, more specifically, CT2, CT3 and CT4 are further full Foot 0.771 ⁇ (CT2+CT3) / CT4 ⁇ 1.561.
  • the center thickness CT2 of the second lens on the optical axis and the center thickness CT3 of the third lens on the optical axis may satisfy 0.5 ⁇ CT2/CT3 ⁇ 1, and more specifically, CT2 and CT3 may further satisfy 0.516 ⁇ CT2/CT3 ⁇ 0.933.
  • Such a configuration facilitates dispersing the power of the system mainly to the first lens and the third lens, thereby avoiding excessive concentration of the power and generating large aberrations.
  • the second lens placed in the middle can be used to eliminate the spherical aberration generated by the first lens and the third lens.
  • the central thickness sum ⁇ CT of the first lens to the fourth lens on the optical axis and the distance TTL of the first lens to the imaging surface on the optical axis respectively satisfy ⁇ CT/TTL ⁇ 0.5, More specifically, ⁇ CT and TTL can further satisfy 0.422 ⁇ ⁇ CT / TTL ⁇ 0.460.
  • ⁇ CT/TTL ⁇ 0.5 it is advantageous to shorten the overall length of the lens and achieve miniaturization of the lens.
  • appropriately increasing the distance between the lenses is advantageous for reducing the tolerance sensitivity of the lens, thereby achieving the improvement and consistency of the quality of the lens during mass production.
  • the half-length ImgH of the effective pixel area on the imaging surface of the imaging lens and the total effective focal length f of the imaging lens may satisfy ImgH/f ⁇ 0.8.
  • ImgH and f may further satisfy 0.753 ⁇ ImgH/f ⁇ 0.791.
  • the effective radius DT11 of the object side surface of the first lens and the effective radius DT22 of the image side surface of the second lens may be configured to satisfy 0.7 ⁇ DT11/DT22 ⁇ 1.2, and more specifically, DT11 and DT22 may further satisfy 0.847 ⁇ DT11/DT22 ⁇ 1.041.
  • the distance SAG32 on the optical axis between the intersection of the image side and the optical axis of the mirror to the effective radius apex of the image side of the third lens satisfies 0.5 ⁇ SAG31/SAG32 ⁇ 1.
  • the third lens satisfying 0.5 ⁇ SAG31/SAG32 ⁇ 1 has a large refractive power to the off-axis field of view, thereby facilitating shortening of the overall length of the lens.
  • such a configuration is also advantageous for improving the astigmatism of the off-axis field of view, reducing the angle of the off-field field of view, and improving the image quality.
  • the image pickup lens according to the above embodiment of the present application may employ a plurality of lenses, such as the four described above.
  • the effective light-passing diameter of the image pickup lens can be effectively increased, the lens can be miniaturized and the image quality can be improved, and the image pickup lens can be more Conducive to production processing and can be applied to cameras such as laser detection distance.
  • at least one of the mirror faces of each lens is an aspherical mirror.
  • Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery.
  • the aspherical lens Unlike a spherical lens having a constant curvature from the center of the lens to the periphery, the aspherical lens has better curvature radius characteristics, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, thereby improving image quality.
  • the various results and advantages described in this specification can be obtained without varying the number of lenses that make up the lens without departing from the technical solutions claimed herein.
  • the image pickup lens is not limited to including four lenses.
  • the camera lens can also include other numbers of lenses if desired.
  • FIG. 1 is a block diagram showing the structure of an image pickup lens according to Embodiment 1 of the present application.
  • the imaging lens includes four lenses L1-L4 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • Optional camera lens A filter L5 having an object side S9 and an image side S10 may also be included.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 1 shows half of the effective pixel area diagonal length ImgH, maximum half angle of view HFOV, total effective focal length f, effective focal lengths f1 to f4 of each lens, and first on the imaging plane S11 of the imaging lens of Embodiment 1.
  • Table 2 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 1, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • each lens is taken as an example.
  • the aperture of the lens is effectively enlarged, the total length of the lens is shortened, and the effective light-passing diameter of the lens and the miniaturization of the lens are ensured;
  • Various types of aberrations improve the resolution and image quality of the lens.
  • Each aspherical surface type x is defined by the following formula:
  • x is the position of the aspherical surface at height h in the optical axis direction, and the distance vector from the aspherical vertex is high;
  • k is the conic constant (given in Table 2 above);
  • Ai is the correction factor for the a-th order of the aspheric surface.
  • Table 3 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each aspherical mirror surface S1 - S8 in Embodiment 1.
  • 2A shows an axial chromatic aberration curve of the imaging lens of Embodiment 1, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the optical system.
  • 2B shows an astigmatism curve of the imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 2C shows a distortion curve of the imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • 2D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 1, which shows a deviation of different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens given in Embodiment 1 can achieve good imaging quality.
  • FIG. 3 is a block diagram showing the structure of an image pickup lens according to Embodiment 2 of the present application.
  • the imaging lens includes four lenses L1-L4 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • the imaging lens may further include a filter L5 having an object side S9 and an image side S10.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 4 shows a half ImgH of the effective pixel area diagonal length on the imaging plane S11 of the imaging lens of Embodiment 2, a maximum half angle of view HFOV, a total effective focal length f, effective focal lengths f1 to f4 of the respective lenses, and the first The distance TTL of the lens L1 to the imaging plane S11 on the optical axis.
  • Table 5 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 2, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 6 shows the embodiment can be used for high-order coefficient of each aspheric mirrors S1-S8 in Example 2 A 4, A 6, A 8 , A 10, A 12, A 14 and A 16.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • 4A shows an axial chromatic aberration curve of the imaging lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • 4B shows an astigmatism curve of the imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • 4C shows a distortion curve of the imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • 4D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light passes through the imaging lens.
  • the imaging lens given in Embodiment 2 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an image pickup lens according to Embodiment 3 of the present application.
  • the imaging lens includes four lenses L1-L4 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • the imaging lens may further include a filter L5 having an object side S9 and an image side S10.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 7 shows a half ImgH of the effective pixel area diagonal length on the imaging plane S11 of the imaging lens of Embodiment 3, a maximum half angle of view HFOV, a total effective focal length f, effective focal lengths f1 to f4 of the respective lenses, and the first The distance TTL of the lens L1 to the imaging plane S11 on the optical axis.
  • Table 8 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 3, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 9 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each of the aspherical mirror faces S1 - S8 in Embodiment 3.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 6A shows an axial chromatic aberration curve of the imaging lens of Embodiment 3, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 6B shows an astigmatism curve of the image pickup lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 6C shows a distortion curve of the image pickup lens of Embodiment 3, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 6D shows a magnification chromatic aberration curve of the image pickup lens of Embodiment 3, which shows deviations of different image heights on the image plane after the light rays pass through the image pickup lens. 6A to 6D, the imaging lens given in Embodiment 3 can achieve good imaging quality.
  • FIG. 7 is a block diagram showing the structure of an image pickup lens according to Embodiment 4 of the present application.
  • the imaging lens includes four lenses L1-L4 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • the imaging lens may further include a filter L5 having an object side S9 and an image side S10.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 10 shows a half ImgH of the effective pixel area diagonal length on the imaging plane S11 of the imaging lens of Embodiment 4, a maximum half angle of view HFOV, a total effective focal length f, effective focal lengths f1 to f4 of the respective lenses, and the first The distance TTL of the lens L1 to the imaging plane S11 on the optical axis.
  • Table 11 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 4, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 12 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each of the aspherical mirror faces S1 - S8 in Embodiment 4.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 8A shows an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8B shows an astigmatism curve of the image pickup lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 8C shows a distortion curve of the image pickup lens of Embodiment 4, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 8D shows a magnification chromatic aberration curve of the imaging lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light rays pass through the imaging lens. 8A to 8D, the imaging lens given in Embodiment 4 can achieve good imaging quality.
