WO2018174047A1 - 光学装置、撮像装置、撮像方法及びプログラム - Google Patents

光学装置、撮像装置、撮像方法及びプログラム Download PDF

Info

Publication number
WO2018174047A1
WO2018174047A1 PCT/JP2018/010979 JP2018010979W WO2018174047A1 WO 2018174047 A1 WO2018174047 A1 WO 2018174047A1 JP 2018010979 W JP2018010979 W JP 2018010979W WO 2018174047 A1 WO2018174047 A1 WO 2018174047A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
aperture
filter
diaphragm
diameter
Prior art date
Application number
PCT/JP2018/010979
Other languages
English (en)
French (fr)
Inventor
亮 出田
琢磨 柳澤
佐藤 充
加園 修
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Publication of WO2018174047A1 publication Critical patent/WO2018174047A1/ja

Links

Images

Definitions

  • the present invention relates to an optical device and an imaging device including an optical filter.
  • the present invention also relates to a spectral imaging method using an optical filter and a program for executing the spectral imaging method.
  • the optical filter is, for example, an optical element configured to selectively transmit only light in a predetermined wavelength band from incident light.
  • the optical filter is mounted on a spectroscopic camera.
  • Patent Document 1 discloses an optical module including a wavelength variable interference filter having a reflective film, an electrostatic actuator that changes a gap between the reflective films, and a voltage control unit that controls a voltage applied to the electrostatic actuator; A spectroscopic camera is disclosed.
  • the optical filter is required to reliably transmit only electromagnetic waves in a desired wavelength band, that is, to have high wavelength resolution.
  • the optical filter has, for example, a pair of reflective films facing each other at a predetermined interval. In this case, only light corresponding to the distance (optical gap) between the pair of reflective films is transmitted through the optical filter and extracted outside. Therefore, it is preferable that the optical gap between the reflective films is constant in all regions in the film.
  • the wavelength selection characteristic of the optical filter is determined by the width of the transmission wavelength band of the optical filter.
  • the width of the filter wavelength band of the optical filter is small (narrow).
  • an optical filter mounted on a spectroscopic camera may have a function of adjusting a transmission wavelength.
  • the spectroscopic camera continuously captures a plurality of images for each transmission wavelength while adjusting the wavelength selection characteristics of the optical filter.
  • the wavelength tunable optical filter for example, it is preferable that the wavelength bandwidth is approximately the same between different transmission wavelengths (for example, between different optical gaps).
  • the present invention has been made in view of the above points, and an object thereof is to provide an optical device and an imaging device capable of performing filtering at a desired wavelength and its bandwidth. It is another object of the present invention to provide an imaging method and program capable of performing spectral imaging at a desired wavelength and its bandwidth.
  • an optical system including a pair of lenses, an optical filter that is provided at a pupil position of the optical system and selectively transmits light, and an aperture that is provided at the pupil position of the optical system.
  • an optical system comprising a pair of lenses, an optical filter that is provided at the position of the pupil of the optical system and selectively transmits light, and is provided at the position of the pupil of the optical system.
  • An optical aperture with a variable aperture diameter an image sensor that performs imaging based on transmitted light that has passed through the optical filter, and a drive that drives the optical aperture and adjusts the aperture diameter of the optical aperture based on the transmission wavelength of the optical filter And a portion.
  • an optical system comprising a pair of lenses, an optical filter provided at the pupil position of the optical system, an optical diaphragm having a variable aperture diameter, and transmitted light transmitted through the optical filter.
  • An imaging device that performs imaging based on the acquisition method, the acquisition step of acquiring a spectrum of transmitted light corresponding to the aperture diameter of the optical aperture from the image sensor, and the spectrum of the transmitted light acquired in the acquisition step
  • a calculation step for calculating the transmission wavelength of the optical filter corresponding to the aperture diameter of the optical aperture, and a table for adjusting the aperture diameter of the optical aperture based on the transmission wavelength of the optical filter calculated in the calculation step are created.
  • an adjusting step for adjusting the aperture diameter of the optical aperture based on the table created in the creating step.
  • an optical system including a pair of lenses, an optical filter provided at a position of a pupil of the optical system, an optical diaphragm having a variable aperture diameter, and the optical filter are transmitted to a computer.
  • FIG. 10C is a diagram illustrating a diaphragm adjustment table
  • FIG. 10C is a diagram illustrating a relationship between a filter driving voltage and a diaphragm diameter and a spectrum of light transmitted through the filter in the imaging apparatus according to the first embodiment.
  • FIG. 10 is a diagram illustrating an operation flow of the imaging apparatus according to the second embodiment.
  • FIG. 1A is a diagram schematically illustrating a configuration of the imaging apparatus 10 according to the first embodiment.
  • the imaging device 10 is a spectroscopic camera.
  • the imaging device 10 receives light from the subject OB by the light receiving optical system 11.
  • the light receiving optical system 11 includes a lens group (not shown) including a plurality of lenses including an objective lens (not shown), and a diaphragm (not shown) that adjusts the amount of light from the subject OB.
  • the light of the subject OB received by the light receiving optical system 11 is light that is reflected by the subject OB and is incident on the light receiving optical system 11.
  • the imaging device 10 includes a relay optical system 12 that relays light from the light receiving optical system 11.
  • the relay optical system 12 includes a pair of lenses 12A and 12B provided on the optical axis of the light receiving optical system 11.
  • the imaging apparatus 10 also includes an optical filter (hereinafter simply referred to as a filter) 13 and an optical aperture (hereinafter simply referred to as an aperture) 14 provided at the position of the pupil EYE of the relay optical system 12.
  • a filter an optical filter
  • an optical aperture hereinafter simply referred to as an aperture
  • the pupil EYE of the relay optical system 12 is provided between the lenses 12A and 12B.
  • the diaphragm 14 is disposed closer to the subject OB (the light receiving optical system 11 side) than the filter 13.
  • the imaging device 10 includes an imaging element 15 that detects light relayed by the relay optical system 12 and performs imaging based on the relayed light.
  • a filter 13 is provided in the optical path of the relay optical system 12. Therefore, the image sensor 15 receives only light in the wavelength band filtered by the filter 13.
  • the imaging element 15 is an image sensor including a plurality of photoelectric conversion elements (not shown) arranged in a matrix, for example.
  • the imaging apparatus 10 includes a drive unit 16 that drives the filter 13 and the diaphragm 14.
  • the drive unit 13 generates a drive signal for operating the filter 13 and the diaphragm 14 and supplies the drive signal to the filter 13 and the diaphragm 14.
  • the imaging apparatus 10 includes a drive control unit (not shown) that drives the imaging element 15 and controls its imaging operation (for example, light detection operation and image data generation operation).
  • FIG. 1B is a cross-sectional view of the filter 13 and the diaphragm 14.
  • the filter 13, the diaphragm 14, and the drive unit 16 will be described with reference to FIG.
  • the filter 13 includes a pair of reflective films (first and second reflective films) 23 and 24 that are formed on the pair of substrates 21 and 22 and face each other with an optical distance DT.
  • the filter 13 has a pair of translucent substrates (first and second substrates) 21 and 22 that face each other.
  • the substrates 21 and 22 are made of, for example, quartz, borosilicate glass, silicon, or the like.
  • the substrates 21 and 22 have a flat plate shape. Note that in this specification, translucency refers to a property of transmitting at least a part of electromagnetic waves including light (visible light).
  • the substrates 21 and 22 have a pair of main surfaces that face each other with a gap.
  • the reflective films 23 and 24 are formed on the main surfaces of the substrates 21 and 22, respectively. Further, the reflection films 23 and 24 are arranged to face each other with an optical distance DT.
  • the reflective films 23 and 24 constitute a Fabry-Perot etalon.
  • the reflection films 23 and 24 constitute a filter unit (wavelength selection unit) FF in the filter 13.
  • the reflective films 23 and 24 are, for example, thin films made of an alloy containing Ag and Ag, and are reflective films (reflective films) having transparency.
  • the reflection films 23 and 24 have a circular shape. Further, the reflection films 23 and 24 are arranged so that the centers thereof are located on the optical axis AX of the relay optical system 12. Further, the reflection films 23 and 24 are arranged perpendicular to the optical axis AX of the relay optical system 12. Further, the reflection films 23 and 24 are formed and arranged so that the surfaces facing each other are parallel to each other.
