WO2018174054A1 - 燃料電池及び温度調整方法 - Google Patents

燃料電池及び温度調整方法 Download PDF

Info

Publication number
WO2018174054A1
WO2018174054A1 PCT/JP2018/011012 JP2018011012W WO2018174054A1 WO 2018174054 A1 WO2018174054 A1 WO 2018174054A1 JP 2018011012 W JP2018011012 W JP 2018011012W WO 2018174054 A1 WO2018174054 A1 WO 2018174054A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
storage container
hydrogen
fuel cell
Prior art date
Application number
PCT/JP2018/011012
Other languages
English (en)
French (fr)
Inventor
深津 佳昭
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to EP18771998.4A priority Critical patent/EP3605688B1/en
Publication of WO2018174054A1 publication Critical patent/WO2018174054A1/ja
Priority to US16/575,023 priority patent/US11258082B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04738Temperature of auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a fuel cell that includes a storage container that stores a hydrogen storage alloy and generates power using hydrogen as a fuel, and a method for adjusting the temperature inside the fuel cell.
  • a fuel cell that uses a hydrogen storage alloy includes a storage container that stores the hydrogen storage alloy. Since the reaction in which the hydrogen storage alloy releases hydrogen is an endothermic reaction, it is necessary to heat the storage container in order to obtain hydrogen necessary for power generation. The reaction in which power generation is performed by the reaction of hydrogen and oxygen is an exothermic reaction.
  • Patent Document 1 discloses a fuel cell that heats a storage container with heat generated during power generation. Specifically, the storage container is heated by circulating a heat medium between the fuel cell stack that generates power by reacting hydrogen and oxygen and the storage container.
  • the present disclosure is to provide a fuel cell and a temperature adjustment method that enable continuous power generation by appropriately adjusting the temperature of the storage container.
  • a fuel cell includes a power generation unit that generates power by reacting hydrogen and oxygen, and a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit, and each of the storage cells can be attached and detached.
  • the second temperature adjustment mode for adjusting the temperature of the heat medium can be performed, and when a new storage container is installed, the pressure in the newly installed storage container or the temperature of the newly installed storage container Whether or not to implement the second temperature adjustment mode based on And judging.
  • the fuel cell according to the present disclosure includes a plurality of detachable storage containers that store a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit, and allows the heat medium to flow through the heat medium flow path.
  • the storage container is heated by performing a first temperature adjustment mode in which the temperature is adjusted so as to be equal to or higher than the first temperature.
  • the fuel cell can also implement a second temperature adjustment mode in which the temperature of the heat medium is adjusted so as to be higher than the second temperature higher than the first temperature. Whether or not the fuel cell performs the second temperature adjustment mode when a new storage container is installed, based on the pressure inside the newly installed storage container or the temperature of the newly installed storage container. Determine whether. When the temperature of the newly installed storage container is low, the pressure in the storage container is low.
  • the temperature of the newly mounted storage container is low based on the pressure.
  • the temperature of the heat medium is adjusted to a high temperature by performing the second temperature adjustment mode, and the amount of heat of the heat medium is reduced by the low temperature of the newly installed storage container. Suppress the shortage.
  • a fuel cell includes a power generation unit that generates power by reacting hydrogen and oxygen, and a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit, and each of the storage cells can be attached and detached.
  • a temperature adjusting unit that heats the plurality of storage containers, and the temperature adjusting unit adjusts the temperature of the heat medium so that the temperature of the heat medium is equal to or higher than a predetermined first temperature.
  • Mode and a second temperature adjustment mode for adjusting the temperature of the heat medium so as to make the temperature of the heat medium equal to or higher than a predetermined second temperature higher than the first temperature. When mounted, perform the second temperature adjustment mode And features.
  • the fuel cell of the present disclosure performs the second temperature adjustment mode when a new storage container is attached.
  • the temperature of the heat medium is adjusted to a high temperature in response to the installation of a new storage container, and the heat amount of the heat medium is suppressed from being insufficient due to the low temperature of the newly installed storage container.
  • a fuel cell includes a power generation unit that generates power by reacting hydrogen and oxygen, and a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit, and each of the storage cells can be attached and detached.
  • a container, a heat medium passage through which a heat medium for heating the plurality of storage containers flows, and a temperature of the heat medium are adjusted, and the heat medium is caused to flow through the heat medium passage.
  • a temperature adjusting unit that heats the plurality of storage containers, and the temperature adjusting unit adjusts the temperature of the heat medium so that the temperature of the heat medium is equal to or higher than a predetermined first temperature.
  • a second temperature adjustment mode for adjusting the temperature of the heat medium so as to make the temperature of the heat medium equal to or higher than a predetermined second temperature higher than the first temperature, and the plurality of storage containers If there is an unused storage container in the Based on the pressure or temperature of the built vessel, and judging whether to execute the second temperature adjustment mode.
  • the fuel cell according to the present disclosure determines whether or not to implement the second temperature adjustment mode based on the pressure or temperature inside the storage container when there is an unused storage container. Based on the pressure, it can be estimated that the temperature of the storage container is low. By performing the second temperature adjustment mode when the temperature of the unused storage container is low, the temperature of the heat medium is adjusted to a high temperature, and the heat amount of the heat medium is insufficient due to the low temperature of the unused storage container. Suppress.
  • a hydrogen storage alloy that stores hydrogen is accommodated, and a plurality of storage containers that can be attached to and detached from each other, and a heat medium for heating the plurality of storage containers flow.
  • a heat medium flow path is used, the temperature of the heat medium is adjusted to make the temperature of the heat medium equal to or higher than a predetermined first temperature, the plurality of storage containers are heated, and a new storage container is mounted.
  • the temperature of the heat medium is adjusted so that the temperature of the heat medium is not less than a predetermined second temperature higher than the first temperature without heating the attached storage container, After the temperature reaches the second temperature or higher, heating of the attached storage container is started.
  • the temperature of the heat medium is adjusted to be equal to or higher than the first temperature, and the plurality of storage containers are heated.
  • the temperature of the heat medium is adjusted so as to be higher than the second higher temperature without heating the installed storage container.
  • heating of the attached storage container is started.
  • the fuel cell and the temperature adjustment method of the present disclosure suppress a shortage of the heat amount of the heat medium when a new storage container is attached or when there is an unused storage container, and the temperature of other storage containers decreases. To prevent. Hydrogen pressure drop is prevented, and the fuel cell has excellent effects such as continuous power generation.
  • FIG. 1 is a conceptual diagram illustrating a configuration of a fuel cell according to Embodiment 1.
  • FIG. It is a flowchart which shows the procedure of the process which heats the storage container in Embodiment 1.
  • FIG. 10 is a flowchart illustrating a part of a process according to the second embodiment. 10 is a flowchart illustrating a partial procedure of processing in the third embodiment.
  • a fuel cell 1 shown in FIG. 1 is a fuel cell such as a polymer electrolyte fuel cell, and generates electricity by reacting hydrogen and oxygen.
  • the fuel cell 1 includes a battery body 100 and a hydrogen supply unit 110.
  • the battery body 100 includes a fuel cell stack 10, a control unit 11, a hydrogen passage 2, an air passage 3, a stack cooling passage 4, a radiator passage 5, and a heat medium passage 6.
  • the hydrogen flow path 2 includes a hydrogen supply path 2a and a hydrogen circulation path 2b.
  • the control unit 11 is connected to each component of the fuel cell 1.
  • the control unit 11 includes a central processing unit (CPU) that controls the operation of each component, and a storage unit that stores an operation program for the fuel cell 1. In FIG. 1, the connection between the control unit 11 and each component is omitted.
  • the fuel cell stack 10 has a membrane electrode assembly formed by sandwiching a solid polymer electrolyte membrane between a negative electrode and a positive electrode from both sides, and a pair of separators are arranged on both sides of the membrane electrode assembly to form a flat unit cell And a plurality of unit cells are stacked and packaged.
  • the fuel gas containing hydrogen that has flowed in through the hydrogen passage 2 comes into contact with the negative electrode, and the oxidizing gas containing oxygen, such as air, comes into contact with the positive electrode through the air flow passage 3, thereby causing an electrochemical reaction at both electrodes. And an electromotive force is generated.
  • water is generated by the reaction between hydrogen ions that have permeated the solid polymer electrolyte membrane from the negative electrode side and oxygen in the oxidizing gas.
  • the fuel cell stack 10 corresponds to the power generation unit in the present disclosure.
  • the hydrogen supply path 2a is a flow path through which hydrogen supplied from the hydrogen supply unit 110 to the fuel cell stack 10 flows.
  • One end of the hydrogen supply path 2 a is connected to the hydrogen supply section 110, and the other end is connected to a portion of the hydrogen circulation path 2 b near the negative electrode of the fuel cell stack 10.
  • a pressure sensor 21, an on-off valve 23, an on-off valve 24, and a check valve 25 are provided in this order from the hydrogen supply unit 110 side.
  • the hydrogen circulation path 2 b is a flow path for circulating the hydrogen discharged from the fuel cell stack 10 to the fuel cell stack 10.
  • a hydrogen circulation pump 26 and a gas-liquid separator 27 are provided in the hydrogen circulation path 2b.
  • An exhaust valve 261 and an exhaust valve 262, and a drain valve 271 and a drain valve 272 are connected to the gas-liquid separator 27.
  • the open / close valve 23, the open / close valve 24, the exhaust valve 261, the exhaust valve 262, the drain valve 271, and the drain valve 272 are electromagnetic valves that can be controlled by the control unit 11 to be in an open state and a closed state.
  • a closed solenoid valve is preferred.
  • the drain valve 271 and the drain valve 272 are opened and discharged to the outside.
  • the gas containing impurities is discharged to the outside by opening the exhaust valve 261 and the exhaust valve 262 at an appropriate timing.
  • the air flow path 3 is a flow path through which air supplied to the fuel cell stack 10 flows.
  • An air pump 30 is provided in the air flow path 3.
  • the air pump 30 takes in air and supplies the air to the fuel cell stack 10 through the air flow path 3.
  • An on-off valve 31 is provided between the air pump 30 and the fuel cell stack 10.
  • An opening / closing valve 32 is provided at a portion where air flows out from the fuel cell stack 10. When the on-off valve 31 and the on-off valve 32 are opened, the air sent from the air pump 30 flows through the air flow path 3, passes through the on-off valve 31, and is introduced into the positive electrode side portion of the fuel cell stack 10. Through the flow path. The air flowing through the passage is discharged from the fuel cell stack 10 and discharged to the outside through the on-off valve 32.
  • the stack cooling path 4 is a flow path through which cooling water for cooling the fuel cell stack 10 flows and circulates.
  • a heat medium other than water for example, ethylene glycol
  • the pump 40, the first heat exchanger 41, the second heat exchanger 42, the ion exchange resin 43, and the conductivity meter 44 are provided in the stack cooling path 4.
  • the pump 40 circulates cooling water through the stack cooling path 4 in order to cool the fuel cell stack 10.
  • the cooling water flowing through the stack cooling path 4 is introduced into the fuel cell stack 10 by the pump 40 and flows through the flow path in the fuel cell stack 10.
  • the cooling water flowing through the flow path in the fuel cell stack 10 is sent out from the pump 40 and flows through the first heat exchanger 41, the second heat exchanger 42, the ion exchange resin 43, and the conductivity meter 44, The fuel cell stack 10 is again introduced.
  • the ion exchange resin 43 removes ions contained in the cooling water.
  • the conductivity meter 44 measures the conductivity of the cooling water.
  • the radiator flow path 5 is a flow path through which a heat radiating liquid for radiating the heat of the cooling water passing through the first heat exchanger 41 flows and circulates.
  • the radiator flow path 5 is connected to the first heat exchanger 41.
  • a pump 50 and a radiator 51 are provided in the radiator passage 5.
  • the pump 50 circulates the heat-dissipating liquid through the radiator flow path 5 in order to dissipate the cooling water passing through the first heat exchanger 41.
  • the heat-dissipating liquid sent from the pump 50 flows through the first heat exchanger 41 and the radiator 51 and returns to the pump 50.
  • As the heat dissipation liquid for example, an antifreeze liquid mainly composed of ethylene glycol can be used.
  • a fan 52 is provided in the vicinity of the radiator 51.
  • the heat of the cooling water is conducted to the heat radiating liquid in the first heat exchanger 41.
  • the wind sent from the fan 52 hits the radiator 51, and the heat dissipation liquid passing through the radiator 51 is dissipated. In this way, the cooling water is dissipated.
  • the heat medium flow path 6 is a flow path through which the heat medium flows and circulates.
  • the heat medium is a fluid, for example, water or antifreeze (for example, ethylene glycol).
  • the heat medium flow path 6 is connected to the second heat exchanger 42.
  • the heat medium flow path 6 is provided with a pump 60, a heater 61, and a temperature sensor 62. Further, the heat medium flow path 6 is provided so as to pass through both the battery body 100 and the hydrogen supply unit 110.
  • the heat medium flow path 6 includes a plurality of branch paths 63 and an opening / closing valve 64 that opens and closes each of the branch paths 63.
  • the branch channel 63 and the on-off valve 64 are provided in the hydrogen supply unit 110.
  • the pump 60 circulates the heat medium through the heat medium flow path 6.
  • the on-off valve 64 is an electromagnetic valve that can be controlled by the control unit 11 between an open state and a closed state, and is preferably a normally closed electromagnetic valve.
  • the hydrogen supply unit 110 includes a regulator 22 and a plurality of hydrogen storage units 70.
  • the regulator 22 is connected to one end of the hydrogen supply path 2a.
  • the plurality of hydrogen storage units 70 each store a plurality of storage containers 71 that store hydrogen storage alloys for storing hydrogen.
  • FIG. 1 shows an example including two hydrogen storage units 70, the hydrogen supply unit 110 may include three or more hydrogen storage units 70.
  • One hydrogen storage unit 70 may contain a plurality of storage containers 71.
  • the hydrogen storage unit 70 can be attached to and detached from the hydrogen supply unit 110. By attaching / detaching the hydrogen storage unit 70, the storage container 71 is attached / detached to / from the hydrogen supply unit 110.
  • the storage container 71 contains a hydrogen storage alloy inside.
  • the storage container 71 transmits external heat to the internal hydrogen storage alloy.
  • the plurality of hydrogen storage units 70 are respectively close to, in contact with, or connected to the plurality of branch channels 63.
  • the hydrogen storage unit 70 is configured to transmit the heat of the heat medium passing through the branch channel 63 to the storage container 71.
  • the hydrogen storage unit 70 is a box, and a heat transfer material or a heat transfer mechanism is provided between the branch flow path 63 and the storage container 71 that are in close proximity, contact, or connection.
  • a configuration in which the branch channel 63 passes through the hydrogen storage unit 70 and the branch channel 63 contacts the storage container 71 may be adopted.
  • a pressure sensor 72 and a hydrogen supply valve 73 are connected to the storage container 71.
  • the pressure sensor 72 measures the pressure in the storage container 71.
  • the pressure sensor 72 corresponds to the detector in the present disclosure.
  • the hydrogen supply valve 73 is connected to the hydrogen supply path 74.
  • the hydrogen supply valve 73 is an electromagnetic valve that can be controlled by the control unit 11 between an open state and a closed state, and is preferably a normally closed electromagnetic valve.
  • the hydrogen supply path 74 is connected to the regulator 22. In a state where the hydrogen storage unit 70 is detached from the hydrogen supply unit 110, the hydrogen supply valve 73 is closed. In a state where the hydrogen storage unit 70 is attached to the hydrogen supply unit 110, the hydrogen supply valve 73 is opened.
  • the pressure sensor 72 is located upstream of the hydrogen supply valve 73 in the flow of hydrogen from the storage container 71 to the battery body 100.
  • the pressure sensor 72 and the hydrogen supply valve 73 may be fixed to the hydrogen supply path 74, fixed to the hydrogen storage unit 70, and attachable to and detachable from the hydrogen supply unit 110 together with the hydrogen storage unit 70. Good.
  • the hydrogen supply unit 110 further includes an attachment / detachment sensor 75 that detects attachment / detachment of the plurality of storage containers 71.
  • the attachment / detachment sensor 75 is a sensor that detects the operation of an opening / closing mechanism (not shown) provided at a connection portion between the storage container 71 and the hydrogen supply path 74.
  • the attachment / detachment sensor 75 may be an input switch for inputting attachment / detachment of the storage container 71 by a user who manually attaches / detaches the hydrogen storage unit 70.
