WO2016056414A1 - 液化水素移送システム - Google Patents

液化水素移送システム Download PDF

Info

Publication number
WO2016056414A1
WO2016056414A1 PCT/JP2015/077259 JP2015077259W WO2016056414A1 WO 2016056414 A1 WO2016056414 A1 WO 2016056414A1 JP 2015077259 W JP2015077259 W JP 2015077259W WO 2016056414 A1 WO2016056414 A1 WO 2016056414A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
gas
hydrogen
transfer means
transfer
Prior art date
Application number
PCT/JP2015/077259
Other languages
English (en)
French (fr)
Inventor
誠朗 伊藤
智教 高瀬
友章 梅村
英司 川越
峻太郎 海野
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to AU2015329208A priority Critical patent/AU2015329208B2/en
Priority to CN201580051305.8A priority patent/CN106687738B/zh
Publication of WO2016056414A1 publication Critical patent/WO2016056414A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/24Arrangement of ship-based loading or unloading equipment for cargo or passengers of pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Definitions

  • the present invention relates to a liquefied hydrogen transfer system for transferring liquefied hydrogen between a liquefied hydrogen carrier ship and a liquefied hydrogen base.
  • Patent Document 1 discloses a system for transferring liquefied gas between a tank on the liquefied gas carrier side and a tank on the receiving base side.
  • the system includes a transfer pipe for transferring liquefied gas between a tank on the liquefied gas carrier ship side and a tank on the receiving base side via a loading arm, and a liquefied gas carrier ship when transferring the liquefied gas through the transfer pipe.
  • a return gas pipe for transferring boil-off gas (BOG) is provided between the tank on the side and the tank on the receiving base side so as to keep the internal pressure of the tank on the liquefied gas carrier ship side substantially constant.
  • Patent Document 1 when transferring a liquefied product of a fuel gas such as natural gas or hydrogen, the combustible gas remaining in the transfer pipe or the return gas pipe when the transfer is completed is converted to an inert gas such as nitrogen gas. The replacement work is performed. Further, at the time of maintenance, an operation of replacing the fuel gas remaining in the tank on the liquefied gas carrier ship side with an inert gas such as nitrogen gas is further performed. A small amount of mixed gas generated during gas replacement can be released to the atmosphere, but if it is large, it must be recovered. As a specific recovery method, it is usual to return to the liquid layer in the tank through a transfer pipe or a gas return pipe.
  • An object of the present invention is to provide a liquefied hydrogen transfer system capable of separating and recovering a mixed gas generated at the time of gas replacement and a hydrogen gas or liquid hydrogen in a tank.
  • the liquefied hydrogen transfer system of the present invention is a liquefied hydrogen transfer system for transferring liquefied hydrogen between a land-side first tank capable of storing liquefied hydrogen and a liquefied hydrogen transport ship-side second tank capable of storing liquefied hydrogen.
  • a first transfer means capable of transferring liquefied hydrogen between the first tank and the second tank via a loading arm, and hydrogen gas to or from the second tank via the loading arm.
  • a second transfer means capable of transferring gas, an inert gas supply means capable of supplying an inert gas to the second tank when the second tank is idle, and an inert gas supplied from the inert gas supply means And a third transfer means capable of recovering a mixed gas of hydrogen gas remaining in the second tank and transferring it to the land side.
  • liquefied hydrogen can be transferred between the first tank and the second tank by the first transfer means, and at this time, from the first tank or the second tank filled with liquefied hydrogen.
  • the extracted high-purity hydrogen gas can be transferred and recovered via the second transfer means.
  • the inert gas can be supplied from the inert gas supply means to the second tank.
  • the mixed gas of the inert gas supplied from the inert gas supply means and the hydrogen gas remaining in the second tank can be recovered and transferred to the land side and recovered by the third transfer means. .
  • the inert gas supply means can supply an inert gas to the first and second transfer means before and after the operation of transferring liquefied hydrogen between the first tank and the second tank, and
  • the transfer means is connected to the first and second transfer means, respectively, and collects the mixed gas of the inert gas supplied from the inert gas supply means and the hydrogen gas remaining in the first and second transfer means. Then, it may be configured to be transportable to the land side.
  • hydrogen gas remains in the first and second transfer means after transfer of liquefied hydrogen.
  • the mixed gas of the inert gas supplied to the first and second transfer means by the inert gas supply means and the hydrogen gas remaining in the first and second transfer means is transferred to the land side by the third transfer means. Can be recovered.
  • an inert gas is supplied to the first and second transfer means and purged with the inert gas, and the mixed gas of the inert gas and air discharged at the time of the purge is the You may comprise so that it may transfer to the land side by a 3rd transfer means.
  • hydrogen gas is supplied to the first and second transfer means and purged with hydrogen gas, and a mixed gas of the inert gas and hydrogen gas discharged at the time of the purge is supplied to the first and second transfer means.
  • You may comprise so that it may transfer to the land side by a 3rd transfer means.
  • the hydrogen gas in the second tank may be transferred to the land side by the second transfer means.
  • a portion on the land side of the loading arm includes a cylindrical passage between the outer tube and the first transfer means that are externally fitted to the land side portion of the first transfer means.
  • You may comprise as follows. According to this configuration, heat input to the land-side portion of the first transfer means can be suppressed by flowing low-temperature hydrogen gas through the cylindrical passage.
  • a portion on the land side of the loading arm is provided with a cylindrical passage between the outer tube and the second transfer means that are externally fitted to the land side portion of the second transfer means.
  • You may comprise as follows. According to this configuration, heat input to the land side portion of the second transfer means can be suppressed by flowing a low-temperature mixed gas through the cylindrical passage.
  • FIG. 1 It is a schematic block diagram of the liquefied hydrogen transfer system which concerns on Example 1 of this invention. It is operation