  • the light received by the light receiving optical system 11 enters the lens 12A of the relay optical system 12 as incident light L1 and enters the filter 13.
  • the wavelength of the light incident on the filter 13 is selected by the filter 13 and is emitted from the filter 13 as transmitted light L2.
  • the transmitted light L2 is emitted toward the image sensor 15 from the lens 12B.
  • the incident light L1 enters the filter 13 through the substrate 21.
  • the incident light L1 passes through the reflective film 23 after passing through the substrate 21.
  • the incident light L1 repeats multiple reflections between the reflective films 23 and 24.
  • the filter 13 selectively transmits (outputs) the incident light L1 (incident electromagnetic wave) by the filter unit FF.
  • the substrate 21 of the filter 13 has a movable portion 21A that moves along the optical axis AX of the relay optical system 12 and displaces the reflective film 23 along the optical axis AX.
  • the substrate 21 has a thin film portion, and the inner portion of the thin film portion functions as the movable portion 21A.
  • the reflective film 23 is formed on the movable part 21A.
  • the filter 13 includes a pair of electrodes (first and second electrodes) 25 and 26 formed on the main surfaces of the substrates 21 and 22 with a gap so as to surround the reflective films 23 and 24, respectively.
  • the electrodes 25 and 26 generate an electrostatic force that moves the movable portion 21A and displaces the reflective film 23 along the optical axis AX.
  • the drive unit 16 is connected to the electrodes 25 and 26 and supplies a drive voltage (filter drive voltage) VF between the electrodes 25 and 26.
  • an electrostatic force for example, electrostatic attractive force
  • the thin film portion around the movable portion 21A is elastically deformed by the electrostatic force.
  • the movable portion 21A moves along with the reflective film 23 and the electrode 25 along the optical axis AX (for example, toward the substrate 22).
  • the filter 13 includes a pair of reflective films 23 and 24 that are opposed to each other with an optical distance DT and the optical distance DT is variable. Therefore, the filter 13 has a function of changing the wavelength of the electromagnetic wave to be transmitted (transmitted light L2). That is, the filter 13 is a wavelength tunable optical filter.
  • the drive unit 16 controls the optical distance DT between the reflective films 23 and 24 in the filter 13 and controls the wavelength selection characteristics of the filter 13.
  • the diaphragm 14 has an opening 14 ⁇ / b> A on the optical axis AX of the relay optical system 12.
  • the opening 14A has a circular shape when viewed from the direction along the optical axis AX.
  • the opening 14 ⁇ / b> A is disposed coaxially with the reflective films 23 and 24 of the filter 13.
  • the opening 14A is disposed in the vicinity of the filter 13, in the present embodiment, in the vicinity of the substrate 21. In other words, both the filter 13 and the diaphragm 14 are provided at the position of the pupil EYE (pupil region) of the relay optical system 12.
  • the aperture 14 has a configuration in which the aperture diameter of the aperture 14A, that is, the aperture diameter DM of the aperture 14 can be adjusted.
  • the driving unit 16 performs driving for adjusting the diaphragm diameter DM of the diaphragm 14.
  • the drive unit 16 supplies a drive voltage (aperture drive voltage) VA for adjusting the aperture diameter DM to the aperture 14.
  • VA aperture drive voltage
  • the opening 14 ⁇ / b> A of the diaphragm 14 operates so as to have a diaphragm diameter DM corresponding to the drive voltage VA supplied from the drive unit 16.
  • the diaphragm 14 adjusts the filter area FA of the filter 13. Specifically, the filter area FA in the filter unit FF of the filter 13 changes as the aperture diameter DM of the aperture 14 changes. In the present embodiment, when the aperture diameter DM changes, the area of the reflective film 23 and 24 where the light L1 is incident changes (becomes larger or smaller).
  • the imaging apparatus 10 includes the relay optical system 12 including the pair of lenses 12A and 12B, the filter 13 that is provided at the position of the pupil EYE of the relay optical system 12 and selectively transmits light, and the relay optical system.
  • the diaphragm 14 is provided at the position of the 12 pupils EYE and the diaphragm diameter DM is variable, and the driving section 16 drives the filter 13 and the diaphragm 14 to adjust the optical distance DT and the diaphragm diameter DM.
  • FIG. 2 (a) is a diagram schematically showing the relationship between the aperture diameter DM of the aperture 14 and the spectrum of the transmitted light L2 from the filter 13.
  • FIG. 2A schematically shows spectra of transmitted light L2 corresponding to two different aperture diameters DM.
  • FIG. 2A shows the change in the spectrum of the transmitted light L2 when the transmission wavelength ⁇ (drive voltage VF) of the filter 13 is fixed.
  • the aperture diameter DM is a diameter (maximum diameter or reference diameter) DM0
  • the transmitted light L2 has a peak at the wavelength ⁇ and has a bandwidth (transmission line width) of the width W0.
  • the bandwidth of the transmitted light L2 becomes a width W1 smaller than the width W0. That is, when the aperture diameter DM is reduced, the transmission bandwidth of the transmitted light L2 is reduced.
  • the filter 13 and the diaphragm 14 are provided at the position of the pupil EYE of the relay optical system 12. Therefore, the image information of the subject OB is not lost even if the aperture diameter DM changes.
  • the imaging apparatus 10 includes the diaphragm 14 provided immediately before the filter 13 and the drive unit 16 that drives the diaphragm 14 to adjust the diaphragm diameter DM of the diaphragm 14. Therefore, the transmission wavelength ⁇ of the filter 13 and its transmission bandwidth can be adjusted. Therefore, it is possible to provide the imaging apparatus 10 capable of performing spectral imaging by performing filtering at a desired wavelength and its bandwidth.
  • the aperture diameter DM of the aperture 14 can be adjusted not only for the purpose of increasing the resolution but also for various purposes such as considering brightness.
  • FIG. 2B is a diagram illustrating an example of an adjustment table of the diaphragm diameter DM included in the driving unit 16.
  • FIG. 2C shows a spectrum when the driving unit 16 drives the diaphragm 14 according to the table.
  • FIG. 2C is a diagram illustrating the transmission wavelength ⁇ (filter driving voltage VF) of the filter 13 adjusted by the driving unit 16 and the spectrum of the transmitted light L2 corresponding thereto.
  • the spectrum of the transmitted light L2 when the aperture diameter DM is adjusted to the maximum diameter DM0 for each transmission wavelength ⁇ is indicated by a broken line.
  • the drive unit 16 has a table indicating the relationship between the transmission wavelength ⁇ (drive voltage VF) of the filter 13 and the aperture diameter DM (drive voltage VA) of the aperture 14 corresponding to the bandwidth W. For example, when the target bandwidth W is the first width W1, the drive unit 16 stores that the first wavelength DM1 may be adjusted when the target bandwidth W is adjusted to the first wavelength ⁇ 1. .
  • the driving unit 16 drives the filter 13 to adjust the optical distance DT between the pair of reflective films 23 and 24 and drives the diaphragm 14 to drive the diaphragm diameter DM of the diaphragm 14. Adjust.
  • the drive unit 16 calculates the spectrum (broken line) corresponding to the maximum diameter DM0 in the transmitted light L2 from the filter 13 adjusted to the transmission wavelength ⁇ 1, and the extent of the spectrum change according to the change of the aperture diameter DM. I remember it.
  • the drive unit 16 stores the control values (drive voltages VF and VA) of the filter 13 and the diaphragm 14 when transmitting the transmitted light L2 having the wavelength ⁇ 1 with the bandwidth W having the width W1 as a table. Therefore, in this case, the driving unit 16 supplies the driving voltage VF having the voltage value VF1 to the filter 13 and supplies the driving voltage VA having the voltage value VA1 to the diaphragm 14.
  • the drive unit 16 transmits the transmitted light L2 having the wavelength ⁇ 2 with the bandwidth W having the width W1
  • the drive unit 16 sets the filter 13 and the aperture 14 to the transmission wavelength ⁇ 2 (voltage value VF2) and the aperture diameter DM2. Adjust to (voltage value VA2).
  • the drive unit 16 performs driving with the aperture diameter DM being set to the maximum diameter DM0 (opening the aperture 14) depending on the transmission wavelength ⁇ .