  • the heat medium is heated by the second heat exchanger 42 and the heater 61, and is passed through the heat medium flow path 6 by the pump 60. With the open / close valve 64 open, the heat medium flows through the branch flow path 63, heat is transferred from the heat medium to the storage container 71, and the storage container 71 is heated.
  • the storage container 71 is selectively heated by selectively allowing the heat medium to flow through any of the branch channels 63.
  • the hydrogen storage alloy accommodated in the storage container 71 is heated, and hydrogen is released from the hydrogen storage alloy.
  • the released hydrogen is supplied from the storage container 71 to the fuel cell stack 10 through the hydrogen supply path 74, the regulator 22, and the hydrogen flow path 2.
  • the supply pressure of hydrogen is adjusted by the regulator 22. By supplying hydrogen to the fuel cell stack 10, power generation is performed in the fuel cell stack 10.
  • the fuel cell 1 continuously generates power by sequentially replacing the storage containers 71 that have consumed hydrogen.
  • the storage container 71 is replaced by replacing the hydrogen storage unit 70.
  • the control part 11 performs the process which heats the storage container 71 so that electric power generation may be performed continuously.
  • the process which heats the storage container 71 is demonstrated.
  • a fuel cell 1 including two hydrogen storage units 70 is shown as an example of the fuel cell 1.
  • One of the two hydrogen storage units 70 is a hydrogen storage unit (A) 70 and the other is a hydrogen storage unit (B) 70.
  • One of the storage container 71, the pressure sensor 72, the distribution channel 63 and the on-off valve 64 is used as the storage container (A) 71, the pressure sensor (A) 72, the distribution channel (A) 63 and the on-off valve (A) 64, and the other one.
  • a storage container (B) 71, a pressure sensor (B) 72, a branch channel (B) 63, and an on-off valve (B) 64 are used.
  • FIGS. 2 and 3 are flowcharts showing a procedure of a process for heating the storage container 71 in the first embodiment.
  • the control unit 11 determines whether or not a new storage container 71 has been attached according to the detection result of the attachment / detachment sensor 75 (S101).
  • S101 the detection result of the attachment / detachment sensor 75
  • the hydrogen storage unit 70 is replaced, the storage container 71 is replaced, and the installation of a new storage container 71 is detected.
  • the installation of a new storage container 71 is not detected, the hydrogen storage unit 70 has not been replaced.
  • the control unit 11 determines whether the on-off valve (A) 64 is closed (S102). When the on-off valve (A) 64 is closed (S102: YES), the controller 11 determines that the pressure P (A) measured by the pressure sensor (A) 72 is equal to or lower than a predetermined pressure H1, or a temperature sensor. It is determined whether the temperature T of the heat medium measured by 62 is equal to or lower than a predetermined temperature T1 (S103). In a state where the on-off valve 64 is closed, the storage container 71 is not heated by the heat medium flowing through the branch flow path 63.
  • the pressure H1 is a threshold value for preventing the storage container 71 from being heated, assuming that the hydrogen pressure in the storage container 71 is sufficient when the pressure in the storage container 71 exceeds this value.
  • the pressure H1 is 170 kPa.
  • the temperature T1 is a threshold value for circulating the heat medium when the temperature T of the heat medium is equal to or lower than this value.
  • the temperature T1 is 40 ° C.
  • the control unit 11 opens the on-off valve (A) 64 (S104).
  • the heat medium can flow through the branch channel (A) 63 and the storage container (A) 71 can be heated.
  • the control unit 11 advances the process to S107.
  • the control unit 11 advances the process to S107.
  • the on-off valve (A) 64 remains closed, and the storage container (A) 71 is not heated by the heat medium flowing through the branch channel (A) 63.
  • the controller 11 determines that the pressure P (A) is equal to or higher than the predetermined pressure H2, and the temperature T of the heat medium is equal to or higher than the predetermined temperature T2. It is determined whether or not there is (S105).
  • the storage container 71 can be heated by the heat medium flowing through the branch channel 63.
  • the pressure H2 is a threshold value for heating the storage container 71 assuming that the hydrogen pressure in the storage container 71 is insufficient when the pressure in the storage container 71 is less than this value.
  • the pressure H2 is 200 kPa.
  • the temperature T2 is a threshold value for preventing the circulation of the heat medium when the temperature T of the heat medium is equal to or higher than this value.
  • the temperature T2 is 45 ° C.
  • the control unit 11 closes the on-off valve (A) 64 (S106).
  • the storage container (A) 71 is no longer heated by the flow of the heat medium through the branch channel (A) 63.
  • the control unit 11 advances the process to S107.
  • the control unit 11 advances the process to S107.
  • the on-off valve (A) 64 remains open, and the storage container (A) 71 can be heated by the heat medium flowing through the branch channel (A) 63.
  • the control unit 11 determines whether or not the on-off valve (B) 64 is closed (S107).
  • the control unit 11 determines that the pressure P (B) measured by the pressure sensor (B) 72 is equal to or lower than the pressure H1, or the temperature of the heat medium. It is determined whether T is equal to or lower than the temperature T1 (S108).
  • the control unit 11 opens the on-off valve (B) 64 (S109).
  • the heat medium can flow through the branch channel (B) 63 and the storage container (B) 71 can be heated.
  • the control unit 11 advances the process to S112.
  • the control unit 11 advances the process to S112.
  • the on-off valve (B) 64 remains closed, and the storage container (B) 71 is not heated by the heat medium flowing through the branch channel (B) 63.
  • the control unit 11 determines whether or not the pressure P (B) is equal to or higher than the pressure H2 and the temperature T of the heat medium is equal to or higher than the temperature T2. Is determined (S110). When the pressure P (B) is equal to or higher than the pressure H2 and the temperature T of the heat medium is equal to or higher than the temperature T2 (S110: YES), the control unit 11 closes the on-off valve (B) 64 (S111). The storage container (B) 71 is no longer heated due to the flow of the heat medium through the branch channel (B) 63. Next, the control unit 11 advances the process to S112.
  • the control unit 11 advances the process to S112.
  • the on-off valve (B) 64 remains open, and the storage container (B) 71 can be heated by the heat medium flowing through the branch channel (B) 63.
  • the controller 11 determines whether the on-off valve (A) 64 or the on-off valve (B) 64 is open (S112).
  • the control unit 11 operates the pump 60 (S113).
  • the pump 60 is already operating, the pump 60 continues to operate.
  • the heat medium circulates through the heat medium flow path 6 by the operation of the pump 60.
  • the control unit 11 stops the pump 60 (S114). When the pump 60 is already stopped, the pump 60 continues to stop.
  • the control unit 11 determines whether or not the temperature T of the heat medium is equal to or higher than a predetermined temperature T3 (S115).
  • the temperature T3 is a threshold value for heating the heat medium when the temperature T of the heat medium is less than this value. For example, the temperature T3 is 23 ° C.
  • the control unit 11 stops the heater 61 (S116). When the heater 61 has already stopped, the heater 61 continues to stop.
  • the control unit 11 operates the heater 61 (S117). When the heater 61 is already operating, the heater 61 continues to operate. The heat medium is heated by the operation of the heater 61.
  • the control unit 11 ends the process. Next, the control part 11 repeats a process from S101.
  • the heat medium transmits heat generated from the fuel cell stack 10 by the second heat exchanger 42 and is heated by the heater 61.
  • the temperature of the heat medium is adjusted to be equal to or higher than a predetermined temperature T3.
  • the temperature T3 corresponds to the first temperature in the present disclosure.
  • the control unit 11, the fuel cell stack 10, the second heat exchanger 42, the pump 60, the heater 61, and the temperature sensor 62 are included in the temperature adjustment unit in the present disclosure.
  • the processing of S102 to S117 corresponds to the first temperature adjustment mode.
  • the on-off valve (A) 64 When the on-off valve (A) 64 is opened, the heat medium flows through the branch channel (A) 63 and the storage container (A) 71 is heated.
  • the on-off valve (B) 64 When the on-off valve (B) 64 is opened, the heat medium flows through the branch channel (B) 63, and the storage container (B) 71 is heated. Thus, the storage container 71 is heated, the hydrogen storage alloy in the storage container 71 is heated, hydrogen is released, and the released hydrogen is supplied to the fuel cell stack 10.
  • the control unit 11 performs the same processing as S101 to S117.
  • the control unit 11 executes the same processing as the processing of S102 to S106 and the processing of S107 to S111 for each storage container 71.
  • the control unit 11 executes the process of S113 when any of the on-off valves 64 is open, and executes the process of S114 when all the on-off valves 64 are closed. To do.
  • the control unit 11 When a new storage container 71 is attached, the control unit 11 performs a process for heating the attached storage container 71.
  • the detachable sensor 75 detects that the new storage container 71 has been attached.
  • the attachment / detachment sensor 75 specifies the newly installed storage container 71.
  • the hydrogen storage unit (A) 70 is not replaced and the hydrogen storage unit (B) 70 is replaced. That is, the storage container (A) 71 is not exchanged, and the storage container (B) 71 is newly installed.
  • the control unit 11 determines whether or not the pressure P (B) measured by the pressure sensor (B) 72 is equal to or higher than a predetermined pressure H3. Determine (S21). For the pressure H3, when the pressure in the newly installed storage container 71 is equal to or higher than this value, the hydrogen pressure in the storage container 71 is assumed to be sufficient, and the subsequent process for adjusting the temperature of the heat medium is performed. This is a threshold value for avoiding this. For example, the pressure H3 is 100 kPa. When the pressure P (B) is equal to or higher than the pressure H3 (S21: YES), the control unit 11 advances the process to S102.
  • control part 11 closes on-off valve (B) 64 (S22).
  • the on-off valve (B) 64 is already closed, the on-off valve (B) 64 is kept closed.
  • the controller 11 opens the on-off valve (A) 64 (S23).
  • the on-off valve (A) 64 has already been opened, the on-off valve (A) 64 is kept open.
  • the controller 11 operates the pump 60 (S24). When the pump 60 is already operating, the pump 60 continues to operate.
  • the controller 11 operates the heater 61 (S25). When the heater 61 is already operating, the heater 61 continues to operate. The heat medium is heated in a state where the heat medium does not flow through the branch channel (B) 63 and the heat medium flows through the branch channel (A) 63.
  • the controller 11 determines whether or not the temperature T of the heat medium is equal to or higher than a predetermined temperature T4 (S26).
  • the temperature T4 is a target temperature for adjusting the temperature T of the heat medium to be equal to or higher than this temperature in a state where the heat medium does not flow through the branch channel (B) 63.
  • the temperature T4 is higher than the temperature T3.
  • the temperature T4 is 40 ° C.
  • the control unit 11 repeats the process of S26 until the temperature T of the heat medium becomes equal to or higher than the predetermined temperature T4.
  • the control unit 11 advances the process to S102.
  • the storage container (B) 71 When the pressure P (B) in the newly installed storage container (B) 71 is less than the pressure H3, the storage container (B) 71 is not yet heated, and the storage container (B) 71 The temperature of the hydrogen storage alloy is low, and hydrogen cannot be sufficiently released.
  • the processing of S21 to S26 when the pressure P (B) in the storage container (B) 71 is less than the pressure H3, the storage container (B) 71 is not heated. In a state where the storage container (B) 71 is not heated, the heat medium is heated, and the temperature T of the heat medium is adjusted to be equal to or higher than the temperature T4.
  • the temperature T4 corresponds to the second temperature in the present disclosure. Further, the processing of S22 to S26 corresponds to the second temperature adjustment mode.
  • the second temperature adjustment mode ends, and the processes after S102, that is, the first temperature adjustment mode are executed.
  • the newly installed storage container (B) 71 is heated.
  • the control unit 11 performs the same processing as S21 to S26. In S23, the control unit 11 opens the on / off valves 64 other than the on / off valve (B) 64 related to the newly mounted storage container (B) 71.
  • the fuel cell 1 performs the first temperature adjustment mode (processing of S102 to S117) in which the temperature T of the heat medium is adjusted to be equal to or higher than the temperature T3.
  • the plurality of storage containers 71 are heated.
  • the fuel cell 1 can also implement a second temperature adjustment mode (processing of S22 to S26) in which temperature adjustment is performed so that the temperature T of the heat medium becomes higher than the temperature T4 higher than the temperature T3.
  • the fuel cell 1 determines whether or not to implement the second temperature adjustment mode based on the pressure inside the attached storage container 71. Specifically, the fuel cell 1 performs the second temperature adjustment mode when the pressure inside the attached storage container 71 is less than the pressure H3.
  • the temperature of the newly installed storage container 71 may be very low compared to other storage containers 71.
  • the temperature of the heat medium decreases, and the amount of heat for heating the other storage container 71 by the heat medium becomes insufficient. Due to the shortage of heat, the temperature of the other storage container 71 is lowered, the temperature of the hydrogen storage alloy is lowered, the pressure of hydrogen is lowered, and power generation in the fuel cell stack 10 may be difficult.
  • the temperature of the newly installed storage container 71 is low, the temperature of the internal hydrogen storage alloy is also low, and the pressure in the storage container 71 is low. For this reason, based on the pressure in the storage container 71, it can be estimated that the temperature of the storage container 71 is low.
  • a case where the pressure in the attached storage container 71 is lower than the pressure H3 is a case where the temperature of the storage container 71 is low.
  • the temperature of the heat medium is adjusted to a temperature exceeding the temperature T3 (for example, the temperature T4 or more) by performing the second temperature adjustment mode. Then, the temperature of the heat medium is suppressed from being lowered by the low temperature of the attached storage container 71. It is suppressed that the amount of heat for heating the other storage container 71 by the heat medium is suppressed, and the temperature of the other storage container 71 is prevented from decreasing. For this reason, a decrease in the temperature of the hydrogen storage alloy and a decrease in the hydrogen pressure are prevented, and hydrogen is stably supplied to the fuel cell stack 10. Therefore, the fuel cell 1 according to the present embodiment can perform continuous power generation.
  • the fuel cell 1 performs the second temperature adjustment mode (the processing of S22 to S26), and when the temperature T of the heat medium becomes equal to or higher than the temperature T4, the fuel cell 1 performs the second temperature adjustment mode. Then, the first temperature adjustment mode (the processes of S102 to S117) is performed. The fuel cell 1 does not warm the newly installed storage container 71 in the second temperature adjustment mode, but warms the installed storage container 71 in the first temperature adjustment mode. That is, the fuel cell 1 starts heating the newly installed storage container 71 after adjusting the temperature T of the heat medium to the temperature T4 or higher.
  • the heating of the newly installed storage container 71 is started, so the temperature of the heat medium is reduced by the low temperature of the installed storage container 71. Is prevented from excessively decreasing. For this reason, it is prevented that the temperature of the other storage container 71 falls.
  • the fuel cell 1 closes the opening / closing valve 64 that opens and closes the diversion channel 63 for heating the newly installed storage container 71 in the processes of S22 to S26, and other storage containers.
  • the second temperature adjustment mode is performed in a state where the on-off valve 64 that opens and closes the branch passage 63 for heating 71 is opened.
  • the fuel cell 1 prevents the newly installed storage container 71 from being heated when the second temperature adjustment mode is performed.
  • the on-off valve 64 related to the other storage container 71 is opened, the heat medium circulates through the heat medium flow path 6, and the heat medium is entirely warmed by the second heat exchanger 42 and the heater 61.
  • the fuel cell 1 includes the pressure sensor 72, and determines whether or not to execute the second temperature adjustment mode based on the pressure in the storage container 71 measured by the pressure sensor 72.
  • the fuel cell 1 can select an appropriate heat medium temperature adjustment method according to the state of the newly installed storage container 71 based on the measurement result of the pressure sensor 72.
  • the pressure sensor 72 is disposed on the upstream side of the hydrogen supply valve 73. For this reason, even if the hydrogen supply valve 73 is closed and hydrogen is not supplied from the storage container 71, the pressure sensor 72 can measure the pressure in the storage container 71.
  • the embodiment is shown in which the pressure sensor 72 is provided as a detector.
  • the fuel cell 1 may be provided with a temperature sensor that measures the temperature of the storage container 71 as a detector. Good.
  • the fuel cell 1 determines whether or not to implement the second temperature adjustment mode based on the temperature of the storage container 71 measured by the temperature sensor. Specifically, the temperature sensor measures the temperature of the newly installed storage container 71, and the controller 11 proceeds to S22 when the measured temperature is equal to or higher than a predetermined temperature T5 in S21. If the measured temperature is lower than the temperature T5, the process proceeds to S102.
  • the temperature T5 is a threshold value for implementing the second temperature adjustment mode when the temperature of the attached storage container 71 is lower than this value.
  • the fuel cell 1 performs the second temperature adjustment mode when the temperature of the installed storage container 71 is low, suppresses the heat amount of the heat medium from being insufficient, and the temperature of the other storage container 71 decreases. Can be prevented. Further, the fuel cell 1 may include both the pressure sensor 72 and the temperature sensor, and may determine whether to execute the second temperature adjustment mode based on the measurement results of the pressure sensor 72 and the temperature sensor. .
