WO2018174359A1 - 선박용 가스 배출 시스템과 가스 배출 방법 및 배출가스의 재활용 방법 - Google Patents

선박용 가스 배출 시스템과 가스 배출 방법 및 배출가스의 재활용 방법 Download PDF

Info

Publication number
WO2018174359A1
WO2018174359A1 PCT/KR2017/011372 KR2017011372W WO2018174359A1 WO 2018174359 A1 WO2018174359 A1 WO 2018174359A1 KR 2017011372 W KR2017011372 W KR 2017011372W WO 2018174359 A1 WO2018174359 A1 WO 2018174359A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
engine
line
exhaust line
valve unit
Prior art date
Application number
PCT/KR2017/011372
Other languages
English (en)
French (fr)
Inventor
김종현
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170037430A external-priority patent/KR101876977B1/ko
Priority claimed from KR1020170057216A external-priority patent/KR101908564B1/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to JP2019551290A priority Critical patent/JP7057372B2/ja
Priority to SG11201908597R priority patent/SG11201908597RA/en
Priority to CN201780088898.4A priority patent/CN110461706B/zh
Publication of WO2018174359A1 publication Critical patent/WO2018174359A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/12Arrangements or mounting of devices for preventing or minimising the effect of explosion ; Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels

Definitions

  • the present invention discharges the remaining fuel gas remaining in the engine and the gas valve unit (GVU) when there is a problem in the gas supply of the engine or stops the operation of the engine in a ship equipped with an engine using natural gas as fuel.
  • GVU gas valve unit
  • HFO heavy oil
  • MGO Marine Gas Oil
  • the Dual Fuel Engine also known as the Honso Engine, is a hybrid concept engine that uses both gas and oil at the same time, and is an eco-friendly engine that can dramatically reduce fuel consumption, carbon emissions and operating costs.
  • Liquefied natural gas has a lower sulfur content than heavy oil, so using these fuels can reduce air pollution.
  • FIG. 1 is a view showing a vessel equipped with a conventional DF engine gas exhaust system.
  • a DF engine 1 is disposed in an engine room E / R, and a gas valve unit (GVU) for controlling a flow rate of an evaporated gas or a liquefied gas supplied to the DF engine 1, 2) is arranged in a separate gas valve unit room (G / R).
  • a gas valve unit for controlling a flow rate of an evaporated gas or a liquefied gas supplied to the DF engine 1, 2 is arranged in a separate gas valve unit room (G / R).
  • the gas valve unit room (G / R) is located at the rear of the stern side of the engine room (E / R) .There is a risk of explosion if gas leaks, so it is possible to always ventilate for the safety of the system. It should be prepared to
  • an exhaust line 4 for discharging residual gas from the DF engine 1 and the gas valve unit 2 extends to a vent mast 3 provided at an upper portion of the cargo hold, so that the outside air is vented through the vent mast 3. Discharged.
  • the piping of the exhaust line (4) is generally made of stainless steel (Stainless steel) material, having the exhaust line (4) to reach 150m to increase the material volume, causing an increase in cost, butt welding As the length of the exhaust line 4 to be installed by (Butt Welding) becomes longer, the installation process becomes more difficult, and the time and effort required for installation become excessive.
  • stainless steel stainless steel
  • the present invention aims at solving the fundamental problem that such an arrangement could not be applied to, in order to solve the problem as in the prior art, that is, the stability problem and greatly reducing the length of the exhaust line by arranging the gas exhaust line at the rear end of the engine room. do.
  • the engine using natural gas as fuel;
  • a gas valve unit (GVU) for controlling a flow rate of natural gas supplied to the engine;
  • An exhaust line connected to the engine and the gas valve unit to discharge fuel gas inside the engine and the gas valve unit;
  • an ejector installed on the exhaust line, wherein the exhaust line extends into a space located on the stern side of the engine room so that the gas discharged through the exhaust line is discharged from the stern to seawater or the atmosphere.
  • a ship gas discharge system is provided.
  • the gas valve unit room in which the gas valve unit is disposed may be provided on the stern side of the engine room in a state separate from the engine room in which the engine is disposed.
  • the exhaust line may include a first exhaust line for discharging the remaining gas of the engine; A second exhaust line for discharging the remaining gas of the gas valve unit; And a third exhaust line configured to join the first exhaust line and the second exhaust line to discharge the gas transferred from the first exhaust line and the second exhaust line to the shipboard, and the ejector may include the third exhaust line. It can be installed on the exhaust line.
  • One side of the ejector is connected to a drive gas supply line for supplying the inert gas (g1) to the ejector, the inert gas (g1) supplied to the ejector through the drive gas supply line of the drive fluid for driving the ejector
  • the ejector may form a pressure at which gas is discharged through the exhaust line.
  • the engine is connected to a first purging line for supplying an inert gas (g2) to the engine
  • the gas valve unit is connected to a second purging line for supplying an inert gas (g2) to the gas valve unit,
  • the inert gas g1 supplied to the ejector and the inert gas g2 supplied to the engine and the gas valve unit may be nitrogen (N 2 ) gas.
  • a gas discharging method of a gas discharge system for a ship comprising: an exhaust step of discharging the remaining fuel gas of the engine and the gas valve unit to an overboard by opening an exhaust line connected to the engine and the gas valve unit; And supplying an inert gas (g2) to the engine and the gas valve unit to supply a pressure for discharging the remaining fuel gas out of the ship through the exhaust line, thereby replacing the remaining fuel gas with the inert gas (g2). And a purging step, wherein the exhaust line is extended to a space located at the stern side of the engine room so that the gas discharged through the exhaust line is discharged from the stern to seawater or the atmosphere.
  • an ejector installed on the exhaust line may be driven to form a pressure for discharging the remaining fuel gas through the exhaust line.
  • an ejector installed on the exhaust line may be driven to form a mixed gas of the remaining fuel gas and the inert gas g2 or a pressure for discharging the inert gas g2 through the exhaust line.
  • the engine using the gas as fuel;
  • a gas supply unit supplying fuel gas to the engine;
  • a gas valve unit (GVU) installed on a gas supply line for supplying fuel gas from the gas supply unit to the engine to control a flow rate of the fuel gas supplied to the engine;
  • An exhaust line connected to the engine and the gas valve unit to discharge gas from the engine and the gas valve unit;
  • a fuel gas discharge line branched from the exhaust line and connected to the gas supply unit, and configured to transfer fuel gas discharged from the engine and the gas valve unit to the gas supply unit.
  • the second ejector is installed on the fuel gas discharge line; Further comprising, when discharging the fuel gas remaining in the engine or the gas valve unit, by operating the second ejector, the fuel gas is transferred to the gas supply through the exhaust line and the fuel gas discharge line Pressure can be provided.
  • Marine gas discharge system is installed at the branch point where the fuel gas discharge line is branched from the exhaust line, three way to selectively control the opening and closing of the pipe to the exhaust line or the fuel gas discharge line side valve;
  • An inert gas separator installed on an exhaust line behind the three-way valve to separate the fuel gas and the inert gas from the mixed gas of the fuel gas and the inert gas;
  • a branching line for joining the fuel gas separated by the inert gas separator to the fuel gas discharge line;
  • An inert gas discharge line for discharging the inert gas separated from the inert gas separator;
  • an inert gas supply unit storing an inert gas discharged through the inert gas discharge line. It may further include.
  • the first ejector is installed on the inert gas discharge line; It may further include, and when the fuel gas remaining in the engine or the gas valve unit purged (purging) with an inert gas, the pipe to the inert gas discharge line from the exhaust line by the three-way valve Open the first ejector, and the pressure at which a mixed gas of fuel gas and inert gas is transferred to the inert gas separator through an exhaust line, and the inert gas separated by the inert gas separator are discharged from the inert gas discharge line. Through the pressure can be provided to the inert gas supply unit.
  • the second ejector is installed on the fuel gas discharge line; It may further include, the fuel gas separated by the inert gas separator, may provide a pressure to be transferred to the gas supply through the branch line and the fuel gas discharge line.
  • the driving gas g1 for driving the first ejector is supplied from the inert gas supply part, and the driving gas for driving the second ejector is branched on a gas supply line for supplying fuel gas from the gas supply part to the engine. Can be supplied through the driving gas line.
  • the engine is connected to a first purging line for supplying an inert gas (g2) to the engine
  • the gas valve unit is connected to a second purging line for supplying an inert gas (g2) to the gas valve unit, the engine
  • the inert gas g2 is supplied to the engine and the gas valve unit through the first purging line and the second purging line, respectively.
  • an additional pressure for discharging the gas may be supplied.
  • the inert gas g1 supplied to the ejector and the inert gas g2 supplied to the engine and the gas valve unit may be nitrogen (N 2 ) gas.
  • a method for recycling exhaust gas of a marine gas discharge system wherein the exhaust line is connected to an engine and a gas valve unit to release fuel gas remaining in the engine and the gas valve unit. ; And supplying an inert gas (g2) to the engine and the gas valve unit to supply a pressure for discharging the remaining fuel gas out of the ship through the exhaust line, thereby replacing the remaining fuel gas with the inert gas (g2).
  • Purging step of discharging Includes k
  • the exhausting step only the fuel gas discharge line branched on the exhaust line and connected to the gas supply unit opens the fuel gas remaining in the engine and the gas valve unit through the exhaust line and the fuel gas discharge line.
  • the purging step in the purging step, only the pipes passing from the exhaust line to the inert gas discharge line are opened, and the fuel gas and the inert gas discharged from the engine and the gas valve unit by the inert gas separator installed on the exhaust line. After separating each of the mixed gas of the gas, the separated fuel gas is joined to the fuel gas discharge line through a branch line and transported to the gas supply unit, the separated inert gas to the inert gas supply unit through the inert gas discharge line Transfer.
  • the gas discharge system includes: a first ejector installed on the inert gas discharge line to provide a pressure at which gas is transferred; And a second ejector installed on the fuel gas discharge line to provide a pressure at which gas is transferred.
  • the second ejector is operated, and in the purging step, both the first ejector and the second ejector are operated.
  • the gas exhaust system according to the present invention is configured to extend the exhaust line into the space at the rear end of the engine room so that the gas is discharged directly from the stern side, so that it is not necessary to extend the exhaust line to the vent mast, and thus, The length can be greatly shortened.
  • the fuel gas can be discharged more quickly through the exhaust line, and generates a vacuum, so that the fuel gas remaining in the engine and the gas valve unit is more perfect. It is not a problem because the gas can be pushed out with sufficient pressure even if a reverse gradient is formed in the exhaust line.
  • the remaining fuel gas discharged through the exhaust line has a sufficient pressure while being mixed with the inert gas, it is also possible to discharge into the sea water from the stern side.
  • FIG. 1 is a view showing a vessel equipped with a conventional DF engine gas exhaust system.
  • FIG. 2 is a view for explaining a gas discharge system according to a first embodiment of the present invention.
  • FIG 3 is a view for explaining a gas discharge system according to a second embodiment of the present invention.
  • the gas discharge system according to the present invention may be applied to a ship equipped with an engine using natural gas as a fuel, and may be applied to, for example, an LNG Carrier (LNGC) using LNG as a propellant fuel.
  • LNGC LNG Carrier
  • FIG. 2 is a view for explaining a gas discharge system according to a first embodiment of the present invention.
  • a gas exhaust system includes an engine room 100 in which an engine 10 is disposed; A gas valve unit room 200 located at a stern side rear of the engine room 100 and having a gas valve unit GVU 20 disposed therein; An exhaust line 30 for discharging the remaining fuel gas of the engine 10 and the gas valve unit 20; And an ejector 40 installed on the exhaust line 30, wherein the exhaust line 30 extends from the engine 10 and the gas valve unit 20 to a space at the rear end of the stern side of the engine room 100. The remaining fuel gas is then discharged from the stern side to a safe area on the side of the seawater or the hull.
  • the engine 10 disposed in the engine room 100 may be a DF engine using different fuels.
  • the type of the engine 10 is not limited, and the present invention may be applied to any engine using natural gas as a fuel, such as a ME-GI engine or an X-DF engine.
  • the gas valve unit 20 is installed on a fuel supply line for supplying boil-off gas or natural gas to the engine 10 to control the flow rate of the boil-off gas or natural gas supplied to the engine 10, and the engine room ( It is arranged in the gas valve unit room 200 provided separately from 100).
  • the gas valve unit room 200 is located behind the stern side of the engine room 100 and is configured to be isolated from the engine room 100.
  • an exhaust fan 210 may be installed in the gas valve unit room 200 to enable exhaustion at all times.
  • the exhaust line 30 extends from the engine 10 or the gas valve unit 20 to the space at the rear end of the stern side of the engine room 100 to discharge fuel gas remaining in the engine 10 and the gas valve unit 20. On the stern side, discharge to seawater or to a safe area on the side of the hull.
  • the length of the exhaust line 30 can be significantly reduced as compared with the conventional art. This is because it is not necessary to extend the exhaust line to the vent mast as in the prior art.
  • the exhaust line 30 includes a first exhaust line 31 for discharging the remaining gas of the engine 10; A second exhaust line 32 for discharging the remaining gas of the gas valve unit 20; And a third exhaust line 33 through which the first exhaust line 31 and the second exhaust line 32 join.