  • the transmitted light L2 has a wavelength that matches the optical distance DT between the reflective films 23 and 24 and an integral multiple thereof. Therefore, the bandwidth W of the transmitted light L2 can be calculated in advance. For example, when the aperture diameters DM are the same, the intensity and bandwidth W of the transmitted light L2 with the wavelength ⁇ 1 becomes larger than the transmitted light L2 with the wavelength ⁇ 2, for example, as the transmission wavelength ⁇ is set smaller. In addition, the degree of change can be obtained by calculation.
  • the drive unit 16 has an adjustment table for the aperture diameter DM based on the relationship between the designed transmission wavelength ⁇ and the bandwidth W.
  • the drive unit 16 drives the filter 13 and the diaphragm 14 based on the adjustment table, for example, the bandwidth W for each transmission wavelength ⁇ can be made uniform as shown in FIG. Therefore, the resolution of the imaging device 10 can be made uniform.
  • the aperture diameter DM when the aperture diameter DM is reduced, the intensity of the transmitted light L2 is reduced. Further, when the bandwidth W of the transmitted light L2 is matched for each transmitted wavelength ⁇ , the intensity of the transmitted light L2 is also made uniform. Therefore, by adjusting the aperture diameter DM, the brightness of the captured image is also made uniform. Accordingly, not only the bandwidth W is made uniform, but also the color unevenness of the image is reduced. Therefore, it is possible to provide the imaging device 10 that performs spectral imaging with high image quality.
  • the filter 13 is a wavelength tunable optical filter
  • the filter 13 may be a fixed wavelength optical filter.
  • the drive unit 16 may drive the diaphragm 14 based on the fixed transmission wavelength ⁇ of the filter 13 (the diaphragm diameter DM may be adjusted).
  • the imaging device 10 it is possible to provide the imaging device 10 that can perform imaging by performing filtering at a desired wavelength ⁇ and its bandwidth W.
  • the filter 13 has a configuration that transmits light in a predetermined wavelength band by the optical distance DT between the reflective films 23 and 24 has been described.
  • the configuration of the filter 13 is only an example.
  • the filter 13 may be a polarizing filter.
  • the filter 13 may be provided at the position of the pupil EYE of the relay optical system 12 so as to selectively transmit light.
  • the imaging device 10 includes the light receiving optical system 11
  • the imaging device 10 may not have the light receiving optical system 11.
  • the relay optical system 12 may receive light from the subject OB as incident light L ⁇ b> 1 and guide it to the image sensor 15.
  • the imaging apparatus 10 includes the relay optical system 12, the filter 13, the diaphragm 14, and the driving unit 16 has been described as shown in FIG.
  • the relay optical system 12, the filter 13, the diaphragm 14, and the drive unit 16 can also be used as the optical device OD.
  • the filter 13 and the diaphragm 14 are arranged at the position of the pupil EYE of the relay optical system 12, and the diaphragm diameter DM of the diaphragm 14 is adjusted by the drive unit 16, so that the desired wavelength ⁇ and its bandwidth W are obtained.
  • the filter 13 is a variable wavelength type, it is possible to provide an optical device OD that performs filtering with a desired wavelength ⁇ and its bandwidth W according to the aperture adjustment table.
  • FIG. 3A is a diagram schematically illustrating a configuration of the imaging device 30 according to the second embodiment.
  • the imaging device 30 has the same configuration as the imaging device 10 except for the configuration of the calculation unit 31 and the drive unit 32.
  • the imaging device 30 includes a calculation unit 31 that calculates a change in the transmission wavelength ⁇ according to a change in the aperture diameter DM.
  • the drive unit 32 acquires from the calculation unit 31 an adjustment table for the aperture diameter DM generated based on the calculation result of the change in the transmission wavelength ⁇ corresponding to the aperture diameter DM.
  • the drive unit 32 drives the filter 13 and the diaphragm 14 based on the adjustment table.
  • FIG. 3B is a schematic operation explanatory diagram of the calculation unit 31.
  • the calculation unit 31 acquires the spectrum of the transmitted light L2 from the image sensor 15. Further, the calculation unit 31 acquires the transmission wavelength ⁇ (drive voltage VF) set in the filter 13 and the aperture diameter DM (drive voltage VA) set in the aperture 14 from the drive unit 32.
  • drive voltage VF
  • DM drive voltage VA
  • the calculation unit 31 acquires the peak wavelength of the transmitted light L2 based on different aperture diameters DM, and calculates the change in the transmission wavelength ⁇ of the filter 13 corresponding to each aperture diameter DM. For example, based on the peak wavelength ⁇ 1 of the transmitted light L2 when the aperture diameter DM is the maximum diameter DM0 and the peak wavelength ⁇ 1a of the transmitted light L2 when the aperture diameter DM is the first diameter DM1, The transmission wavelength ⁇ for each aperture diameter DM is calculated.
  • the filter 13 may not have exactly the same wavelength selection characteristics in the filter unit FF (FIG. 1B, etc.).
  • the optical distance DT between the reflective films 23 and 24 constituting the filter unit FF of the filter 13 is strictly different within the film. Further, this slight difference in wavelength selection characteristics is caused by a manufacturing error or the like. And it may be difficult to specify which part in the filter unit FF has the characteristic difference.
  • the transmission wavelength ⁇ of the actual transmitted light L2 may change when the aperture diameter DM is changed.
  • the bandwidth W in order to set the bandwidth W to the first width W1 in a state where the first voltage value VF1 that is the drive voltage VF set to the transmission wavelength ⁇ 1 is applied, Consider a case where the aperture diameter DM is adjusted from the maximum diameter DM0 to the first diameter DM1.
  • the transmitted light L2 has a peak wavelength ⁇ 1a different from the designed transmission wavelength (peak wavelength) ⁇ 1.
  • the imaging apparatus 10 erroneously associates the spectral information obtained at the transmission wavelength ⁇ 1 with the spectral information (image) obtained at the wavelength ⁇ 1a.
  • the calculation unit 31 acquires the spectrum (intensity information) of the actual transmitted light L2 from the image sensor 15, and the amount of change from the wavelength ⁇ 1a that is the actual transmission wavelength ⁇ and the wavelength ⁇ 1 that is the set wavelength. ⁇ is calculated. Thereby, the actual transmission wavelength ⁇ according to the aperture diameter DM can be specified.
  • FIG. 3C is a diagram illustrating an example of an adjustment table of the correction diaphragm 14 based on the actual measurement generated by the calculation unit 31.
  • the calculation unit 31 calculates this, and calculates the drive voltage VF of the filter 13 and the diaphragm diameter DM (drive voltage VA of the diaphragm 14).
  • the relationship of the transmission wavelength ⁇ of the filter 13 is corrected.
  • the calculation unit 31 generates an adjustment table in which the transmission wavelength ⁇ is changed from the wavelength ⁇ 1 to the wavelength ⁇ 1a when the aperture diameter DM is set to the first diameter DM1 with the driving voltage VF having the voltage value VF1.
  • FIG. 4 is a flowchart showing a flow of an imaging operation by the imaging device 30. Details of the calculation operation of the transmission wavelength ⁇ by the calculation unit 31 and the drive operation of the drive unit 32 will be described with reference to FIG. First, for example, the imaging apparatus 30 starts an operation when receiving an instruction to start spectral imaging, set spectral conditions, and calibrate from a user of the imaging apparatus 30.
  • the drive unit 32 drives the aperture diameter DM of the aperture 14 to the maximum diameter DM0.
  • the calculation unit 31 acquires the spectrum of the transmitted light L2, for example, intensity information for each wavelength, when the diaphragm 14 is opened (when the diaphragm diameter DM is the maximum diameter DM0) from the image sensor 15 (step S11).
  • the calculation unit 31 analyzes the acquired spectrum information of the transmitted light L2, and calculates the transmission wavelength (peak wavelength) ⁇ of the filter 13 when the diaphragm 14 is opened (step S12).
  • the drive unit 32 performs adjustment to change the aperture diameter DM of the aperture 14.
  • the calculation unit 31 acquires the spectrum of the transmitted light L2 corresponding to the adjusted aperture diameter DM from the image sensor 15 (step S13). Similarly to step S14, the calculation unit 31 calculates the transmission wavelength (peak wavelength) ⁇ of the filter 13 corresponding to the adjusted aperture diameter DM (step S14). The calculation unit 31 repeats steps S13 and S14 until the amount of calculation data necessary for creating the table is accumulated.