  • the control unit 11 directly controls the pump 60, the heater 61, and the on-off valve 64.
  • the fuel cell 1 adjusts the temperature of the heat medium separately from the control unit 11.
  • the form provided with the temperature control circuit for performing may be sufficient.
  • the control unit 11 controls the temperature adjustment circuit, and the temperature adjustment circuit controls the pump 60, the heater 61, and the plurality of on-off valves 64.
  • the temperature adjustment circuit is included in the temperature adjustment unit in the present disclosure.
  • the fuel cell 1 may have a configuration in which a heat dissipation mechanism such as a radiator is further provided in the heat medium flow path 6.
  • control unit 11 or the temperature adjustment circuit performs a process of adjusting the temperature of the heat medium to a predetermined upper limit temperature or less in the first temperature adjustment mode by radiating the heat of the heat medium using the heat dissipation mechanism. May be.
  • the heat dissipation mechanism is included in the temperature adjustment unit in the present disclosure.
  • the fuel cell 1 may be a form for detecting the attachment of the storage container 71 without using the attachment / detachment sensor 75.
  • the fuel cell 1 is updated based on whether the measurement result of the temperature sensor that measures the temperature of the pressure sensor 72 or the storage container 71 becomes a specific value, or the time change of the measurement result indicates a specific change.
  • worn may be sufficient.
  • FIG. 4 is a flowchart illustrating a part of a process according to the second embodiment.
  • the storage container (A) 71 is not exchanged, and the processing will be described assuming that the storage container (B) 71 is newly attached.
  • the control unit 11 closes the on-off valve (B) 64 (S31).
  • the on-off valve (B) 64 is already closed, the on-off valve (B) 64 is kept closed.
  • the controller 11 opens the on-off valve (A) 64 (S32). When the on-off valve (A) 64 has already been opened, the on-off valve (A) 64 is kept open.
  • the controller 11 operates the pump 60 (S33). When the pump 60 is already operating, the pump 60 continues to operate.
  • the controller 11 operates the heater 61 (S34). When the heater 61 is already operating, the heater 61 continues to operate. The heat medium is heated in a state where the heat medium does not flow through the branch channel (B) 63 and the heat medium flows through the branch channel (A) 63.
  • the control unit 11 determines whether or not the temperature T of the heat medium is equal to or higher than a predetermined temperature T4 (S35).
  • a predetermined temperature T4 S35
  • the control unit 11 repeats the process of S35 until the temperature T of the heat medium becomes equal to or higher than the predetermined temperature T4.
  • the control unit 11 advances the process to S102. Even if the fuel cell 1 includes three or more storage containers 71, the control unit 11 performs the same processing as S31 to S35.
  • the control unit 11 opens the on / off valves 64 other than the on / off valve (B) 64 related to the newly mounted storage container (B) 71.
  • the processing of S31 to S35 in the present embodiment corresponds to the second temperature adjustment mode in the present disclosure.
  • the fuel cell 1 performs the second temperature adjustment mode when a new storage container 71 is attached.
  • the temperature of the newly installed storage container 71 is likely to be lower than that of the other storage containers 71.
  • the fuel cell 1 according to the present embodiment can perform continuous power generation.
  • the fuel cell 1 performs the second temperature adjustment mode (processing of S31 to S35), and when the temperature T of the heat medium becomes equal to or higher than the temperature T4, the fuel cell 1 performs the second temperature adjustment mode. Then, the first temperature adjustment mode (the processes of S102 to S117) is performed. The fuel cell 1 does not warm the newly installed storage container 71 in the second temperature adjustment mode, but warms the installed storage container 71 in the first temperature adjustment mode. That is, after the temperature T of the second heat medium is adjusted to be equal to or higher than the temperature T4, the fuel cell 1 starts heating the newly installed storage container 71.
  • the newly installed storage container 71 After the temperature of the heat medium is adjusted to the temperature T4, the newly installed storage container 71 starts to be heated, so that the temperature of the heat medium is too low due to the low temperature of the installed storage container 71. Is prevented. For this reason, it is prevented that the temperature of the other storage container 71 falls.
  • the fuel cell 1 closes the opening / closing valve 64 that opens and closes the diversion channel 63 for heating the newly installed storage container 71 in the processes of S31 to S35, and other storage containers.
  • the second temperature adjustment mode is performed in a state where the on-off valve 64 that opens and closes the branch passage 63 for heating 71 is opened. In this manner, the fuel cell 1 performs the second temperature adjustment mode without heating the newly installed storage container 71. Further, the heat medium circulates through the heat medium flow path 6 through the on-off valve 64 related to the other storage container 71, and the heat medium is heated as a whole.
  • FIG. 5 is a flowchart illustrating a part of a process according to the third embodiment.
  • the control unit 11 determines whether or not there are unused storage containers 71 among the plurality of storage containers 71 (S401).
  • the unused storage container 71 is a storage container 71 newly attached by replacement of the hydrogen storage unit 70.
  • the control unit 11 determines whether or not a new storage container 71 has been attached according to the detection result of the attachment / detachment sensor 75.
  • the unused storage container 71 is a storage container 71 that has been provided in the fuel cell 1 from the beginning and has never been used for supplying hydrogen.
  • the control unit 11 determines that there is an unused storage container 71.
  • the storage container 71 accommodated in the hydrogen storage unit 70 provided in the replaced hydrogen supply unit 110 is an unused storage container 71.
  • the control unit 11 determines that there is an unused storage container 71 in response to detecting that the hydrogen supply unit 110 has been replaced. Further, for example, when a part including all or part of the heat medium flow path 6 and one or a plurality of hydrogen storage units 70 is replaced, the storage container 71 included in the replaced part is an unused storage container 71. It is.
  • the control unit 11 determines that there is an unused storage container 71 in response to detecting the replacement.
  • the storage container 71 accommodated in the added hydrogen storage unit 70 is an unused storage container 71.
  • the control unit 11 determines that there is an unused storage container 71 in response to detecting the addition.
  • the control unit 11 executes the processes of S102 to S117 as in the first embodiment. After the process of S116 or S117 ends, the control unit 11 ends the process. Next, the control part 11 repeats a process from S401.
  • the unused storage container 71 is defined as a storage container (B) 71
  • another storage container 71 is defined as a storage container (A) 71
  • the control unit 11 As in the first embodiment, the processes of S21 to S26 are executed.
  • the fuel cell 1 determines whether or not to execute the second temperature adjustment mode based on the pressure inside the unused storage container 71. Specifically, the fuel cell 1 performs the second temperature adjustment mode when the pressure inside the unused storage container 71 is less than a predetermined pressure H3.
  • the temperature of the unused storage container 71 may be very low compared to the other storage containers 71. When the temperature of the unused storage container 71 is low, the pressure in the storage container 71 is low. For this reason, based on the pressure in the unused storage container 71, it can be estimated that the temperature of the storage container 71 is low.
  • the temperature of the storage container 71 is low.
  • the temperature of the heat medium is adjusted to a temperature equal to or higher than the temperature T3 by performing the second temperature adjustment mode, and the unused storage container 71 is low. It suppresses that the temperature of a heat medium falls with temperature, and suppresses that the calorie
  • the fuel cell 1 may be configured to include a temperature sensor that measures the temperature of the storage container 71 instead of the pressure sensor 72.
  • the fuel cell 1 determines whether or not to implement the second temperature adjustment mode based on the temperature of the storage container 71 measured by the temperature sensor.
  • the temperature sensor measures the temperature of the unused storage container 71, and the controller 11 advances the process to S22 when the measured temperature is equal to or higher than the predetermined temperature T5 in S21. If the measured temperature is lower than temperature T5, the process proceeds to S102.
  • the fuel cell 1 performs the second temperature adjustment mode, suppresses the heat amount of the heat medium from being insufficient, and decreases the temperature of the other storage container 71. Can be prevented.
  • the fuel cell 1 may include both the pressure sensor 72 and the temperature sensor, and may determine whether to execute the second temperature adjustment mode based on the measurement results of the pressure sensor 72 and the temperature sensor. .
  • the fuel cell 1 may be configured to execute the processing of S31 to S35 as in the second embodiment.
  • the fuel cell 1 performs the second temperature adjustment mode when there is an unused storage container 71.
  • the second temperature adjustment mode for adjusting the temperature of the heat medium to the temperature T3 or more is immediately implemented, it is possible to suppress the heat quantity of the heat medium for heating the other storage container 71 from being insufficient. It is prevented that the temperature of the container 71 falls.
  • the fuel cell 1 of the present disclosure contains the power generation unit 10 that generates power by reacting hydrogen and oxygen, and the hydrogen storage alloy that stores the hydrogen to be supplied to the power generation unit 10, respectively.
  • a plurality of storage containers 71 that can be attached to and detached from, a heat medium flow path 6 through which a heat medium for heating the plurality of storage containers 71 flows, and a temperature adjusting unit that adjusts the temperature of the heat medium.
  • the temperature adjustment unit includes a first temperature adjustment mode for adjusting the temperature of the heat medium so that the temperature of the heat medium is equal to or higher than a predetermined first temperature; and the temperature of the heat medium is set to be higher than the first temperature.
  • a second temperature adjustment mode in which the temperature of the heat medium is adjusted to be higher than a predetermined second temperature can be implemented.
  • the newly installed storage container 71 On the basis of the internal pressure or the temperature of the storage container 71. And judging whether to execute the degree adjustment mode.
  • the fuel cell 1 adjusts the temperature of the heat medium so that the temperature of the heat medium is equal to or higher than the second temperature higher than the first temperature when the temperature of the newly installed storage container 71 is low. This suppresses a shortage of heat for heating the other storage container 71.
  • the temperature adjustment unit performs the second temperature adjustment mode, and the temperature of the heat medium becomes equal to or higher than the second temperature. Heating is started.
  • the fuel cell 1 starts heating the newly mounted storage container 71 after adjusting the temperature of the heat medium to the second temperature or higher. Even when the temperature is low, the temperature of the heat medium does not drop too much.
  • the temperature adjustment unit ends the second temperature adjustment mode after the second temperature adjustment mode is performed and the temperature of the heat medium becomes equal to or higher than the second temperature.
  • the first temperature adjustment mode is performed.
  • the fuel cell 1 starts heating the newly installed storage container 71 in the second temperature adjustment mode after adjusting the temperature of the heat medium to the second temperature or higher in the second temperature adjustment mode. . Even when the temperature of the newly installed storage container 71 is low, the temperature of the heat medium does not drop too much.
  • the heat medium flow path 6 includes a plurality of branch paths 63 for heating the plurality of storage containers 71, and a plurality of on-off valves 64 for opening and closing the plurality of branch paths 63.
  • the temperature adjusting unit closes the opening / closing valve 64 of the branch channel 63 for heating the mounted storage container 71 and opens / closes the branch channel 63 for heating the other storage container 71.
  • the second temperature adjustment mode is performed with the valve 64 opened.
  • the fuel cell 1 of the present disclosure When the fuel cell 1 of the present disclosure performs the second temperature adjustment mode, the fuel cell 1 of the present disclosure opens the open / close valve 64 of the branch channel 63 for heating the storage container 71 other than the newly installed storage container 71. Circulate the heat medium and warm the heat medium as a whole.
  • the fuel cell 1 further includes a detector that detects a pressure or a temperature inside each of the plurality of storage containers 71, and the temperature adjustment unit includes the mounted storage container 71 detected by the detector. It is characterized in that it is determined whether or not to execute the second temperature adjustment mode based on the internal pressure or temperature.
  • the fuel cell 1 determines whether or not the second temperature adjustment mode is to be performed based on the pressure or temperature detected by the detector, the fuel cell 1 is appropriate according to the state of the newly installed storage container 71. A method for adjusting the temperature of the heat medium can be selected.
  • the fuel cell 1 of the present disclosure further includes a plurality of hydrogen supply valves 73 that open and close the flow of hydrogen supplied from the plurality of storage containers 71 to the power generation unit 10, and the detector includes a plurality of pressure sensors 72. And each pressure sensor 72 is arranged on the upstream side of the hydrogen flow with respect to each hydrogen supply valve 73.
  • the pressure sensor 72 of the present disclosure is disposed on the upstream side of the hydrogen supply valve 73, the pressure sensor 72 measures the pressure in the storage container 71 even when hydrogen is not supplied from the storage container 71. can do.
  • the fuel cell 1 includes a power generation unit 10 that generates power by reacting hydrogen and oxygen, and a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit 10, and each can be attached and detached.
  • a plurality of storage containers 71, a heat medium flow path 6 through which a heat medium for heating the plurality of storage containers 71 flows, and the temperature of the heat medium are adjusted, and the heat medium flow path 6 is supplied with the heat
  • a temperature adjusting unit that heats the plurality of storage containers 71 by causing the medium to flow, and the temperature adjusting unit is configured so that the temperature of the heat medium is equal to or higher than a predetermined first temperature.
  • a first temperature adjustment mode for adjusting the temperature and a second temperature adjustment mode for adjusting the temperature of the heat medium so as to make the temperature of the heat medium equal to or higher than a predetermined second temperature higher than the first temperature can be implemented. And when a new storage container 71 is installed, Which comprises carrying out the temperature adjustment mode.
  • the fuel cell 1 according to the present disclosure is adjusted by adjusting the temperature of the heat medium so that the temperature of the heat medium is equal to or higher than the second temperature higher than the first temperature. It is suppressed that the amount of heat for heating other storage containers 71 due to the temperature of the storage container 71 attached to is insufficient.
  • the fuel cell 1 includes a power generation unit 10 that generates power by reacting hydrogen and oxygen, and a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit 10, and each can be attached and detached.
  • a plurality of storage containers 71, a heat medium flow path 6 through which a heat medium for heating the plurality of storage containers 71 flows, and the temperature of the heat medium are adjusted, and the heat medium flow path 6 is supplied with the heat
  • a temperature adjusting unit that heats the plurality of storage containers 71 by causing the medium to flow, and the temperature adjusting unit is configured so that the temperature of the heat medium is equal to or higher than a predetermined first temperature.
  • a first temperature adjustment mode for adjusting the temperature and a second temperature adjustment mode for adjusting the temperature of the heat medium so as to make the temperature of the heat medium equal to or higher than a predetermined second temperature higher than the first temperature can be implemented.
  • the fuel cell 1 of the present disclosure adjusts the temperature of the heat medium so that the temperature of the heat medium is equal to or higher than the second temperature higher than the first temperature. It is suppressed that the heat quantity for heating the other storage container 71 is insufficient.
  • the temperature adjustment method of the present disclosure contains a power generation unit 10 that generates power by reacting hydrogen and oxygen, and a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit 10, and each can be attached and detached.
  • a power generation unit 10 that generates power by reacting hydrogen and oxygen
  • a hydrogen storage alloy that stores hydrogen to be supplied to the power generation unit 10
  • the temperature of the heat medium is adjusted so that the temperature of the heat medium is equal to or higher than a predetermined second temperature higher than the first temperature, and the temperature of the heat medium is adjusted to the first temperature. After the temperature reaches 2 or more, heating of the attached storage container 71 is started. And wherein the Rukoto.
  • the temperature of the heat medium is adjusted to a second temperature higher than the first temperature, and the temperature of the heat medium becomes the second temperature or higher. After that, since heating of the mounted storage container 71 is started, even when the temperature of the newly mounted storage container 71 is low, the temperature of the heat medium does not decrease excessively.
  • Fuel Cell 10 Fuel Cell Stack (Power Generation Unit) DESCRIPTION OF SYMBOLS 100 Battery main body 110 Hydrogen supply part 11 Control part 42 2nd heat exchanger 6 Heat medium flow path 60 Pump 61 Heater 62 Temperature sensor 63 Split flow path 64 On-off valve 70 Hydrogen storage unit 71 Storage container 72 Pressure sensor (detector) 73 Hydrogen supply valve 74 Hydrogen supply path 75 Detachable sensor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