  • FIG. 1 shows a liquefied hydrogen transfer system 1 according to the first embodiment.
  • the liquefied hydrogen transfer system 1 includes a land-side first tank 2 capable of storing liquefied hydrogen and a liquefied liquid capable of storing liquefied hydrogen. This is a liquefied hydrogen transfer system for transferring liquefied hydrogen to and from the second tank 3 on the hydrogen transport ship side.
  • the liquefied hydrogen transfer system 1 includes a first transfer means 4 (first transfer system), a second transfer means 5 (second transfer system), a third transfer means 6 (third transfer system), and an inert gas.
  • Supply means 7A, 7B and hydrogen gas supply means 8A, 8B (branch pipe) are provided.
  • “automatic open / close valve” is simply referred to as “open / close valve”.
  • the first transfer means 4 is capable of transferring liquefied hydrogen between the first tank 2 and the second tank 3 via a loading arm 4a, most of which is constituted by a vacuum heat insulating double tube, one end of which is Connected to the first tank 2, the other end is connected to the second tank 3.
  • a loading arm 4a is interposed in the middle of the first transfer means 4, and an emergency release device 4b and an opening / closing valve 4c are interposed in the loading arm 4a.
  • the boundary between the land side and the ship side of the first transfer means 4 is connected by a bayonet joint 4d.
  • An opening / closing valve 4e is interposed in the vicinity of the loading arm 4a (in the vicinity of the first tank 2) of the first transfer means 4, and an opening / closing valve in the vicinity of the second tank 3 of the first transfer means 4.
  • 4f is interposed, and an opening / closing valve 4g is also interposed between the bayonet joint 4d and the opening / closing valve 4f.
  • the second transfer means 5 is capable of transferring hydrogen gas to or from the second tank 3 via the loading arm 5 a, most of which is composed of a single pipe, one end connected to the hydrogen gas tank 9. The other end is connected to the second tank 3.
  • a loading arm 5a is interposed in the middle of the second transfer means 5, and an emergency release device 5b and an opening / closing valve 5c are interposed in the loading arm 5a.
  • the boundary between the land side and the ship side of the second transfer means 5 is connected by a bayonet joint 5d.
  • An opening / closing valve 5e is interposed in the vicinity of the loading arm 5a in the second transfer means 5 (in the vicinity of the hydrogen gas tank 9 side), and an opening / closing valve 5f in the vicinity of the second tank 3 in the second transfer means 5.
  • an opening / closing valve 5g is interposed between the bayonet joint 5d and the opening / closing valve 5f.
  • the inert gas supply means 7A can supply an inert gas (N 2 gas) to the first transfer means 4, one end of the inert gas supply means 7A is connected to the N 2 gas tank 10, and the other end is
  • the first transfer means 4 is connected between the open / close valve 4c and the bayonet joint 4d, and the inert gas supply means 7A is provided with an open / close valve 7a near the N 2 gas tank 10.
  • the inert gas supply means 7B can supply an inert gas (nitrogen gas) to the second transfer means 5, one end of the inert gas supply means 7B is connected to the N 2 gas tank 10, and the other end is Two of the transfer means 5 are connected between an on-off valve 5c and a bayonet joint 5d, and an on-off valve 7b is interposed in the inert gas supply means 7B.
  • an inert gas nitrogen gas
  • the third transfer means 6 is connected to the first and second transfer means 4 and 5 via bypass pipes 12 and 13 having on-off valves 12a and 13a on the ship side, respectively.
  • the third transfer means 6 is a mixed gas discharged when purging the peripheral portions of the loading arms 4a and 5a of the first and second transfer means 4 and 5 with N 2 gas or hydrogen gas (GH 2 ). Can be transferred to the land side via the loading arm 6a, most of which is composed of a single pipe.
  • One end of the third transfer means 6 is connected to the mixed gas processing device 11, and the other end of the third transfer means 6 is connected to the second tank 3.
  • a loading arm 6a is interposed in the middle of the third transfer means 6, and an emergency release device 6b and an opening / closing valve 6c are interposed in the loading arm 6a.
  • the boundary between the land side and the ship side of the third transfer means 6 is connected by a bayonet joint 6d.
  • An opening / closing valve 6e is interposed in the vicinity of the loading arm 6a of the third transfer means 6 (near the mixed gas processing device 11), and is opened / closed in the vicinity of the second tank 3 of the third transfer means 6.
  • a valve 6f is interposed, and an opening / closing valve 6g is also interposed between the bayonet joint 6d and the opening / closing valve 6f.
  • a branch pipe 8A branched from the second transfer means 5 and connected to the inert gas supply means 7A is provided, and this branch pipe 8A Is provided with an on-off valve 8a.
  • a branch pipe 8B branched from the second transfer means 5 and connected to the inert gas supply means 7B is provided.
  • An opening / closing valve 8b is interposed in the pipe 8B.
  • the first tank 2 is filled with liquefied hydrogen
  • the second tank 3 contains a small amount of liquefied hydrogen and hydrogen gas.
  • the on-off valves 4c, 4e, 5c, 5e, 4f to 6f, 8a, 8b are closed, and the other on-off valves are held open, and the inert gas supply means 7A, 7B N 2 gas is supplied to the first and second transfer means 4, 5, and a mixed gas of N 2 gas and air is supplied from the first and second transfer means 4, 5 through the bypass pipes 12, 13 to the third transfer means. 6 is transferred to the mixed gas processing device 11, and ends after performing N 2 purge for a predetermined time. As a result of this N 2 gas purge, N 2 gas is filled between the on-off valves 4c, 5c and the on-off valves 4f, 5f of the first and second transfer means 4, 5.
  • the on-off valves 4c, 4e, 4g, 5c, 5e, 5g, 4f to 6f, 7a, 7b are closed, and the other on-off valves are held in the open state.
  • 1 GH 2 to the peripheral portion of the bayonet joint 4d transport means 4 (hydrogen gas) is supplied, GH 2 is supplied from the hydrogen gas tank 9 to the peripheral portion of the bayonet joint 5d of the second transport means 5, the first transport means 4
  • the mixed gas of N 2 gas and GH 2 is transferred from the bypass pipe 12 to the mixed gas processing device 11 via the third transfer means 6, and the mixed gas of N 2 gas and GH 2 in the second transfer means 5 is the bypass pipe. 13 to the mixed gas processing apparatus 11 via the third transfer means 6.