  • the calculation unit 31 creates an adjustment table for the aperture diameter DM when the required amount of calculation data is accumulated (step S15). For example, the calculation unit 31 creates a table indicating the relationship between the transmission voltage ⁇ and the drive voltage VF of the filter 13 and the drive voltage VA of the diaphragm 14 set by the drive unit 32.
  • the calculation unit 31 supplies the created table to the drive unit 32.
  • the drive unit 32 drives the filter 13 and the diaphragm 14 based on the table acquired from the calculation unit 31.
  • the imaging device 15 performs spectral imaging of the subject OB at every adjustment timing of the filter 13 and the diaphragm 14 by the drive unit 32 (step S16).
  • the imaging device 30 acquires the spectrum of the transmitted light L2 from the imaging device 15 and calculates the transmission wavelength (wavelength selection characteristic) ⁇ of the filter 13 corresponding to the aperture diameter DM of the aperture 14. It has the calculation part 31 to perform.
  • the drive unit 32 performs drive correction using the calculation result from the calculation unit 31. That is, the drive unit 32 adjusts the diaphragm diameter DM of the diaphragm 14 based on the transmission wavelength ⁇ of the filter 13 calculated by the calculation unit 31.
  • the filter 13 and the stop 14 can be reliably driven in accordance with the change of the characteristic. Further, it is possible to reliably adjust the bandwidth W of the transmitted light L2 by the filter 13 according to the transmission wavelength ⁇ . Therefore, it is possible to provide an imaging device 30 that can perform spectral imaging by performing filtering at a desired wavelength ⁇ and its bandwidth W.
  • the calculation unit 31 acquires the spectrum information of the transmitted light L2 from the image sensor 15 has been described.
  • the calculation unit 31 is not limited to the case where the spectrum information is acquired from the image sensor 15.
  • the calculation unit 31 may acquire the spectrum information of the transmitted light L2, and the acquisition source may be a photodetector or the like.
  • the acquisition source may be a photodetector or the like.
  • a detection element DE that detects the spectrum of the transmitted light L2 may be provided instead of the imaging element 15.
  • the calculation unit 31 may calculate the transmission wavelength ⁇ of the filter 13 corresponding to the aperture diameter DM of the aperture 14 based on the spectrum of the transmitted light L2 detected by the detection element DE.
  • the relay optical system 12, the filter 13, the diaphragm 14, the detection element DE, the calculation unit 31, and the drive unit 32 constitute an optical device OD1.
  • the optical device OD1 may perform an optical process that guides the transmitted light L2 to various optical elements. Even in this case, the optical device OD1 can perform filtering at a desired wavelength ⁇ and its bandwidth W.
  • the present invention can also be implemented as an imaging method by performing the operations and processes shown in FIG. 4 using the relay optical system 12, the filter 13, the diaphragm 14, and the imaging device 15, for example.
  • the relay optical system 12 including a pair of lenses 12A and 12B, the filter 13 and the diaphragm 14 provided at the position of the pupil EYE of the relay optical system 12, and the transmitted light transmitted through the filter 13
  • the imaging method includes an acquisition step S13 for acquiring the spectrum of the transmitted light L2 corresponding to the aperture diameter DM of the aperture 14 from the image sensor 15, and the aperture 14 based on the spectrum of the transmitted light L2 acquired in the acquisition step S13.
  • a calculation step S14 for calculating the transmission wavelength ⁇ of the filter 13 corresponding to the aperture diameter DM, and a table for adjusting the aperture diameter DM of the aperture 14 based on the transmission wavelength ⁇ of the filter 13 calculated in the calculation step S14 are created.
  • a creation step S15 and an adjustment step S16 for adjusting the aperture diameter DM of the aperture 14 based on the table created in the creation step S15 are included. Therefore, it is possible to perform spectral imaging by performing filtering at a desired wavelength ⁇ and its bandwidth W.