  • the remaining gas of the engine 10 discharged through the first exhaust line 31 merges with the remaining gas of the gas valve unit 20 discharged through the second exhaust line 32, and thus the third exhaust line 33. Is discharged outboard.
  • the first exhaust valve 11 opening and closing the first exhaust line 31 on the first exhaust line 31, and the second exhaust valve opening and closing the second exhaust line 32 on the second exhaust line 32 ( 21) can be installed.
  • the first exhaust valve 11 and the second exhaust valve 21 may be controlled by the control unit 60 to open and close the fuel gas remaining in the engine 10 and the gas valve unit 20, respectively.
  • the first embodiment of the present invention may include an ejector 40 installed on the exhaust line 30 to remove the risk of explosion of the remaining fuel gas discharged through the exhaust line 30.
  • the ejector 40 may be installed on the third exhaust line 33, which is preferably a line in which the first and second exhaust lines 31 and 32 are integrated.
  • the ejector 40 is a type of pump using the ventry effect.
  • the ejector 40 generates a vacuum by using pressure energy of a high-pressure driving fluid and easily discharges the inlet fluid at a high discharge pressure.
  • the driving gas supplied to the ejector 40 through the driving gas supply line 41 acts as a driving fluid, and the gas discharged through the exhaust line 30 is connected to the inlet fluid. Play a role.
  • the driving gas it is preferable to use an inert gas (g1) having no explosiveness, and in particular, it is preferable to use nitrogen (N 2 ) gas which is essentially generated in an LNGC vessel.
  • One side of the ejector 40 may be connected to the drive gas supply line 41 for supplying the drive gas to the ejector 40, the drive gas control valve on the drive gas supply line 41 to control the supply of the drive gas 42 may be installed.
  • the remaining fuel gas discharged from the engine 10 and the gas valve unit 20 is mixed with a large amount of inert gas g1 supplied by the ejector 40 and thus becomes no longer explosive.
  • the mixed gas of the remaining flue gas and the inert gas g1 may be discharged through the exhaust line 30 in the vicinity of the engine room 100 without having to send the vent gas to the vent mast.
  • the remaining fuel gas discharged through the exhaust line 30 has a sufficient pressure while being mixed with the inert gas (g1), it is also possible to discharge into the sea water from the stern side.
  • the ejector 40 not only supplies the inert gas g1 to the exhaust line 30, but also forms the discharge pressure through the ejector effect so that the fuel gas is discharged more quickly through the exhaust line 30. In addition, since the vacuum is generated, the fuel gas remaining in the engine 10 and the gas valve unit 20 can be more completely removed.
  • the ejector 40 Since the ejector 40 has no electrical tendency, maintenance and repair are almost unnecessary, so the ejector 40 has excellent stability in application to the gas exhaust system according to the present invention.
  • the gas discharge system after discharging the fuel gas remaining in the engine 10 and the gas valve unit 20 through the exhaust line 30, the engine 10 and Purging may be performed to more completely remove the remaining fuel gas of the gas valve unit 20.
  • Gas exhaust system is connected to one side of the engine 10, the first purging line 51 for supplying a purge gas to the engine 10; and one side of the gas valve unit 20
  • a second purging line 52 connected to the gas valve unit 20 to supply a purging gas may be further included.
  • an inert gas (g2) which is not explosive like nitrogen (N 2 ) gas.
  • the inert gas g1 used as the driving gas of the ejector 40 and the inert gas g2 used as the purging gas may be the same nitrogen (N 2 ) gas, and a nitrogen (N 2 ) gas generator (not shown) installed in the ship. Can be supplied from).
  • the inert gas g2 is supplied to the engine 10 and the gas valve unit 20 through the first purging line 51 and the second purging line 52, and the remaining fuel gas is inert gas ( g2) is discharged through the exhaust line 30.
  • the ejector 40 can be operated even when purging, and the purging can be performed more quickly by forming the discharge pressure by the ejector 40, and by forming a vacuum by the ejector 40, the first and The inert gas g2 supplied to the engine 10 and the gas valve unit 20 through the second purging lines 51 and 52 may also be discharged out of the ship through the exhaust line 30.
  • the gas exhaust system according to the first embodiment of the present invention may further include a controller 60. If a problem occurs in the gas supply of the engine 10, the controller 60 controls the remaining fuel gas of the engine 10 and the gas valve unit 20 to be discharged.
  • control unit controls the opening and closing of the first and second exhaust valves 11 and 21, the operation of the ejector 40 by opening and closing the driving gas control valve 42, and the first and second purging lines 51. And control the supply of inert gas (g2) to the engine 10 and the gas valve unit 20 through 52.
  • the fuel gas remaining in the engine 10 and the gas valve unit 20 is discharged as it is at atmospheric pressure.
  • the first exhaust valve 11 and the second exhaust valve 21 are opened to discharge fuel gas remaining in the engine 10 and the gas valve unit 20 out of the ship along the exhaust line 30. do.
  • the first and second exhaust valves 11 and 21 may be opened by the controller 60.
  • the ejector 40 may be operated to assist in the discharge of fuel gas.
  • the drive gas control valve 42 is opened to operate the ejector 40, the inert gas g1 is supplied from the drive gas supply line 41 to the exhaust line 30, and the fuel discharged along the exhaust line 30.
  • the gas may be mixed with a large amount of inert gas g1 and discharged out of the ship in a state where explosives are removed.
  • the exhaust step may be performed in a time-delay manner.
  • the first and second exhaust valves 11 and 21 are opened to discharge gas through the exhaust line 30, and the set t is set. After time the first and second exhaust valves 11, 21 can be controlled to close automatically.
  • Purging step is to replace the remaining gas remaining in the engine 10 and the gas valve unit 20 with an inert gas to more reliably remove.
  • the inert gas g2 may be supplied to the engine 10 and the gas valve unit 20 through the first and second purging lines 51 and 52, respectively.
  • the inert gas g2 supplied to the engine 10 and the gas valve unit 20 through the first and second purging lines 51 and 52, respectively, is the remaining fuel of the engine 10 and the gas valve unit 20.
  • the inert gas g2 supplied to the engine 10 and the gas valve unit 20 through the first and second purging lines 51 and 52, respectively, is the remaining fuel of the engine 10 and the gas valve unit 20.
  • the ejector 40 may be operated to form a discharge pressure, so that purging may be performed more quickly.
  • the existing remaining fuel gas of the engine 10 and the gas valve unit 20 are replaced with an inert gas g2, and the first and second purging lines 51 and 52 are used.
  • the supply of the inert gas g2 to the engine 10 and the gas valve unit 20 is stopped.
  • the inert gas g2 substituted in the engine 10 and the gas valve unit 20 is in a state where the inert gas g2 existing in the engine 10 and the gas valve unit 20 is thus present.
  • the ejector 40 may be discharged out of the ship by the discharge pressure formed, the purging step is completed.
  • the purging step is performed in a time-delay manner as in the exhaust step, or when a gas detector (not shown) is installed in the engine 10 or the gas valve unit 20 so that residual fuel gas is not detected. It may be performed until.
  • the ejector 40 may be used in all the processes of forming the discharge pressure of the gas, and may continue to operate until the purge step is completed.
  • FIG 3 is a view for explaining a gas discharge system according to a second embodiment of the present invention.
  • the gas exhaust system according to the second embodiment has the same configuration as the gas exhaust system and the gas exhaust system according to the first embodiment shown in FIG. 2, and is further configured to recycle the exhaust gas. It is.
  • the configuration of the gas discharge system according to the first embodiment will be mainly added, and detailed description of the same members as the gas discharge system according to the first embodiment will be omitted.
  • the ejector 40 of the first embodiment is referred to as the first ejector 40 in the second embodiment.
  • the gas exhaust system includes all the components of the first embodiment, and further includes a fuel gas branched from the exhaust line 30 and connected to the gas supply unit 300. Discharge line 310; And a three-way valve 320 installed at a branch point where the fuel gas discharge line 310 branches from the exhaust line 30.
  • the gas discharge system according to the second embodiment of the present invention is installed on the exhaust line 30 behind the three-way valve 320 to separate the fuel gas and inert gas from the mixed gas of fuel gas and inert gas, respectively.
  • the gas supply unit 300 supplies fuel gas to the engine 10.
  • the fuel gas is supplied to the engine 10 from the gas supply unit 300 via the gas supply line 330 via the gas valve unit 20.
  • the fuel gas discharge line 310 is branched on the exhaust line 30 and connected to the gas supply unit 300.
  • the second ejector 311 may be installed on the fuel gas discharge line 310 to provide a pressure for transferring the gas inside the exhaust line 30 and the fuel gas discharge line 310 to the gas supply unit 300.
  • the second ejector 311 uses the principle of the ejector described in the first embodiment to provide a pressure for transferring gas through the pipe.
  • the driving gas for driving the second ejector 311 may be supplied through the driving gas line 331 branched on the gas supply line 330 that supplies the fuel gas from the gas supply unit 300 to the engine 10. .
  • An air separator 312 may be installed at the front end of the gas supply part 300 on the fuel gas discharge line 310. Since the residual fuel gas discharged initially may be mixed with air in the pipe in the process of being transferred to the gas supply unit 300, the remaining fuel gas is sent to the gas supply unit 300 after removing the air by the air separator 312.
  • the three-way valve 320 is installed at a branch point where the fuel gas discharge line 310 branches from the exhaust line 30.
  • the gas transferred from the engine 10 and the gas valve unit 20 may be determined by the three-way valve 320 to be sent to the fuel gas discharge line 310 or to the inert gas separator 410.
  • the control of the three-way valve 320 may be made by the controller 60.
  • the inert gas separator 410 is installed on the exhaust line 30 behind the three-way valve 320.
  • the inert gas separator 410 separates the fuel gas and the inert gas from the mixed gas of the fuel gas and the inert gas, and the separated inert gas is discharged through the inert gas discharge line 420, and the separated fuel gas is the branch line. Joined to the fuel gas discharge line 310 through 430 is transferred to the gas supply unit 300.
  • the inert gas separator 410 may be any one of a membrane filter, a cyclone, a gas centrifuge, or a vortex tube.
  • the first ejector 40 may be installed on the inert gas discharge line 420 to provide a pressure for transferring the gas inside the exhaust line 30 and the inert gas discharge line 420 to the inert gas supply unit 400.
  • the first ejector 40 uses the principle of the ejector described in the first embodiment to provide a pressure for transferring gas through the pipe.
  • the inert gas supply unit 400 stores the inert gas discharged through the inert gas discharge line 420.
  • the inert gas stored in the inert gas supply unit 400 is used as a driving gas g1 of the first ejector 40, or used as a purging gas g2 supplied to the engine 10 and the gas valve unit 20. Or on demand in ships.
  • the remaining fuel gas inside the engine 10 and the gas valve unit 20 is recycled by being transferred to the gas supply unit 300 through the fuel gas discharge line 310 and stored.
  • the inert gas used to purge the remaining fuel gas in the engine 10 and the gas valve unit 20 is separated from the fuel gas by the inert gas separator 410 and then transferred to the inert gas supply unit 400. It can be recycled by storing it.
  • the gas exhaust system according to the second embodiment of the present invention discharges the remaining fuel gas of the engine 10 and the gas valve unit 20 in the same manner as the first embodiment.
  • the second embodiment does not discharge the remaining fuel gas to the outboard through the exhaust line 30, but recycles the exhaust gas using the components further added in the second embodiment.
  • the recycling method of the exhaust gas according to the second embodiment of the present invention may vary according to a blow-off step and a purging step.
  • the blow-off step since the first exhaust valve 11 and the second exhaust valve 21 are opened to discharge the fuel gas remaining in the engine 10 and the gas valve unit 20, the exhaust gas is exhausted.
  • the only gas delivered through line 30 is fuel gas.
  • the fuel gas remaining in the engine 10 and the gas valve unit 20 is exhaust line 30 and fuel Pressure may be provided to be easily transferred to the gas supply unit 300 through the gas discharge line 30.
  • the fuel gas transferred to the gas supply unit 300 through the fuel gas discharge line 310 is stored in the gas supply unit 300 after air is reliably removed by the air separator 312 installed at the front of the gas supply unit 300. Can be.
  • the purging step since the fuel gas remaining in the engine 10 and the gas valve unit 20 is removed by inert gas, the fuel gas discharged from the engine 10 and the gas valve unit 20 is removed.
  • the mixed gas of the inert gas is transferred through the exhaust line 30.
  • the pipe connected to the fuel gas discharge line 310 by the three-way valve 320 is closed, the pipe connected to the inert gas separator 410 is opened, the mixed gas of the fuel gas and the inert gas is inert gas separator 410 Is transported to the side.
  • the separated inert gas is transferred to and stored in the inert gas supply unit 400, and the separated fuel gas is branch line 430. Joined to the fuel gas discharge line 310 through it is transferred to the gas supply unit 300.
  • a check valve 431 is provided on the branch line 430 so that the fuel gas separated by the inert gas separator 410 flows only in the direction from the inert gas separator 410 to the fuel gas discharge line 310. can do.
  • the fuel gas and the inert gas may be transferred to the gas supply unit 300 and the inert gas supply unit 400, respectively, and then reused.
  • the pressure of the fuel gas and the inert gas is transferred through the exhaust line 30, and the pressure of the inert gas is transferred through the inert gas discharge line 420 may be provided by the first ejector 40, the fuel The pressure at which the gas is transferred through the fuel gas discharge line 310 may be provided by the second ejector 311.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