  • GH 2 is removed by a method such as burning, and N 2 gas is stored in a predetermined tank (for example, N 2 gas tank 10).
  • a predetermined tank for example, N 2 gas tank 10
  • the first and second transfer means 4 and 5 are filled with GH 2 .
  • the N 2 gas purge after the end of liquefied hydrogen loading will be described.
  • This N 2 gas purge is performed to prevent GH 2 from coming into contact with oxygen in the air and exploding when separating the bayonet joints 4d to 5d at the time of separation.
  • the on-off valves 4c, 4e, 5c, 5e, 4f to 6f, 8a, 8b are closed, and the other on-off valves are held open, and are supplied by inert gas supply means 7A, 7B.
  • N 2 gas is supplied to the bayonet fitting peripheral portion of the second transportation means 4 and 5, first, N 2 gas through the bypass pipe 12 from the second transport means 4 and 5 And the mixed gas of GH 2 are transferred to the mixed gas processing device 11 through the third transfer means 6 and the N 2 gas purge is completed for a predetermined time.
  • N 2 gas is filled between the on-off valves 4e and 5e and the on-off valves 4f and 5f of the first and second transfer means 4 and 5. Thereafter, the bayonet joints 4d to 6d are separated and the liquefied hydrogen transport ship leaves.
  • N 2 purge for replacing the inside of the second tank 3 with N 2 gas before the liquefied hydrogen transport ship docks for periodic inspection or repair will be described.
  • This N 2 gas purge is performed to replace all GH 2 in the second tank 3 with N 2 gas when the second tank 3 is empty.
  • the on-off valves 4c, 4e, 5c, 5e, 5f, 7b, 8a, 8b, and 13a are closed, and the other on-off valves are held open, and are supplied by the inert gas supply means 7A.
  • N 2 gas into the second tank 3 is supplied from the N 2 gas tank 10 through the first transport means 4, GH 2 of the second tank 3 is transferred to the mixed gas processing device 11 via the third transfer means 6 The Thereafter, the portion around the bayonet joint of the second transfer means 5 may be purged with N 2 gas.
  • GH 2 purge for replacing the inside of the second tank 3 with GH 2 after entering the dock will be described.
  • This GH 2 purge is performed to replace all the N 2 gas in the second tank 3 with GH 2 .
  • the on-off valves 4c, 4e, 4f, 7a, 7b, 8a, 12a, and 13a are closed, and the other on-off valves are held open, and the second transfer means 5 from the hydrogen gas tank 9 is maintained.
  • GH 2 is supplied to the second tank 3, and the mixed gas in which the N 2 gas in the second tank 3 is mixed with GH 2 is transferred to the mixed gas processing device 11 via the third transfer means 6. Thereafter, flying out of the dock GH 2 bayonet joint peripheral portion of the second transfer means 5 after performing N 2 gas purge substituted with N 2 gas.
  • the first transfer means 4 can transfer liquefied hydrogen between the first tank 2 and the second tank 23. At this time, the hydrogen gas withdrawn from the second tank 3 filled with liquefied hydrogen remains in high purity. 2 It can be transferred via the transfer means 5 and collected in the hydrogen gas tank 9.
  • the first and second transfers are performed from the inert gas supply means 7A and 7B.
  • N 2 gas is supplied to the means 4 and 5, and the on-off valves 12 a and 13 a of the bypass pipes 12 and 13 are opened to extract the purged N 2 gas and air mixed gas from the third transfer means 6. It can be transferred to the mixed gas processing device 11 and recovered.
  • the GH 2 purge is performed on the periphery of the bayonet joint of the first and second transfer means 4 and 5, so that liquid hydrogen is loaded into the second tank 3. In this case, it is possible to reliably prevent N 2 gas from flowing into the second tank 3.
  • N 2 gas purge is performed on the periphery of the bayonet joints of the first and second transfer means 4 and 5, so that even when the bayonet joints 4d to 6d are separated, GH 2 remains in the air. Since it does not come into contact with oxygen, safety can be ensured.
  • the N 2 gas is supplied from the N 2 gas tank 10 to the second tank 3 by the inert gas supply means 7A and filled, safety of the operation at the dock can be ensured.
  • the second tank 3 is filled with GH 2 and the area around the bayonet joint of the first and second transfer means 4 and 5 is filled with N 2 gas. Can be restored.
  • a liquefied hydrogen transfer system 1A of Example 2 will be described with reference to FIGS. Constituent elements similar to those of the liquefied hydrogen transfer system 1 of the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different configurations are mainly described.
  • the configuration of the land side portion of the second transfer means 5 relative to the loading arm 5a is changed, the land side portion of the first transfer means 4 relative to the loading arm 4a, and the land side of the second transfer means 5 described above.
  • the part is integrally formed.
  • at least the land side portion of the first transfer means 4 is configured as a vacuum heat insulating double tube 40 including an inner tube 41 and an outer tube 42, and the vacuum heat insulating double tube 40 has a cylinder.
  • the outer cylindrical tube 43 is fitted around the hollow passage 44, the passage inside the inner tube 41 of the vacuum heat insulating double tube 40 is used as the liquefied hydrogen passage of the first transfer means 4, and the cylindrical passage 44 is It is a part of the passage of the second transfer means 5. In this way, by flowing a low-temperature hydrogen gas outside the vacuum heat insulating double tube 40, heat input to the vacuum heat insulating double tube 40 can be suppressed.
  • the idea of the second embodiment can be applied to the third transfer means 6 and the second transfer means 5 and configured as follows.
  • the portion on the land side relative to the loading arm 6 a is a cylinder between the outer transfer tube (not shown) fitted on the land side portion of the second transfer means 5 and the second transfer means 5. It is set as the structure provided with the shape-like channel
  • the N 2 gas tank 10 may be equipped on the liquefied hydrogen transport ship side, and the hydrogen gas tank 9 may also be equipped on the liquefied hydrogen transport ship side. 3)
  • those skilled in the art can implement the present invention by adding various modifications to the above embodiment, and the present invention includes such modifications.
  • the present invention provides a liquefied hydrogen transfer system that enables liquefied hydrogen to be transferred between a first tank capable of storing liquefied hydrogen on land and a second tank on the liquefied hydrogen transport ship side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