  • FIG. 9 is a block diagram showing the structure of an image pickup lens according to Embodiment 5 of the present application.
  • the imaging lens includes four lenses L1-L4 sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • Optional camera lens A filter L5 having an object side S9 and an image side S10 may also be included.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 13 shows a half ImgH of the effective pixel area diagonal length on the imaging plane S11 of the imaging lens of Embodiment 5, a maximum half angle of view HFOV, a total effective focal length f, effective focal lengths f1 to f4 of the respective lenses, and the first The distance TTL of the lens L1 to the imaging plane S11 on the optical axis.
  • Table 14 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 5, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 15 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each of the aspherical mirror faces S1 - S8 in Embodiment 5.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 10A shows an axial chromatic aberration curve of the imaging lens of Embodiment 5, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 10B shows an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 10C shows a distortion curve of the image pickup lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 10D is a graph showing the magnification chromatic aberration curve of the imaging lens of Embodiment 5, which shows the deviation of the different image heights on the imaging plane after the light passes through the imaging lens. 10A to 10D, the imaging lens given in Embodiment 5 can achieve good imaging quality.
  • FIG. 5 is a block diagram showing the structure of an image pickup lens according to Embodiment 3 of the present application.
  • the imaging lens includes four lenses L1-L4 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • the imaging lens may further include a filter L5 having an object side S9 and an image side S10.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 16 shows a half ImgH of the effective pixel area diagonal length on the imaging plane S11 of the imaging lens of Embodiment 6, a maximum half angle of view HFOV, a total effective focal length f, effective focal lengths f1 to f4 of the respective lenses, and the first The distance TTL of the lens L1 to the imaging plane S11 on the optical axis.
  • Table 17 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 6, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 18 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S8 in Embodiment 6.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12A shows an axial chromatic aberration curve of the image pickup lens of Example 6, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 12B shows an astigmatism curve of the image pickup lens of Embodiment 6, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 12C shows a distortion curve of the image pickup lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 12D is a graph showing the magnification chromatic aberration curve of the image pickup lens of Example 6, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens. 12A to 12D, the imaging lens given in Embodiment 6 can achieve good imaging quality.
  • FIG. 13 is a block diagram showing the structure of an image pickup lens according to Embodiment 7 of the present application.
  • the imaging lens includes four lenses L1-L4 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • the imaging lens may further include a filter L5 having an object side S9 and an image side S10.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 19 shows a half ImgH of the effective pixel area diagonal length on the imaging plane S11 of the imaging lens of Embodiment 7, a maximum half angle of view HFOV, a total effective focal length f, effective focal lengths f1 to f4 of the respective lenses, and the first The distance TTL of the lens L1 to the imaging plane S11 on the optical axis.
  • Table 20 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 7, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 21 shows the higher order coefficient A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each aspherical mirror surface S1 - S8 in Embodiment 7.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 14A shows an axial chromatic aberration curve of the image pickup lens of Embodiment 7, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 14B shows an astigmatism curve of the image pickup lens of Embodiment 7, which shows the meridional field curvature and the sagittal image plane curvature.
  • Fig. 14C shows a distortion curve of the image pickup lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 14D shows a magnification chromatic aberration curve of the image pickup lens of Example 7, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens. 14A to 14D, the imaging lens given in Embodiment 7 can achieve good imaging quality.
  • FIG. 15 is a view showing the configuration of an image pickup lens according to Embodiment 8 of the present application.
  • the imaging lens includes four lenses L1-L4 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • the imaging lens may further include a filter L5 having an object side S9 and an image side S10.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 22 shows half of the effective pixel area diagonal length ImgH, maximum half angle of view HFOV, total effective focal length f, effective focal lengths f1 to f4 of each lens, and first on the imaging plane S11 of the imaging lens of Embodiment 8.
  • Table 23 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens of the image pickup lens of Example 8, wherein the unit of the radius of curvature and the thickness are each mm (mm).
  • Table 24 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for each of the aspherical mirror faces S1 - S8 in Embodiment 8.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 16A shows an axial chromatic aberration curve of the image pickup lens of Example 8, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 16B shows an astigmatism curve of the image pickup lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 16C shows a distortion curve of the image pickup lens of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 16D shows a magnification chromatic aberration curve of the image pickup lens of Example 8, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens.
  • the imaging lens given in Embodiment 8 can achieve good imaging quality.
  • FIG. 17 is a view showing the configuration of an image pickup lens according to Embodiment 9 of the present application.
  • the imaging lens includes four lenses L1-L4 which are sequentially arranged from the object side to the imaging side along the optical axis.
  • the first lens L1 has an object side surface S1 and an image side surface S2;
  • the second lens L2 has an object side surface S3 and an image side surface S4;
  • the third lens L3 has an object side surface S5 and an image side surface S6;
  • the fourth lens L4 has an object side surface S7 and an image Side S8.
  • Optional camera lens A filter L5 having an object side S9 and an image side S10 may also be included.
  • the filter L5 may be a band pass filter, and its band pass wavelength ⁇ is based on the wavelength of the light source used, and the long wavelength cutoff wavelength of the band pass wavelength ⁇ is longer than the longest wavelength using the source wavelength by 15 nm to 50 nm, and the band pass wavelength ⁇
  • the short-wave cutoff wavelength is 15 nm to 50 nm shorter than the shortest wavelength using the source wavelength.
  • an aperture STO may also be provided to adjust the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S10 and is finally imaged on the imaging plane S11.
  • Table 25 shows a half ImgH of the effective pixel area diagonal length on the imaging plane S11 of the imaging lens of Embodiment 9, a maximum half angle of view HFOV, a total effective focal length f, effective focal lengths f1 to f4 of the respective lenses, and the first The distance TTL of the lens L1 to the imaging plane S11 on the optical axis.
  • Table 26 shows the surface type, the radius of curvature, the thickness, the material, and the conical coefficient of each lens of the image pickup lens of Example 9, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 27 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 which can be used for the respective aspherical mirror faces S1 - S8 in the embodiment 9.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 18A shows an axial chromatic aberration curve of the image pickup lens of Example 9, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 18B shows an astigmatism curve of the image pickup lens of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 18C shows a distortion curve of the image pickup lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 18D shows a magnification chromatic aberration curve of the image pickup lens of Example 9, which shows the deviation of the different image heights on the image plane after the light rays pass through the image pickup lens.
  • the imaging lens given in Embodiment 9 can achieve good imaging quality.
  • the application also provides an image pickup device, wherein the photosensitive element can be a photosensitive coupling element (CCD) or complementary oxidized metal semiconductor device (CMOS).
  • the camera device may be an independent camera device such as a proximity range camera, or may be a camera module integrated on a device such as a range detecting device.
  • the image pickup apparatus is equipped with the image pickup lens described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像镜头,具有总有效焦距f以及入瞳直径EPD,并沿着光轴由物侧至像侧依序包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)以及第四透镜(L4),其中,第一透镜(L1)和第四透镜(L4)均具有正光焦度,并且第一透镜(L1)的像侧面(S2)为凹面,而第四透镜的物侧面(S7)为凸面;以及总有效焦距f与入瞳直径EPD满足f/EPD≤2。