본 발명에 따른 선박용 가스 배출 시스템은, 천연가스를 연료로 사용하는 엔진; 엔진으로 공급되는 천연가스의 유량을 제어하는 가스밸브유닛(GVU); 엔진 및 가스밸브유닛과 연결되어 엔진 및 가스밸브유닛 내부의 연료가스를 배출하는 배기라인; 및 배기라인 상에 설치되는 이젝터;를 포함하고, 배기라인은 엔진룸보다 선미 측에 위치하는 공간으로 연장되어, 배기라인을 통해 배출되는 가스가 선미에서 해수 또는 대기중으로 배출되도록 하여, 종래에 비해 배기라인의 길이를 대폭 단축한 것이다. 또한, 본 발명에 따른 선박용 가스 배출 시스템은, 엔진 및 가스밸브유닛 내부에 잔류하는 연료가스를 배출하되, 연료가스를 배기라인 및 연료가스 배출라인을 통해 가스공급부로 이송하여 재활용할 수도 있다.

Description

선박용 가스 배출 시스템과 가스 배출 방법 및 배출가스의 재활용 방법
본 발명은 천연가스를 연료로 사용하는 엔진을 탑재한 선박에서, 엔진의 가스 공급에 문제가 생기거나 엔진의 작동을 정지할 때, 엔진 및 가스밸브유닛(GVU)에 잔류하는 잔존 연료가스를 배출시키기 위한 선박용 가스 배출 시스템에 관한 것이다.
일반적으로 벌크화물선, 컨테이너선, 여객선 등의 각종 선박에서는 추진 연료로서 벙커C유 등의 중유(HFO) 또는 MGO(Marine Gas Oil)등을 사용하는 디젤 엔진시스템을 널리 채용하고 있다.
이러한 디젤 엔진의 연료 공급 시스템에서 연료로서 사용하고 있는 중유 등을 연소시킬 때에는, 배기 중의 온실가스와 각종 유해물질로 인한 환경오염이 초래되는 문제가 있다. 환경오염 방지라는 범세계적 요구가 커지고 있으므로, 중유를 연료유로 사용하는 추진장치에 대한 규제도 강화되고 있다.
또한, 화석연료 고갈이나 국제 정세불안 등의 요인으로 유가가 상승하는 경우, 중유를 연료로 사용하는 선박은 연료비가 급등하는 등 선박 운영상의 문제도 발생한다.
이에 따라, 선박의 추진을 위하여 LNG나 CNG 등의 청정연료를 사용하는 등 다른 연료의 사용이 고려되고 있으며, 서로 다른 이종 연료를 사용하는 엔진이 개발되고 있다.
혼소 엔진이라고도 불리는 DF 엔진(Dual Fuel Engine)은 가스와 오일을 동시에 사용하는, 일종의 하이브리드 개념 엔진으로 연료 소모, 탄소 배출, 운항 경비를 획기적으로 줄일 수 있는 친환경 엔진이다. 액화천연가스는 중유에 비하여 황 함유량이 적으므로, 이러한 연료를 사용하면 대기 오염 유발을 감소시킬 수 있다.
도 1은 종래의 DF 엔진 가스 배출 시스템을 구비한 선박을 도시한 도면이다.
도 1을 참조하면, 엔진룸(E/R) 내에 DF 엔진(1)이 배치되고, DF 엔진(1)으로 공급되는 증발가스 또는 액화가스 유량을 제어하는 가스밸브유닛(GVU; Gas Valve Unit, 2)은 별도로 마련된 가스밸브유닛룸(G/R :Gas Valve Unit Room)에 배치된다.
가스밸브유닛룸(G/R)은 엔진룸(E/R : Engine Room)의 선미 측 후방에 위치하는데, 가스가 누출되면 폭발 위험성이 있기 때문에, 시스템의 안전을 위해 항시 배기(Ventilation)가 가능하도록 마련되어야 한다.
한편, DF 엔진의 가스 공급에 문제가 생기는 경우, 또는 DF 엔진을 장시간 운전하지 않거나 시스템 내부를 정비하고자 할 때, DF 엔진(1) 및 가스밸브유닛(2)에 잔존하는 연료가스를 제거할 필요성이 있다.
가연성의 연료가스가 시스템에 잔류하면 폭발 위험성이 있으므로, 시스템의 안전을 위하여 잔존 가스를 제거하는 것이다.
종래에는 DF 엔진(1) 및 가스밸브유닛(2)으로부터 잔존가스를 배출하는 배기라인(4)을 화물창 상부에 구비되는 벤트 마스트(Vent mast, 3)까지 연장하여 벤트 마스트(3)를 통해 외기로 배출하였다.
이 경우, 배기라인(4)을 엔진룸(E/R)에 가장 가깝게 배치된 화물창 상부에 구비된 벤트마스트(3)에 연결한다 하더라도, 엔진룸(E/R) 및 가스밸브유닛룸(G/R)으로부터 벤트마스트(3) 측으로 연장되는 배기라인(4)의 배관 길이가 약 150m에 육박하게 되며, 다음과 같은 문제가 있다.
150m에 달하는 배관을 통해 잔존 연료가스의 배출이 이루어지도록 하기 위해서는 상당한 압력이 제공되어야 하며, 역 구배가 형성되지 않게 배관을 배치해야만 배관의 중간에 액체가 고여 기체가 방출되지 못하는 것을 방지할 수 있다.
또한, 배기라인(4)의 배관은 일반적으로 스테인리스 스틸(Stainless steel) 재질로 마련되는데, 배기라인(4)을 150m에 달하도록 구비하는 것은 자재 물량이 증가하여 비용의 증가를 야기하며, 맞대기 용접(Butt Welding)으로 설치되어야 하는 배기라인(4)의 길이가 길어질수록 설치공정이 어려워지고, 설치에 소요되는 시간과 노력이 과다하게 된다.
그럼에도 불구하고, 종래의 DF 엔진 가스 배출 시스템을 갖춘 선박은 일반적으로 도 1과 같은 배치를 가지는데, 엔진(1) 및 가스밸브유닛(2)에 잔류하는 연료가스는 가연성을 띄고 있기 때문에, 엔진룸(E/R)으로부터 일정 거리 이격된 벤트 마스트(3) 측으로 보내 배출하는 것이 안전하기 때문이다.
엔진룸 후단부에는 사람이 접근하지 않는 공간이 존재하며, 종래에도 이 공간에 가스 배기라인을 배치하는 논의가 있기는 하였으나, 가스가 배출되는 배관을 엔진 룸 근처에 배치하는 것은 매우 위험하다 하여 실제로 적용된 사례는 없으며, 선주의 입장에서도 이를 극도로 꺼려하는 실정이다.
본 발명은 종래와 같은 문제점을 해결하기 위하여, 이러한 배치가 적용될 수 없었던 근본적인 원인, 즉 안정성 문제를 해결하고, 가스 배기라인을 엔진룸 후단부에 배치함으로써 배기라인의 길이를 대폭 축소하는 것을 목적으로 한다.
또한, 본 발명의 가스 배출 시스템을 통해 배출되는 가스를 재활용하는 방법을 제안하고자 한다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예는, 천연가스를 연료로 사용하는 엔진; 상기 엔진으로 공급되는 천연가스의 유량을 제어하는 가스밸브유닛(GVU); 상기 엔진 및 상기 가스밸브유닛과 연결되어 상기 엔진 및 상기 가스밸브유닛 내부의 연료가스를 배출하는 배기라인; 및 상기 배기라인 상에 설치되는 이젝터;를 포함하고, 상기 배기라인은 엔진룸보다 선미 측에 위치하는 공간으로 연장되어, 상기 배기라인을 통해 배출되는 가스가 선미에서 해수 또는 대기중으로 배출되는 것을 특징으로 하는, 선박용 가스 배출 시스템을 제공한다.
상기 가스밸브유닛이 배치되는 가스밸브유닛룸은, 상기 엔진이 배치되는 엔진룸과는 격리되어 상기 엔진룸보다 선미 측에 마련될 수 있다.
상기 배기라인은, 상기 엔진의 잔존 가스를 배출하는 제1 배기라인; 상기 가스밸브유닛의 잔존 가스를 배출하는 제2 배기라인; 및 상기 제1 배기라인과 상기 제2 배기라인이 합류되어, 상기 제1 배기라인 및 제2 배기라인으로부터 이송된 가스를 선외로 배출하는 제3 배기라인;을 포함하고, 상기 이젝터는 상기 제3 배기라인 상에 설치될 수 있다.
상기 이젝터의 일측에는 불활성가스(g1)를 상기 이젝터로 공급하는 구동가스 공급라인이 연결되고, 상기 구동가스 공급라인을 통해 상기 이젝터로 공급되는 불활성가스(g1)는 상기 이젝터를 구동시키는 구동 유체의 역할을 하며, 상기 이젝터는 상기 배기라인을 통해 가스가 배출되는 압력을 형성할 수 있다.
상기 엔진에는 상기 엔진으로 불활성가스(g2)를 공급하는 제1 퍼징라인이 연결되고, 상기 가스밸브유닛에는 상기 가스밸브유닛으로 불활성가스(g2)를 공급하는 제2 퍼징라인이 연결되며, 상기 제1 퍼징라인 및 상기 제2 퍼징라인을 통해 불활성가스(g2)를 각각 상기 엔진 및 상기 가스밸브유닛에 공급함으로써, 상기 이젝터에 의해 형성되는 압력 외에 상기 배기라인을 통해 가스가 배출되는 추가적인 압력을 공급할 수 있다.
상기 이젝터로 공급되는 불활성가스(g1)와, 상기 엔진 및 상기 가스밸브유닛으로 공급되는 불활성가스(g2)는 질소(N2) 가스일 수 있다.
본 발명의 일 실시예에 의한 선박용 가스 배출 시스템의 가스 배출 방법은, 엔진 및 가스밸브유닛과 연결된 배기라인을 개방하여 상기 엔진 및 상기 가스밸브유닛의 잔존 연료가스를 선외로 배출하는 배기 단계; 및 상기 엔진 및 상기 가스밸브유닛으로 불활성가스(g2)를 공급하여 상기 잔존 연료가스가 상기 배기라인을 통하여 선외로 배출되기 위한 압력을 공급함으로써, 상기 잔존 연료가스를 상기 불활성가스(g2)로 치환하는 퍼징 단계;를 포함하고, 상기 배기라인을 엔진룸보다 선미 측에 위치하는 공간으로 연장하여, 상기 배기라인을 통해 배출되는 가스가 선미에서 해수 또는 대기중으로 배출되도록 한다.
상기 배기 단계에서, 상기 배기라인 상에 설치된 이젝터를 구동하여, 상기 배기라인을 통해 상기 잔존 연료가스가 배출되기 위한 압력을 형성할 수 있다.
상기 퍼징 단계에서, 상기 배기라인 상에 설치된 이젝터를 구동하여, 상기 배기라인을 통해 상기 잔존 연료가스와 불활성가스(g2)의 혼합가스 또는, 불활성가스(g2)가 배출되기 위한 압력을 형성할 수 있다.