貯蔵容器の温度を適切に調整することにより、継続的な発電を可能にする燃料電池及び温度調整方法を提供する。 燃料電池は、水素及び酸素を反応させて発電する発電部と、発電部へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器と、貯蔵容器を加温するための熱媒体が通流する熱媒体流路と、熱媒体の温度を調整し、熱媒体流路に熱媒体を通流させることによって、貯蔵容器を加温する温度調整部とを備える。温度調整部は、熱媒体の温度を所定の第1温度以上にすべく熱媒体の温度を調整する第1温度調整モードと、熱媒体の温度を第1温度よりも高い所定の第2温度以上にすべく熱媒体の温度を調整する第2温度調整モードとを実施可能であり、新たな貯蔵容器が装着された場合に、装着された貯蔵容器内の圧力又は温度に基づいて、第2温度調整モードを実施するか否かを判定する。

Description

燃料電池及び温度調整方法
 本開示は、水素吸蔵合金を収容する貯蔵容器を備え、水素を燃料として発電を行う燃料電池、及び燃料電池内部の温度を調整する方法に関する。
 燃料電池には、水素と酸素とを反応させて発電を行うものがある。水素を貯蔵する方法として、水素吸蔵合金を用いる方法が知られている。水素吸蔵合金を利用する燃料電池は、水素吸蔵合金を収容した貯蔵容器を備えている。水素吸蔵合金が水素を放出する反応は吸熱反応であるので、発電に必要な水素を得るためには、貯蔵容器を加温する必要がある。また、水素と酸素とが反応して発電がおこなわれる反応は、発熱反応である。特許文献1には、発電時に発生する熱で貯蔵容器を加温する燃料電池が開示されている。具体的には、水素及び酸素を反応させて発電を行う燃料電池スタックと貯蔵容器との間で熱媒体を循環させることにより、貯蔵容器を加温する。
国際公開第2013/065083号公報
 燃料電池において発電を継続的に行うためには、複数の貯蔵容器を備えておき、水素が消費された貯蔵容器を順次交換していく必要がある。ところが、未使用の貯蔵容器の温度は非常に低い場合がある。温度が非常に低い貯蔵容器を熱媒体によって加温しようとした場合は、熱媒体の温度が低下し、熱媒体が他の貯蔵容器を加温するための熱量が不足し、他の貯蔵容器の水素圧力が低下し、水素の放出量が不十分になる可能性がある。このため、燃料電池による継続的な発電が困難になる虞がある。
 本開示は、貯蔵容器の温度を適切に調整することにより、継続的な発電を可能にする燃料電池及び温度調整方法を提供することにある。
 本開示の燃料電池は、水素及び酸素を反応させて発電する発電部と、該発電部へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器と、前記複数の貯蔵容器を加温するための熱媒体が通流する熱媒体流路と、前記熱媒体の温度を調整する温度調整部とを備え、前記温度調整部は、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整する第1温度調整モードと、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整する第2温度調整モードとを実施可能であり、新たな貯蔵容器が装着された場合に、新たに装着された貯蔵容器内の圧力又は新たに装着された貯蔵容器の温度に基づいて、前記第2温度調整モードを実施するか否かを判定することを特徴とする。
 本開示の燃料電池は、発電部へ供給するための水素を貯蔵する水素吸蔵合金を収容した着脱可能な複数の貯蔵容器を備え、熱媒体流路に熱媒体を通流させ、熱媒体の温度を第1温度以上にすべく温度調整を行う第1温度調整モードを実施することによって、貯蔵容器を加温する。また、燃料電池は、熱媒体の温度を、第1温度よりも高温の第2温度以上にすべく温度調整を行う第2温度調整モードを実施することも可能である。燃料電池は、新たな貯蔵容器が装着された場合に、新たに装着された貯蔵容器の内部の圧力又は新たに装着された貯蔵容器の温度に基づいて、第2温度調整モードを実施するか否かを判定する。新たに装着された貯蔵容器の温度が低い場合、貯蔵容器内の圧力は低い。このため、圧力に基づいて、新たに装着された貯蔵容器の温度が低いことを推定することができる。新たに装着された貯蔵容器の温度が低い場合に第2温度調整モードを実施することにより、熱媒体の温度が高温に調整され、新たに装着された貯蔵容器の低い温度によって熱媒体の熱量が不足することを抑制する。
 本開示の燃料電池は、水素及び酸素を反応させて発電する発電部と、該発電部へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器と、前記複数の貯蔵容器を加温するための熱媒体が通流する熱媒体流路と、前記熱媒体の温度を調整し、前記熱媒体流路に前記熱媒体を通流させることによって、前記複数の貯蔵容器を加温する温度調整部とを備え、前記温度調整部は、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整する第1温度調整モードと、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整する第2温度調整モードとを実施可能であり、新たな貯蔵容器が装着された場合に、前記第2温度調整モードを実施することを特徴とする。
 本開示の燃料電池は、新たな貯蔵容器が装着された場合に、第2温度調整モードを実施する。新たな貯蔵容器が装着されたことに応じて熱媒体の温度が高温に調整され、新たに装着された貯蔵容器の低い温度によって熱媒体の熱量が不足することを抑制する。
 本開示の燃料電池は、水素及び酸素を反応させて発電する発電部と、該発電部へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器と、前記複数の貯蔵容器を加温するための熱媒体が通流する熱媒体流路と、前記熱媒体の温度を調整し、前記熱媒体流路に前記熱媒体を通流させることによって、前記複数の貯蔵容器を加温する温度調整部とを備え、前記温度調整部は、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整する第1温度調整モードと、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整する第2温度調整モードとを実施可能であり、前記複数の貯蔵容器の内に未使用の貯蔵容器がある場合、前記未使用の複数の貯蔵容器内の圧力又は温度に基づいて、前記第2温度調整モードを実施するか否かを判定することを特徴とする。
 本開示の燃料電池は、未使用の貯蔵容器がある場合に、貯蔵容器の内部の圧力又は温度に基づいて、第2温度調整モードを実施するか否かを判定する。圧力に基づいて、貯蔵容器の温度が低いことを推定することができる。未使用の貯蔵容器の温度が低い場合に第2温度調整モードを実施することにより、熱媒体の温度が高温に調整され、未使用の貯蔵容器の低い温度によって熱媒体の熱量が不足することを抑制する。
 本開示の温度調整方法は、水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器と、前記複数の貯蔵容器を加温するための熱媒体が通流する熱媒体流路とを用い、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整し、前記複数の貯蔵容器を加温し、新たな貯蔵容器が装着された場合に、装着された貯蔵容器の加温を行わずに、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整し、前記熱媒体の温度が前記第2温度以上になった後に、前記装着された貯蔵容器の加温を開始することを特徴とする。
 本開示の温度調整方法では、熱媒体の温度を第1温度以上にすべく温度調整を行って、複数の貯蔵容器を加温する。新たな貯蔵容器が装着された場合に、装着された貯蔵容器の加温を行わずに、熱媒体の温度を、より高温の第2温度以上にすべく温度調整を行う。また、熱媒体の温度が第2温度以上になった後に、装着された貯蔵容器の加温を開始する。熱媒体の温度が高温に調整された後で新たに装着された貯蔵容器の加温を行うことにより、新たに装着された貯蔵容器の低い温度によって熱媒体の熱量が不足することを抑制する。
 本開示の燃料電池及び温度調整方法は、新たな貯蔵容器が装着された場合又は未使用の貯蔵容器がある場合に熱媒体の熱量が不足することを抑制し、他の貯蔵容器の温度が低下することを防止する。水素の圧力低下が防止され、燃料電池は、継続的な発電を実行することが可能となる等、優れた効果を奏する。
実施形態1に係る燃料電池の構成を示す概念図である。 実施形態1における貯蔵容器を加温する処理の手順を示すフローチャートである。 実施形態1における貯蔵容器を加温する処理の手順を示すフローチャートである。 実施形態2における処理の一部の手順を示すフローチャートである。 実施形態3における処理の一部の手順を示すフローチャートである。
(実施形態1)
 図1に記載される燃料電池1は、例えば固体高分子形燃料電池(polymer electrolyte fuel cell)等の燃料電池であり、水素と酸素とを反応させて発電を行う。燃料電池1は、電池本体100及び水素供給部110を備えている。電池本体100は、燃料電池スタック10、制御部11、水素通流路2、空気流路3、スタック冷却路4、ラジエータ通流路5、及び熱媒体流路6を備えている。水素通流路2は、水素供給路2a及び水素循環路2bを含んでいる。
 制御部11は、燃料電池1の各構成部に接続されている。制御部11は、各構成部の動作を制御するCPU(Central Processing Unit)と、燃料電池1の運転プログラムを記憶している記憶部とを備える。なお、図1において、制御部11と各構成部との接続は省略している。
 燃料電池スタック10は、固体高分子電解質膜を負極と正極とで両側から挟んで膜電極接合体を形成し、この膜電極接合体の両側に一対のセパレータを配置して平板部状の単位セルを構成し、この単位セルを複数積層してパッケージ化したものである。負極に、水素通流路2を通じて流入した水素を含む燃料ガスが接触し、正極に空気等の酸素を含む酸化ガスが空気流路3から流入して接触することにより、両電極で電気化学反応が生じ、起電力が発生する。この電気化学反応において、負極側から固体高分子電解質膜を透過してきた水素イオンと酸化ガス中の酸素との反応により水が生じる。燃料電池スタック10は、本開示における発電部に対応する。
 水素供給路2aは、水素供給部110から燃料電池スタック10へ供給される水素が通流する通流路である。水素供給路2aの一端部は水素供給部110に接続されており、他端部は、水素循環路2bの、燃料電池スタック10の負極寄りの部分に接続されている。水素供給路2aには、水素供給部110側から順に、圧力センサ21、開閉弁23、開閉弁24、逆止弁25が設けられている。水素循環路2bは、燃料電池スタック10から排出された水素を燃料電池スタック10へ循環させるための通流路である。水素循環路2bには水素循環ポンプ26、及び気液分離器27が設けられている。気液分離器27には、排気弁261及び排気弁262と、排水弁271及び排水弁272とが連結されている。一例として、開閉弁23、開閉弁24、排気弁261、排気弁262、排水弁271、及び、排水弁272は制御部11により開状態と閉状態とに制御可能な電磁弁であって、ノーマルクローズの電磁弁が好ましい。
 開閉弁23及び開閉弁24を開いたとき、水素は、水素供給部110から開閉弁23、開閉弁24、及び逆止弁25を通って水素供給路2aを通流する。更に、水素は、水素循環ポンプ26により、水素循環路2bを通流して、燃料電池スタック10の負極側部分へ送出され、負極側部分内の通流路を通流する。当該通流路内を通流し、燃料電池スタック10から排出された水素は、水素循環路2bを通流し、気液分離器27へ送られる。気液分離器27は、水素及び不純物を含むガスと水とを分離する。分離されたガスは、気液分離器27から水素循環ポンプ26へ送られ、水素循環路2bを循環する。気液分離器27で分離された水は、所定量貯留された後、排水弁271及び排水弁272を開いて外部へ排出される。不純物を含むガスは、適宜のタイミングで、排気弁261及び排気弁262を開いて外部へ排出される。
 空気流路3は、燃料電池スタック10へ供給される空気が流れる流路である。空気流路3には、エアポンプ30が設けられている。エアポンプ30は、空気を取り込み、空気流路3を通じて空気を燃料電池スタック10へ供給する。エアポンプ30と燃料電池スタック10との間に開閉弁31が設けられている。燃料電池スタック10から空気が流出する部分に、開閉弁32が設けられている。開閉弁31及び開閉弁32を開いたとき、エアポンプ30から送出された空気は、空気流路3を通流して開閉弁31を通り、燃料電池スタック10の正極側部分へ導入され、正極側部分の通流路を通流する。当該通流路内を通流した空気は、燃料電池スタック10から排出され、開閉弁32を通って外部へ排出される。
 スタック冷却路4は、燃料電池スタック10を冷却するための冷却水が通流し、循環する通流路である。なお、燃料電池スタック10を冷却するために水以外の熱媒体(例えば、エチレングリコールなど)を用いてもよい。ポンプ40、第1熱交換器41、第2熱交換器42、イオン交換樹脂43及び導電率計44は、スタック冷却路4の途中に設けられている。ポンプ40は、燃料電池スタック10を冷却すべく、冷却水をスタック冷却路4に循環させる。スタック冷却路4を通流する冷却水は、ポンプ40により、燃料電池スタック10へ導入され、燃料電池スタック10内の通流路を通流する。燃料電池スタック10内の通流路を通流した冷却水は、ポンプ40から送り出され、第1熱交換器41、第2熱交換器42、イオン交換樹脂43及び導電率計44を通流し、再度燃料電池スタック10へ導入される。イオン交換樹脂43は、冷却水に含まれるイオンを除去する。導電率計44は、冷却水の導電率を測定する。