Description

摄像镜头
相关申请的交叉引用
本申请要求于2017年3月30日提交于中国国家知识产权局(SIPO)的、专利申请号为201710202841.4的中国专利申请以及2017年3月30日提交至SIPO的、专利申请号为201720325753.9的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本申请涉及一种摄像镜头,具体涉及由四片透镜组成的摄像镜头。
背景技术
目前常用的摄像镜头的感光元件一般为CCD(Charge-Coupled Device,感光耦合元件)或CMOS(Complementary Metal-Oxide Semiconductor,互补性氧化金属半导体元件)。随着CCD与COMS等元件性能的提高及尺寸的减小,对于相配套的摄像镜头的高成像品质及小型化提出了更高的要求。
近年来,随着激光探测距离相机的广泛应用,也对适用于激光探测距离相机的镜头的要求越来越严格。一般探测距离相机的镜头体积较大,无法满足小型化的需求;而传统的小型化镜头的孔径一般偏小,无法使用于探测距离相机。
因此,需要一种可适用于探测距离相机的具有大孔径、小型化和高成像品质等特性的摄像镜头。
发明内容
本申请提供的技术方案至少部分地解决了以上所述的技术问题。
根据本申请的一个方面,提供了这样一种摄像镜头。该摄像镜头具有总有效焦距f以及入瞳直径EPD,并且该摄像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜以及第四透镜。其中,第一透镜和第四透镜均具有正光焦度,并且第一透镜的像侧面为 凹面,而第四透镜的物侧面为凸面;以及总有效焦距f与入瞳直径EPD满足f/EPD≤2。
根据本申请的另一个方面,还提供了这样一种摄像镜头。该摄像镜头沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜以及第四透镜。其中,第一透镜具有正光焦度,并且其像侧面为凹面;第四透镜具有正光焦度,并且其物侧面为凸面;以及在第四透镜与像侧之间设置有滤光片,该滤光片可为带通滤光片,并且带通滤光片的带通波长λ基于使用光源波长浮动,并且带通波长λ的长波截止波长可比使用光源波长的最长波长长15nm-50nm,带通波长λ的短波截止波长可比使用光源波长的最短波长短15nm-50nm。
在一个实施方式中,上述摄像镜头的第一透镜的物侧面可为凸面,第四透镜的像侧面可为凹面。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第一透镜至第四透镜分别于光轴上的中心厚度总和∑CT可满足10<CT2*100/∑CT<16。
在一个实施方式中,第一透镜的有效焦距f1与总有效焦距f可满足1<f1/f<1.9。
在一个实施方式中,摄像镜头的成像面上有效像素区域对角线长的一半ImgH与总有效焦距f可满足ImgH/f<0.8。
在一个实施方式中,第一透镜至第四透镜分别于光轴上的中心厚度总和∑CT与第一透镜至成像面在光轴上的距离TTL可满足∑CT/TTL<0.5。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4可满足0.5<(CT2+CT3)/CT4<1.6。
在一个实施方式中,第二透镜在光轴上的中心厚度CT2与第三透镜在光轴上的中心厚度CT3可满足0.5<CT2/CT3<1。
在一个实施方式中,第一透镜的物侧面的有效半径DT11与第二透镜的像侧面的有效半径DT22可满足0.7<DT11/DT22<1.2。
在一个实施方式中,第三透镜的物侧面和光轴的交点至第三透镜 的物侧面的有效半径顶点之间在光轴上的距离SAG31与第三透镜的像侧面和光轴的交点至第三透镜的像侧面的有效半径顶点之间在光轴上的距离SAG32可满足0.5<SAG31/SAG32<1。
本申请采用了多片(例如,四片)透镜,通过合理分配各透镜的光焦度、面型、各透镜之间的轴上间距等,可使摄像镜头具有以下至少一个优点:
有效扩大镜头孔径;
缩短镜头总长度;
保证镜头的有效通光直径与小型化;
校正了各类像差;以及
提高镜头的解析度与成像品质。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为示出根据本申请实施例1的摄像镜头的结构示意图;
图2A示出了实施例1的摄像镜头的轴上色差曲线;
图2B示出了实施例1的摄像镜头的象散曲线;
图2C示出了实施例1的摄像镜头的畸变曲线;
图2D示出了实施例1的摄像镜头的倍率色差曲线;
图3为示出根据本申请实施例2的摄像镜头的结构示意图;
图4A示出了实施例2的摄像镜头的轴上色差曲线;
图4B示出了实施例2的摄像镜头的象散曲线;
图4C示出了实施例2的摄像镜头的畸变曲线;
图4D示出了实施例2的摄像镜头的倍率色差曲线;
图5为示出根据本申请实施例3的摄像镜头的结构示意图;
图6A示出了实施例3的摄像镜头的轴上色差曲线;
图6B示出了实施例3的摄像镜头的象散曲线;
图6C示出了实施例3的摄像镜头的畸变曲线;
图6D示出了实施例3的摄像镜头的倍率色差曲线;
图7为示出根据本申请实施例4的摄像镜头的结构示意图;
图8A示出了实施例4的摄像镜头的轴上色差曲线;
图8B示出了实施例4的摄像镜头的象散曲线;
图8C示出了实施例4的摄像镜头的畸变曲线;
图8D示出了实施例4的摄像镜头的倍率色差曲线;
图9为示出根据本申请实施例5的摄像镜头的结构示意图;
图10A示出了实施例5的摄像镜头的轴上色差曲线;
图10B示出了实施例5的摄像镜头的象散曲线;
图10C示出了实施例5的摄像镜头的畸变曲线;
图10D示出了实施例5的摄像镜头的倍率色差曲线;
图11为示出根据本申请实施例6的摄像镜头的结构示意图;
图12A示出了实施例6的摄像镜头的轴上色差曲线;
图12B示出了实施例6的摄像镜头的象散曲线;
图12C示出了实施例6的摄像镜头的畸变曲线;
图12D示出了实施例6的摄像镜头的倍率色差曲线;
图13为示出根据本申请实施例7的摄像镜头的结构示意图;
图14A示出了实施例7的摄像镜头的轴上色差曲线;
图14B示出了实施例7的摄像镜头的象散曲线;
图14C示出了实施例7的摄像镜头的畸变曲线;
图14D示出了实施例7的摄像镜头的倍率色差曲线;
图15为示出根据本申请实施例8的摄像镜头的结构示意图;
图16A示出了实施例8的摄像镜头的轴上色差曲线;
图16B示出了实施例8的摄像镜头的象散曲线;
图16C示出了实施例8的摄像镜头的畸变曲线;
图16D示出了实施例8的摄像镜头的倍率色差曲线;
图17为示出根据本申请实施例9的摄像镜头的结构示意图;
图18A示出了实施例9的摄像镜头的轴上色差曲线;
图18B示出了实施例9的摄像镜头的象散曲线;
图18C示出了实施例9的摄像镜头的畸变曲线;
图18D示出了实施例9的摄像镜头的倍率色差曲线;
图19示出了根据本申请实施例的滤光片的穿透率光谱图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有 与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下结合具体实施例进一步描述本申请。
根据本申请示例性实施方式的摄像镜头具有例如四个透镜,即第一透镜、第二透镜、第三透镜和第四透镜。这四个透镜沿着光轴从物侧至像侧依序排列。
根据本申请的实施方式,第一透镜具有正光焦度,其像侧面可为凹面。具有正光焦度的第一透镜具有较大的折光能力,并且将第一透镜的像侧面设置为凹面有利于缩短摄像镜头的整体长度,减小摄像镜头的体积,从而实现镜头的小型化。
作为一个示例,第一透镜的物侧面可为凸面。物侧面为凸面的第一透镜具有较大的折光能力,这有助于缩短摄像镜头的整体长度,减小摄像镜头的体积。另外,还可以对透镜的焦距分配进行优化,以提升摄影镜头的性能。例如,第一透镜的有效焦距f1与摄像镜头的总有效焦距f之间可满足1<f1/f<1.9。当根据本申请示例性实施方式的摄影镜头满足1<f1/f<1.9时,可使该第一透镜的焦距配置较为平衡,从而可有效控制摄影镜头系统的光学总长度,实现镜头的小型化。同时,这样的配置还有利于第一透镜满足成型工艺的要求。可选地,第一透镜的有效焦距f1与总有效焦距f之间进一步可满足1.161≤f1/f≤1.870。
第二透镜具有光焦度。具有光焦度的第二透镜可以矫正第一透镜的球差与慧差。
第三透镜具有光焦度。具有光焦度的第三透镜可以减小轴外视场在光线与光轴之间的夹角,从而改善轴外视场的象散,提供摄像镜头的成像品质。
第四透镜具有正光焦度,其物侧面可为凸面。将第四透镜配置为具有正光焦度有利于光焦度的分散,从而提高镜头的聚光能力,缩短 摄像镜头的整体长度。
作为一个示例,第四透镜的像侧面可为凹面。将第四透镜的像侧面设置为凹面有利于增加成像面的主光线角度,从而有助于缩短摄像镜头的整体长度,减小摄像镜头的体积。
可选地,在第四透镜与成像面之间设置有滤光片,并且该滤光片可为带通滤光片。图19为根据本申请的一个实施方式的滤光片的穿透率光谱图。从图中可以看出,带通滤光片在一定的波段内,只有中间一小段是高透射率的通带,而在通带的两侧,是高反射率的截止带。可选地,带通滤光片的带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长约15nm至约50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短约15nm至约50nm。红外波段的适当通过,可有利于系统不引入色差的影响,控制弥散斑直径,同时红外波段有利于消除环境可见光的干扰,从而提升镜头的成像品质。
根据本申请示例性实施方式的摄像镜头的总有效焦距f与入瞳直径EPD之间可满足,f/EPD≤2。通过合理配置总有效焦距f和入瞳直径EPD可在成像面有效地提高像面能量密度,从而有利于提高像侧传感器输出信号信噪比,即测量距离的精度。例如,总有效焦距f与入瞳直径EPD进一步可满足1.500≤f/EPD≤1.600。
在应用中,可以对各透镜在光轴上的中心厚度进行优化。对摄像镜头中各透镜的尺寸结构进行合理布局,有利于实现镜头横向尺寸的压缩,从而保证镜头的小型化。例如,第二透镜在光轴上的中心厚度CT2与第一透镜至第四透镜分别于光轴上的中心厚度总和∑CT之间可满足10<CT2*100/∑CT<16,更具体地,CT2和∑CT进一步可满足13.374≤CT2*100/∑CT≤15.924。合理配置第二透镜在光轴上的中心厚度CT2和第一透镜至第四透镜分别于光轴上的中心厚度总和∑CT可以缩短摄像镜头的整体长度,同时还有利于镜头的较好成型,避免成型困难。又例如,第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3与第四透镜在光轴上的中心厚度CT4之间可满足0.5<(CT2+CT3)/CT4<1.6,更具体地,CT2、CT3和CT4进一步可满 足0.771≤(CT2+CT3)/CT4≤1.561。合理配置第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3以及第四透镜在光轴上的中心厚度CT4可有利于在第四透镜上产生更宽表面形状的范围,以有效降低各视场象散。同时,当摄像镜头满足0.5<(CT2+CT3)/CT4<1.6时,还有利于第二透镜、第三透镜和第四透镜的成型。再例如,第二透镜在光轴上的中心厚度CT2与第三透镜在光轴上的中心厚度CT3之间可满足0.5<CT2/CT3<1,更具体地,CT2和CT3进一步可满足0.516≤CT2/CT3≤0.933。这样的配置有利于将系统的光焦度主要分散到第一透镜与第三透镜上,从而避免光焦度的过度集中而产生较大的像差。另外,置于中间的第二透镜可用来消除第一透镜与第三透镜产生的球差。