또한, 상기와 같은 목적을 달성하기 위하여, 본 발명의 다른 실시예는, 가스를 연료로 사용하는 엔진; 엔진에 연료가스를 공급하는 가스공급부; 상기 가스공급부에서 상기 엔진으로 연료가스를 공급하는 가스공급라인 상에 설치되어 상기 엔진으로 공급되는 연료가스의 유량을 제어하는 가스밸브유닛(GVU); 상기 엔진 및 상기 가스밸브유닛과 연결되어 상기 엔진 및 상기 가스밸브유닛으로부터 가스를 배출하는 배기라인; 및 상기 배기라인으로부터 분기되어 상기 가스공급부로 연결되며, 상기 엔진 및 상기 가스밸브유닛으로부터 배출되는 연료가스를 상기 가스공급부로 이송하는 연료가스 배출라인; 을 포함하고, 상기 엔진 및 상기 가스밸브유닛 내부에 잔류하는 연료가스는 상기 배기라인 및 상기 연료가스 배출라인을 통해 상기 가스공급부로 이송되어 재활용 되는, 선박용 가스 배출 시스템을 제공한다.
본 발명의 다른 실시예에 의한 선박용 가스 배출 시스템은, 상기 연료가스 배출라인 상에 설치되는 제2 이젝터; 를 더 포함하고, 상기 엔진 또는 상기 가스밸브유닛 내부에 잔류하는 연료가스를 배출할 때, 상기 제2 이젝터를 가동하여, 연료가스가 상기 배기라인 및 상기 연료가스 배출라인을 통해 상기 가스공급부로 이송되는 압력을 제공할 수 있다.
본 발명의 다른 실시예에 의한 선박용 가스 배출 시스템은, 상기 배기라인에서 상기 연료가스 배출라인이 분기되는 분기점에 설치되어, 상기 배기라인 또는 상기 연료가스 배출라인 측으로 배관의 개폐를 선택적으로 제어하는 삼방밸브; 상기 삼방밸브 후단의 배기라인 상에 설치되어 연료가스와 불활성가스의 혼합가스에서 연료가스와 불활성가스를 각각 분리하는 불활성가스 분리기; 상기 불활성가스 분리기에서 분리된 연료가스를 상기 연료가스 배출라인 측으로 합류시키는 분기라인; 상기 불활성가스 분리기에서 분리된 불활성가스를 배출하는 불활성가스 배출라인; 및 상기 불활성가스 배출라인을 통해 배출되는 불활성가스를 저장하는 불활성가스 공급부; 를 더 포함할 수 있다.
본 발명의 다른 실시예에 의한 선박용 가스 배출 시스템은, 상기 불활성가스 배출라인 상에 설치되는 제1 이젝터; 를 더 포함할 수 있고, 상기 엔진 또는 상기 가스밸브유닛 내부에 잔류하는 연료가스를 불활성가스로 퍼징(Purging)하여 배출할 때, 상기 삼방밸브에 의해 상기 배기라인으로부터 상기 불활성가스 배출라인으로 통하는 배관만 열고, 상기 제1 이젝터를 가동하여, 연료가스와 불활성가스의 혼합가스가 배기라인을 통해 상기 불활성가스 분리기로 이송되는 압력, 및 상기 불활성가스 분리기에 의해 분리된 불활성가스가 상기 불활성가스 배출라인을 통해 상기 불활성가스 공급부로 이송되는 압력을 제공할 수 있다.
본 발명의 다른 실시예에 의한 선박용 가스 배출 시스템은, 상기 연료가스 배출라인 상에 설치되는 제2 이젝터; 를 더 포함할 수 있고, 상기 불활성가스 분리기에 의해 분리된 연료가스가, 상기 분기라인 및 연료가스 배출라인을 통해 상기 가스공급부로 이송되는 압력을 제공할 수 있다.
상기 제1 이젝터를 구동하기 위한 구동가스(g1)는 상기 불활성가스 공급부로부터 공급받고, 상기 제2 이젝터를 구동하기 위한 구동가스는 상기 가스공급부에서 상기 엔진으로 연료가스를 공급하는 가스공급라인 상에서 분기되는 구동가스라인을 통해 공급받을 수 있다.
상기 엔진에는 상기 엔진으로 불활성가스(g2)를 공급하는 제1 퍼징라인이 연결되고, 상기 가스밸브유닛에는 상기 가스밸브유닛으로 불활성가스(g2)를 공급하는 제2 퍼징라인이 연결되며, 상기 엔진 또는 상기 가스밸브유닛의 잔존 연료가스를 불활성가스로 퍼징하여 배출할 때, 상기 제1 퍼징라인 및 상기 제2 퍼징라인을 통해 불활성가스(g2)를 각각 상기 엔진 및 상기 가스밸브유닛에 공급함으로써, 상기 제1 이젝터에 의해 형성되는 압력 외에 가스가 배출되는 추가적인 압력을 공급할 수 있다.
상기 이젝터로 공급되는 불활성가스(g1)와, 상기 엔진 및 상기 가스밸브유닛으로 공급되는 불활성가스(g2)는 질소(N2) 가스일 수 있다.
본 발명의 다른 실시예에 의한 선박용 가스 배출 시스템의 배출가스 재활용 방법은, 엔진 및 가스밸브유닛과 연결된 배기라인을 개방하여 상기 엔진 및 상기 가스밸브유닛의 내부에 잔류하는 연료가스를 방출하는 배기 단계; 및 상기 엔진 및 상기 가스밸브유닛으로 불활성가스(g2)를 공급하여 상기 잔존 연료가스가 상기 배기라인을 통하여 선외로 배출되기 위한 압력을 공급함으로써, 상기 잔존 연료가스를 상기 불활성가스(g2)로 치환하여 배출하는 퍼징 단계; 를 포함한다.k
상기 배기 단계에서는, 상기 배기라인 상에서 분기되어 가스공급부로 연결되는 연료가스 배출라인만 개방하여 상기 엔진 및 상기 가스밸브유닛 내부에 잔류하는 연료가스를 상기 배기라인 및 상기 연료가스 배출라인을 통해 상기 가스공급부로 이송하고, 상기 퍼징 단계에서는, 상기 배기라인에서 불활성가스 배출라인으로 통하는 배관만 개방하고, 상기 배기라인 상에 설치된 불활성가스 분리기에 의하여 상기 엔진 및 상기 가스밸브유닛으로부터 배출되는 연료가스와 불활성가스의 혼합가스를 각각 분리한 후, 분리된 연료가스는 분기라인을 통해 상기 연료가스 배출라인으로 합류시켜 상기 가스공급부로 이송하고, 분리된 불활성가스는 상기 불활성가스 배출라인을 통해 불활성가스 공급부로 이송한다.
상기 가스 배출 시스템은, 상기 불활성가스 배출라인 상에 설치되어 가스가 이송되는 압력을 제공하는 제1 이젝터; 및 상기 연료가스 배출라인 상에 설치되어 가스가 이송되는 압력을 제공하는 제2 이젝터; 를 포함하고, 상기 배기 단계에서는, 상기 제2 이젝터를 가동하고, 상기 퍼징 단계에서는, 상기 제1 이젝터 및 상기 제2 이젝터를 모두 가동한다.
본 발명에 따른 가스 배출 시스템은, 배기라인을 엔진룸 후단부의 공간으로 연장하여 가스를 선미 측에서 바로 배출하도록 구성함으로써, 배기라인을 벤트 마스트까지 연장할 필요가 없고, 따라서 종래에 비하여 배기라인의 길이를 대폭 단축할 수 있다.
또한, 배기라인 상에 설치되는 이젝터에 의하여 높은 배출 압력을 형성함으로써 연료가스가 배기라인을 통하여 더욱 신속하게 배출할 수 있고, 진공을 발생시키기 때문에 엔진 및 가스밸브유닛에 잔류하는 연료가스를 보다 완벽하게 제거할 수 있으며, 배기라인에서 역 구배가 형성 되더라도 충분한 압력으로 가스를 밀어낼 수 있기 때문에 문제가 되지 않는다.
또한, 배기라인을 통해 배출되는 잔존 연료가스는 불활성가스와 혼합되면서 충분한 압력을 가지게 되어, 선미 측에서 해수로 배출하는 것도 가능해진다.
또한, 본 발명의 일 실시예에 의하면, 가스 배출 시스템을 통해 배출되는 연료가스를 선외로 배출하지 않고, 재활용 할 수 있다는 효과도 있다.
도 1은 종래의 DF 엔진 가스 배출 시스템을 구비한 선박을 도시한 도면이다.
도 2는 본 발명의 제1 실시예에 따른 가스 배출 시스템을 설명하기 위한 도면이다.
도 3은 본 발명의 제2 실시예에 따른 가스 배출 시스템을 설명하기 위한 도면이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시 예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 설명하기로 한다. 또한, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
본 발명에 따른 가스 배출 시스템은, 천연가스를 연료로 사용하는 엔진을 탑재하는 선박에 적용될 수 있으며, 예를 들어 LNG를 추진 연료로 사용하는 LNGC(LNG Carrier)에 적용될 수 있다.
도 2는 본 발명의 제1 실시예에 따른 가스 배출 시스템을 설명하기 위한 도면이다.
도 2를 참조하면, 본 발명의 제1 실시예에 따른 가스 배출 시스템은, 엔진(10)이 배치되는 엔진룸(100); 엔진룸(100)의 선미 측 후방에 위치하며 내부에 가스밸브유닛(GVU, 20)이 배치되는 가스밸브유닛룸(200); 엔진(10) 및 가스밸브유닛(20)의 잔존 연료가스를 배출하는 배기라인(30); 및 배기라인(30) 상에 설치되는 이젝터(40);를 포함하며, 배기라인(30)은 엔진(10) 및 가스밸브유닛(20)으로부터 엔진룸(100)의 선미 측 후단부의 공간으로 연장되어, 잔존 연료가스를 선미 측에서 해수 또는 선체의 측면의 안전한 구역으로 배출한다.
엔진룸(100) 내에 배치되는 엔진(10)은 이종 연료를 사용하는 DF 엔진(Duel Fuel Engine)일 수 있다. 하지만, 엔진(10)의 종류가 한정되는 것은 아니며, 본 발명은 ME-GI 엔진, X-DF 엔진 등 천연가스를 연료로 사용하는 엔진에 모두 적용이 가능하다.
가스밸브유닛(20)은 증발가스 또는 천연가스를 엔진(10)으로 공급하기 위한 연료공급라인 상에 설치되어, 엔진(10)으로 공급되는 증발가스 또는 천연가스의 유량을 제어하며, 엔진룸(100)과 별도로 마련된 가스밸브유닛룸(200) 내부에 배치된다.
가스밸브유닛룸(200)은 엔진룸(100)의 선미 측 후방에 위치하며, 엔진룸(100)과는 격리되도록 구성된다. 또한, 가스밸브유닛룸(200)에는 항시 배기(Ventilation)가 가능하도록 배기팬(210)이 설치될 수 있다.
배기라인(30)은 엔진(10) 또는 가스밸브유닛(20)으로부터 엔진룸(100)의 선미 측 후단부의 공간으로 연장되어, 엔진(10) 및 가스밸브유닛(20)에 잔류하는 연료가스를 선미 측에서 해수 또는 선체의 측면의 안전한 구역으로 배출한다.
배기라인(30)을 엔진룸(100)의 선미 측 후단부의 공간으로 연장하여 가스를 선미 측으로 바로 배출하도록 구성하면, 종래에 비하여 배기라인(30)의 길이를 대폭 축소할 수 있다. 종래와 같이 배기라인을 벤트 마스트까지 연장할 필요가 없기 때문이다.