ローディングアーム周辺部分を不活性ガスでパージする際に発生する混合ガスを大気中へ放出することなく回収可能にし、液化水素運搬船や陸上の液化水素貯蔵タンクに液化水素を充填する際に抜き取る水素ガスを高純度のまま回収可能にすること。陸側の第1タンク(2)と、液化水素輸送船側の第2タンク(3)との間で液化水素を移送する液化水素移送システム(1)は、第1タンク(2)と第2タンク(3)との間でローディングアーム(4a)を介して液化水素を移送可能な第1移送手段(4)と、第2タンク(3)へ又は第2タンク(3)からローディングアーム(5a)を介して水素ガスを移送可能な第2移送手段(5)と、第2タンク(3)の空載時に不活性ガスを第2タンク(3)に供給可能な不活性ガス供給手段(7A,7B)と、不活性ガス供給手段(7A,7B)から供給された不活性ガスと第2タンク(3)内に残存する水素ガスとの混合ガスを回収して陸側に移送可能な第3移送手段(6)とを備えている。

Description

液化水素移送システム
 本発明は、液化水素運搬船と液化水素基地との間で液化水素を移送する液化水素移送システムに関する。
 LNG等の液化ガスを海上輸送する液化ガス運搬船と、陸上の液化ガス貯蔵タンクとの間で、液化ガスを移送する液化ガス移送システムは実用に供されている。
 液化ガス運搬船側のタンクと受入れ基地側のタンクとの間で液化ガスを移送するシステムが特許文献1に開示されている。同システムは、ローディングアームを介して液化ガス運搬船側のタンクと受入れ基地側のタンクとの間で液化ガスを移送するための移送配管と、当該移送配管を通して液化ガスを移送する際に液化ガス運搬船側のタンクと受入れ基地側のタンクとの間で、液化ガス運搬船側のタンクの内圧をほぼ一定に保つようにボイルオフガス(BOG)を移送するためのリターンガス管を備えている。
 特許文献1には記載されていないが、天然ガスや水素等の燃料ガスの液化物を移送する場合、移送完了時には移送配管やリターンガス管内に残存する可燃性ガスを窒素ガス等の不活性ガスで置換する作業が行われる。また、メンテナンス時には液化ガス運搬船側のタンク内に残存する燃料ガスを窒素ガス等の不活性ガスで置換する作業もさらに行われる。ガス置換時に生成される混合ガスは少量であれば大気放出できるが、大量であれば回収しなければならない。具体的な回収方法としては、移送配管又はガスリターン管を通してタンク内の液層に戻すことが通常である。
 尚、移送開始時には移送配管やリターンガス管、場合によっては液化ガス運搬船側のタンク内を燃料ガスで置換する作業が行われ、この際に生成される混合ガスも同様に処理されている。
特開2000-117429号公報
 液化水素は発電用の他にも多くの用途があり高い純度が求められるため、液化水素の移送には上述したシステムは適さない。
 即ち、上述したシステムは、液化ガス移送用の移送配管と、ガスリターン管の2系統の配管を装備しているだけであるため、ガス置換時に生成される混合ガス(不活性ガスと水素ガス等の混合ガス)が、移送配管とガスリターン管の夫々に流れることになるため、これらの各配管にコンタミネーション(混合ガスによる汚染)が生じ、水素ガスの純度が低下する虞がある。
 本発明の目的は、ガス置換時に生成される混合ガスとタンク内の水素ガスや液体水素を分離回収できる液化水素移送システムを提供することである。
 本発明の液化水素移送システムは、液化水素を貯留可能な陸側の第1タンクと、液化水素を貯留可能な液化水素輸送船側の第2タンクとの間で液化水素を移送する液化水素移送システムにおいて、前記第1タンクと前記第2タンクとの間でローディングアームを介して液化水素を移送可能な第1移送手段と、前記第2タンクへ又は前記第2タンクからローディングアームを介して水素ガスを移送可能な第2移送手段と、前記第2タンクの空載時に不活性ガスを前記第2タンクに供給可能な不活性ガス供給手段と、前記不活性ガス供給手段から供給された不活性ガスと前記第2タンク内に残存する水素ガスとの混合ガスを回収して陸側に移送可能である第3移送手段とを備えたことを特徴としている。
 この構成によれば、前記第1移送手段により、第1タンクと第2タンク間で液化水素を移送することができ、このとき、液化水素が充填される方の第1タンク又は第2タンクから抜き取る高純度の水素ガスは第2移送手段を介して移送して回収することができる。また、ドック入りする際など第2タンクが空載時には、不活性ガス供給手段から第2タンクへ不活性ガスを供給することができる。このとき、第3移送手段により、不活性ガス供給手段から供給された不活性ガスと第2タンク内に残存する水素ガスとの混合ガスを回収して陸側へ移送して回収することができる。
 前記不活性ガス供給手段は前記第1タンクと前記第2タンクとの間で液化水素を移送する作業の前後において前記第1,第2移送手段に不活性ガスを供給可能であり、前記第3移送手段は前記第1,第2移送手段に夫々接続され、前記不活性ガス供給手段から供給された不活性ガスと前記第1,第2移送手段内に残存する水素ガスとの混合ガスを回収して陸側に移送可能であるように構成してもよい。
 この構成によれば、例えば、液化水素の移送後には第1,第2移送手段内に水素ガスが残存する。不活性ガス供給手段により第1,第2移送手段に供給された不活性ガスと、第1,第2移送手段内に残存する水素ガスとの混合ガスを第3移送手段により陸側へ移送して回収することができる。
 液化水素輸送船の着桟時には、前記第1,第2移送手段に不活性ガスを供給して不活性ガスでパージし、そのパージの際に排出される不活性ガスと空気の混合ガスを前記第3移送手段により陸側へ移送するように構成してもよい。
 前記不活性ガスによるパージ終了後には、前記第1,第2移送手段に水素ガスを供給して水素ガスでパージし、そのパージの際に排出される不活性ガスと水素ガスの混合ガスを前記第3移送手段により陸側へ移送するように構成してもよい。
 液化水素を第1移送手段により前記第2タンクへローディングする際には、前記第2タンク内の水素ガスを前記第2移送手段により陸側へ移送するように構成してもよい。
 前記第2移送手段のうちの前記ローディングアームよりも陸側部分は、前記第1移送手段の陸側部分に外嵌された外筒管と前記第1移送手段との間の筒状通路を備えるように構成してもよい。この構成によれば、前記筒状通路に低温の水素ガスを流すことで、第1移送手段の陸側部分への入熱を抑制することができる。
 前記第3移送手段のうちの前記ローディングアームよりも陸側部分は、前記第2移送手段の陸側部分に外嵌された外筒管と前記第2移送手段との間の筒状通路を備えるように構成してもよい。この構成によれば、前記筒状通路に低温の混合ガスを流すことで、第2移送手段の陸側部分への入熱を抑制することができる。
本発明によれば、ガス置換時に生成される混合ガスとタンク内の水素ガスや液体水素を分離回収することができる。
本発明の実施例1に係る液化水素移送システムの概略構成図である。 液化水素輸送船の着桟時の動作を説明する動作説明図である。 窒素ガスパージ終了後の水素ガスパージ開始時の動作説明図である。 液化水素荷積開始時の動作説明図である。 液化水素荷積終了時の動作説明図である。 液化水素輸送船のドッグ入り前の動作説明図である。 液化水素輸送船のドッグ後の動作説明図である。 実施例2に係る液化水素移送システムの概略構成図である。 図8の三重管の断面図である。