  • the present invention can also be implemented as a program for operating the relay optical system 12, the filter 13, the diaphragm 14, and the image sensor 15 in the steps shown in FIG. 4 using a computer, for example.
  • the program according to the present invention includes a relay optical system 12 including a pair of lenses 12A and 12B, a filter 13 provided at the position of the pupil EYE of the relay optical system 12, and a diaphragm 14 having a variable diaphragm diameter DM.
  • the program creates a table in the computer that causes the drive unit 32 to adjust the diaphragm diameter DM of the diaphragm 14 based on the transmission wavelength ⁇ of the filter 13 calculated in the calculation step S14. You can do it. Therefore, for example, using the relay optical system 12, the filter 13, and the diaphragm 14 arranged as described above, it is possible to perform spectral imaging by performing filtering at a desired wavelength ⁇ and its bandwidth W.
  • Imaging device OD OD1 Optical device 12
  • relay optical system optical system 13
  • Optical Filter Optical Filter 14
  • Image Sensor DE Detection Elements 16 and 32 Drive Unit 31 Calculation Unit

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一対のレンズからなる光学系と、光学系の瞳の位置に設けられて光を選択的に透過させる光学フィルタと、光学系の瞳の位置に設けられて絞り径が可変の光学絞りと、光学絞りを駆動し、光学フィルタの透過波長に基づいて光学絞りの絞り径を調節する駆動部と、を有する。

Description

光学装置、撮像装置、撮像方法及びプログラム
 本発明は、光学フィルタを含む光学装置及び撮像装置に関する。また、本発明は、光学フィルタを用いた分光撮像方法及びこれを実行するプログラムに関する。
 光学フィルタは、例えば、入射された光の中から所定の波長帯域の光のみを選択的に透過させるように構成された光学素子である。例えば、光学フィルタは、分光カメラに搭載される。例えば、特許文献1には、反射膜を有する波長可変干渉フィルタと、反射膜間のギャップを変更する静電アクチュエータと、静電アクチュエータに印加する電圧を制御する電圧制御部とを備える光学モジュール及び分光カメラが開示されている。
特開2017-15728号公報
 例えば、分光カメラにおいて正確な分光情報を得ることを考慮すると、光学フィルタには、所望の波長帯域の電磁波のみを確実に透過させること、すなわち高い波長分解能を有することが求められる。
 光学フィルタは、例えば、所定の間隔をおいて互いに対向する一対の反射膜を有する。この場合、当該一対の反射膜間の間隔(光学ギャップ)に対応した光のみが光学フィルタを透過して外部に取り出される。従って、反射膜間の光学ギャップは膜内の全ての領域で一定であることが好ましい。
 一方、種々の部品の製造誤差などによって、一般に、光学フィルタから取り出された光は、所定のピーク波長及び所定の帯域幅(例えば透過線幅)を有している。従って、光学フィルタの波長選択特性は、当該光学フィルタの透過波長帯域の幅によって定められる。分光カメラにおいて高い波長分解能を得ることを考慮すると、光学フィルタのフィルタ波長帯域の幅が小さい(狭い)ことが好ましい。
 また、例えば、分光カメラに搭載された光学フィルタは、透過波長を調節する機能を有する場合がある。この場合、例えば、分光カメラは、光学フィルタの波長選択特性を調節しつつ透過波長毎に複数の画像を連続的に撮像する。波長可変型の光学フィルタにおいては、例えば、異なる透過波長間(例えば異なる光学ギャップ間)で波長帯域幅が同程度となっていることが好ましい。
 本発明は上記した点に鑑みてなされたものであり、所望の波長及びその帯域幅でフィルタリングを行うことが可能な光学装置及び撮像装置を提供することを目的としている。また、所望の波長及びその帯域幅で分光撮像を行うことが可能な撮像方法及びプログラムを提供することを目的としている。
 請求項1に記載の発明は、一対のレンズからなる光学系と、光学系の瞳の位置に設けられて光を選択的に透過させる光学フィルタと、光学系の瞳の位置に設けられて絞り径が可変の光学絞りと、光学絞りを駆動し、光学フィルタの透過波長に基づいて光学絞りの絞り径を調節する駆動部と、を有することを特徴としている。
 また、請求項5に記載の発明は、一対のレンズからなる光学系と、光学系の瞳の位置に設けられて光を選択的に透過させる光学フィルタと、光学系の瞳の位置に設けられて絞り径が可変の光学絞りと、光学フィルタを透過した透過光に基づいて撮像を行う撮像素子と、光学絞りを駆動し、光学フィルタの透過波長に基づいて光学絞りの絞り径を調節する駆動部と、を有することを特徴としている。
 また、請求項8に記載の発明は、一対のレンズからなる光学系と、光学系の瞳の位置に設けられた光学フィルタ及び絞り径が可変の光学絞りと、光学フィルタを透過した透過光に基づいて撮像を行う撮像素子と、を用いた撮像方法であって、撮像素子から光学絞りの絞り径に対応する透過光のスペクトルを取得する取得ステップと、取得ステップにおいて取得された透過光のスペクトルに基づいて、光学絞りの絞り径に対応する光学フィルタの透過波長を算出する算出ステップと、算出ステップにおいて算出された光学フィルタの透過波長に基づいて、光学絞りの絞り径を調節するテーブルを作成する作成ステップと、作成ステップにおいて作成されたテーブルに基づいて光学絞りの絞り径を調節する調節ステップと、を含むことを特徴としている。
 また、請求項9に記載の発明は、コンピュータに、一対のレンズからなる光学系と、光学系の瞳の位置に設けられた光学フィルタ及び絞り径が可変の光学絞りと、光学フィルタを透過した透過光に基づいて撮像を行う撮像素子と、光学絞りの絞り径を調節する駆動部と、を用いて、撮像素子から光学絞りの絞り径に対応する透過光のスペクトルを取得する取得ステップと、取得ステップにおいて取得された透過光のスペクトルに基づいて、光学絞りの絞り径に対応する光学フィルタの透過波長を算出する算出ステップと、算出ステップにおいて算出された光学フィルタの透過波長に基づいて、光学絞りの絞り径を駆動部に調節させるテーブルを作成する作成ステップと、を実行させることを特徴としている。
(a)は実施例1に係る撮像装置の模式的な断面図であり、(b)は実施例1に係る撮像装置におけるフィルタ及び絞りの部分を拡大して模式的に示す断面図である。 (a)は、実施例1に係る撮像装置における絞りの絞り径とフィルタの透過光のスペクトルとの関係を示す図であり、(b)は、実施例1に係る撮像装置の駆動部が有する絞り調節テーブルを示す図であり、(c)は、実施例1に係る撮像装置におけるフィルタ駆動電圧及び絞り径とフィルタの透過光のスペクトルとの関係を示す図である。 (a)は、実施例2に係る撮像装置の模式的な断面図であり、(b)は、実施例2に係る撮像装置における算出部の動作説明図であり、(c)は実施例2に係る撮像装置の算出部が生成する絞り調節テーブルを示す図である。 実施例2に係る撮像装置の動作フローを示す図である。
 以下に本発明の実施例について詳細に説明する。
 図1(a)は、実施例1に係る撮像装置10の構成を模式的に示す図である。本実施例においては、撮像装置10は、分光カメラである。撮像装置10は、被写体OBからの光を受光光学系11で受光する。受光光学系11は、対物レンズ(図示せず)を含む複数のレンズからなるレンズ群(図示せず)と、被写体OBからの光の光量を調節する絞り(図示せず)とを含む。例えば、受光光学系11が受光する被写体OBの光は、自然光や照明光が被写体OBに反射されて受光光学系11に入射する光である。
 撮像装置10は、受光光学系11からの光をリレーするリレー光学系12を有する。本実施例においては、リレー光学系12は、受光光学系11の光軸上に設けられた一対のレンズ12A及び12Bを有する。
 また、撮像装置10は、リレー光学系12の瞳EYEの位置に設けられた光学フィルタ(以下、単にフィルタと称する)13及び光学絞り(以下、単に絞りと称する)14を有する。本実施例においては、リレー光学系12の瞳EYEは、レンズ12A及び12B間に設けられる。また、絞り14は、フィルタ13よりも被写体OB側(受光光学系11側)に配置されている。
 撮像装置10は、リレー光学系12によってリレーされた光を検出し、当該リレーされた光に基づいて撮像を行う撮像素子15を有する。本実施例においては、リレー光学系12の光路内にフィルタ13が設けられている。従って、撮像素子15は、フィルタ13によってフィルタリングされた波長帯域の光のみを受光する。撮像素子15は、例えば、マトリクス状に配置された複数の光電変換素子(図示せず)を含むイメージセンサである。