배기라인(30)은 엔진(10)의 잔존 가스를 배출하는 제1 배기라인(31); 가스밸브유닛(20)의 잔존 가스를 배출하는 제2 배기라인(32); 및 제1 배기라인(31)과 제2 배기라인(32)이 합류되는 제3 배기라인(33)을 포함할 수 있다.
제1 배기라인(31)을 통하여 배출되는 엔진(10)의 잔존 가스는, 제2 배기라인(32)을 통하여 배출되는 가스밸브유닛(20)의 잔존 가스와 합류되어, 제3 배기라인(33)을 따라 선외로 배출된다.
제1 배기라인(31) 상에는 제1 배기라인(31)을 개폐하는 제1 배기밸브(11)가, 제2 배기라인(32) 상에는 제2 배기라인(32)을 개폐하는 제2 배기밸브(21)가 설치될 수 있다.
제1 배기밸브(11) 및 제2 배기밸브(21)는 제어부(60)에 의해 각각 엔진(10)과 가스밸브유닛(20)에 잔류하는 연료가스를 배출시키도록 개폐가 제어될 수 있다.
한편, 본 발명과 같이 배기라인(30)의 길이를 종래에 비해 단축시키기 위해서는, 엔진(10) 및 가스밸브유닛(20)의 잔존 연료가스가 엔진룸(100)의 근처에서 배출되도록 해야 하기 때문에, 배기라인(30)을 통해 배출되는 잔존 연료가스의 폭발 위험성을 제거하여 안정성을 확보하는 것이 필수 전제되어야 한다.
본 발명의 제1 실시예는 배기라인(30)을 통해 배출되는 잔존 연료가스의 폭발 위험성을 제거하기 위하여, 배기라인(30) 상에 설치되는 이젝터(Ejector, 40)를 포함할 수 있다.
이젝터(40)는 바람직하게는, 제1 및 제2 배기라인(31, 32)이 통합되는 라인인 제3 배기라인(33)상에 설치될 수 있다.
본 발명에서는 공지된 이젝터(40)를 적용하므로, 이젝터(40)의 구성 및 작용에 대한 설명은 간략히 하거나 생략하고 본 발명과 관련된 부분들을 중심으로 설명한다.
이젝터(40)는 벤트리 효과를 이용하는 펌프의 일종으로서, 고압의 구동 유체(Driving fluid)가 지닌 압력 에너지를 이용하여 진공을 발생시키고, 높은 배출 압력으로 흡입 유체(Inlet fluid)를 용이하게 배출할 수 있도록 하는 것이다.
본 발명에서는 구동가스 공급라인(41)을 통해 이젝터(40)로 공급되는 구동가스가 구동 유체(Driving fluid)로 작용하고, 배기라인(30)을 통해 배출되는 가스가 흡입 유체(Inlet fluid)의 역할을 한다.
본 발명에서, 구동가스로는 폭발성이 없는 불활성가스(g1)를 이용하는 것이 바람직하며, 특히 LNGC 선박에서 필수로 생성되는 질소(N2)가스를 이용하는 것이 바람직하다.
이젝터(40)의 일측에는 구동가스를 이젝터(40)로 공급하는 구동가스 공급라인(41)이 연결될 수 있으며, 구동가스 공급라인(41) 상에는 구동가스의 공급을 제어할 수 있도록 구동가스 제어밸브(42)가 설치될 수 있다.
구동가스 제어밸브(42)가 개방되어 불활성가스(g1)가 구동가스 공급라인(41)을 통해 이젝터(40)로 공급되면, 이젝터(40)가 작동하게 되고, 이젝터(40)를 통해 불활성가스(g1)가 배기라인(30)으로 공급된다.
따라서, 엔진(10) 및 가스밸브유닛(20)으로부터 배출되는 잔존 연료가스는, 이젝터(40)에 의해 공급된 다량의 불활성가스(g1)와 혼합되어 더이상 폭발성을 띠지 않는 상태가 되고, 이에 따라 잔존 연로가스와 불활성가스(g1)의 혼합 가스를 벤트 마스트까지 보낼 필요 없이 엔진룸(100)의 근처에서 배기라인(30)을 통해 배출할 수 있다.
또한, 배기라인(30)을 통해 배출되는 잔존 연료가스는 불활성가스(g1)와 혼합되면서 충분한 압력을 가지게 되어, 선미 측에서 해수로 배출하는 것도 가능해진다.
이젝터(40)는 배기라인(30)에 불활성가스(g1)를 공급하는 역할뿐만 아니라, 이젝터 효과(Ejector effect)로 배출 압력을 형성함으로써 연료가스가 배기라인(30)을 통하여 더욱 신속하게 배출되도록 도우며, 진공을 발생시키기 때문에 엔진(10) 및 가스밸브유닛(20)에 잔류하는 연료가스를 보다 완벽하게 제거할 수 있게 한다.
이젝터(40)는 전기적인 성향이 없으므로 유지, 보수가 거의 불필요하기 때문에 본 발명에 따른 가스 배출 시스템에 적용함에 있어 안정성이 매우 뛰어나다.
한편, 본 발명의 제1 실시예에 따른 가스 배출 시스템은, 엔진(10) 및 가스밸브유닛(20)에 잔류하는 연료가스를 배기라인(30)을 통하여 배출한 이후에, 엔진(10) 및 가스밸브유닛(20)의 잔존 연료가스를 보다 완벽하게 제거하기 위하여, 퍼징(Purging)을 수행할 수 있다.
본 발명의 제1 실시예에 따른 가스 배출 시스템은, 엔진(10)의 일측에 연결되어 엔진(10)으로 퍼징가스를 공급하는 제1 퍼징라인(51);과 가스밸브유닛(20)의 일측에 연결되어 가스밸브유닛(20)으로 퍼징가스를 공급하는 제2 퍼징라인(52);을 더 포함할 수 있다.
본 발명에서, 퍼징가스는 구동가스와 마찬가지로 질소(N2) 가스와 같이 폭발성이 없는 불활성가스(g2)를 이용하는 것이 바람직하다. 이젝터(40)의 구동가스로 사용되는 불활성가스(g1)과 퍼징가스로 사용되는 불활성가스(g2)는 동일한 질소(N2) 가스일 수 있으며, 선박 내에 설치된 질소(N2) 가스 생성기(미도시)로부터 공급될 수 있다.
퍼징시, 제1 퍼징라인(51)과 제2 퍼징라인(52)을 통하여 각각 엔진(10)과 가스밸브유닛(20)에 불활성가스(g2)가 공급되어, 잔존하는 연료가스는 불활성가스(g2)에 밀려 배기라인(30)을 통해 배출된다.
제1 및 제2 퍼징라인(51, 52)을 통해 각각 엔진(10)과 가스밸브유닛(20)에 불활성가스(g2)를 공급하는 것은, 연료가스의 선외 배출을 위한 추가적인 압력을 공급하기 위함이다.
한편, 퍼징시에도 이젝터(40)를 작동시킬 수 있으며, 이젝터(40)에 의하여 배출 압력을 형성함으로써 퍼징을 더욱 신속하게 수행할 수 있으며, 이젝터(40)에 의해 진공을 형성함으로써, 제1 및 제2 퍼징라인(51, 52)을 통해 엔진(10) 및 가스밸브유닛(20)에 공급된 불활성가스(g2)도 배기라인(30)을 통해 모두 선외로 배출할 수 있다.
본 발명의 제1 실시예에 따른 가스 배출 시스템은 제어부(60)를 더 포함할 수 있다. 제어부(60)는 엔진(10)의 가스 공급에 문제가 생기는 경우, 엔진(10)과 가스밸브유닛(20)의 잔존 연료가스가 배출되도록 제어한다.
따라서, 제어부는 제1 배기밸브(11) 및 제2 배기밸브(21)의 개폐, 구동가스 제어밸브(42)의 개폐를 통한 이젝터(40)의 작동, 및 제1 및 제2 퍼징라인(51, 52)을 통한 엔진(10) 및 가스밸브유닛(20)으로의 불활성가스(g2) 공급 등의 제어에 관여한다.
계속 도 2를 참조하여, 본 발명의 제1 실시예에 따른 선박용 가스 배출 방법을 설명한다.
엔진(10)이 트립(Trip)되는 현상 등, 엔진(10)의 가스 공급에 문제가 생기거나 또는 엔진(10)을 장시간 운전하지 않거나 시스템 내부를 정비하고자 할 때, 엔진(10)과 가스밸브유닛(20)에 잔류하는 연료가스를 배출해야 하는데, 가스를 배출하는 과정은 크게 배기(Blow-off)단계와 퍼징(Purging)단계, 두 단계로 나눌 수 있다.
배기(Blow-off)단계는 엔진(10)과 가스밸브유닛(20)에 잔류하는 연료가스를 대기압으로 그대로 방출하는 것이다.
배기단계에 의하면, 제1 배기밸브(11) 및 제2 배기밸브(21)를 열어, 엔진(10)과 가스밸브유닛(20)에 잔류하는 연료가스를 배기라인(30)을 따라 선외로 배출한다. 제1 및 제2 배기밸브(11, 21)는 제어부(60)에 의해 열릴 수 있다.
배기단계에서, 이젝터(40)를 작동하여 연료가스의 배출을 도울 수도 있다. 구동가스 제어밸브(42)를 열어 이젝터(40)를 작동시키면, 구동가스 공급라인(41)으로부터 배기라인(30)으로 불활성가스(g1)가 공급되고, 배기라인(30)을 따라 배출되는 연료가스는 다량의 불활성가스(g1)와 혼합되어 폭발성이 제거된 상태로 선외로 배출될 수 있다.
배기단계는 시간 지연(Time-delay) 방식으로 수행될 수 있는데, 일례로 제1 및 제2 배기밸브(11, 21)가 열림으로써 배기라인(30)을 통한 가스의 배출이 개시되고, 설정된 t 시간 후에 제1 및 제2 배기밸브(11, 21)가 자동으로 닫히도록 제어될 수 있다.
퍼징(Purging)단계는 엔진(10)과 가스밸브유닛(20)에 잔류하는 잔존 가스를 불활성가스로 치환하여 더욱 확실하게 제거하고자 하는 것이다.
퍼징단계에 의하면, 제1 및 제2 퍼징라인(51, 52)를 통하여 엔진(10)과 가스밸브유닛(20)에 각각 불활성가스(g2)를 공급할 수 있다.
제1 및 제2 퍼징라인(51, 52)을 통하여 각각 엔진(10)과 가스밸브유닛(20)에 공급되는 불활성가스(g2)는, 엔진(10)과 가스밸브유닛(20)의 잔존 연료가스를 선외로 배출하기 위한 추가적인 압력을 공급함으로써, 잔류 연료가스를 모두 배출라인(30)을 통해 밀어내고, 확실하게 퍼징시킨다.
퍼징단계에서도 이젝터(40)를 작동하여 배출 압력을 형성함으로써, 퍼징을 더욱 신속하게 수행할 수 있다.
엔진(10) 및 가스밸브유닛(20)의 잔존 연료가스가 모두 배출되면, 기존의 잔존 연료가스는 모두 불활성가스(g2)로 치환된 상태가 되며, 제1 및 제2 퍼징라인(51, 52)을 통하여 엔진(10) 및 가스밸브유닛(20)으로 불활성가스(g2)를 공급하는 것을 중단한다.