 以下、本発明を実施するための形態について実施例に基づいて説明する。
 図1は、実施例1に係る液化水素移送システム1を示すものであり、この液化水素移送システム1は、液化水素を貯留可能な陸側の第1タンク2と、液化水素を貯留可能な液化水素輸送船側の第2タンク3との間で液化水素を移送する液化水素移送システムである。
 この液化水素移送システム1は、第1移送手段4(第1移送系統)と、第2移送手段5(第2移送系統)と、第3移送手段6(第3移送系統)と、不活性ガス供給手段7A,7Bと、水素ガス供給手段8A,8B(分岐管)を備えている。以下の説明において「自動開閉弁」を単に「開閉弁」と記載する。
 前記第1移送手段4は、第1タンク2と第2タンク3との間でローディングアーム4aを介して液化水素を移送可能であり、その大部分が真空断熱二重管で構成され、一端が第1タンク2に接続され、他端が第2タンク3に接続されている。第1移送手段4の途中部にはローディングアーム4aが介装され、ローディングアーム4aには緊急離脱装置4bと開閉弁4cとが介装されている。第1移送手段4の陸側と船側の境界部はバヨネット継手4dで接続される。第1移送手段4のうちのローディングアーム4aの付近(第1タンク2側の付近)には開閉弁4eが介装され、第1移送手段4のうちの第2タンク3の付近には開閉弁4fが介装され、バヨネット継手4dと開閉弁4fの間にも開閉弁4gが介装されている。
 前記第2移送手段5は、第2タンク3へ又は第2タンク3からローディングアーム5aを介して水素ガスを移送可能であり、その大部分が一重管で構成され、一端が水素ガスタンク9に接続され、他端が第2タンク3に接続されている。第2移送手段5の途中部にはローディングアーム5aが介装され、ローディングアーム5aには緊急離脱装置5bと開閉弁5cとが介装されている。第2移送手段5の陸側と船側の境界部はバヨネット継手5dで接続される。
 第2移送手段5のうちのローディングアーム5aの付近(水素ガスタンク9側の付近)には開閉弁5eが介装され、第2移送手段5のうちの第2タンク3の付近には開閉弁5fが介装され、バヨネット継手5dと開閉弁5fの間にも開閉弁5gが介装されている。
 前記不活性ガス供給手段7Aは、第1移送手段4に不活性ガス(N2ガス)を供給可能であり、この不活性ガス供給手段7Aの一端はN2ガスタンク10に接続され、他端は第1移送手段4のうちの開閉弁4cとバヨネット継手4dの間に接続され、この不活性ガス供給手段7AにはN2ガスタンク10の近くにおいて開閉弁7aが介装されている。
 前記不活性ガス供給手段7Bは、第2移送手段5に不活性ガス(窒素ガス)を供給可能であり、この不活性ガス供給手段7Bの一端はN2ガスタンク10に接続され、他端は第2移送手段5のうちの開閉弁5cとバヨネット継手5dの間に接続され、この不活性ガス供給手段7Bには開閉弁7bが介装されている。
 前記第3移送手段6は、船側において開閉弁12a,13aを有するバイパス管12,13を介して第1,第2移送手段4,5に夫々接続されている。この第3移送手段6は、第1,第2移送手段4,5のうちのローディングアーム4a,5aの周辺部分をN2ガス又は水素ガス(GH2)でパージする際に排出される混合ガスをローディングアーム6aを介して陸側へ移送可能であり、その大部分が一重管で構成されている。第3移送手段6の一端は混合ガス処理装置11に接続され、第3移送手段6の他端は第2タンク3に接続されている。
 第3移送手段6の途中部にはローディングアーム6aが介装され、ローディングアーム6aには緊急離脱装置6bと開閉弁6cとが介装されている。第3移送手段6の陸側と船側の境界部はバヨネット継手6dで接続される。第3移送手段6のうちのローディングアーム6aの付近(混合ガス処理装置11側の付近)には開閉弁6eが介装され、第3移送手段6のうちの第2タンク3の付近には開閉弁6fが介装され、バヨネット継手6dと開閉弁6fの間にも開閉弁6gが介装されている。
 水素ガスタンク9から不活性ガス供給手段7Aに水素ガスを供給可能にするため、第2移送手段5から分岐して不活性ガス供給手段7Aに接続された分岐管8Aが設けられ、この分岐管8Aには開閉弁8aが介装されている。また、水素ガスタンク9から不活性ガス供給手段7Bへ水素ガスを供給可能にするため、第2移送手段5から分岐して不活性ガス供給手段7Bに接続された分岐管8Bが設けられ、この分岐管8Bには開閉弁8bが介装されている。
 次に、液化水素輸送船が積出し基地の桟橋に到着した着桟時に、第1タンク2から第2タンク3へ液化水素をローディングする例について説明する。この場合、第1タンク2には液化水素が充填されており、第2タンク3には少量の液化水素と水素ガスが収容されている。最初に、第1~第3移送手段4~6のバヨネット継手4d~6dを接続してから第1,第2移送手段4,5のうちのバヨネット継手4d,5dの周辺部分に残存している空気をN2ガス(不活性ガス)でパージ(置換)するN2ガスパージについて図2に基づいて説明する。
 図2に示すように、開閉弁4c,4e,5c,5e,4f~6f,8a,8bが閉弁され、その他の開閉弁は開弁状態に保持され、不活性ガス供給手段7A,7Bから第1,第2移送手段4,5にN2ガスが供給され、第1,第2移送手段4,5からバイパス管12,13を介してN2ガスと空気の混合ガスが第3移送手段6を介して混合ガス処理装置11に移送され、所定時間N2パージを実行後に終了する。このN2ガスパージの結果、第1,第2移送手段4,5のうちの開閉弁4c,5cと開閉弁4f,5fの間にはN2ガスが充填される。
 次に、上記のN2ガスパージ終了後に、第1,第2移送手段4,5のうちのバヨネット継手4d,5dの周辺部分に残存しているN2ガスをGH2(水素ガス)でパージするGH2パージについて説明する。このGH2パージは、液化水素のローディングの際に、N2ガスが第2タンク3へ流入するのを防止する為に行うものである。
 図3に示すように、開閉弁4c,4e,4g,5c,5e,5g,4f~6f,7a,7bが閉弁され、その他の開閉弁は開弁状態に保持され、水素ガスタンク9から第1移送手段4のバヨネット継手4dの周辺部分へGH2(水素ガス)が供給され、水素ガスタンク9から第2移送手段5のバヨネット継手5dの周辺部分にGH2が供給され、第1移送手段4のN2ガスとGH2の混合ガスはバイパス管12から第3移送手段6を介して混合ガス処理装置11へ移送され、第2移送手段5のN2ガスとGH2の混合ガスはバイパス管13から第3移送手段6を介して混合ガス処理装置11へ移送される。
 この混合ガス処理装置11においてGH2を燃焼させる等の方法で除去し、N2ガスを所定のタンク(例えばN2ガスタンク10)に収容する。このGH2パージの結果、第1,第2移送手段4,5にはGH2が充填された状態になる。