根据本申请的实施方式,第一透镜至第四透镜分别于光轴上的中心厚度总和∑CT与第一透镜至成像面在光轴上的距离TTL之间可满足∑CT/TTL<0.5,更具体地,∑CT和TTL进一步可满足0.422≤∑CT/TTL≤0.460。当摄像镜头满足∑CT/TTL<0.5时,有利于缩短镜头的整体长度,实现镜头的小型化。同时,在确保镜头整体长度不变的情况下,适当地增加各透镜之间的距离有利于降低镜头的公差敏感性,从而实现镜头在批量生产的过程中品质的提升与一致性。
摄像镜头的成像面上有效像素区域对角线长的一半ImgH与摄像镜头的总有效焦距f可满足ImgH/f<0.8,例如,ImgH和f进一步可满足0.753≤ImgH/f≤0.791。通过合理配置摄像镜头的成像面上有效像素区域对角线长的一半ImgH和总有效焦距f可提高到达成像面轴外视场的能量密度,即提高距离探测的精度。
为了确保摄像镜头在组装过程中的结构定位的稳定性,避免由于第一透镜与第二透镜的定位口径差所造成的弯曲变形。可以将第一透镜的物侧面的有效半径DT11与第二透镜的像侧面的有效半径DT22配置为满足0.7<DT11/DT22<1.2,更具体地,DT11和DT22进一步可满足0.847≤DT11/DT22≤1.041。
根据本申请的实施方式,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点之间在光轴上的距离SAG31与第三透 镜的像侧面和光轴的交点至第三透镜的像侧面的有效半径顶点之间在光轴上的距离SAG32可满足0.5<SAG31/SAG32<1。满足0.5<SAG31/SAG32<1的第三透镜对轴外视场具有较大折光能力,从而有利于缩短镜头的整体长度。同时,这样的配置还有利于改善轴外视场的象散,减小轴外视场光线角度,提升成像品质。
根据本申请的上述实施方式的摄像镜头可采用多片镜片,例如上文所述的四片。通过合理分配各透镜的光焦度、面型、各透镜之间的轴上间距等,可有效增加摄像镜头的有效通光直径,保证镜头的小型化并提高成像品质,并且使得摄像镜头更有利于生产加工并且可适用于诸如激光探测距离相机。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而提高成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成镜头的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以四个透镜为例进行了描述,但是该摄像镜头不限于包括四个透镜。如果需要,该摄像镜头还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的摄像镜头的具体实施例。
实施例1
以下参照图1至图2D描述根据本申请实施例1的摄像镜头。图1示出了根据本申请实施例1的摄像镜头的结构示意图。
如图1所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头 还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表1给出了实施例1的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。
Figure PCTCN2017093502-appb-000001
表1
由表1可得,第一透镜L1的有效焦距f1与摄像镜头的总有效焦距f之间满足f1/f=1.673。摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH与摄像镜头的总有效焦距f之间满足ImgH/f=0.762。
表2示出了实施例1的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2017093502-appb-000002
表2
根据表2可得,第二透镜L2在光轴上的中心厚度CT2与第一透镜L1至第四透镜L4分别于光轴上的中心厚度总和∑CT之间满足CT2*100/ΣCT=13.966。第二透镜L2在光轴上的中心厚度CT2与第三透镜L3在光轴上的中心厚度CT3之间满足CT2/CT3=0.516。第二透镜L2在光轴上的中心厚度CT2、第三透镜L3在光轴上的中心厚度CT3与第四透镜L4在光轴上的中心厚度CT4之间满足(CT2+CT3)/CT4=1.402。结合表1和表2可得,第一透镜L1至第四透镜L4分别于光轴上的中心厚度总和∑CT与第一透镜L1的物侧面S1至成像面S11在光轴上的距离TTL之间满足∑CT/TTL=0.441。
本实施例采用了4片透镜作为示例,通过合理分配各镜片的光焦度与面型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的有效通光直径与镜头的小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
Figure PCTCN2017093502-appb-000003
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表2中曲率半径r的倒数);k为圆锥常数(在上表2中已给出);Ai是非球面第i-th阶的修正系数。下表3示出了实施例1中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -5.9516E-03 1.9852E-02 -1.5871E-02 1.5864E-02 -1.6813E-02 1.2252E-02 -3.4575E-03
S2 9.2490E-03 -2.6510E-02 1.0587E-02 1.1879E-02 -8.8590E-03 -1.7656E-03 2.7792E-03
S3 -2.2059E-01 4.0162E-02 -1.4645E-01 2.0486E-01 -4.7405E-02 -4.1791E-02 2.0402E-02
S4 -2.2081E-01 -1.3525E-02 -1.1770E-01 2.4574E-01 -1.9188E-01 6.4003E-02 -1.1656E-02
S5 -5.5771E-02 -9.3840E-02 2.5995E-01 -4.8612E-01 3.6437E-01 -8.9587E-02 -1.0212E-02
S6 -5.9902E-01 1.1052E+00 -1.6080E+00 1.5575E+00 -9.4567E-01 3.1661E-01 -4.1811E-02
S7 -2.0821E-01 2.9965E-02 3.9309E-02 -2.0989E-02 4.4291E-03 -4.3208E-04 1.5934E-05
S8 -3.6232E-01 1.7121E-01 -6.3113E-02 1.5460E-02 -2.1025E-03 1.0794E-04 1.5997E-06
表3
在该实施例中,第一透镜L1的物侧面S1的有效半径DT11与第 二透镜L2的像侧面S4的有效半径DT22之间满足DT11/DT22=1.011。第三透镜L3的物侧面S5和光轴的交点至第三透镜L3的物侧面S5的有效半径顶点之间在光轴上的距离SAG31与第三透镜L3的像侧面S6和光轴的交点至第三透镜L3的像侧面S6的有效半径顶点之间在光轴上的距离SAG32之间满足SAG31/SAG32=0.580。另外,摄像镜头的总有效焦距f与摄像镜头的入瞳直径EPD之间满足f/EPD=1.595。
图2A示出了实施例1的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的摄像镜头能够实现良好的成像品质。
实施例2
以下参照图3至图4D描述了根据本申请实施例2的摄像镜头。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的摄像镜头的结构示意图。
如图3所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表4示出了实施例2的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的 有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表5示出了实施例2的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表6示出了实施例2中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000004
表4
Figure PCTCN2017093502-appb-000005
表5
面号 A4 A6 A8 A10 A12 A14 A16
S1 -4.2462E-03 1.8503E-02 -1.7356E-02 1.6929E-02 -1.5494E-02 1.1631E-02 -3.8976E-03
S2 -9.4233E-03 -2.3287E-02 1.3937E-02 1.1626E-02 -7.2996E-03 -4.5278E-03 2.8197E-03
S3 -2.1532E-01 4.8414E-02 -1.3022E-01 2.0156E-01 -6.2803E-02 -4.5414E-02 2.5492E-02
S4 -2.2892E-01 1.6775E-02 -1.2576E-01 2.4282E-01 -1.9454E-01 6.2032E-02 -9.0975E-03
S5 -4.1731E-02 -1.0799E-01 2.8320E-01 -5.0809E-01 3.5933E-01 -8.2538E-02 -5.7223E-03
S6 -4.8682E-01 9.4330E-01 -1.5956E+00 1.8777E+00 -1.4133E+00 5.8785E-01 -9.8000E-02
S7 -1.4736E-01 -9.7659E-02 1.1029E-01 -3.4986E-02 3.7141E-03 1.7896E-04 -4.3183E-05
S8 -3.7135E-01 1.6530E-01 -5.4936E-02 1.0567E-02 -3.1236E-04 -2.3245E-04 2.6745E-05
表6
图4A示出了实施例2的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的摄像镜头能够实现良好的成像品质。
实施例3
以下参照图5至图6D描述了根据本申请实施例3的摄像镜头。图5示出了根据本申请实施例3的摄像镜头的结构示意图。
如图5所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表7示出了实施例3的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表8示出了实施例3的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表9示出了实施例3中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000006