 また、撮像装置10は、フィルタ13及び絞り14を駆動する駆動部16を有する。本実施例においては、駆動部13は、フィルタ13及び絞り14を動作させる駆動信号を生成し、フィルタ13及び絞り14に供給する。なお、撮像装置10は、撮像素子15を駆動し、その撮像動作(例えば、光の検出動作及び画像データの生成動作)を制御する駆動制御部(図示せず)を有する。
 図1(b)は、フィルタ13及び絞り14の断面図である。図1(b)を用いて、フィルタ13及び絞り14並びに駆動部16について説明する。まず、フィルタ13は、一対の基板21及び22上にそれぞれ形成され、光学距離DTをおいて互いに対向する一対の反射膜(第1及び第2の反射膜)23及び24を有する。
 より具体的には、フィルタ13は、互いに対向する透光性の一対の基板(第1及び第2の基板)21及び22を有する。基板21及び22は、例えば、石英、ホウケイ酸ガラス、シリコンなどからなる。基板21及び22は、平板形状を有する。なお、本明細書において、透光性とは、光(可視光)を含む電磁波のうち、少なくとも一部の電磁波を透過する特性をいう。
 また、基板21及び22は、間隙をおいて互いに対向する一対の主表面を有している。反射膜23及び24は、それぞれ基板21及び22の主表面上に形成されている。また、反射膜23及び24は、光学距離DTをおいて互いに対向して配置されている。
 反射膜23及び24は、ファブリペローエタロンを構成する。また、反射膜23及び24は、フィルタ13におけるフィルタ部(波長選択部)FFを構成する。なお、反射膜23及び24は、例えばAg及びAgを含む合金からなる薄膜であり、透過性を有する反射膜(反射性の膜)である。
 本実施例においては、反射膜23及び24は、円形状を有する。また、反射膜23及び24は、その中心がリレー光学系12の光軸AX上に位置するように配置されている。また、反射膜23及び24は、リレー光学系12の光軸AXに垂直に配置されている。また、反射膜23及び24は、その互いに対向する表面が平行となるように形成及び配置されている。
 本実施例においては、受光光学系11によって受光された光は、入射光L1としてリレー光学系12のレンズ12Aに入射し、フィルタ13に入射する。そして、フィルタ13に入射した光は、フィルタ13によって波長が選択され、透過光L2としてフィルタ13から出射する。透過光L2は、レンズ12Bから撮像素子15に向けて出射される。
 より具体的には、図1(b)に示すように、本実施例においては、入射光L1は、基板21を介してフィルタ13に入射する。入射光L1は、基板21を透過した後、反射膜23を透過する。入射光L1は、反射膜23及び24間において多重反射を繰り返す。
 この際、入射光L1のうち、反射膜23及び24間の光学距離DT(光学ギャップ)に対応する波長の光は残存し、他の波長の光は減衰する。この残存した波長の光は、透過光L2として反射膜24を透過する。そして、透過光L2は、基板22を透過して基板22から出射する。このようにして、フィルタ13は、フィルタ部FFによって、入射光L1(入射された電磁波)を選択的に透過(出力)する。
 本実施例においては、フィルタ13の基板21は、リレー光学系12の光軸AXに沿って移動し、反射膜23を光軸AXに沿って変位させる可動部21Aを有する。本実施例においては、基板21は薄膜部を有し、当該薄膜部の内側部分が可動部21Aとして機能する。反射膜23は、可動部21A上に形成されている。
 また、フィルタ13は、それぞれ反射膜23及び24を取り囲むように基板21及び22の主表面上に間隙をおいて形成された一対の電極(第1及び第2の電極)25及び26を有する。電極25及び26は、可動部21Aを移動させ、反射膜23を光軸AXに沿って変位させる静電気力を生成する。本実施例においては、駆動部16は、電極25及び26に接続され、電極25及び26間に駆動電圧(フィルタ駆動電圧)VFを供給する。
 電極25及び26間に電圧が印加されると、電極25及び26間に静電気力(例えば静電引力)が生ずる。本実施例においては、可動部21Aの周囲の薄膜部は、当該静電気力によって弾性変形を起こす。これによって、可動部21Aは、反射膜23及び電極25と共に、光軸AXに沿って(例えば基板22側に)移動する。
 換言すれば、フィルタ13は、光学距離DTをおいて互いに対向しかつ光学距離DTが可変の一対の反射膜23及び24を有する。従って、フィルタ13は、透過させる電磁波(透過光L2)の波長を変化させる機能を有する。すなわち、フィルタ13は、波長可変型の光学フィルタである。また、駆動部16は、フィルタ13における反射膜23及び24間の光学距離DTを制御し、フィルタ13の波長選択特性を制御する。
 次に、絞り14は、リレー光学系12の光軸AX上に開口部14Aを有する。本実施例においては、開口部14Aは、光軸AXに沿った方向から見たときに円形状を有する。また、開口部14Aは、フィルタ13の反射膜23及び24と同軸に配置されている。なお、開口部14Aは、フィルタ13の極近傍、本実施例においては基板21の極近傍に配置されている。換言すれば、フィルタ13及び絞り14の両方がリレー光学系12の瞳EYEの位置(瞳領域)に設けられている。
 また、絞り14は、開口部14Aの開口径、すなわち絞り14の絞り径DMが調節可能な構成を有する。駆動部16は、絞り14の絞り径DMを調節する駆動を行う。本実施例においては、駆動部16は、絞り14に対して絞り径DMを調節する駆動電圧(絞り駆動電圧)VAを供給する。絞り14の開口部14Aは、駆動部16から供給された駆動電圧VAに応じた絞り径DMとなるように動作する。
 絞り14は、フィルタ13のフィルタ領域FAを調節する。具体的には、絞り14の絞り径DMが変化することによって、フィルタ13のフィルタ部FFにおけるフィルタ領域FAが変化する。本実施例においては、絞り径DMが変化すると、反射膜23及び24における光L1が入射される領域の面積が変化する(大きくなる又は小さくなる)。
 このように、撮像装置10は、一対のレンズ12A及び12Bからなるリレー光学系12と、リレー光学系12の瞳EYEの位置に設けられて光を選択的に透過させるフィルタ13と、リレー光学系12の瞳EYEの位置設けられて絞り径DMが可変の絞り14と、フィルタ13及び絞り14を駆動して光学距離DT及び絞り径DMを調節する駆動部16とを有する。
 図2(a)は、絞り14の絞り径DMとフィルタ13からの透過光L2のスペクトルとの関係を模式的に示す図である。図2(a)は、異なる2つの絞り径DMに対応する透過光L2のスペクトルを模式的に示す。なお、図2(a)は、フィルタ13の透過波長λ(駆動電圧VF)が固定された場合における透過光L2のスペクトルの変化を示す。
 図2(a)に示すように、例えば、絞り径DMが径(最大径又は基準径)DM0の場合、透過光L2は、波長λにピークを有し、幅W0の帯域幅(透過線幅)を有するスペクトルとなる。一方、絞り径DMを径(第1の径)DM1に変更した場合(絞った場合)、透過光L2の帯域幅は幅W0よりも小さい幅W1となる。すなわち、絞り径DMが小さくなると、透過光L2の透過帯域幅が小さくなる。
 なお、フィルタ13及び絞り14は、リレー光学系12の瞳EYEの位置に設けられている。従って、絞り径DMが変化しても被写体OBの画像情報が失われることはない。
 このように、本実施例においては、撮像装置10は、フィルタ13の直前に設けられた絞り14と、絞り14を駆動して絞り14の絞り径DMを調節する駆動部16とを有する。従って、フィルタ13の透過波長λ及びその透過帯域幅を調節することができる。従って、所望の波長及びその帯域幅でフィルタリングを行って分光撮像を行うことが可能な撮像装置10を提供することができる。
 なお、図2(a)に示すように、絞り径DMを小さくすると透過光L2の強度が小さくなる。すなわち、撮像装置10においては、絞り径DMを小さくすると、透過光L2の帯域幅Wである波長分解能は大きくなる一方、得られる画像の明るさが暗くなる。従って、絞り14の絞り径DMは、分解能を高める目的のみならず、明るさを考慮するなど、種々の目的で調節されることができる。
 図2(b)は、駆動部16が有する絞り径DMの調節テーブルの例を示す図である。また、図2(c)は、駆動部16が当該テーブルに従って絞り14を駆動した場合のスペクトルを示す図である。図2(c)は、駆動部16が調節したフィルタ13の透過波長λ(フィルタ駆動電圧VF)とこれに対応する透過光L2のスペクトルを示す図である。なお、図2(c)には、各透過波長λに対して絞り径DMを最大径DM0に調節した場合の透過光L2のスペクトルを破線で示している。
 本実施例においては、駆動部16は、帯域幅Wに対応するフィルタ13の透過波長λ(駆動電圧VF)及び絞り14の絞り径DM(駆動電圧VA)の関係を示すテーブルを有する。例えば、駆動部16は、目標となる帯域幅Wを第1の幅W1とした場合、第1の波長λ1に調節した場合には第1の径DM1に調節すればよいことを記憶している。
 換言すれば、本実施例においては、駆動部16は、フィルタ13を駆動して一対の反射膜23及び24間の光学距離DTを調節し、かつ絞り14を駆動して絞り14の絞り径DMを調節する。
 具体的には、駆動部16は、透過波長λ1に調節したフィルタ13からの透過光L2における最大径DM0に対応するスペクトル(破線)と、絞り径DMの変化に応じたスペクトル変化の程度とを記憶している。
 従って、駆動部16は、波長λ1の透過光L2を幅W1の帯域幅Wで透過させる場合の、フィルタ13及び絞り14の制御値(駆動電圧VF及びVA)をテーブルとして記憶している。従って、この場合、駆動部16は、フィルタ13に対して電圧値VF1の駆動電圧VFを供給し、絞り14に対して電圧値VA1の駆動電圧VAを供給する。
 また、同様に、駆動部16は、フィルタ13に波長λ2の透過光L2を幅W1の帯域幅Wで透過させる場合、フィルタ13及び絞り14を、透過波長λ2(電圧値VF2)及び絞り径DM2(電圧値VA2)に調節する。