 次に、液化水素を第1タンク2から第2タンク3へローディングする場合には、図4に示すように、開閉弁6f,7a,7b,8a,8b,12a,13aが閉弁され、その他の開閉弁は開弁状態に保持され、第1タンク2から第1移送手段4を介して第2タンク3へ液化水素が移送され、第2タンク3内のGH2が第2移送手段5を介して水素ガスタンク9へ移送される。こうして、第2タンク3内の高純度のGH2を水素ガスタンク9へ回収することができる。
 次に、液化水素のローディング終了後のN2ガスパージについて説明する。
 このN2ガスパージは、離桟に際してバヨネット継手4d~5dを分離する際に、GH2が空気中の酸素と接触して爆発するのを防止する為に行う。図5に示すように、開閉弁4c,4e,5c,5e,4f~6f,8a,8bが閉弁され、その他の開閉弁は開弁状態に保持され、不活性ガス供給手段7A,7BによりN2ガスタンク10から第1,第2移送手段4,5のバヨネット継手周辺部分にN2ガスが供給され、第1,第2移送手段4,5からバイパス管12,13を介してN2ガスとGH2の混合ガスが第3移送手段6を介して混合ガス処理装置11に移送され、所定時間N2ガスパージを実行後に終了する。
 このN2ガスパージの結果、第1,第2移送手段4,5のうちの開閉弁4e,5eと開閉弁4f,5fの間にはN2ガスが充填される。その後、バヨネット継手4d~6dを分離して液化水素輸送船が離桟する。
 上記は、第1タンク2から第2タンク3へ液化水素をローディングする場合を例にして説明したが、第2タンク3から第1タンク2へ液化水素をアンローディングする場合も上記と同様に、バヨネット継手4d~6dの接続、第1,第2移送手段4,5に対するN2パージ、第1,第2移送手段4,5に対するGH2パージ、液化水素のアンローディング、第1,第2移送手段4,5に対するN2ガスパージ、バヨネット継手4d~6dの分離の順に行うことができる。
 次に、定期検査や修理等の為に液化水素輸送船がドック入りする前に行う第2タンク3内をN2ガスで置換するN2パージについて説明する。このN2ガスパージは、第2タンク3の空載時に第2タンク3内の全てのGH2をN2ガスで置換する為に行う。
 図6に示すように、開閉弁4c,4e,5c,5e,5f,7b,8a,8b,13aが閉弁され、その他の開閉弁は開弁状態に保持され、不活性ガス供給手段7AによりN2ガスタンク10から第1移送手段4を介して第2タンク3へN2ガスが供給され、第2タンク3内のGH2が第3移送手段6を介して混合ガス処理装置11に移送される。尚、その後、第2移送手段5のバヨネット継手周辺部分をN2ガスでパージする場合もある。
 次に、上記のドック入り後に第2タンク3内をGH2で置換するGH2パージについて説明する。このGH2パージは、第2タンク3内の全てのN2ガスをGH2で置換する為に行う。図7に示すように、開閉弁4c,4e,4f,7a,7b,8a,12a,13aが閉弁され、その他の開閉弁は開弁状態に保持され、水素ガスタンク9から第2移送手段5を介してGH2が第2タンク3へ供給され、第2タンク3内のN2ガスがGH2と混合した混合ガスが第3移送手段6を介して混合ガス処理装置11に移送される。その後、第2移送手段5のバヨネット継手周辺部分のGH2をN2ガスで置換するN2ガスパージを行ってからドックを出て就航する。
 以上の液化水素移送システム1の作用、効果について説明する。
 第1移送手段4により、第1タンク2と第2タンク23間で液化水素を移送することができ、このとき、液化水素が充填される第2タンク3から抜き取る水素ガスは高純度のまま第2移送手段5を介して移送し、水素ガスタンク9へ回収することができる。
 液化水素輸送船の着桟時、第1,第2移送手段4,5のバヨネット継手周辺部分をN2ガスでパージする際には、不活性ガス供給手段7A,7Bから第1,第2移送手段4,5へN2ガスを夫々供給し、バイパス管12,13の開閉弁12a,13aを開弁することでパージ後のN2ガスと空気の混合ガスを第3移送手段6から抜き出して混合ガス処理装置11に移送して回収することができる。
 第1,第2移送手段4,5に対するN2ガスパージ後には、第1,第2移送手段4,5のバヨネット継手周辺部分に対するGH2パージを行うため、液化水素の第2タンク3へのローディングの際に第2タンク3内へN2ガスが流入するのを確実に防止することができる。また、液化水素のローディング後には、第1,第2移送手段4,5のバヨネット継手周辺部分に対するN2ガスパージを行うため、バヨネット継手4d~6dを分離した場合にも、GH2が空気中の酸素と接触することがないから安全性を確保することができる。
 ドック入りに際しては、不活性ガス供給手段7AによりN2ガスタンク10から第2タンク3へN2ガスを供給して充填するため、ドックにおける作業の安全性を確保することができる。ドック後には、第2タンク3内にGH2を充填し、第1,第2移送手段4,5のバヨネット継手周辺部分はN2ガスが充填された状態にするため、ドック入り前の状態に復帰させることができる。
 実施例2の液化水素移送システム1Aについて図8、図9に基づいて説明する。
 実施例1の液化水素移送システム1と同様の構成要素に同様の符号を付して説明を省略し、主に異なる構成について説明する。
 第2移送手段5のうちのローディングアーム5aよりも陸側部分の構成が変更され、第1移送手段4のうちのローディングアーム4aよりも陸側の部分と、第2移送手段5の上記陸側部分とが一体的に構成されている。図9に示すように、少なくとも、第1移送手段4の上記陸側部分が、内管41と外管42とからなる真空断熱二重管40に構成され、この真空断熱二重管40に筒状通路44を空けて外筒管43が外嵌され、真空断熱二重管40の内管41の内側の通路が第1移送手段4の液化水素用通路とされ、上記の筒状通路44が第2移送手段5の一部の通路とされている。このように、真空断熱二重管40の外側に低温の水素ガスを流すことで、真空断熱二重管40への入熱を抑制することができる。
 次に、前記実施例を部分的に変更する例について説明する。
 1)実施例2の思想を第3移送手段6と第2移送手段5に適用し、次のように構成するもできる。第3移送手段6のうちのローディングアーム6aよりも陸側部分は、第2移送手段5の陸側部分に外嵌された外筒管(図示略)と第2移送手段5との間の筒状通路(図示略)を備えた構成とされている。
 2)N2ガスタンク10を液化水素輸送船側に装備し、水素ガスタンク9も液化水素輸送船側に装備してもよい。
 3)その他、当業者ならば前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。
 本発明は、陸上の液化水素貯留可能な第1タンクと、液化水素輸送船側の第2タンクと間で液化水素を移送可能にする液化水素移送システムを提供する。
1,1A   液化水素移送システム
2      第1タンク
3      第2タンク
4      第1移送手段
4a     ローディングアーム
5      第2移送手段
5a     ローディングアーム
6      第3移送手段
6a     ローディングアーム
7A,7B  不活性ガス供給手段
10     N2ガスタンク
40     真空断熱二重管
43     外筒管
44     筒状通路