 ラジエータ通流路5は、第1熱交換器41を通過する冷却水の熱を放熱するための放熱液が通流し、循環する通流路である。ラジエータ通流路5は、第1熱交換器41に連結されている。ラジエータ通流路5には、ポンプ50及びラジエータ51が設けられている。ポンプ50は、第1熱交換器41を通過する冷却水を放熱すべく、放熱液をラジエータ通流路5に循環させる。ポンプ50から送出された放熱液は、第1熱交換器41及びラジエータ51を通流し、ポンプ50へ戻る。放熱液として、例えばエチレングリコールを主成分とする不凍液が挙げられる。ラジエータ51に近接してファン52が設けられている。冷却水の熱は第1熱交換器41において放熱液へ伝導する。ファン52から送出される風がラジエータ51に当たり、ラジエータ51を通る放熱液が放熱される。このようにして、冷却水が放熱される。
 熱媒体流路6は、熱媒体が通流し、循環する通流路である。熱媒体は、流体であり、例えば水又は不凍液(例えば、エチレングリコールなど)である。熱媒体流路6は、第2熱交換器42に連結されている。熱媒体流路6には、ポンプ60、ヒータ61及び温度センサ62が設けられている。また、熱媒体流路6は、電池本体100及び水素供給部110の両方の内部を経由するように設けられている。熱媒体流路6は、複数の分流路63と、夫々の分流路63を開閉する開閉弁64とを有している。分流路63及び開閉弁64は、水素供給部110に設けられている。ポンプ60は、熱媒体を熱媒体流路6に循環させる。第2熱交換器42において、冷却水から熱媒体へ熱が伝導する。また、ヒータ61は、熱媒体を加熱する。温度センサ62は、熱媒体の温度を測定する。一例として、開閉弁64は、制御部11により開状態と閉状態とに制御可能な電磁弁であって、ノーマルクローズの電磁弁が好ましい。
 水素供給部110は、レギュレータ22及び複数の水素貯蔵ユニット70を備えている。レギュレータ22は、水素供給路2aの一端部が接続されている。複数の水素貯蔵ユニット70には、水素を貯蔵する水素吸蔵合金を収容している複数の貯蔵容器71が夫々収容されている。図1には、二個の水素貯蔵ユニット70を備えた例を示しているが、水素供給部110は、三個以上の水素貯蔵ユニット70を備えていてもよい。また、一つの水素貯蔵ユニット70が複数の貯蔵容器71を収容していてもよい。水素貯蔵ユニット70は、水素供給部110に対して着脱可能になっている。水素貯蔵ユニット70が着脱されることにより、貯蔵容器71は水素供給部110に対して着脱される。貯蔵容器71は、内部に水素吸蔵合金を収容している。貯蔵容器71は、外部の熱を内部の水素吸蔵合金へ伝えるようになっている。複数の水素貯蔵ユニット70は、複数の分流路63に夫々近接、接触又は連結している。水素貯蔵ユニット70は、分流路63を通る熱媒体の熱を貯蔵容器71へ伝えるように構成されている。例えば、水素貯蔵ユニット70は、箱であり、近接、接触又は連結した分流路63と貯蔵容器71との間に伝熱材又は伝熱機構が設けられている。また例えば、水素貯蔵ユニット70の内部を分流路63が通っており、分流路63が貯蔵容器71に接触する構成を採用してもよい。
 貯蔵容器71には、圧力センサ72及び水素供給弁73が連結されている。圧力センサ72は、貯蔵容器71内の圧力を測定する。圧力センサ72は本開示における検出器に対応する。水素供給弁73は、水素供給路74に接続されている。一例として、水素供給弁73は、制御部11により開状態と閉状態とに制御可能な電磁弁であって、ノーマルクローズの電磁弁が好ましい。水素供給路74は、レギュレータ22に接続されている。水素貯蔵ユニット70が水素供給部110から離脱した状態では、水素供給弁73は閉鎖されている。水素貯蔵ユニット70が水素供給部110に装着された状態で、水素供給弁73は開放される。水素供給弁73が開放された状態で、貯蔵容器71から水素供給路74及びレギュレータ22を通って電池本体100へ水素の供給が可能となる。圧力センサ72は、貯蔵容器71から電池本体100への水素の流れの中で、水素供給弁73よりも上流側に位置している。圧力センサ72及び水素供給弁73は、水素供給路74に固定されていてもよく、水素貯蔵ユニット70に固定されており、水素貯蔵ユニット70と共に水素供給部110に対して着脱可能であってもよい。
 水素供給部110は、更に、複数の貯蔵容器71の着脱を検出する着脱センサ75を備えている。例えば、着脱センサ75は、貯蔵容器71と水素供給路74との接続部分に設けられている図示しない開閉機構の動作を検出するセンサである。また、着脱センサ75は、水素貯蔵ユニット70の着脱を手作業で行うユーザが操作することによって、貯蔵容器71の着脱を入力する入力スイッチであってもよい。
 熱媒体は、第2熱交換器42及びヒータ61で加熱され、ポンプ60により熱媒体流路6を通流させられる。開閉弁64が開いた状態で、分流路63を熱媒体が通流し、熱媒体から貯蔵容器71へ熱が伝わり、貯蔵容器71が加温される。いずれかの分流路63を選択的に熱媒体が通流することにより、貯蔵容器71が選択的に加温される。貯蔵容器71が加温されることによって、貯蔵容器71に収容された水素吸蔵合金が加温され、水素吸蔵合金から水素が放出される。放出された水素は、貯蔵容器71から、水素供給路74、レギュレータ22及び水素通流路2を通って、燃料電池スタック10へ供給される。レギュレータ22により、水素の供給圧力が調整される。燃料電池スタック10へ水素が供給されることによって、燃料電池スタック10で発電が行われる。
 本実施形態では、燃料電池1は、水素が消費された貯蔵容器71を順次交換していくことによって、継続的に発電を行う。水素貯蔵ユニット70を交換することによって貯蔵容器71の交換が行われる。制御部11は、継続的に発電が行われるように、貯蔵容器71を加温する処理を行う。次に、貯蔵容器71を加温する処理を説明する。以下では、燃料電池1の例として、二つの水素貯蔵ユニット70を備えた燃料電池1を示す。二つの水素貯蔵ユニット70の一方を水素貯蔵ユニット(A)70、他方を水素貯蔵ユニット(B)70とする。貯蔵容器71、圧力センサ72、分流路63及び開閉弁64の一方を、貯蔵容器(A)71、圧力センサ(A)72、分流路(A)63及び開閉弁(A)64とし、他方を貯蔵容器(B)71、圧力センサ(B)72、分流路(B)63及び開閉弁(B)64とする。
 図2及び図3は、実施形態1における貯蔵容器71を加温する処理の手順を示すフローチャートである。制御部11は、着脱センサ75の検出結果に従って、新たな貯蔵容器71の装着があったか否かを判定する(S101)。水素貯蔵ユニット70が交換された場合は、貯蔵容器71が交換され、新たな貯蔵容器71の装着が検出される。新たな貯蔵容器71の装着が検出されない場合は、水素貯蔵ユニット70の交換は行われていない。
 新たな貯蔵容器71の装着が無い場合(S101:NO)、制御部11は、開閉弁(A)64が閉鎖されているか否かを判定する(S102)。開閉弁(A)64が閉鎖されている場合(S102:YES)、制御部11は、圧力センサ(A)72が測定した圧力P(A)が所定の圧力H1以下であるか、又は温度センサ62が測定した熱媒体の温度Tが所定の温度T1以下であるか否かを判定する(S103)。開閉弁64が閉鎖されている状態では、分流路63を熱媒体が流れることによる貯蔵容器71の加温は行われない。圧力H1は、貯蔵容器71内の圧力がこの値を超過する場合は貯蔵容器71内の水素圧力が十分であるとして、貯蔵容器71の加温を行わないようにするための閾値である。例えば、圧力H1は170kPaである。温度T1は、熱媒体の温度Tがこの値以下の場合は熱媒体の循環を行うようにするための閾値である。例えば、温度T1は40℃である。
 圧力P(A)が圧力H1以下であるか、又は熱媒体の温度Tが温度T1以下である場合(S103:YES)、制御部11は、開閉弁(A)64を開放する(S104)。分流路(A)63に熱媒体の通流が可能になり、貯蔵容器(A)71の加温が可能になる。制御部11は、次に処理をS107へ進める。圧力P(A)が圧力H1を超過し、かつ熱媒体の温度Tが温度T1を超過する場合(S103:NO)、制御部11は、処理をS107へ進める。開閉弁(A)64は閉鎖されたままであり、分流路(A)63を熱媒体が流れることによる貯蔵容器(A)71の加温は行われない。
 開閉弁(A)64が開放されている場合(S102:NO)、制御部11は、圧力P(A)が所定の圧力H2以上であり、かつ熱媒体の温度Tが所定の温度T2以上であるか否かを判定する(S105)。開閉弁64が開放されている状態では、分流路63を熱媒体が流れることによる貯蔵容器71の加温が可能である。圧力H2は、貯蔵容器71内の圧力がこの値未満である場合は貯蔵容器71内の水素圧力が不十分であるとして、貯蔵容器71の加温を行うようにするための閾値である。例えば、圧力H2は200kPaである。温度T2は、熱媒体の温度Tがこの値以上である場合は、熱媒体の循環を行わないようにするための閾値である。例えば、温度T2は45℃である。
 圧力P(A)が圧力H2以上であり、かつ熱媒体の温度Tが温度T2以上である場合(S105:YES)、制御部11は、開閉弁(A)64を閉鎖する(S106)。分流路(A)63を熱媒体が流れることによる貯蔵容器(A)71の加温が行われなくなる。制御部11は、次に処理をS107へ進める。圧力P(A)が圧力H2未満であるか、又は熱媒体の温度Tが温度T2未満である場合(S105:NO)、制御部11は、処理をS107へ進める。開閉弁(A)64は開放されたままであり、分流路(A)63を熱媒体が流れることによる貯蔵容器(A)71の加温が可能である。
 制御部11は、次に、開閉弁(B)64が閉鎖されているか否かを判定する(S107)。開閉弁(B)64が閉鎖されている場合(S107:YES)、制御部11は、圧力センサ(B)72が測定した圧力P(B)が圧力H1以下であるか、又は熱媒体の温度Tが温度T1以下であるか否かを判定する(S108)。
 圧力P(B)が圧力H1以下であるか、又は熱媒体の温度Tが温度T1以下である場合(S108:YES)、制御部11は、開閉弁(B)64を開放する(S109)。分流路(B)63に熱媒体が流れることが可能になり、貯蔵容器(B)71の加温が可能になる。制御部11は、次に処理をS112へ進める。圧力P(B)が圧力H1を超過し、かつ熱媒体の温度Tが温度T1を超過する場合(S108:NO)、制御部11は、処理をS112へ進める。開閉弁(B)64は閉鎖されたままであり、分流路(B)63を熱媒体が流れることによる貯蔵容器(B)71の加温は行われない。
 開閉弁(B)64が開放されている場合(S107:NO)、制御部11は、圧力P(B)が圧力H2以上であり、かつ熱媒体の温度Tが温度T2以上であるか否かを判定する(S110)。圧力P(B)が圧力H2以上であり、かつ熱媒体の温度Tが温度T2以上である場合(S110:YES)、制御部11は、開閉弁(B)64を閉鎖する(S111)。分流路(B)63を熱媒体が流れることによる貯蔵容器(B)71の加温が行われなくなる。制御部11は、次に処理をS112へ進める。圧力P(B)が圧力H2未満であるか、又は熱媒体の温度Tが温度T2未満である場合(S110:NO)、制御部11は、処理をS112へ進める。開閉弁(B)64は開放されたままであり、分流路(B)63を熱媒体が流れることによる貯蔵容器(B)71の加温が可能になる。
 制御部11は、次に、開閉弁(A)64又は開閉弁(B)64が開放されているか否かを判定する(S112)。開閉弁(A)64又は開閉弁(B)64が開放されている場合(S112:YES)、制御部11は、ポンプ60を動作させる(S113)。既にポンプ60が動作しているとき、ポンプ60は動作を継続する。ポンプ60の動作により、熱媒体が熱媒体流路6を循環する。開閉弁(A)64及び開閉弁(B)64が閉鎖されている場合(S112:NO)、制御部11は、ポンプ60を停止させる(S114)。既にポンプ60が停止しているとき、ポンプ60は停止し続ける。
 S113又はS114が終了した後は、制御部11は、熱媒体の温度Tが所定の温度T3以上であるか否かを判定する(S115)。温度T3は、熱媒体の温度Tがこの値未満である場合に熱媒体を加熱するようにするための閾値である。例えば、温度T3は23℃である。熱媒体の温度Tが温度T3以上である場合(S115:YES)、制御部11は、ヒータ61を停止させる(S116)。既にヒータ61が停止しているとき、ヒータ61は停止し続ける。熱媒体の温度Tが温度T3未満である場合(S115:NO)、制御部11は、ヒータ61を動作させる(S117)。既にヒータ61が動作しているとき、ヒータ61は動作を継続する。ヒータ61の動作により、熱媒体は加熱される。S116又はS117が終了した後は、制御部11は、処理を終了する。制御部11は、次に、S101から処理を繰り返す。
 熱媒体は、燃料電池スタック10から発生した熱を第2熱交換器42で伝えられ、またヒータ61で加熱される。S102~S117の処理により、熱媒体の温度は所定の温度T3以上になるように調整される。温度T3は、本開示における第1温度に対応する。制御部11、燃料電池スタック10、第2熱交換器42、ポンプ60、ヒータ61及び温度センサ62は、本開示における温度調整部に含まれる。また、S102~S117の処理は第1温度調整モードに対応する。開閉弁(A)64が開放されている場合は、分流路(A)63を熱媒体が通流し、貯蔵容器(A)71が加温される。開閉弁(B)64が開放されている場合は、分流路(B)63を熱媒体が通流し、貯蔵容器(B)71が加温される。このようにして、貯蔵容器71は加温され、貯蔵容器71内の水素吸蔵合金が加熱され、水素が放出され、放出された水素は燃料電池スタック10へ供給される。