 なお、図2(b)に示すように、波長λ3の透過光L2を幅W1の帯域幅Wで透過させる場合など、絞り径DMを最大径DM0から調節する必要がない場合があってもよい。すなわち、駆動部16は、透過波長λによっては絞り径DMを最大径DM0とする(絞り14を開放する)駆動を行う。
 なお、フィルタ13などのファブリペローフィルタの場合、透過光L2は、反射膜23及び24間の光学距離DT及びその整数倍に一致する波長を有する。従って、透過光L2の帯域幅Wは、予め計算することができる。例えば、絞り径DMを同一とした場合、透過波長λを小さく設定するほど、例えば波長λ2の透過光L2よりも波長λ1の透過光L2の方が、強度及び帯域幅Wが大きくなる。また、その程度の変化も算出により求めることができる。
 駆動部16は、設計上の透過波長λ及び帯域幅Wの関係に基づいた絞り径DMの調節テーブルを有する。駆動部16がこの調節テーブルに基づいたフィルタ13及び絞り14の駆動を行うことで、図2(c)に示すように、例えば、透過波長λ毎の帯域幅Wを均一化することができる。従って、撮像装置10の分解能を均一化することが可能となる。
 なお、例えば図2(c)に示すように、絞り径DMを小さくすると透過光L2の強度が小さくなる。また、透過波長λ毎で透過光L2の帯域幅Wを合わせると、透過光L2の強度も均一化される。従って、絞り径DMを調節することによって、撮像される画像の明るさも均一化される。従って、帯域幅Wが均一化されるのみならず、画像の色ムラが低減する。従って、高い画像品質で分光撮像を行う撮像装置10を提供することができる。
 なお、本実施例においては、フィルタ13が波長可変型の光学フィルタである場合について説明した。しかし、フィルタ13は波長固定型の光学フィルタであってもよい。この場合、駆動部16はフィルタ13の当該固定された透過波長λに基づいて絞り14を駆動すればよい(絞り径DMを調節すればよい)。これによって、所望の波長λ及びその帯域幅Wでフィルタリングを行って撮像を行うことが可能な撮像装置10を提供することができる。
 また、フィルタ13が反射膜23及び24間の光学距離DTによって所定の波長帯域の光を透過させる構成を有する場合について説明した。しかし、フィルタ13の構成は一例に過ぎない。例えば、フィルタ13は、偏光フィルタであってもよい。フィルタ13は、リレー光学系12の瞳EYEの位置に設けられて光を選択的に透過させる構成を有していればよい。
 また、撮像装置10は、受光光学系11を有する場合について説明した。しかし、撮像装置10は、受光光学系11を有していなくてもよい。この場合、リレー光学系12が被写体OBからの光を入射光L1として受光し、撮像素子15に導けばよい。
 また、本実施例においては、図1(a)に示すように、撮像装置10がリレー光学系12、フィルタ13、絞り14及び駆動部16を有する場合について説明した。しかし、例えば、リレー光学系12、フィルタ13、絞り14及び駆動部16は、光学装置ODとしても用いることができる。
 光学装置ODにおいては、リレー光学系12の瞳EYEの位置にフィルタ13及び絞り14を配置し、駆動部16によって絞り14の絞り径DMを調節することで、所望の波長λ及びその帯域幅Wでフィルタリングを行って光学処理を行うことが可能となる。また、フィルタ13を波長可変型とした場合でも、絞り調節テーブルに従って所望の波長λ及びその帯域幅Wでフィルタリングを行う光学装置ODを提供することができる。
 図3(a)は、実施例2に係る撮像装置30の構成を模式的に示す図である。撮像装置30は、算出部31及び駆動部32の構成を除いては、撮像装置10と同様の構成を有する。本実施例においては、撮像装置30は、絞り径DMの変化に応じた透過波長λの変化を算出する算出部31を有する。駆動部32は、算出部31から、絞り径DMに対応する透過波長λの変化の算出結果に基づいて生成された絞り径DMの調節テーブルを取得する。駆動部32は、当該調節テーブルに基づいてフィルタ13及び絞り14を駆動する。
 図3(b)は、算出部31の模式的な動作説明図である。算出部31は、撮像素子15から、透過光L2のスペクトルを取得する。また、算出部31は、駆動部32から、フィルタ13に設定された透過波長λ(駆動電圧VF)及び絞り14に設定された絞り径DM(駆動電圧VA)を取得する。
 また、算出部31は、異なる絞り径DMに基づいた透過光L2のピーク波長を取得し、絞り径DMの各々に対応するフィルタ13の透過波長λの変化を算出する。例えば、算出部31は、絞り径DMが最大径DM0の場合の透過光L2のピーク波長λ1と、絞り径DMが第1の径DM1の場合の透過光L2のピーク波長λ1aとに基づいて、絞り径DM毎の透過波長λを算出する。
 より具体的には、フィルタ13は、そのフィルタ部FF(図1(b)など)内において厳密には同一の波長選択特性を有していない場合がある。例えば、フィルタ13のフィルタ部FFを構成する反射膜23及び24間の光学距離DTは、厳密には膜内で異なる。また、このわずかな波長選択特性の差は、製造誤差などによって生ずる。そして、フィルタ部FF内のどの部分で特性の差が生じているかを特定することは困難である場合がある。
 従って、フィルタ13への設定値を同一とした場合でも、絞り径DMを変化させた場合、実際の透過光L2の透過波長λが変化する場合がある。例えば、図3(b)に示すように、透過波長λ1に設定する駆動電圧VFである第1の電圧値VF1を印加した状態で、帯域幅Wを第1の幅W1に設定するために、絞り径DMを最大径DM0から第1の径DM1に調節した場合を考える。
 図3(b)に示す場合、絞り径DMが第1の径DM1に設定された状態では、透過光L2は、設計上の透過波長(ピーク波長)λ1とは異なるピーク波長λ1aを有することとなる。従って、撮像装置10は、波長λ1aで得られた分光情報(画像)であるにも関わらず、透過波長λ1で得られた分光情報であると誤って対応付けてしまう。
 これに対し、算出部31は、撮像素子15からの実際の透過光L2のスペクトル(強度情報)を取得し、実際の透過波長λである波長λ1a及びその設定波長である波長λ1からの変化量Δλを算出する。これによって、絞り径DMに応じた実際の透過波長λを特定することができる。
 図3(c)は、算出部31が生成する実測に基づいた補正用の絞り14の調節テーブルの例を示す図である。算出部31は、例えば図3(b)に示すような特性の変化をフィルタ13が示した場合、これを算出し、フィルタ13の駆動電圧VF及び絞り径DM(絞り14の駆動電圧VA)とフィルタ13の透過波長λの関係を補正する。例えば、算出部31は、電圧値VF1の駆動電圧VFで絞り径DMを第1の径DM1に設定した場合の透過波長λを波長λ1から波長λ1aに変更した調節テーブルを生成する。
 図4は、撮像装置30による撮像動作のフローを示すフロー図である。図4を用いて、算出部31による透過波長λの算出動作及び駆動部32の駆動動作の詳細について説明する。まず、撮像装置30は、例えば撮像装置30のユーザから分光撮像の開始、分光条件の設定及び校正などを行う指示受付けた場合に動作を開始する。
 まず、駆動部32は、絞り14の絞り径DMを最大径DM0とする駆動を行う。算出部31は、撮像素子15から、絞り14の開放時(絞り径DMが最大径DM0の場合)の透過光L2のスペクトル、例えば波長毎の強度情報を取得する(ステップS11)。算出部31は、取得した透過光L2のスペクトル情報を解析し、絞り14の開放時におけるフィルタ13の透過波長(ピーク波長)λを算出する(ステップS12)。
 次に、駆動部32は、絞り14の絞り径DMを変更する調節を行う。算出部31は、撮像素子15から、調節された絞り径DMに対応する透過光L2のスペクトルを取得する(ステップS13)。算出部31は、ステップS14と同様に、調節された絞り径DMに対応するフィルタ13の透過波長(ピーク波長)λを算出する(ステップS14)。なお、算出部31は、テーブルの作成に必要な量の算出データが蓄積されるまで、ステップS13及び14を繰り返す。
 算出部31は、必要量の算出データが蓄積された場合、絞り径DMの調節テーブルを作成する(ステップS15)。例えば、算出部31は、駆動部32が設定するフィルタ13の駆動電圧VF及び絞り14の駆動電圧VAと、透過波長λとの関係を示すテーブルを作成する。
 続いて、算出部31は作成したテーブルを駆動部32に供給する。そして、駆動部32は、算出部31から取得したテーブルに基づいてフィルタ13及び絞り14を駆動する。また、撮像素子15は、駆動部32によるフィルタ13及び絞り14の調節タイミング毎に、被写体OBの分光撮像を行う(ステップS16)。
 このように、本実施例においては、撮像装置30は、撮像素子15から透過光L2のスペクトルを取得し、絞り14の絞り径DMに対応するフィルタ13の透過波長(波長選択特性)λを算出する算出部31を有する。また、駆動部32は、算出部31からの算出結果を用いて駆動補正を行う。すなわち、駆動部32は、算出部31で算出されたフィルタ13の透過波長λに基づいて、絞り14の絞り径DMを調節する。
 従って、絞り径DMの変化に応じてフィルタ13の波長選択特性が変化した場合でも、確実にその特性の変化に合わせたフィルタ13及び絞り14の駆動を行うことができる。また、透過波長λに応じて確実にフィルタ13による透過光L2の帯域幅Wの調節を行うことができる。従って、所望の波長λ及びその帯域幅Wでフィルタリングを行って分光撮像を行うことが可能な撮像装置30を提供することができる。
 また、本実施例においては、算出部31は、撮像素子15から透過光L2のスペクトル情報を取得する場合について説明した。しかし、算出部31は、撮像素子15から当該スペクトル情報を取得する場合に限定されない。
 例えば、算出部31は、透過光L2のスペクトル情報を取得すればよく、その取得元は、光検出器などであってもよい。例えば、撮像素子15に代えて、透過光L2のスペクトルを検出する検出素子DEが設けられていてもよい。算出部31は、検出素子DEによって検出された透過光L2のスペクトルに基づいて、絞り14の絞り径DMに対応するフィルタ13の透過波長λを算出すればよい。