Claims (7)

  1.  液化水素を貯留可能な陸側の第1タンクと、液化水素を貯留可能な液化水素輸送船側の第2タンクとの間で液化水素を移送する液化水素移送システムにおいて、
     前記第1タンクと前記第2タンクとの間でローディングアームを介して液化水素を移送可能な第1移送手段と、
     前記第2タンクへ又は前記第2タンクからローディングアームを介して水素ガスを移送可能な第2移送手段と、
     前記第2タンクの空載時に不活性ガスを前記第2タンクに供給可能な不活性ガス供給手段と、
     前記不活性ガス供給手段から供給された不活性ガスと前記第2タンク内に残存する水素ガスとの混合ガスを回収して陸側に移送可能な第3移送手段とを備えたことを特徴とする液化水素移送システム。
  2.  前記不活性ガス供給手段は前記第1タンクと前記第2タンクとの間で液化水素を移送する作業の前後において前記第1,第2移送手段に不活性ガスを供給可能であり、
     前記第3移送手段は前記第1,第2移送手段に夫々接続され、前記不活性ガス供給手段から供給された不活性ガスと前記第1,第2移送手段内に残存する水素ガスとの混合ガスを回収して陸側に移送可能であることを特徴とする請求項1に記載の液化水素移送システム。
  3.  液化水素輸送船の着桟時には、前記第1,第2移送手段に不活性ガスを供給して不活性ガスでパージし、そのパージの際に排出される不活性ガスと空気の混合ガスを前記第3移送手段により陸側へ移送することを特徴とする請求項2に記載の液化水素移送システム。
  4.  前記不活性ガスによるパージ終了後には、前記第1,第2移送手段に水素ガスを供給して水素ガスでパージし、そのパージの際に排出される不活性ガスと水素ガスの混合ガスを前記第3移送手段により陸側へ移送することを特徴とする請求項3に記載の液化水素移送システム。
  5.  液化水素を第1移送手段により前記第2タンクへローディングする際には、前記第2タンク内の水素ガスを前記第2移送手段により陸側へ移送することを特徴とする請求項4に記載の液化水素移送システム。
  6.  前記第2移送手段のうちの前記ローディングアームよりも陸側部分は、前記第1移送手段の陸側部分に外嵌された外筒管と前記第1移送手段との間の筒状通路を備えていることを特徴とする請求項2に記載の液化水素移送システム。
  7.  前記第3移送手段のうちの前記ローディングアームよりも陸側部分は、前記第2移送手段の陸側部分に外嵌された外筒管と前記第2移送手段との間の筒状通路を備えていることを特徴とする請求項2に記載の液化水素移送システム。
PCT/JP2015/077259 2014-10-10 2015-09-28 液化水素移送システム WO2016056414A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2015329208A AU2015329208B2 (en) 2014-10-10 2015-09-28 Liquefied hydrogen transferring system
CN201580051305.8A CN106687738B (zh) 2014-10-10 2015-09-28 液化氢输送系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014208587A JP6423235B2 (ja) 2014-10-10 2014-10-10 液化水素移送システム
JP2014-208587 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056414A1 true WO2016056414A1 (ja) 2016-04-14