 燃料電池1が三個以上の貯蔵容器71を備える形態であっても、制御部11は、S101~S117と同様の処理を行う。制御部11は、S102~S106の処理及びS107~S111の処理と同様の処理を、夫々の貯蔵容器71について実行する。また、S112~114の処理では、制御部11は、いずれかの開閉弁64が開放されている場合にS113の処理を実行し、全ての開閉弁64が閉鎖される場合にS114の処理を実行する。
 新たな貯蔵容器71の装着があった場合、制御部11は、装着された貯蔵容器71を加温するための処理を行う。水素が消費された貯蔵容器71を収容した水素貯蔵ユニット70を新たな水素貯蔵ユニット70へ交換した場合、着脱センサ75は、新たな貯蔵容器71の装着があったことを検出する。また、着脱センサ75は、新たに装着された貯蔵容器71を特定する。ここで、水素貯蔵ユニット(A)70は交換されず、水素貯蔵ユニット(B)70が交換されたとする。即ち、貯蔵容器(A)71は交換されておらず、貯蔵容器(B)71が新たに装着されたものとする。
 S101で新たな貯蔵容器71の装着があった場合(S101:YES)、制御部11は、圧力センサ(B)72が測定した圧力P(B)が所定の圧力H3以上であるか否かを判定する(S21)。圧力H3は、新たに装着された貯蔵容器71内の圧力がこの値以上である場合に貯蔵容器71内の水素圧力が十分であるとして、以降の熱媒体の温度を調整するための処理を行わないようにするための閾値である。例えば、圧力H3は100kPaである。圧力P(B)が圧力H3以上である場合(S21:YES)、制御部11は、処理をS102へ進める。
 圧力P(B)が圧力H3未満である場合(S21:NO)、制御部11は、開閉弁(B)64を閉鎖する(S22)。既に開閉弁(B)64が閉鎖されているときは開閉弁(B)64の閉鎖が継続される。制御部11は、次に、開閉弁(A)64を開放する(S23)。既に開閉弁(A)64が開放されているときは開閉弁(A)64の開放が継続される。制御部11は、次に、ポンプ60を動作させる(S24)。既にポンプ60が動作しているとき、ポンプ60は動作を継続する。制御部11は、次に、ヒータ61を動作させる(S25)。既にヒータ61が動作しているとき、ヒータ61は動作を継続する。分流路(B)63に熱媒体が通流せず、分流路(A)63に熱媒体が通流する状態で、熱媒体が加熱される。
 制御部11は、次に、熱媒体の温度Tが所定の温度T4以上であるか否かを判定する(S26)。温度T4は、分流路(B)63に熱媒体が通流しない状態で熱媒体の温度Tをこの温度以上に調整するための目標温度である。温度T4は温度T3よりも高い温度である。例えば、温度T4は40℃である。熱媒体の温度Tが温度T4未満である場合(S26:NO)、制御部11は、熱媒体の温度Tが所定の温度T4以上になるまでS26の処理を繰り返す。熱媒体の温度Tが温度T4以上である場合(S26:YES)、制御部11は、処理をS102へ進める。
 新たに装着された貯蔵容器(B)71内の圧力P(B)が圧力H3未満である状態は、貯蔵容器(B)71がまだ加温されておらず、貯蔵容器(B)71内の水素吸蔵合金の温度が低く、水素を十分に放出することができない状態である。S21~S26の処理では、貯蔵容器(B)71内の圧力P(B)が圧力H3未満である場合に、貯蔵容器(B)71の加温は行われない。貯蔵容器(B)71の加温が行われない状態で、熱媒体は加熱され、熱媒体の温度Tは温度T4以上になるように調整される。温度T4は、本開示における第2温度に対応する。またS22~S26の処理は第2温度調整モードに対応する。熱媒体の温度Tが温度T4以上になった後は、第2温度調整モードが終了し、S102以降の処理、即ち第1温度調整モードが実行される。このようにして、熱媒体の温度が温度T4以上の温度に調整された後で、新たに装着された貯蔵容器(B)71の加温が行われる。
 燃料電池1が三個以上の貯蔵容器71を備える形態であっても、制御部11は、S21~S26と同様の処理を行う。S23では、制御部11は、新たに装着された貯蔵容器(B)71に関係する開閉弁(B)64以外の開閉弁64を開放する。
 以上詳述した如く、本実施形態では、燃料電池1は、熱媒体の温度Tを温度T3以上にすべく温度調整を行う第1温度調整モード(S102~S117の処理)を実施することにより、複数の貯蔵容器71を加温する。また、燃料電池1は、熱媒体の温度Tを、温度T3よりも高温の温度T4以上にすべく温度調整を行う第2温度調整モード(S22~S26の処理)を実施することも可能である。燃料電池1は、新たな貯蔵容器71が装着された場合に、装着された貯蔵容器71の内部の圧力に基づいて、第2温度調整モードを実施するか否かを判定する。具体的には、燃料電池1は、装着された貯蔵容器71の内部の圧力が圧力H3未満である場合に、第2温度調整モードを実施する。
 新たに装着された貯蔵容器71の温度は、他の貯蔵容器71に比べて非常に温度が低い可能性がある。新たに装着された貯蔵容器71の温度が非常に低い場合、熱媒体の温度が低下し、熱媒体が他の貯蔵容器71を加温するための熱量が不足する。熱量の不足によって他の貯蔵容器71の温度が低下し、水素吸蔵合金の温度が低下し、水素の圧力が低下し、燃料電池スタック10での発電が困難になる虞がある。新たに装着された貯蔵容器71の温度が低い場合、内部の水素吸蔵合金の温度も低く、貯蔵容器71内の圧力は低い。このため、貯蔵容器71内の圧力に基づいて、貯蔵容器71の温度が低いことを推定することができる。装着された貯蔵容器71内の圧力が圧力H3未満である場合は、貯蔵容器71の温度が低い場合である。新たに装着された貯蔵容器71内の圧力が圧力H3未満である場合に第2温度調整モードを実施することにより、熱媒体の温度が温度T3を超過する温度(例えば、温度T4以上)に調整し、装着された貯蔵容器71の低い温度によって熱媒体の温度が低下することを抑制する。熱媒体が他の貯蔵容器71を加温するための熱量が不足することが抑制され、他の貯蔵容器71の温度が低下することが防止される。このため、水素吸蔵合金の温度の低下及び水素圧力の低下が防止され、燃料電池スタック10へは水素が安定的に供給される。従って、本実施形態に係る燃料電池1は、継続的な発電を実行することが可能である。
 また、本実施形態では、燃料電池1は、第2温度調整モード(S22~S26の処理)を実施して、熱媒体の温度Tが温度T4以上になった場合に、第2温度調整モードを終了し、第1温度調整モード(S102~S117の処理)を実施する。燃料電池1は、第2温度調整モードでは、新たに装着された貯蔵容器71の加温を行わず、第1温度調整モードで、装着された貯蔵容器71の加温を行う。即ち、燃料電池1は、熱媒体の温度Tを温度T4以上に調整した後に、新たに装着された貯蔵容器71の加温を開始する。熱媒体の温度が温度T3を超過する温度T4に調整された後で、新たに装着された貯蔵容器71の加温が開始されるので、装着された貯蔵容器71の低い温度によって熱媒体の温度が低下し過ぎることが防止される。このため、他の貯蔵容器71の温度が低下することが防止される。
 また、本実施形態では、燃料電池1は、S22~S26の処理では、新たに装着された貯蔵容器71を加温するための分流路63を開閉する開閉弁64を閉鎖し、他の貯蔵容器71を加温するための分流路63を開閉する開閉弁64を開放した状態で、第2温度調整モードを実施する。このようにすることにより、燃料電池1は、第2温度調整モードを実施する際に、新たに装着された貯蔵容器71の加温を行わないようにする。また、他の貯蔵容器71に関係する開閉弁64は開放されるので、熱媒体は熱媒体流路6を循環し、第2熱交換器42及びヒータ61により熱媒体が全体的に温められる。
 また、本実施形態では、燃料電池1は、圧力センサ72を備え、圧力センサ72が測定する貯蔵容器71内の圧力に基づいて第2温度調整モードを実施するか否かを判定している。燃料電池1は、圧力センサ72の測定結果に基づき、新たに装着された貯蔵容器71の状態に応じて適切な熱媒体の温度調整方法を選択することができる。また、本実施形態では、圧力センサ72は水素供給弁73よりも上流側に配置されている。このため、水素供給弁73が閉鎖され、貯蔵容器71から水素が供給されていない状態であっても、圧力センサ72は貯蔵容器71内の圧力を測定することができる。
 なお、本実施形態においては、検出器として圧力センサ72を備えた形態を示したが、燃料電池1は、検出器として、貯蔵容器71の温度を測定する温度センサを備えた形態であってもよい。この形態では、燃料電池1は、温度センサが測定する貯蔵容器71の温度に基づいて、第2温度調整モードを実施するか否かを判定する。具体的には、温度センサは、新たに装着された貯蔵容器71の温度を測定し、制御部11は、S21で、測定された温度が所定の温度T5以上である場合に、処理をS22へ進め、測定された温度が温度T5未満である場合に、処理をS102へ進める。温度T5は、装着された貯蔵容器71の温度がこの値未満である場合に第2温度調整モードを実施するための閾値である。燃料電池1は、装着された貯蔵容器71の温度が低い場合に、第2温度調整モードを実施し、熱媒体の熱量が不足することを抑制し、他の貯蔵容器71の温度が低下することを防止することができる。また、燃料電池1は、圧力センサ72及び温度センサの両方を備え、圧力センサ72及び温度センサの測定結果に基づいて第2温度調整モードを実施するか否かを判定する形態であってもよい。
 また、本実施形態においては、制御部11がポンプ60、ヒータ61及び開閉弁64を直接に制御する形態を示したが、燃料電池1は、制御部11とは別に、熱媒体の温度調整を行うための温度調整回路を備えた形態であってもよい。この形態では、制御部11が温度調整回路を制御し、温度調整回路がポンプ60、ヒータ61及び複数の開閉弁64を制御する。温度調整回路は、本開示における温度調整部に含まれる。また、燃料電池1は、熱媒体流路6にラジエータ等の放熱機構を更に設けている形態であってもよい。この形態では、制御部11又は温度調整回路は、放熱機構を用いて熱媒体の熱を放熱することにより、第1温度調整モードにおいて熱媒体の温度を所定の上限温度以下に調整する処理を行ってもよい。放熱機構は、本開示における温度調整部に含まれる。
 また、本実施形態においては、着脱センサ75を用いた形態を示したが、燃料電池1は、着脱センサ75を用いずに貯蔵容器71の装着を検出する形態であってもよい。例えば、燃料電池1は、圧力センサ72若しくは貯蔵容器71の温度を測定する温度センサの測定結果が特定の値になること、又は測定結果の時間変化が特定の変化を示すことに基づいて、新たな貯蔵容器71が装着されたことを検出する形態であってもよい。
(実施形態2)
 実施形態2に係る燃料電池1の構成は、実施形態1と同様である。また、実施形態2に係る燃料電池1は、実施形態1と同様に、S101~S117の処理を実行する。図4は、実施形態2における処理の一部の手順を示すフローチャートである。本実施形態においても、貯蔵容器(A)71は交換されておらず、貯蔵容器(B)71が新たに装着されたものとして処理を説明する。S101で新たな貯蔵容器71の装着があった場合(S101:YES)、制御部11は、開閉弁(B)64を閉鎖する(S31)。既に開閉弁(B)64が閉鎖されているときは開閉弁(B)64の閉鎖が継続される。制御部11は、次に、開閉弁(A)64を開放する(S32)。既に開閉弁(A)64が開放されているときは開閉弁(A)64の開放が継続される。制御部11は、次に、ポンプ60を動作させる(S33)。既にポンプ60が動作しているとき、ポンプ60は動作を継続する。制御部11は、次に、ヒータ61を動作させる(S34)。既にヒータ61が動作しているとき、ヒータ61は動作を継続する。分流路(B)63に熱媒体が通流せず、分流路(A)63に熱媒体が通流する状態で、熱媒体が加熱される。
 制御部11は、次に、熱媒体の温度Tが所定の温度T4以上であるか否かを判定する(S35)。熱媒体の温度Tが温度T4未満である場合(S35:NO)、制御部11は、熱媒体の温度Tが所定の温度T4以上になるまでS35の処理を繰り返す。熱媒体の温度Tが温度T4以上である場合(S35:YES)、制御部11は、処理をS102へ進める。燃料電池1が三個以上の貯蔵容器71を備える形態であっても、制御部11は、S31~S35と同様の処理を行う。S32では、制御部11は、新たに装着された貯蔵容器(B)71に関係する開閉弁(B)64以外の開閉弁64を開放する。
 本実施形態におけるS31~S35の処理は、本開示における第2温度調整モードに対応する。本実施形態では、燃料電池1は、新たな貯蔵容器71が装着された場合に、第2温度調整モードを実施する。新たに装着された貯蔵容器71の温度は、他の貯蔵容器71に比べて低い可能性が高い。熱媒体の温度を温度T3を超過する温度に調整する第2温度調整モードが直ぐに実施されることにより、装着された貯蔵容器71の低い温度によって熱媒体の温度が低下することが抑制され、他の貯蔵容器71を加温するための熱媒体の熱量が不足することが抑制される。このため、他の貯蔵容器71の温度が低下することが防止され、水素吸蔵合金の温度の低下及び水素圧力の低下が防止され、燃料電池スタック10へは水素が安定的に供給される。従って、本実施形態に係る燃料電池1は、継続的な発電を実行することが可能である。
 また、本実施形態では、燃料電池1は、第2温度調整モード(S31~S35の処理)を実施して、熱媒体の温度Tが温度T4以上になった場合に、第2温度調整モードを終了し、第1温度調整モード(S102~S117の処理)を実施する。燃料電池1は、第2温度調整モードでは、新たに装着された貯蔵容器71の加温を行わず、第1温度調整モードで、装着された貯蔵容器71の加温を行う。即ち、燃料電池1は、第2熱媒体の温度Tを温度T4以上に調整した後に、新たに装着された貯蔵容器71の加温を開始する。熱媒体の温度が温度T4に調整された後で、新たに装着された貯蔵容器71の加温が開始されるので、装着された貯蔵容器71の低い温度によって熱媒体の温度が低下し過ぎることが防止される。このため、他の貯蔵容器71の温度が低下することが防止される。