表7
Figure PCTCN2017093502-appb-000007
表8
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.2653E-03 1.3144E-02 -1.6915E-02 1.7251E-02 -1.6880E-02 1.0863E-02 -3.9552E-03
S2 -2.4585E-03 -3.3799E-02 1.0258E-02 8.3288E-03 -1.0829E-02 -4.0463E-03 3.1483E-03
S3 -2.3626E-01 3.1491E-02 -1.3548E-01 2.0013E-01 -6.2756E-02 -4.6933E-02 2.5452E-02
S4 -2.4115E-01 2.0287E-02 -1.2114E-01 2.4021E-01 -1.9858E-01 6.1970E-02 -6.2136E-03
S5 -7.3239E-02 -7.1026E-02 2.8938E-01 -5.1127E-01 3.5186E-01 -8.1840E-02 -2.1971E-03
S6 -3.8560E-01 6.4922E-01 -1.0684E+00 1.3214E+00 -1.0781E+00 4.8823E-01 -8.7469E-02
S7 -9.0704E-02 -8.1466E-02 7.6317E-02 -2.3284E-02 2.8672E-03 -4.6779E-05 -1.1454E-05
S8 -2.2193E-01 4.8402E-02 9.4725E-04 -5.9772E-03 2.4117E-03 -4.3167E-04 2.9263E-05
表9
图6A示出了实施例3的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的摄像镜头能够实现良好的成像品质。
实施例4
以下参照图7至图8D描述了根据本申请实施例4的摄像镜头。图7示出了根据本申请实施例4的摄像镜头的结构示意图。
如图7所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表10示出了实施例4的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表11示出了实施例4的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表12示出了实施例4中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000008
表10
Figure PCTCN2017093502-appb-000009
Figure PCTCN2017093502-appb-000010
表11
面号 A4 A6 A8 A10 A12 A14 A16
S1 -5.6960E-03 1.2812E-02 -1.0803E-02 1.5534E-02 -1.8526E-02 1.1792E-02 -3.2889E-03
S2 1.5864E-02 -3.6061E-02 7.0080E-03 1.3880E-02 -6.5610E-03 -4.9630E-03 2.3538E-03
S3 -2.2340E-01 1.3779E-02 -1.6803E-01 2.0740E-01 -3.8083E-02 -3.6802E-02 1.4822E-02
S4 -1.9026E-01 -6.1164E-02 -1.0944E-01 2.5112E-01 -1.9321E-01 6.3551E-02 -9.6791E-03
S5 -7.3411E-02 -4.8576E-02 2.5490E-01 -4.9486E-01 3.5897E-01 -8.8910E-02 -5.7420E-03
S6 -7.9348E-01 1.5321E+00 -2.3684E+00 2.5268E+00 -1.7280E+00 6.6433E-01 -1.0523E-01
S7 -2.1702E-01 7.6272E-02 -7.4839E-03 3.3409E-04 -5.8280E-04 1.6302E-04 -1.2493E-05
S8 -2.7819E-01 9.6358E-02 -2.0087E-02 -6.9409E-04 1.4977E-03 -3.1369E-04 2.1384E-05
表12
图8A示出了实施例4的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的摄像镜头能够实现良好的成像品质。
实施例5
以下参照图9至图10D描述了根据本申请实施例5的摄像镜头。图9示出了根据本申请实施例5的摄像镜头的结构示意图。
如图9所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头 还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表13示出了实施例5的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表14示出了实施例5的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表15示出了实施例5中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000011
表13
Figure PCTCN2017093502-appb-000012
表14
面号 A4 A6 A8 A10 A12 A14 A16
S1 -3.5618E-03 1.6908E-02 -1.1653E-02 1.7469E-02 -1.9972E-02 1.1893E-02 -3.6302E-03
S2 1.0308E-02 -2.4374E-02 1.2166E-02 2.4642E-03 -1.5276E-02 6.1378E-04 2.7792E-03
S3 -2.3256E-01 5.8166E-03 -1.6964E-01 1.9142E-01 -5.2582E-02 -4.0906E-02 3.0617E-02
S4 -2.1686E-01 -4.4724E-02 -1.1608E-01 2.4365E-01 -1.9747E-01 6.1651E-02 -1.0839E-02
S5 -8.3022E-02 -5.1811E-02 2.6223E-01 -4.8177E-01 3.6625E-01 -9.1530E-02 -1.4395E-02
S6 -5.1664E-01 9.0724E-01 -1.5018E+00 1.7911E+00 -1.3521E+00 5.6348E-01 -9.4448E-02
S7 3.5035E-02 -2.0318E-01 1.6611E-01 -6.7764E-02 1.5556E-02 -1.9069E-03 9.6461E-05
S8 -1.5648E-01 -1.8274E-02 3.4421E-02 -1.3764E-02 2.6730E-03 -2.4675E-04 7.8197E-06
表15
图10A示出了实施例5的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的摄像镜头能够实现良好的成像品质。
实施例6
以下参照图11至图12D描述了根据本申请实施例6的摄像镜头。图5示出了根据本申请实施例3的摄像镜头的结构示意图。
如图11所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表16示出了实施例6的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的 有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表17示出了实施例6的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表18示出了实施例6中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000013
表16
表17
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.0449E-03 -1.9920E-03 -5.2135E-03 -2.5586E-04 -1.6076E-02 2.2366E-02 -1.2014E-02
S2 -2.1984E-02 -8.8947E-03 -2.1312E-02 8.0361E-03 -2.1681E-03 -7.8903E-03 3.3133E-03
S3 -3.1248E-01 1.5212E-01 -1.4786E-01 1.3913E-01 -4.8187E-02 -8.9247E-03 -3.2743E-05
S4 -9.8190E-02 -6.4860E-02 -9.9009E-02 2.5582E-01 -1.9988E-01 5.8077E-02 -4.6776E-03
S5 1.0157E-01 -2.0823E-01 2.7749E-01 -4.3252E-01 3.1030E-01 -1.2303E-01 2.3352E-02
S6 -5.7846E-01 1.2662E+00 -2.1036E+00 2.4480E+00 -1.8852E+00 8.0782E-01 -1.3940E-01
S7 -1.3890E-01 7.9014E-02 -1.4082E-01 1.1431E-01 -4.2361E-02 7.4467E-03 -5.0692E-04
S8 -1.3921E-01 -4.6386E-02 6.4198E-02 -3.3380E-02 9.7340E-03 -1.5063E-03 9.4312E-05
表18
图12A示出了实施例6的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图12B示出了实施例6的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D示出了实施例6的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的摄像镜头能够实现良好的成像品质。
实施例7
以下参照图13至图14D描述了根据本申请实施例7的摄像镜头。图13示出了根据本申请实施例7的摄像镜头的结构示意图。
如图13所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表19示出了实施例7的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表20示出了实施例7的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表21示出了实施例7中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000015