Family

ID=55653031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077259 WO2016056414A1 (ja) 2014-10-10 2015-09-28 液化水素移送システム

Country Status (4)

Country Link
JP (1) JP6423235B2 (ja)
CN (1) CN106687738B (ja)
AU (1) AU2015329208B2 (ja)
WO (1) WO2016056414A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102539433B1 (ko) * 2018-07-06 2023-06-05 한화오션 주식회사 수소 저장탱크가 구비된 해상 부유구조물
JP2021188625A (ja) 2020-05-25 2021-12-13 ジャパンマリンユナイテッド株式会社 水素利用方法及び水素利用システム
WO2024034080A1 (ja) * 2022-08-10 2024-02-15 川崎重工業株式会社 ガス供給システム、船舶およびガス供給方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561667Y2 (ja) * 1991-10-14 1998-02-04 石川島播磨重工業株式会社 液化ガス受入用ローディングアーム内の不活性ガス置換装置
JPH10160098A (ja) * 1996-12-03 1998-06-16 Ishikawajima Harima Heavy Ind Co Ltd 液化ガス貯槽の残液処理方法
JP2006307936A (ja) * 2005-04-27 2006-11-09 Kita Kyushu Lng Kk Lngの出荷方法
JP2011503463A (ja) * 2007-11-12 2011-01-27 ワルトシラ フィンランド オサケユキチュア Lng燃料の海洋船を操作する方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654466B2 (ja) * 1991-06-07 1997-09-17 株式会社 半導体エネルギー研究所 反応性気体充填方法
CN102506302B (zh) * 2011-09-21 2013-08-28 大连理工大学 压力容器残气处理装置
CN203395571U (zh) * 2013-06-25 2014-01-15 上海佳豪船舶工程设计股份有限公司 一种适用于小型lng动力船舶的燃料加注装置
CN103851332A (zh) * 2013-11-14 2014-06-11 常州蓝翼飞机装备制造有限公司 Lng气瓶的气体置换工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561667Y2 (ja) * 1991-10-14 1998-02-04 石川島播磨重工業株式会社 液化ガス受入用ローディングアーム内の不活性ガス置換装置
JPH10160098A (ja) * 1996-12-03 1998-06-16 Ishikawajima Harima Heavy Ind Co Ltd 液化ガス貯槽の残液処理方法
JP2006307936A (ja) * 2005-04-27 2006-11-09 Kita Kyushu Lng Kk Lngの出荷方法
JP2011503463A (ja) * 2007-11-12 2011-01-27 ワルトシラ フィンランド オサケユキチュア Lng燃料の海洋船を操作する方法

Also Published As

Publication number Publication date
JP2016079998A (ja) 2016-05-16
CN106687738B (zh) 2019-06-18
AU2015329208B2 (en) 2018-07-12
JP6423235B2 (ja) 2018-11-14
AU2015329208A1 (en) 2017-05-18
CN106687738A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
AU2015325623B2 (en) Liquefied hydrogen transport system
WO2016056414A1 (ja) 液化水素移送システム
WO2018185959A1 (ja) 燃料タンクのイナーティング方法及び浮体
WO2017010083A1 (ja) 液化水素移送方法
JP5578921B2 (ja) 浮体式液化天然ガス生産貯蔵積出設備および液化天然ガス生産貯蔵積出方法
JP5894097B2 (ja) 液化ガス供給用接続機構
KR200476889Y1 (ko) 카고 탱크의 가스 배출 장치
JP2007085403A (ja) バルクコンテナを用いた液化天然ガスの輸送方法
KR101567855B1 (ko) 질소를 이용한 액화가스 저장탱크의 치환장치
US11878772B2 (en) Offshore transfer and destruction of volatile organic compounds
JP7445763B2 (ja) 船舶の液化ガスの供給システム及び液化ガスの供給方法
JP6489633B2 (ja) 液化水素移送システム
JP4426367B2 (ja) ガスハイドレート海上輸送方法及びガスハイドレート海上輸送船
EP1791772A1 (en) A volume-displacing device in containers, especially tanks in lpg ships, and a method of using same
CN107835787A (zh) 液化氢用紧急脱离系统
AU2021211356B2 (en) Support vessel for assisting in loading fluid hydrocarbon cargo onto a carrier vessel, and related system and method
JP6215985B2 (ja) 液化ガス供給用接続機構
KR102663785B1 (ko) 밸러스트 탱크 히팅시스템 및 상기 히팅시스템을 갖는 극지용 선박
KR20150086640A (ko) 선박 또는 해양구조물
KR20150095384A (ko) 컨테이너 운반선의 연료급유 시스템 및 방법
KR20100076268A (ko) 엘엔지 카고탱크의 워밍업 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015329208

Country of ref document: AU

Date of ref document: 20150928

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15849114

Country of ref document: EP

Kind code of ref document: A1