 また、本実施形態では、燃料電池1は、S31~S35の処理では、新たに装着された貯蔵容器71を加温するための分流路63を開閉する開閉弁64を閉鎖し、他の貯蔵容器71を加温するための分流路63を開閉する開閉弁64を開放した状態で、第2温度調整モードを実施する。このようにして、燃料電池1は、新たに装着された貯蔵容器71の加温を行わずに第2温度調整モードを実施する。また、他の貯蔵容器71に関係する開閉弁64を通って熱媒体は熱媒体流路6を循環し、熱媒体が全体的に加熱される。
(実施形態3)
 実施形態3に係る燃料電池1の構成は、実施形態1と同様である。図5は、実施形態3における処理の一部の手順を示すフローチャートである。制御部11は、複数の貯蔵容器71の中に、未使用の貯蔵容器71があるか否かを判定する(S401)。例えば、未使用の貯蔵容器71は、水素貯蔵ユニット70の交換によって新たに装着された貯蔵容器71である。実施形態1と同様に、制御部11は、着脱センサ75の検出結果に従って、新たな貯蔵容器71の装着があったか否かを判定する。また、例えば、未使用の貯蔵容器71は、最初から燃料電池1に備えられており、水素の供給のためには一度も使用していない貯蔵容器71である。このような未使用の貯蔵容器71を初めて使用する場合に、制御部11は、未使用の貯蔵容器71があると判定する。
 また例えば、水素供給部110が交換された場合に、交換された水素供給部110が備える水素貯蔵ユニット70が収容する貯蔵容器71は、未使用の貯蔵容器71である。制御部11は、水素供給部110が交換されたことを検出したことに応じて、未使用の貯蔵容器71があると判定する。また例えば、熱媒体流路6の一部又は全部と一又は複数の水素貯蔵ユニット70とを含んだ部分を交換した場合、交換された部分に含まれる貯蔵容器71は、未使用の貯蔵容器71である。制御部11は、交換を検出したことに応じて、未使用の貯蔵容器71があると判定する。また例えば、水素貯蔵ユニット70、分流路6及び水素供給路74が増設された場合に、増設された水素貯蔵ユニット70が収容する貯蔵容器71は、未使用の貯蔵容器71である。制御部11は、増設を検出したことに応じて、未使用の貯蔵容器71があると判定する。
 未使用の貯蔵容器71が無い場合(S401:NO)、制御部11は、実施形態1と同様に、S102~S117の処理を実行する。S116又はS117の処理が終了した後、制御部11は、処理を終了する。制御部11は、次に、S401から処理を繰り返す。未使用の貯蔵容器71がある場合は(S401:YES)、未使用の貯蔵容器71を貯蔵容器(B)71とし、他の貯蔵容器71を貯蔵容器(A)71として、制御部11は、実施形態1と同様に、S21~S26の処理を実行する。
 本実施形態では、燃料電池1は、未使用の貯蔵容器71がある場合に、未使用の貯蔵容器71の内部の圧力に基づいて、第2温度調整モードを実施するか否かを判定する。具体的には、燃料電池1は、未使用の貯蔵容器71の内部の圧力が所定の圧力H3未満である場合に、第2温度調整モードを実施する。未使用の貯蔵容器71の温度は、他の貯蔵容器71に比べて非常に温度が低い可能性がある。未使用の貯蔵容器71の温度が低い場合、貯蔵容器71内の圧力は低い。このため、未使用の貯蔵容器71内の圧力に基づいて、貯蔵容器71の温度が低いことを推定することができる。未使用の貯蔵容器71内の圧力が圧力H3未満である場合は、貯蔵容器71の温度が低い場合である。未使用の貯蔵容器71内の圧力が圧力H3未満である場合に第2温度調整モードを実施することにより、熱媒体の温度を温度T3以上の温度に調整し、未使用の貯蔵容器71の低い温度によって熱媒体の温度が低下することを抑制し、他の貯蔵容器71を加温するための熱媒体の熱量が不足することを抑制する。このため、他の貯蔵容器71の温度の低下が防止され、水素吸蔵合金の温度の低下及び水素圧力の低下が防止され、燃料電池スタック10へは水素が安定的に供給される。従って、本実施形態に係る燃料電池1は、継続的な発電を実行することが可能である。
 なお、燃料電池1は、圧力センサ72の代わりに、貯蔵容器71の温度を測定する温度センサを備えた形態であってもよい。この形態では、燃料電池1は、温度センサが測定する貯蔵容器71の温度に基づいて、第2温度調整モードを実施するか否かを判定する。具体的には、温度センサは、未使用の貯蔵容器71の温度を測定し、制御部11は、S21で、測定された温度が所定の温度T5以上である場合に、処理をS22へ進め、測定された温度が温度T5未満である場合に、処理をS102へ進める。燃料電池1は、未使用の貯蔵容器71の温度が低い場合に、第2温度調整モードを実施し、熱媒体の熱量が不足することを抑制し、他の貯蔵容器71の温度が低下することを防止することができる。また、燃料電池1は、圧力センサ72及び温度センサの両方を備え、圧力センサ72及び温度センサの測定結果に基づいて第2温度調整モードを実施するか否かを判定する形態であってもよい。
 また、燃料電池1は、未使用の貯蔵容器71がある場合に(S401:YES)、実施形態2と同様に、S31~S35の処理を実行する形態であってもよい。この形態では、燃料電池1は、未使用の貯蔵容器71がある場合に、第2温度調整モードを実施する。熱媒体の温度を温度T3以上に調整する第2温度調整モードが直ぐに実施されることにより、他の貯蔵容器71を加温するための熱媒体の熱量が不足することが抑制され、他の貯蔵容器71の温度が低下することが防止される。
 以上のように、本開示の燃料電池1は、水素及び酸素を反応させて発電する発電部10と、該発電部10へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器71と、前記複数の貯蔵容器71を加温するための熱媒体が通流する熱媒体流路6と、前記熱媒体の温度を調整する温度調整部とを備え、前記温度調整部は、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整する第1温度調整モードと、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整する第2温度調整モードとを実施可能であり、新たな貯蔵容器71が装着された場合に、新たに装着された貯蔵容器71内の圧力又は貯蔵容器71の温度に基づいて、前記第2温度調整モードを実施するか否かを判定することを特徴とする。
 本開示の燃料電池1は、新たに装着された貯蔵容器71の温度が低い場合に、熱媒体の温度を第1温度よりも高い第2温度以上にすべく、熱媒体の温度を調整することにより、他の貯蔵容器71を加温するための熱量が不足することを抑制する。
 本開示の燃料電池1は、前記温度調整部は、前記第2温度調整モードを実施して前記熱媒体の温度が前記第2温度以上になった後に、前記新たに装着された貯蔵容器71の加温を開始することを特徴とする。
 本開示においては、燃料電池1は、熱媒体の温度を第2温度以上に調整した後で、新たに装着された貯蔵容器71の加温を開始するので、新たに装着された貯蔵容器71の温度が低い場合であっても、熱媒体の温度は低下し過ぎることがない。
 本開示の燃料電池1は、前記温度調整部は、前記第2温度調整モードを実施して前記熱媒体の温度が前記第2温度以上になった後に、前記第2温度調整モードを終了して前記第1温度調整モードを実施することを特徴とする。
 本開示の燃料電池1は、第2温度調整モードにより熱媒体の温度を第2温度以上に調整した後で、第2温度調整モードにより、新たに装着された貯蔵容器71の加温を開始する。新たに装着された貯蔵容器71の温度が低い場合であっても、熱媒体の温度は低下し過ぎることがない。
 本開示の燃料電池1は、前記熱媒体流路6は、前記複数の貯蔵容器71を加温するための複数の分流路63と、該複数の分流路63を開閉する複数の開閉弁64とを有し、前記温度調整部は、前記装着された貯蔵容器71を加温するための分流路63の開閉弁64を閉鎖し、他の貯蔵容器71を加温するための分流路63の開閉弁64を開放した状態で、前記第2温度調整モードを実施することを特徴とする。
 本開示の燃料電池1は、第2温度調整モードを実施する際に、新たに装着された貯蔵容器71以外の貯蔵容器71を加温するための分流路63の開閉弁64を開放することにより、熱媒体を循環させ、熱媒体を全体的に温める。
 本開示の燃料電池1は、前記複数の貯蔵容器71の夫々の内部の圧力又は温度を検出する検出器を更に備え、前記温度調整部は、前記検出器が検出した前記装着された貯蔵容器71の内部の圧力又は温度に基づいて、前記第2温度調整モードを実施するか否かを判定することを特徴とする。
 本開示の燃料電池1は、検出器が検出する圧力又は温度に基づいて第2温度調整モードを実施するか否かを判定するので、新たに装着された貯蔵容器71の状態に応じて適切な熱媒体の温度調整方法を選択することができる。
 本開示の燃料電池1は、前記複数の貯蔵容器71から前記発電部10へ供給される水素の流れを開閉する複数の水素供給弁73を更に備え、前記検出器は、複数の圧力センサ72を有し、夫々の圧力センサ72は、夫々の水素供給弁73よりも水素の流れの上流側に配置されていることを特徴とする。
 本開示の圧力センサ72が水素供給弁73よりも上流側に配置されているので、貯蔵容器71から水素が供給されていない状態であっても、圧力センサ72は貯蔵容器71内の圧力を測定することができる。
 本開示の燃料電池1は、水素及び酸素を反応させて発電する発電部10と、該発電部10へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器71と、前記複数の貯蔵容器71を加温するための熱媒体が通流する熱媒体流路6と、前記熱媒体の温度を調整し、前記熱媒体流路6に前記熱媒体を通流させることによって、前記複数の貯蔵容器71を加温する温度調整部とを備え、前記温度調整部は、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整する第1温度調整モードと、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整する第2温度調整モードとを実施可能であり、新たな貯蔵容器71が装着された場合に、前記第2温度調整モードを実施することを特徴とする。
 本開示の燃料電池1は、新たな貯蔵容器71が装着された場合に、熱媒体の温度を第1温度よりも高い第2温度以上にすべく、熱媒体の温度を調整することにより、新たに装着された貯蔵容器71の温度に影響されて他の貯蔵容器71を加温するための熱量が不足することを抑制する。
 本開示の燃料電池1は、水素及び酸素を反応させて発電する発電部10と、該発電部10へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器71と、前記複数の貯蔵容器71を加温するための熱媒体が通流する熱媒体流路6と、前記熱媒体の温度を調整し、前記熱媒体流路6に前記熱媒体を通流させることによって、前記複数の貯蔵容器71を加温する温度調整部とを備え、前記温度調整部は、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整する第1温度調整モードと、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整する第2温度調整モードとを実施可能であり、前記複数の貯蔵容器71の内に未使用の貯蔵容器71がある場合、前記未使用の複数の貯蔵容器71内の圧力又は温度に基づいて、前記第2温度調整モードを実施するか否かを判定することを特徴とする。
 本開示の燃料電池1は、未使用の貯蔵容器71の温度が低い場合に、熱媒体の温度を第1温度よりも高い第2温度以上にすべく、熱媒体の温度を調整することにより、他の貯蔵容器71を加温するための熱量が不足することを抑制する。
 本開示の温度調整方法は、水素及び酸素を反応させて発電する発電部10と、該発電部10へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器71と、前記複数の貯蔵容器71を加温するための熱媒体が通流する熱媒体流路6とを用い、前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整し、前記熱媒体流路6に熱媒体を通流させることによって、前記複数の貯蔵容器71を加温し、新たな貯蔵容器71が装着された場合に、装着された貯蔵容器71の加温を行わずに、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整し、前記熱媒体の温度が前記第2温度以上になった後に、前記装着された貯蔵容器71の加温を開始することを特徴とする。
 本開示の燃料電池1は、新たな貯蔵容器71が装着された場合に、熱媒体の温度を第1温度よりも高い第2温度以上に調整し、熱媒体の温度が第2温度以上になった後に、装着された貯蔵容器71の加温を開始するので、新たに装着された貯蔵容器71の温度が低い場合であっても、熱媒体の温度は低下し過ぎることがない。
 今回開示された実施形態は全ての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1 燃料電池
 10 燃料電池スタック(発電部)
 100 電池本体
 110 水素供給部
 11 制御部
 42 第2熱交換器
 6 熱媒体流路
 60 ポンプ
 61 ヒータ
 62 温度センサ
 63 分流路
 64 開閉弁
 70 水素貯蔵ユニット
 71 貯蔵容器
 72 圧力センサ(検出器)
 73 水素供給弁
 74 水素供給路
 75 着脱センサ