表19
Figure PCTCN2017093502-appb-000016
表20
面号 A4 A6 A8 A10 A12 A14 A16
S1 -2.4319E-03 1.5900E-02 -2.1242E-02 9.1457E-03 -1.0635E-02 1.6194E-02 -9.5431E-03
S2 2.3150E-02 -3.4563E-02 -1.0989E-03 9.1390E-03 -1.1704E-02 -4.1603E-03 2.9767E-03
S3 -1.9975E-01 7.5227E-02 -1.5094E-01 1.6966E-01 -4.2778E-02 -4.3362E-02 2.6394E-02
S4 -1.3048E-01 2.7204E-02 -1.3748E-01 2.3548E-01 -1.8758E-01 7.1145E-02 -1.0094E-02
S5 1.1210E-01 -2.0144E-01 3.2267E-01 -4.7081E-01 3.2485E-01 -1.0138E-01 8.1921E-03
S6 -8.1659E-01 1.7679E+00 -2.6873E+00 2.6265E+00 -1.5852E+00 5.2488E-01 -7.1228E-02
S7 3.5087E-02 -7.5686E-02 -4.8803E-02 6.2549E-02 -2.2373E-02 3.4801E-03 -2.0397E-04
S8 7.1284E-02 -2.5690E-01 1.8340E-01 -7.3402E-02 1.7079E-02 -2.1150E-03 1.0625E-04
表21
图14A示出了实施例7的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图14B示出了实施例7的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D示出了实施例7的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图14A至图14D可知,实施例7所给出的摄像镜头能够实现良好的成像品质。
实施例8
以下参照图15至图16D描述了根据本申请实施例8的摄像镜头。图15示出了根据本申请实施例8的摄像镜头的结构示意图。
如图15所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表22示出了实施例8的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表23示出了实施例8的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表24示出了实施例8中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000017
表22
Figure PCTCN2017093502-appb-000018
Figure PCTCN2017093502-appb-000019
表23
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2894E-03 1.1875E-02 -2.4765E-02 1.3670E-02 -1.1443E-02 1.4572E-02 -9.9184E-03
S2 1.6051E-02 -3.8993E-02 -2.9149E-03 8.5369E-03 -1.1821E-02 -3.7954E-03 2.9444E-03
S3 -2.2828E-01 6.6615E-02 -1.5244E-01 1.8856E-01 -4.0967E-02 -4.4066E-02 2.2229E-02
S4 -9.8358E-02 -1.5773E-03 -1.3084E-01 2.3991E-01 -1.9091E-01 7.0130E-02 -1.0906E-02
S5 6.2827E-02 -1.3271E-01 2.5742E-01 -4.9619E-01 3.5196E-01 -8.5585E-02 -4.8499E-03
S6 -8.0452E-01 1.6872E+00 -2.8055E+00 3.2761E+00 -2.4884E+00 1.0629E+00 -1.8624E-01
S7 -1.0741E-01 2.3903E-02 -5.2727E-02 5.1628E-02 -2.0284E-02 3.6092E-03 -2.4328E-04
S8 -6.9466E-02 -9.9390E-02 9.5279E-02 -4.4854E-02 1.2038E-02 -1.7200E-03 1.0017E-04
表24
图16A示出了实施例8的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图16B示出了实施例8的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D示出了实施例8的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图16A至图16D可知,实施例8所给出的摄像镜头能够实现良好的成像品质。
实施例9
以下参照图17至图18D描述了根据本申请实施例9的摄像镜头。图17示出了根据本申请实施例9的摄像镜头的结构示意图。
如图17所示,摄像镜头沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。可选地,摄像镜头 还可包括具有物侧面S9和像侧面S10的滤光片L5。滤光片L5可为带通滤光片,并且其带通波长λ基于使用光源波长浮动,带通波长λ的长波截止波长比使用光源波长的最长波长长15nm至50nm,带通波长λ的短波截止波长比使用光源波长的最短波长短15nm至50nm。在本实施例的摄像镜头中,还可设置有光圈STO以调节进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
表25示出了实施例9的摄像镜头的成像面S11上有效像素区域对角线长的一半ImgH、最大半视场角HFOV、总有效焦距f、各透镜的有效焦距f1至f4以及第一透镜L1至成像面S11在光轴上的距离TTL。表26示出了实施例9的摄像镜头的各透镜的表面类型、曲率半径、厚度、材料及圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。表27示出了实施例9中可用于各非球面镜面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2017093502-appb-000020
表25
Figure PCTCN2017093502-appb-000021
表26
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.8137E-03 1.0092E-02 -2.0972E-02 6.5704E-03 -1.4263E-02 2.1342E-02 -1.2545E-02
S2 -1.9154E-03 -2.6282E-02 -9.0119E-03 7.2867E-03 -8.2965E-03 -4.4698E-03 2.7828E-03
S3 -2.1952E-01 1.0509E-01 -1.6730E-01 1.6458E-01 -3.9701E-02 -3.1172E-02 9.1994E-03
S4 -8.9420E-02 -3.3448E-02 -1.1242E-01 2.4532E-01 -1.9578E-01 6.4384E-02 -7.6099E-03
S5 1.5869E-01 -2.8108E-01 3.4180E-01 -4.5490E-01 3.0531E-01 -1.1282E-01 1.9620E-02
S6 -7.8754E-01 1.7786E+00 -2.8077E+00 2.9692E+00 -2.0503E+00 8.0429E-01 -1.3033E-01
S7 -7.5900E-02 3.3650E-03 -7.7253E-02 8.5256E-02 -3.5740E-02 6.7985E-03 -4.9221E-04
S8 -7.7146E-02 -1.3473E-01 1.2801E-01 -6.0899E-02 1.6554E-02 -2.4183E-03 1.4553E-04
表27
图18A示出了实施例9的摄像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18B示出了实施例9的摄像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的摄像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D示出了实施例9的摄像镜头的倍率色差曲线,其表示光线经由摄像镜头后在成像面上的不同的像高的偏差。根据图18A至图18D可知,实施例9所给出的摄像镜头能够实现良好的成像品质。
综上,实施例1至实施例9分别满足以下表28所示的关系。
条件式\实施例 1 2 3 4 5 6 7 8 9
f/EPD 1.595 1.600 1.500 1.550 1.588 1.581 1.581 1.581 1.581
f1/f 1.673 1.672 1.574 1.752 1.870 1.188 1.191 1.161 1.172
CT2*100/ΣCT 13.966 15.924 14.268 13.662 14.447 14.601 13.437 13.374 14.395
CT2/CT3 0.516 0.629 0.728 0.637 0.580 0.769 0.600 0.767 0.933
∑CT/TTL 0.441 0.429 0.432 0.451 0.426 0.422 0.458 0.460 0.428
(CT2+CT3)/CT4 1.402 1.561 1.089 1.067 1.207 0.972 1.100 0.820 0.771
DT11/DT22 1.011 0.972 0.941 1.041 0.939 0.847 0.965 0.938 0.850
SAG31/SAG32 0.580 0.610 0.776 0.707 0.636 0.819 0.577 0.803 0.997
ImgH/f 0.762 0.761 0.762 0.753 0.791 0.762 0.762 0.762 0.762
表28
本申请还提供一种摄像装置,其感光元件可以是感光耦合元件 (CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如探测距离相机的独立摄像设备,也可以是集成在诸如探测距离设备上的摄像模块。该摄像装置装配有以上描述的摄像镜头。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (23)