따라서, 엔진(10)과 가스밸브유닛(20) 내에는 치환된 불활성가스(g2)가 존재하는 상태가 되며, 이렇게 엔진(10) 및 가스밸브유닛(20) 내에 존재하는 불활성가스(g2)는 상기 배기단계와 마찬가지로, 이젝터(40)가 형성하는 배출압력에 의하여 선외로 배출될 수 있으며, 퍼징단계가 완료된다.
퍼징단계는 배기단계와 마찬가지로 시간 지연(Time-delay) 방식으로 수행되거나, 또는 엔진(10) 또는 가스밸브유닛(20)에 가스 검출기(미도시)를 설치하여, 잔존 연료가스가 검출되지 않을 때까지 수행될 수도 있다.
이젝터(40)는 가스의 배출 압력을 형성하는 모든 과정에 사용될 수 있으며, 배기단계에서부터 퍼징단계가 완료될 때까지 작동 상태를 계속 유지할 수도 있다.
도 3은 본 발명의 제2 실시예에 따른 가스 배출 시스템을 설명하기 위한 도면이다.
도 3에 도시된, 제2 실시예에 따른 가스 배출 시스템은, 도 2에 도시된 제1 실시예에 따른 가스 배출 시스템과 가스 배출을 위한 구성은 동일하고, 배출가스를 재활용하는 구성이 더 추가된 것이다.
따라서, 이하에서는 제1 실시예에 따른 가스 배출 시스템에서 더 추가된 구성을 위주로 설명하고, 전술한 제1 실시예에 따른 가스 배출 시스템과 동일한 부재에 대한 자세한 설명은 생략한다.
또한, 설명의 편의를 위하여, 제1 실시예의 이젝터(40)는 제2 실시예에서는 제1 이젝터(40)라 한다.
도 3을 참조하면, 본 발명의 제2 실시예에 따른 가스 배출 시스템은, 제1 실시예의 구성요소를 모두 포함하며, 추가적으로 배기라인(30)에서 분기되어 가스공급부(300)로 연결되는 연료가스 배출라인(310); 및 배기라인(30)에서 연료가스 배출라인(310)이 분기되는 분기점에 설치되는 삼방밸브(320);를 더 포함한다.
또한, 본 발명의 제2 실시예에 따른 가스 배출 시스템은, 삼방밸브(320) 후단의 배기라인(30) 상에 설치되어 연료가스와 불활성가스의 혼합가스에서 연료가스와 불활성가스를 각각 분리하는 불활성가스 분리기(410); 불활성가스 분리기(410)에서 분리된 불활성가스를 배출하는 불활성가스 배출라인(420); 불활성가스 분리기(410)에서 분리된 연료가스를 연료가스 배출라인(310)으로 합류시키는 분기라인(430); 불활성가스 배출라인(420)을 통해 배출되는 불활성가스를 저장하는 불활성가스 공급부(400);를 더 포함한다.
가스공급부(300)는 엔진(10)에 연료가스를 공급한다. 연료가스는 가스공급라인(330)을 통해, 가스공급부(300)로부터 가스밸브유닛(20)을 거쳐 엔진(10)으로 공급된다.
연료가스 배출라인(310)은 배기라인(30) 상에서 분기되어 가스공급부(300)로 연결된다. 연료가스 배출라인(310) 상에는 제2 이젝터(311)가 설치되어 배기라인(30) 및 연료가스 배출라인(310) 내부의 가스가 가스공급부(300)로 이송되는 압력을 제공할 수 있다.
제2 이젝터(311)는 제1 실시예에서 설명한 이젝터의 원리를 이용하여, 배관을 통해 가스를 이송하는 압력을 제공한다.
제2 이젝터(311)를 구동하기 위한 구동가스는 가스공급부(300)에서 엔진(10)으로 연료가스를 공급하는 가스공급라인(330) 상에서 분기되는 구동가스라인(331)을 통해 공급받을 수 있다.
연료가스 배출라인(310) 상에서 가스공급부(300)의 전단에는 공기분리기(312)가 설치될 수 있다. 초기에 방출되는 잔존 연료가스는 가스공급부(300)로 이송되는 과정에서 배관 내의 공기 등이 섞일 수 있기 때문에, 공기분리기(312)에 의해 공기를 제거한 후 가스공급부(300)로 보내진다.
삼방밸브(320)는 배기라인(30)에서 연료가스 배출라인(310)이 분기되는 분기점에 설치된다. 엔진(10) 및 가스밸브유닛(20)으로부터 이송된 가스는, 삼방밸브(320)에 의해, 연료가스 배출라인(310)으로 보내질 것인지, 불활성가스 분리기(410) 측으로 보내질 것인지 결정될 수 있다. 삼방밸브(320)의 제어는 제어부(60)에 의해 이루어질 수 있다.
불활성가스 분리기(410)는 삼방밸브(320) 후단의 배기라인(30) 상에 설치된다. 불활성가스 분리기(410)는 연료가스와 불활성가스의 혼합가스에서 연료가스와 불활성가스를 각각 분리하여, 분리된 불활성가스는 불활성가스 배출라인(420)을 통해 배출하고, 분리된 연료가스는 분기라인(430)을 통해 연료가스 배출라인(310)으로 합류시켜 가스공급부(300)로 이송한다.
불활성가스 분리기(410)로는 멤브레인 필터, 사이클론(Cyclone), 가스 원심분리기(Gas centrifuge), 또는 보텍스 튜브(Vortex tube) 중 어느 하나를 이용한 것일 수 있다.
불활성가스 배출라인(420) 상에는 제1 이젝터(40)가 설치되어 배기라인(30) 및 불활성가스 배출라인(420) 내부의 가스가 불활성가스 공급부(400)로 이송되는 압력을 제공할 수 있다.
제1 이젝터(40)는 제1 실시예에서 설명한 이젝터의 원리를 이용하여, 배관을 통해 가스를 이송하는 압력을 제공한다.
불활성가스 공급부(400)는 불활성가스 배출라인(420)을 통해 배출되는 불활성가스를 저장한다. 불활성가스 공급부(400)에 저장된 불활성가스는 제1 이젝터(40)의 구동가스(g1)로 사용되거나, 엔진(10) 및 가스밸브유닛(20)으로 공급되는 퍼징가스(g2)로 사용되거나, 또는 선박 내 수요처에서 사용될 수 있다.
즉, 본 발명의 제2 실시예에 의하면, 엔진(10) 및 가스밸브유닛(20) 내부의 잔존 연료가스는 연료가스 배출라인(310)을 통해 가스공급부(300)로 이송하여 저장함으로써 재활용하고, 엔진(10) 및 가스밸브유닛(20) 내부의 잔존 연료가스를 퍼징시키기 위해 사용되는 불활성가스는 불활성가스 분리기(410)에 의해 연료가스와 분리시킨 후, 불활성가스 공급부(400)로 이송하여 저장함으로써 재활용이 가능한 것이다.
계속 도 3을 참조하여, 본 발명의 제2 실시예에 따른 배출가스의 재활용 방법을 설명한다.
본 발명의 제2 실시예에 따른 가스 배출 시스템은, 제1 실시예와 동일한 방법으로 엔진(10)과 가스밸브유닛(20)의 잔존 연료가스를 배출한다.
다만, 제2 실시예는 잔존 연료가스를 배기라인(30)을 통해 선외로 배출하는 것이 아니라, 제2 실시예에서 더 추가된 구성들을 이용하여 배출가스를 재활용 하는 것이다.
본 발명의 제2 실시예에 따른 배출가스의 재활용 방법은, 배기(Blow-off)단계와 퍼징(Purging)단계에 따라 각각 달라질 수 있다.
배기(Blow-off)단계에 의하면, 제1 배기밸브(11) 및 제2 배기밸브(21)를 열어, 엔진(10)과 가스밸브유닛(20)에 잔류하는 연료가스를 배출하기 때문에, 배기라인(30)을 통해 이송되는 가스는 연료가스 뿐이다.
이때, 삼방밸브(320)에 의해 배기라인(30)에서 불활성가스 분리기(410) 측으로 연결된 배관은 닫히고, 연료가스 배출라인(310)으로 연결된 배관만 열린다. 따라서, 엔진(10) 및 가스밸브유닛(20)에 잔존하는 연료가스는 모두 배기라인(30)으로부터 연료가스 배출라인(310)으로 이송된다.
이때, 연료가스 배출라인(310) 상에 설치된 제2 이젝터(311)를 구동하여 진공을 발생시킴으로써, 엔진(10)과 가스밸브유닛(20)에 잔류하는 연료가스가 배기라인(30) 및 연료가스 배출라인(30)을 통해 용이하게 가스공급부(300)로 이송될 수 있도록 압력이 제공될 수 있다.
연료가스 배출라인(310)을 통해 가스공급부(300)로 이송되는 연료가스는, 가스공급부(300) 전단에 설치된 공기분리기(312)에 의해 공기가 확실히 제거된 후, 가스공급부(300)에 저장될 수 있다.
퍼징(Purging)단계에 의하면, 엔진(10)과 가스밸브유닛(20)에 잔류하는 연료가스를 불활성가스로 치환하여 제거하므로, 엔진(10) 및 가스밸브유닛(20)로부터 배출되는 연료가스와 불활성가스의 혼합가스가 배기라인(30)을 통해 이송된다.
이때, 삼방밸브(320)에 의해 연료가스 배출라인(310)으로 연결된 배관은 닫히고, 불활성가스 분리기(410)로 연결된 배관은 열림으로써, 연료가스와 불활성가스의 혼합가스는 불활성가스 분리기(410) 측으로 이송된다.
상기 혼합가스는 불활성가스 분리기(410)에 의해 연료가스와 불활성가스로 각각 분리된 후, 분리된 불활성가스는 불활성가스 공급부(400) 측으로 이송되어 저장되고, 분리된 연료가스는 분기라인(430)을 통해 연료가스 배출라인(310)으로 합류하여 가스공급부(300)로 이송된다.
분기라인(430) 상에는 체크밸브(431)가 설치되어, 불활성가스 분리기(410)에 의해 분리된 연료가스가, 불활성가스 분리기(410)로부터 연료가스 배출라인(310)으로 향하는 방향으로만 흐르도록 할 수 있다.
연료가스 및 불활성가스는 각각 가스공급부(300) 및 불활성가스 공급부(400)로 이송되어 저장된 후, 재사용될 수 있다.
이때, 연료가스와 불활성가스가 배기라인(30)을 통해 이송되는 압력, 및 불활성가스가 불활성가스 배출라인(420)을 통해 이송되는 압력은 제1 이젝터(40)에 의해 제공될 수 있으며, 연료가스가 연료가스 배출라인(310)을 통해 이송되는 압력은 제2 이젝터(311)에 의해 제공될 수 있다.
이상에서는 본 발명의 특정 실시예를 중심으로 하여 설명하였지만, 본 발명의 취지 및 첨부된 특허청구범위 내에서 다양한 변형, 변경 또는 수정이 당해 기술 분야에 있을 수 있으며, 따라서 전술한 설명 및 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어야 한다.