Claims (9)

  1.  水素及び酸素を反応させて発電する発電部と、
     該発電部へ供給するための水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器と、
     前記複数の貯蔵容器を加温するための熱媒体が通流する熱媒体流路と、
     前記熱媒体の温度を調整する温度調整部とを備え、
     前記温度調整部は、
     前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整する第1温度調整モードと、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整する第2温度調整モードと、を実施可能であり、
     前記複数の貯蔵容器の内に未使用の貯蔵容器がある場合、前記未使用の貯蔵容器内の圧力又は前記未使用の貯蔵容器に関する温度に基づいて、前記第2温度調整モードを実施するか否かを判定することを特徴とする燃料電池。
  2.  前記温度調整部は、
     前記第2温度調整モードを実施して前記熱媒体の温度が前記第2温度以上になった後に、前記未使用の貯蔵容器の加温を開始すること
     を特徴とする請求項1に記載の燃料電池。
  3.  前記温度調整部は、
     前記第2温度調整モードを実施して前記熱媒体の温度が前記第2温度以上になった後に、前記第2温度調整モードを終了して前記第1温度調整モードを実施すること
     を特徴とする請求項1又は2に記載の燃料電池。
  4.  前記熱媒体流路は、
     前記複数の貯蔵容器を加温するための複数の分流路と、
     該複数の分流路を開閉する複数の開閉弁とを有し、
     前記温度調整部は、
     前記未使用の貯蔵容器を加温するための分流路の開閉弁を閉鎖し、他の貯蔵容器を加温するための分流路の開閉弁を開放した状態で、前記第2温度調整モードを実施すること
     を特徴とする請求項1乃至3のいずれか一つに記載の燃料電池。
  5.  前記複数の貯蔵容器の夫々の内部の圧力又は前記複数の貯蔵容器の夫々の温度を検出する検出器を更に備え、
     前記温度調整部は、前記検出器が検出した前記未使用の貯蔵容器の内部の圧力又は前記検出器が検出した前記未使用の貯蔵容器に関する温度に基づいて、前記第2温度調整モードを実施するか否かを判定すること
     を特徴とする請求項1乃至4のいずれか一つに記載の燃料電池。
  6.  前記複数の貯蔵容器から前記発電部へ供給される水素の流れを開閉する複数の水素供給弁を更に備え、
     前記検出器は、複数の圧力センサを有し、
     夫々の圧力センサは、夫々の水素供給弁よりも水素の流れの上流側に配置されていること
     を特徴とする請求項5に記載の燃料電池。
  7.  前記未使用の貯蔵容器は、前記燃料電池に新たに装着された貯蔵容器であること
     を特徴とする請求項1乃至6に記載の燃料電池。
  8.  新たな貯蔵容器が装着された場合、前記第2温度調整モードを実施すること
     を特徴とする請求項1乃至6に記載の燃料電池。
  9.  水素を貯蔵する水素吸蔵合金を収容しており、夫々に着脱が可能な複数の貯蔵容器と、
     前記複数の貯蔵容器を加温するための熱媒体が通流する熱媒体流路とを用い、
     前記熱媒体の温度を所定の第1温度以上にすべく前記熱媒体の温度を調整し、前記複数の貯蔵容器を加温し、
     新たな貯蔵容器が装着された場合に、新たに装着された貯蔵容器の加温を行わずに、前記熱媒体の温度を前記第1温度よりも高い所定の第2温度以上にすべく前記熱媒体の温度を調整し、
     前記熱媒体の温度が前記第2温度以上になった後に、前記新たに装着された貯蔵容器の加温を開始すること
     を特徴とする温度調整方法。
PCT/JP2018/011012 2017-03-22 2018-03-20 燃料電池及び温度調整方法 WO2018174054A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18771998.4A EP3605688B1 (en) 2017-03-22 2018-03-20 Fuel cell and temperature adjusting method
US16/575,023 US11258082B2 (en) 2017-03-22 2019-09-18 Fuel cell and temperature control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017055990A JP6724833B2 (ja) 2017-03-22 2017-03-22 燃料電池及び温度調整方法
JP2017-055990 2017-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/575,023 Continuation US11258082B2 (en) 2017-03-22 2019-09-18 Fuel cell and temperature control method

Publications (1)

Publication Number Publication Date
WO2018174054A1 true WO2018174054A1 (ja) 2018-09-27

Family

ID=63585409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011012 WO2018174054A1 (ja) 2017-03-22 2018-03-20 燃料電池及び温度調整方法

Country Status (4)

Country Link
US (1) US11258082B2 (ja)
EP (1) EP3605688B1 (ja)
JP (1) JP6724833B2 (ja)
WO (1) WO2018174054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109278590A (zh) * 2018-09-28 2019-01-29 奇瑞汽车股份有限公司 一种氢燃料电池汽车热管理系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7320549B2 (ja) * 2021-03-31 2023-08-03 本田技研工業株式会社 燃料電池システム
CN114243068B (zh) * 2021-12-20 2023-10-10 重庆大学 一种基于镁基材料的氢能供电设备
CN115842144B (zh) * 2022-10-27 2023-09-26 中汽创智科技有限公司 燃料电池热管理测试系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295996A (ja) * 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2005063703A (ja) * 2003-08-20 2005-03-10 Japan Steel Works Ltd:The 水素吸蔵合金を用いた燃料電池用水素供給方法及び装置
WO2013065083A1 (ja) 2011-10-31 2013-05-10 三洋電機株式会社 燃料電池システム
JP2013214484A (ja) * 2012-03-30 2013-10-17 Sanyo Electric Co Ltd 燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3229023B2 (ja) * 1992-07-29 2001-11-12 マツダ株式会社 水素エンジンに対する水素ガス供給装置
JP5002126B2 (ja) * 2004-12-24 2012-08-15 株式会社豊田自動織機 燃料電池システム
JP5240282B2 (ja) 2010-12-06 2013-07-17 トヨタ自動車株式会社 燃料電池セル
WO2013145776A1 (en) 2012-03-30 2013-10-03 Sanyo Electric Co., Ltd. Fuel cell system comprising a detachable fuel cartridge including a hydrogen storage alloy
US9768459B2 (en) * 2014-08-05 2017-09-19 The United States Of America As Represented By The Secretary Of The Army Hydrogen fuel cell cartridge, hydrogen fuel cell system, and non-transitory computer-readable storage medium for controlling hydrogen fuel cell cartridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295996A (ja) * 2000-04-14 2001-10-26 Toyota Motor Corp 水素貯蔵供給装置
JP2005063703A (ja) * 2003-08-20 2005-03-10 Japan Steel Works Ltd:The 水素吸蔵合金を用いた燃料電池用水素供給方法及び装置
WO2013065083A1 (ja) 2011-10-31 2013-05-10 三洋電機株式会社 燃料電池システム
JP2013214484A (ja) * 2012-03-30 2013-10-17 Sanyo Electric Co Ltd 燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605688A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109278590A (zh) * 2018-09-28 2019-01-29 奇瑞汽车股份有限公司 一种氢燃料电池汽车热管理系统

Also Published As

Publication number Publication date
EP3605688A1 (en) 2020-02-05
JP2018160339A (ja) 2018-10-11
US20200014043A1 (en) 2020-01-09
EP3605688B1 (en) 2021-09-08
JP6724833B2 (ja) 2020-07-15
US11258082B2 (en) 2022-02-22
EP3605688A4 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
WO2018174054A1 (ja) 燃料電池及び温度調整方法
KR102674659B1 (ko) 연료전지의 냉각 제어시스템 및 제어방법
US8361665B2 (en) Fuel cell system
JP5295257B2 (ja) 燃料電池システムの熱回収装置
US20180198139A1 (en) Fuel cell, control method and computer readable recording medium
WO2007119688A1 (ja) 燃料電池用の温度制御システム
KR20120000634A (ko) 연료전지 시스템의 제어 방법
JP5742946B2 (ja) 燃料電池システム
JP2012155978A (ja) 燃料電池システム
GB2543882B (en) Fuel cell cogeneration system, method of starting operation of the fuel cell cogeneration system, and method of operating the fuel cell cogeneration system
JP2008210646A (ja) 燃料電池システム
KR101396882B1 (ko) 연료전지 시스템, 그 냉각 방법 및 연료전지 시스템을 구비한 운동체
KR101848614B1 (ko) 차량용 열관리계 시스템
US9755257B2 (en) Fuel cell system and method for controlling fuel cell system
JP2008147121A (ja) 燃料電池評価装置
JP2005322527A (ja) 燃料電池システム
JP6028347B2 (ja) 燃料電池システム
JP4555601B2 (ja) 燃料電池の冷却装置
CN113497247A (zh) 一种高响应水平的氢燃料电池系统
KR101200689B1 (ko) 연료 전지의 열 회수 장치
JP5790177B2 (ja) 燃料電池システム
JP5772248B2 (ja) 燃料電池システム
JP2007242531A (ja) 燃料電池システム
KR100445380B1 (ko) 연료전지 운전용 가스 공급 장치
JP2004152592A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018771998

Country of ref document: EP

Effective date: 20191022