  1. 摄像镜头,具有总有效焦距f以及入瞳直径EPD,所述摄像镜头沿着光轴由物侧至像侧依序包括第一透镜、第二透镜、第三透镜以及第四透镜,
    其特征在于,所述第一透镜和所述第四透镜均具有正光焦度,并且所述第一透镜的像侧面为凹面,而所述第四透镜的物侧面为凸面;以及
    所述总有效焦距f与所述入瞳直径EPD满足f/EPD≤2。
  2. 根据权利要求1所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第一透镜至所述第四透镜分别于所述光轴上的中心厚度总和∑CT满足10<CT2*100/∑CT<16。
  3. 根据权利要求1所述的摄像镜头,其特征在于,所述第一透镜的物侧面为凸面,所述第四透镜的像侧面为凹面。
  4. 根据权利要求1或2所述的摄像镜头,其特征在于,在所述第四透镜与所述像侧之间设置有滤光片,所述滤光片为带通滤光片。
  5. 根据权利要求4所述的摄像镜头,其特征在于,所述带通滤光片的带通波长λ基于使用光源波长浮动,并且所述带通波长λ的长波截止波长比所述使用光源波长的最长波长长15nm-50nm,所述带通波长λ的短波截止波长比所述使用光源波长的最短波长短15nm-50nm。
  6. 根据权利要求1至4中任一项所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1满足1<f1/f<1.9。
  7. 根据权利要求1至4中任一项所述的摄像镜头,其特征在于,所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH满足 ImgH/f<0.8。
  8. 根据权利要求1至4中任一项所述的摄像镜头,其特征在于,所述第一透镜至所述第四透镜分别于所述光轴上的中心厚度总和∑CT与所述第一透镜至成像面在所述光轴上的距离TTL满足∑CT/TTL<0.5。
  9. 根据权利要求1至4中任一项所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4满足0.5<(CT2+CT3)/CT4<1.6。
  10. 根据权利要求1至4中任一项所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3满足0.5<CT2/CT3<1。
  11. 根据权利要求1至4中任一项所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半径DT11与所述第二透镜的像侧面的有效半径DT22满足0.7<DT11/DT22<1.2。
  12. 根据权利要求1至4中任一项所述的摄像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点之间在所述光轴上的距离SAG31与所述第三透镜的像侧面和所述光轴的交点至所述第三透镜的像侧面的有效半径顶点之间在所述光轴上的距离SAG32满足0.5<SAG31/SAG32<1。
  13. 摄像镜头,沿着光轴由物侧至像侧依序包括:第一透镜、第二透镜、第三透镜以及第四透镜,
    其特征在于,
    所述第一透镜具有正光焦度,并且其像侧面为凹面;
    所述第四透镜具有正光焦度,并且其物侧面为凸面;以及
    在所述第四透镜与所述像侧之间设置有滤光片,所述滤光片为带通滤光片,其带通波长λ基于使用光源波长浮动,并且所述带通波长λ的长波截止波长比所述使用光源波长的最长波长长15nm-50nm,所述带通波长λ的短截止波长比所述使用光源波长的最短波长短15nm-50nm。
  14. 根据权利要求13所述的摄像镜头,其特征在于,所述第一透镜的物侧面为凸面,所述第四透镜的像侧面为凹面。
  15. 根据权利要求14所述的摄像镜头,具有总有效焦距f和入瞳直径EPD,其特征在于,所述总有效焦距f与所述入瞳直径EPD满足f/EPD≤2。
  16. 根据权利要求14所述的摄像镜头,其特征在于,所述第一透镜的有效焦距f1满足1<f1/f<1.9。
  17. 根据权利要求13所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第三透镜在所述光轴上的中心厚度CT3满足0.5<CT2/CT3<1。
  18. 根据权利要求17所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2、所述第三透镜在所述光轴上的中心厚度CT3与所述第四透镜在所述光轴上的中心厚度CT4满足0.5<(CT2+CT3)/CT4<1.6。
  19. 根据权利要求18所述的摄像镜头,其特征在于,所述第一透镜至所述第四透镜分别于所述光轴上的中心厚度总和∑CT与所述第一透镜至成像面在所述光轴上的距离TTL满足∑CT/TTL<0.5。
  20. 根据权利要求19所述的摄像镜头,其特征在于,所述第二透镜在所述光轴上的中心厚度CT2与所述第一透镜至所述第四透镜分别于所述光轴上的中心厚度总和∑CT满足10<CT2*100/∑CT<16。
  21. 根据权利要求13所述的摄像镜头,其特征在于,所述第三透镜的物侧面和所述光轴的交点至所述第三透镜的物侧面的有效半径顶点之间在所述光轴上的距离SAG31与所述第三透镜的像侧面和所述光轴的交点至所述第三透镜的像侧面的有效半径顶点之间在所述光轴上的距离SAG32满足0.5<SAG31/SAG32<1。
  22. 根据权利要求13所述的摄像镜头,其特征在于,所述第一透镜的物侧面的有效半径DT11与所述第二透镜的像侧面的有效半径DT22满足0.7<DT11/DT22<1.2。
  23. 根据权利要求13至22中任一项所述的摄像镜头,其特征在于,所述摄像镜头的成像面上有效像素区域对角线长的一半ImgH与所述总有效焦距f满足ImgH/f<0.8。
PCT/CN2017/093502 2017-03-30 2017-07-19 摄像镜头 WO2018176694A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/778,665 US11280981B2 (en) 2017-03-30 2017-07-19 Camera lens assembly comprising four lenses of +−++, ++−+ or +−−+ regractive powers
US17/535,294 US20220137334A1 (en) 2017-03-30 2021-11-24 Camera lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201720325753.9U CN206757157U (zh) 2017-03-30 2017-03-30 摄像镜头
CN201720325753.9 2017-03-30
CN201710202841.4A CN106680976B (zh) 2017-03-30 2017-03-30 摄像镜头
CN201710202841.4 2017-03-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/778,665 A-371-Of-International US11280981B2 (en) 2017-03-30 2017-07-19 Camera lens assembly comprising four lenses of +−++, ++−+ or +−−+ regractive powers
US17/535,294 Division US20220137334A1 (en) 2017-03-30 2021-11-24 Camera lens assembly