Claims (19)

  1. 선박용 가스 배출 시스템에 있어서,
    천연가스를 연료로 사용하는 엔진;
    상기 엔진으로 공급되는 천연가스의 유량을 제어하는 가스밸브유닛(GVU);
    상기 엔진 및 상기 가스밸브유닛과 연결되어 상기 엔진 및 상기 가스밸브유닛 내부의 연료가스를 배출하는 배기라인; 및
    상기 배기라인 상에 설치되는 이젝터;를 포함하고,
    상기 배기라인은 엔진룸보다 선미 측에 위치하는 공간으로 연장되어, 상기 배기라인을 통해 배출되는 가스가 선미에서 해수 또는 대기중으로 배출되는 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  2. 청구항 1에 있어서,
    상기 가스밸브유닛이 배치되는 가스밸브유닛룸은, 상기 엔진이 배치되는 엔진룸과는 격리되어 상기 엔진룸보다 선미 측에 마련되는 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  3. 청구항 1에 있어서,
    상기 배기라인은,
    상기 엔진의 잔존 가스를 배출하는 제1 배기라인;
    상기 가스밸브유닛의 잔존 가스를 배출하는 제2 배기라인; 및
    상기 제1 배기라인과 상기 제2 배기라인이 합류되어, 상기 제1 배기라인 및 제2 배기라인으로부터 이송된 가스를 선외로 배출하는 제3 배기라인;을 포함하고,
    상기 이젝터는 상기 제3 배기라인 상에 설치되는 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  4. 청구항 1에 있어서,
    상기 이젝터의 일측에는 불활성가스(g1)를 상기 이젝터로 공급하는 구동가스 공급라인이 연결되고,
    상기 구동가스 공급라인을 통해 상기 이젝터로 공급되는 불활성가스(g1)는 상기 이젝터를 구동시키는 구동 유체의 역할을 하며, 상기 이젝터는 상기 배기라인을 통해 가스가 배출되는 압력을 형성하는 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  5. 청구항 4에 있어서,
    상기 엔진에는 상기 엔진으로 불활성가스(g2)를 공급하는 제1 퍼징라인이 연결되고,
    상기 가스밸브유닛에는 상기 가스밸브유닛으로 불활성가스(g2)를 공급하는 제2 퍼징라인이 연결되며,
    상기 제1 퍼징라인 및 상기 제2 퍼징라인을 통해 불활성가스(g2)를 각각 상기 엔진 및 상기 가스밸브유닛에 공급함으로써, 상기 이젝터에 의해 형성되는 압력 외에 상기 배기라인을 통해 가스가 배출되는 추가적인 압력을 공급하는 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  6. 청구항 5에 있어서,
    상기 이젝터로 공급되는 불활성가스(g1)와, 상기 엔진 및 상기 가스밸브유닛으로 공급되는 불활성가스(g2)는 질소(N2) 가스인 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  7. 선박의 가스 배출 방법에 있어서,
    엔진 및 가스밸브유닛과 연결된 배기라인을 개방하여 상기 엔진 및 상기 가스밸브유닛의 잔존 연료가스를 선외로 배출하는 배기 단계; 및
    상기 엔진 및 상기 가스밸브유닛으로 불활성가스(g2)를 공급하여 상기 잔존 연료가스가 상기 배기라인을 통하여 선외로 배출되기 위한 압력을 공급함으로써, 상기 잔존 연료가스를 상기 불활성가스(g2)로 치환하는 퍼징 단계;를 포함하고,
    상기 배기라인을 엔진룸보다 선미 측에 위치하는 공간으로 연장하여, 상기 배기라인을 통해 배출되는 가스가 선미에서 해수 또는 대기중으로 배출되도록 하는,
    선박의 가스 배출 방법.
  8. 청구항 7에 있어서,
    상기 배기 단계에서, 상기 배기라인 상에 설치된 이젝터를 구동하여, 상기 배기라인을 통해 상기 잔존 연료가스가 배출되기 위한 압력을 형성하는 것을 특징으로 하는,
    선박의 가스 배출 방법.
  9. 청구항 7에 있어서,
    상기 퍼징 단계에서, 상기 배기라인 상에 설치된 이젝터를 구동하여, 상기 배기라인을 통해 상기 잔존 연료가스와 불활성가스(g2)의 혼합가스 또는, 불활성가스(g2)가 배출되기 위한 압력을 형성하는 것을 특징으로 하는,
    선박의 가스 배출 방법.
  10. 선박용 가스 배출 시스템에 있어서,
    가스를 연료로 사용하는 엔진;
    엔진에 연료가스를 공급하는 가스공급부;
    상기 가스공급부에서 상기 엔진으로 연료가스를 공급하는 가스공급라인 상에 설치되어 상기 엔진으로 공급되는 연료가스의 유량을 제어하는 가스밸브유닛(GVU);
    상기 엔진 및 상기 가스밸브유닛과 연결되어 상기 엔진 및 상기 가스밸브유닛으로부터 가스를 배출하는 배기라인; 및
    상기 배기라인으로부터 분기되어 상기 가스공급부로 연결되며, 상기 엔진 및 상기 가스밸브유닛으로부터 배출되는 연료가스를 상기 가스공급부로 이송하는 연료가스 배출라인; 을 포함하고,
    상기 엔진 및 상기 가스밸브유닛 내부에 잔류하는 연료가스는 상기 배기라인 및 상기 연료가스 배출라인을 통해 상기 가스공급부로 이송되어 재활용 되는,
    선박용 가스 배출 시스템.
  11. 청구항 10에 있어서,
    상기 연료가스 배출라인 상에 설치되는 제2 이젝터; 를 더 포함하고,
    상기 엔진 또는 상기 가스밸브유닛 내부에 잔류하는 연료가스를 배출할 때, 상기 제2 이젝터를 가동하여, 연료가스가 상기 배기라인 및 상기 연료가스 배출라인을 통해 상기 가스공급부로 이송되는 압력을 제공하는,
    선박용 가스 배출 시스템.
  12. 청구항 10에 있어서,
    상기 배기라인에서 상기 연료가스 배출라인이 분기되는 분기점에 설치되어, 상기 배기라인 또는 상기 연료가스 배출라인 측으로 배관의 개폐를 선택적으로 제어하는 삼방밸브;
    상기 삼방밸브 후단의 배기라인 상에 설치되어 연료가스와 불활성가스의 혼합가스에서 연료가스와 불활성가스를 각각 분리하는 불활성가스 분리기;
    상기 불활성가스 분리기에서 분리된 연료가스를 상기 연료가스 배출라인 측으로 합류시키는 분기라인;
    상기 불활성가스 분리기에서 분리된 불활성가스를 배출하는 불활성가스 배출라인; 및
    상기 불활성가스 배출라인을 통해 배출되는 불활성가스를 저장하는 불활성가스 공급부; 를 더 포함하는,
    선박용 가스 배출 시스템.
  13. 청구항 12에 있어서,
    상기 불활성가스 배출라인 상에 설치되는 제1 이젝터; 를 더 포함하고,
    상기 엔진 또는 상기 가스밸브유닛 내부에 잔류하는 연료가스를 불활성가스로 퍼징(Purging)하여 배출할 때, 상기 삼방밸브에 의해 상기 배기라인으로부터 상기 불활성가스 배출라인으로 통하는 배관만 열고, 상기 제1 이젝터를 가동하여, 연료가스와 불활성가스의 혼합가스가 배기라인을 통해 상기 불활성가스 분리기로 이송되는 압력, 및 상기 불활성가스 분리기에 의해 분리된 불활성가스가 상기 불활성가스 배출라인을 통해 상기 불활성가스 공급부로 이송되는 압력을 제공하는,
    선박용 가스 배출 시스템.
  14. 청구항 13에 있어서,
    상기 연료가스 배출라인 상에 설치되는 제2 이젝터; 를 더 포함하고,
    상기 불활성가스 분리기에 의해 분리된 연료가스가, 상기 분기라인 및 연료가스 배출라인을 통해 상기 가스공급부로 이송되는 압력을 제공하는,
    선박용 가스 배출 시스템.
  15. 청구항 14에 있어서,
    상기 제1 이젝터를 구동하기 위한 구동가스(g1)는 상기 불활성가스 공급부로부터 공급받고,
    상기 제2 이젝터를 구동하기 위한 구동가스는 상기 가스공급부에서 상기 엔진으로 연료가스를 공급하는 가스공급라인 상에서 분기되는 구동가스라인을 통해 공급받는,
    선박용 가스 배출 시스템.
  16. 청구항 13에 있어서,
    상기 엔진에는 상기 엔진으로 불활성가스(g2)를 공급하는 제1 퍼징라인이 연결되고,
    상기 가스밸브유닛에는 상기 가스밸브유닛으로 불활성가스(g2)를 공급하는 제2 퍼징라인이 연결되며,
    상기 엔진 또는 상기 가스밸브유닛의 잔존 연료가스를 불활성가스로 퍼징하여 배출할 때, 상기 제1 퍼징라인 및 상기 제2 퍼징라인을 통해 불활성가스(g2)를 각각 상기 엔진 및 상기 가스밸브유닛에 공급함으로써, 상기 제1 이젝터에 의해 형성되는 압력 외에 가스가 배출되는 추가적인 압력을 공급하는 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  17. 청구항 16에 있어서,
    상기 이젝터로 공급되는 불활성가스(g1)와, 상기 엔진 및 상기 가스밸브유닛으로 공급되는 불활성가스(g2)는 질소(N2) 가스인 것을 특징으로 하는,
    선박용 가스 배출 시스템.
  18. 선박용 가스 배출 시스템의 배출가스 재활용 방법에 있어서,
    엔진 및 가스밸브유닛과 연결된 배기라인을 개방하여 상기 엔진 및 상기 가스밸브유닛의 내부에 잔류하는 연료가스를 방출하는 배기 단계; 및
    상기 엔진 및 상기 가스밸브유닛으로 불활성가스(g2)를 공급하여 상기 잔존 연료가스가 상기 배기라인을 통하여 선외로 배출되기 위한 압력을 공급함으로써, 상기 잔존 연료가스를 상기 불활성가스(g2)로 치환하여 배출하는 퍼징 단계; 를 포함하고,
    상기 배기 단계에서는, 상기 배기라인 상에서 분기되어 가스공급부로 연결되는 연료가스 배출라인만 개방하여 상기 엔진 및 상기 가스밸브유닛 내부에 잔류하는 연료가스를 상기 배기라인 및 상기 연료가스 배출라인을 통해 상기 가스공급부로 이송하고,
    상기 퍼징 단계에서는, 상기 배기라인에서 불활성가스 배출라인으로 통하는 배관만 개방하고, 상기 배기라인 상에 설치된 불활성가스 분리기에 의하여 상기 엔진 및 상기 가스밸브유닛으로부터 배출되는 연료가스와 불활성가스의 혼합가스를 각각 분리한 후, 분리된 연료가스는 분기라인을 통해 상기 연료가스 배출라인으로 합류시켜 상기 가스공급부로 이송하고, 분리된 불활성가스는 상기 불활성가스 배출라인을 통해 불활성가스 공급부로 이송하는,
    선박용 가스 배출 시스템의 배출가스 재활용 방법.
  19. 청구항 18에 있어서,
    상기 가스 배출 시스템은,
    상기 불활성가스 배출라인 상에 설치되어 가스가 이송되는 압력을 제공하는 제1 이젝터; 및
    상기 연료가스 배출라인 상에 설치되어 가스가 이송되는 압력을 제공하는 제2 이젝터; 를 포함하고,
    상기 배기 단계에서는, 상기 제2 이젝터를 가동하고,
    상기 퍼징 단계에서는, 상기 제1 이젝터 및 상기 제2 이젝터를 모두 가동하는,
    선박용 가스 배출 시스템의 배출가스 재활용 방법.
PCT/KR2017/011372 2017-03-24 2017-10-16 선박용 가스 배출 시스템과 가스 배출 방법 및 배출가스의 재활용 방법 WO2018174359A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019551290A JP7057372B2 (ja) 2017-03-24 2017-10-16 船舶用のガス排出システム及びガス排出方法、並びに排出ガスのリサイクル方法
SG11201908597R SG11201908597RA (en) 2017-03-24 2017-10-16 Gas discharging system for vessel, method for discharging gas, and method for recycling discharged gas
CN201780088898.4A CN110461706B (zh) 2017-03-24 2017-10-16 船舶用气体排出系统、气体排出方法及排出气体回收方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170037430A KR101876977B1 (ko) 2017-03-24 2017-03-24 선박용 가스 배출 시스템 및 가스 배출 방법
KR10-2017-0037430 2017-03-24
KR10-2017-0057216 2017-05-08
KR1020170057216A KR101908564B1 (ko) 2017-05-08 2017-05-08 가스 배출 시스템을 포함하는 선박 및 배출가스의 재활용 방법