Publications (1)

Publication Number Publication Date
WO2018176694A1 true WO2018176694A1 (zh) 2018-10-04

Family

ID=63674113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093502 WO2018176694A1 (zh) 2017-03-30 2017-07-19 摄像镜头

Country Status (2)

Country Link
US (2) US11280981B2 (zh)
WO (1) WO2018176694A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991721A (zh) * 2019-05-06 2019-07-09 浙江舜宇光学有限公司 光学透镜组

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031512A (ko) * 2018-09-14 2020-03-24 삼성전기주식회사 촬상 광학계

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717748B2 (en) * 2002-02-20 2004-04-06 Fuji Photo Optical Co., Ltd. Low-cost, single focus lens
CN201984202U (zh) * 2011-01-20 2011-09-21 大立光电股份有限公司 摄影用光学透镜组
CN105652409A (zh) * 2014-12-01 2016-06-08 先进光电科技股份有限公司 光学成像系统
CN105676420A (zh) * 2014-12-04 2016-06-15 先进光电科技股份有限公司 光学成像系统
CN105807393A (zh) * 2015-01-21 2016-07-27 先进光电科技股份有限公司 光学成像系统
CN106680976A (zh) * 2017-03-30 2017-05-17 浙江舜宇光学有限公司 摄像镜头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461728B (zh) 2011-09-02 2014-11-21 Largan Precision Co Ltd 影像鏡組
TWI570467B (zh) * 2012-07-06 2017-02-11 大立光電股份有限公司 光學影像拾取系統組
TWI474039B (zh) 2013-02-08 2015-02-21 Largan Precision Co Ltd 廣視角攝像鏡片組
TWI477803B (zh) * 2013-03-05 2015-03-21 Largan Precision Co Ltd 攝像系統透鏡組
TWI620968B (zh) * 2016-12-15 2018-04-11 大立光電股份有限公司 光學攝像鏡片系統、取像裝置及電子裝置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717748B2 (en) * 2002-02-20 2004-04-06 Fuji Photo Optical Co., Ltd. Low-cost, single focus lens
CN201984202U (zh) * 2011-01-20 2011-09-21 大立光电股份有限公司 摄影用光学透镜组
CN105652409A (zh) * 2014-12-01 2016-06-08 先进光电科技股份有限公司 光学成像系统
CN105676420A (zh) * 2014-12-04 2016-06-15 先进光电科技股份有限公司 光学成像系统
CN105807393A (zh) * 2015-01-21 2016-07-27 先进光电科技股份有限公司 光学成像系统
CN106680976A (zh) * 2017-03-30 2017-05-17 浙江舜宇光学有限公司 摄像镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991721A (zh) * 2019-05-06 2019-07-09 浙江舜宇光学有限公司 光学透镜组
CN109991721B (zh) * 2019-05-06 2024-04-02 浙江舜宇光学有限公司 光学透镜组

Also Published As

Publication number Publication date
US20210199921A1 (en) 2021-07-01
US11280981B2 (en) 2022-03-22
US20220137334A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
WO2020019794A1 (zh) 光学成像镜头
WO2020107935A1 (zh) 光学成像镜头
WO2019210672A1 (zh) 光学成像系统
WO2020107936A1 (zh) 光学成像系统
WO2018192126A1 (zh) 摄像镜头
WO2020119171A1 (zh) 光学成像镜头
WO2019210740A1 (zh) 光学成像镜头
WO2020186759A1 (zh) 光学成像镜头
WO2018214349A1 (zh) 摄像镜头
WO2019056817A1 (zh) 光学成像系统
WO2019052220A1 (zh) 光学成像镜头
WO2018058754A1 (zh) 摄像镜头及装配有该摄像镜头的摄像装置
WO2019169856A1 (zh) 摄像镜头组
WO2019137055A1 (zh) 摄像透镜系统
WO2018223651A1 (zh) 摄像镜头
WO2020029613A1 (zh) 光学成像镜头
WO2018218889A1 (zh) 光学成像系统
CN110187479B (zh) 光学成像镜头
WO2019192160A1 (zh) 光学成像镜头
WO2019233159A1 (zh) 光学成像镜头
WO2019210676A1 (zh) 摄像镜头
WO2019007045A1 (zh) 光学成像镜头
WO2020134027A1 (zh) 光学成像镜头
WO2018209855A1 (zh) 光学成像系统
WO2018209890A1 (zh) 成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902920

Country of ref document: EP

Kind code of ref document: A1