Publications (1)

Publication Number Publication Date
WO2018174359A1 true WO2018174359A1 (ko) 2018-09-27

Family

ID=63585493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011372 WO2018174359A1 (ko) 2017-03-24 2017-10-16 선박용 가스 배출 시스템과 가스 배출 방법 및 배출가스의 재활용 방법

Country Status (4)

Country Link
JP (1) JP7057372B2 (ko)
CN (1) CN110461706B (ko)
SG (1) SG11201908597RA (ko)
WO (1) WO2018174359A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020116222B4 (de) * 2020-06-19 2022-09-29 Man Energy Solutions Se Gasversorgungssystem für einen Gasmotor oder Dual-Fuel-Motor und Verfahren zum Betreiben desselben
CN114017209B (zh) * 2021-11-02 2024-02-02 上海中船三井造船柴油机有限公司 船用双燃料主机燃气管路内燃气的吹扫方法
CN114110422B (zh) * 2022-01-25 2022-04-12 中海油能源发展股份有限公司采油服务分公司 一种lng船调试船及调试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081933A (ja) * 2002-08-23 2004-03-18 Mitsubishi Heavy Ind Ltd 排水処理装置
KR20130107150A (ko) * 2012-03-21 2013-10-01 대우조선해양 주식회사 선박용 배기가스 배출 시스템 및 방법
KR101459962B1 (ko) * 2013-10-31 2014-11-07 현대중공업 주식회사 액화가스 처리 시스템
KR20150088526A (ko) * 2014-01-24 2015-08-03 삼성중공업 주식회사 선박의 가스 배출장치
KR20150102231A (ko) * 2014-02-28 2015-09-07 대우조선해양 주식회사 선박 및 선박의 배치 구조
KR20160074910A (ko) * 2014-12-19 2016-06-29 삼성중공업 주식회사 연료공급시스템

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61229966A (ja) * 1985-04-04 1986-10-14 Mitsui Eng & Shipbuild Co Ltd 燃料ガス配管内の燃料ガスパ−ジ方法
KR101043289B1 (ko) 2009-05-13 2011-06-22 삼성중공업 주식회사 이중연료 엔진의 크랭크 케이스 정화 장치
JP6184822B2 (ja) * 2013-09-26 2017-08-23 泉鋼業株式会社 船舶用ガス供給装置
KR20150063261A (ko) * 2013-11-29 2015-06-09 삼성중공업 주식회사 연료가스 공급 시스템 및 이를 구비한 선박
KR20150102238A (ko) * 2014-02-28 2015-09-07 대우조선해양 주식회사 선박 및 선박의 배치 구조
KR20150004087U (ko) * 2014-04-30 2015-11-09 대우조선해양 주식회사 선박의 연료가스공급시스템
JP6248002B2 (ja) * 2014-06-16 2017-12-13 旭海運 株式会社 ばら積み船の窒素ガス供給設備
DK178668B1 (en) 2015-02-10 2016-10-24 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A fuel gas supply system for an internal combustion engine
EP3098430B1 (en) 2015-05-28 2019-09-04 Caterpillar Motoren GmbH & Co. KG Vessel gas system with double-walled gas valve unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004081933A (ja) * 2002-08-23 2004-03-18 Mitsubishi Heavy Ind Ltd 排水処理装置
KR20130107150A (ko) * 2012-03-21 2013-10-01 대우조선해양 주식회사 선박용 배기가스 배출 시스템 및 방법
KR101459962B1 (ko) * 2013-10-31 2014-11-07 현대중공업 주식회사 액화가스 처리 시스템
KR20150088526A (ko) * 2014-01-24 2015-08-03 삼성중공업 주식회사 선박의 가스 배출장치
KR20150102231A (ko) * 2014-02-28 2015-09-07 대우조선해양 주식회사 선박 및 선박의 배치 구조
KR20160074910A (ko) * 2014-12-19 2016-06-29 삼성중공업 주식회사 연료공급시스템

Also Published As

Publication number Publication date
CN110461706A (zh) 2019-11-15
CN110461706B (zh) 2022-11-22
SG11201908597RA (en) 2019-10-30
JP7057372B2 (ja) 2022-04-19
JP2020511355A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
KR101908564B1 (ko) 가스 배출 시스템을 포함하는 선박 및 배출가스의 재활용 방법
WO2018174359A1 (ko) 선박용 가스 배출 시스템과 가스 배출 방법 및 배출가스의 재활용 방법
KR101876977B1 (ko) 선박용 가스 배출 시스템 및 가스 배출 방법
WO2018124732A1 (ko) 가스연료 추진 컨테이너 운반선
WO2014209029A1 (ko) 선박의 증발가스 처리 시스템 및 방법
JP4989078B2 (ja) 液化ガスタンカー船または液化ガスターミナルに設置されるガス焼却炉
WO2011046313A2 (ko) 가스연료용 연료탱크를 가지는 부유식 구조물
WO2011046412A2 (ko) 연료가스 주 추진 엔진과 연료가스 발전 엔진을 선택적으로 구동하는 선박
WO2018124733A1 (ko) 가스연료 추진 컨테이너 운반선
US10655852B2 (en) Ship having plurality of fuel lines
WO2015167214A1 (ko) 선박의 연료가스공급시스템
WO2019066090A1 (ko) 가스 공급용 이중 배관을 통한 공기순환 시스템 및 그에 의한 공기순환 방법
WO2013176413A1 (ko) 탱커선용 질소발생, 저장 및 공급 시스템 및 그 제어방법
KR102075978B1 (ko) 컨테이너 선박의 lfs 시스템 배치구조
CN203094385U (zh) 改进型fpso惰性气体管系统连接设备
WO2020251104A1 (ko) 천연가스하이드레이트를 이용하여 최소평형수 선박 내 연료공급, 평형수 대체 및 청수공급이 가능한 시스템
WO2016056414A1 (ja) 液化水素移送システム
US11724817B2 (en) Aircraft and method of operating an aircraft comprising an air separation device
WO2012148095A2 (ko) 선박의 폭발방지를 위한 전기분해방식의 평형수 처리장치 및 이를 이용한 선박의 폭발방지 제어방법
US5233937A (en) Ballast tank internal gas controlling type tanker
WO2024191224A1 (ko) 암모니아 벤트가스 처리 시스템 및 이를 이용한 벤트가스 처리 방법
US20230043843A1 (en) Aircraft comprising at least one hydrogen supply device and at least one sealed container, in which at least one item of equipment of said hydrogen supply device is positioned
WO2020032406A1 (ko) Lng 벙커링 기자재 시험평가 설비
WO2023101523A1 (ko) 암모니아 처리 시스템 및 이를 포함하는 선박
WO2024035115A1 (ko) Voc 연료 공급 시스템 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902097

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551290

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902097

Country of ref document: EP

Kind code of ref document: A1