 この場合、例えば、リレー光学系12、フィルタ13、絞り14、検出素子DE、算出部31及び駆動部32は、光学装置OD1を構成する。例えば、光学装置OD1は、透過光L2を種々の光学素子に導く光学処理を行えばよい。この場合でも、光学装置OD1は、所望の波長λ及びその帯域幅Wでフィルタリングを行うことができる。
 また、本発明は、例えば、リレー光学系12、フィルタ13、絞り14及び撮像素子15を用いて図4に示す動作及び処理を行うことで、撮像方法としても実施することができる。例えば、本発明による撮像方法は、一対のレンズ12A及び12Bからなるリレー光学系12と、リレー光学系12の瞳EYEの位置に設けられたフィルタ13及び絞り14と、フィルタ13を透過した透過光L2に基づいて撮像を行う撮像素子15と、を用いた撮像方法である。
 当該撮像方法は、撮像素子15から絞り14の絞り径DMに対応する透過光L2のスペクトルを取得する取得ステップS13と、取得ステップS13において取得された透過光L2のスペクトルに基づいて、絞り14の絞り径DMに対応するフィルタ13の透過波長λを算出する算出ステップS14と、算出ステップS14において算出されたフィルタ13の透過波長λに基づいて、絞り14の絞り径DMを調節するテーブルを作成する作成ステップS15と、作成ステップS15において作成されたテーブルに基づいて絞り14の絞り径DMを調節する調節ステップS16と、を含む。従って、所望の波長λ及びその帯域幅Wでフィルタリングを行って分光撮像を行うことができる。
 また、本発明は、例えば、コンピュータを用いてリレー光学系12、フィルタ13、絞り14及び撮像素子15を図4に示すステップで動作させるプログラムとしても実施することができる。
 例えば、本発明によるプログラムは、コンピュータに、一対のレンズ12A及び12Bからなるリレー光学系12と、リレー光学系12の瞳EYEの位置に設けられたフィルタ13及び絞り径DMが可変の絞り14と、フィルタ13を透過した透過光L2に基づいて撮像を行う撮像素子15と、絞り14の絞り径DMを調節する駆動部32を用いて、上記した、取得ステップS13、算出ステップS14及び作成ステップS15を実行させる。
 なお、例えば、当該プログラムは、作成ステップS15においては、算出ステップS14において算出されたフィルタ13の透過波長λに基づいて、絞り14の絞り径DMを駆動部32に調節させるテーブルを、コンピュータに作成させればよい。従って、例えば、上記したように配置したリレー光学系12、フィルタ13及び絞り14を用いて、所望の波長λ及びその帯域幅Wでフィルタリングを行って分光撮像を行うことができる。
10、30 撮像装置
OD OD1 光学装置
12、リレー光学系(光学系)
13 光学フィルタ
14 光学絞り
15 撮像素子
DE 検出素子
16、32 駆動部
31 算出部

Claims (9)

  1.  一対のレンズからなる光学系と、
     前記光学系の瞳の位置に設けられて光を選択的に透過させる光学フィルタと、
     前記光学系の前記瞳の位置に設けられて絞り径が可変の光学絞りと、
     前記光学絞りを駆動し、前記光学フィルタの透過波長に基づいて前記光学絞りの前記絞り径を調節する駆動部と、を有することを特徴とする光学装置。
  2.  前記光学フィルタは、光学距離をおいて互いに対向しかつ前記光学距離が可変の一対の反射膜を有し、
     前記駆動部は、前記光学フィルタを駆動して前記一対の反射膜間の前記光学距離を調節し、かつ前記光学絞りを駆動して前記光学絞りの前記絞り径を調節することを特徴とする請求項1に記載の光学装置。
  3.  前記光学フィルタを透過した透過光のスペクトルを検出する検出素子と、
     前記検出素子によって検出された前記透過光のスペクトルに基づいて、前記光学絞りの前記絞り径に対応する前記光学フィルタの透過波長を算出する算出部と、を有することを特徴とする請求項1又は2に記載の光学装置。
  4.  前記駆動部は、前記算出部によって算出された前記光学フィルタの透過波長に基づいて、前記光学絞りの前記絞り径を調節することを特徴とする請求項3に記載の光学装置。
  5.  一対のレンズからなる光学系と、
     前記光学系の瞳の位置に設けられて光を選択的に透過させる光学フィルタと、
     前記光学系の前記瞳の位置に設けられて絞り径が可変の光学絞りと、
     前記光学フィルタを透過した透過光に基づいて撮像を行う撮像素子と、
     前記光学絞りを駆動し、前記光学フィルタの透過波長に基づいて前記光学絞りの前記絞り径を調節する駆動部と、を有することを特徴とする撮像装置。
  6.  前記光学フィルタは、光学距離をおいて互いに対向しかつ前記光学距離が可変の一対の反射膜を有し、
     前記駆動部は、前記光学フィルタを駆動して前記一対の反射膜間の前記光学距離を調節し、かつ前記光学絞りを駆動して前記光学絞りの前記絞り径を調節することを特徴とする請求項5に記載の撮像装置。
  7.  前記撮像素子から前記透過光のスペクトルを取得し、前記透過光のスペクトルに基づいて、前記光学絞りの前記絞り径に対応する前記光学フィルタの透過波長を算出する算出部を有し、
     前記駆動部は、前記算出部によって算出された前記光学フィルタの透過波長に基づいて、前記光学絞りの前記絞り径を調節することを特徴とする請求項5又は6に記載の撮像装置。
  8.  一対のレンズからなる光学系と、前記光学系の瞳の位置に設けられた光学フィルタ及び絞り径が可変の光学絞りと、前記光学フィルタを透過した透過光に基づいて撮像を行う撮像素子と、を用いた撮像方法であって、
     前記撮像素子から前記光学絞りの絞り径に対応する前記透過光のスペクトルを取得する取得ステップと、
     前記取得ステップにおいて取得された前記透過光のスペクトルに基づいて、前記光学絞りの前記絞り径に対応する前記光学フィルタの透過波長を算出する算出ステップと、
     前記算出ステップにおいて算出された前記光学フィルタの透過波長に基づいて、前記光学絞りの前記絞り径を調節するテーブルを作成する作成ステップと、
     前記作成ステップにおいて作成された前記テーブルに基づいて前記光学絞りの前記絞り径を調節する調節ステップと、を含むことを特徴とする撮像方法。
  9.  コンピュータに、
     一対のレンズからなる光学系と、前記光学系の瞳の位置に設けられた光学フィルタ及び絞り径が可変の光学絞りと、前記光学フィルタを透過した透過光に基づいて撮像を行う撮像素子と、前記光学絞りの前記絞り径を調節する駆動部と、を用いて、
     前記撮像素子から前記光学絞りの絞り径に対応する前記透過光のスペクトルを取得する取得ステップと、
     前記取得ステップにおいて取得された前記透過光のスペクトルに基づいて、前記光学絞りの前記絞り径に対応する前記光学フィルタの透過波長を算出する算出ステップと、
     前記算出ステップにおいて算出された前記光学フィルタの透過波長に基づいて、前記光学絞りの前記絞り径を前記駆動部に調節させるテーブルを作成する作成ステップと、を実行させることを特徴とするプログラム。
PCT/JP2018/010979 2017-03-22 2018-03-20 光学装置、撮像装置、撮像方法及びプログラム WO2018174047A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-055851 2017-03-22
JP2017055851 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018174047A1 true WO2018174047A1 (ja) 2018-09-27

Family

ID=63585964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010979 WO2018174047A1 (ja) 2017-03-22 2018-03-20 光学装置、撮像装置、撮像方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2018174047A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955721A (zh) * 2018-10-31 2021-06-11 浜松光子学株式会社 分光单元及分光模块
WO2022121937A1 (zh) * 2020-12-11 2022-06-16 维沃移动通信有限公司 摄像模组、电子设备、拍摄控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157059A (ja) * 2002-11-08 2004-06-03 Minolta Co Ltd 撮像装置およびレンズ光学系
JP2011232129A (ja) * 2010-04-27 2011-11-17 Seiko Epson Corp 光測定装置
JP2016011932A (ja) * 2014-06-30 2016-01-21 セイコーエプソン株式会社 分光画像撮像装置、分光画像撮像方法
WO2016124659A1 (en) * 2015-02-03 2016-08-11 Vito Nv Method and system for estimating an input spectrum from sensor data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157059A (ja) * 2002-11-08 2004-06-03 Minolta Co Ltd 撮像装置およびレンズ光学系
JP2011232129A (ja) * 2010-04-27 2011-11-17 Seiko Epson Corp 光測定装置
JP2016011932A (ja) * 2014-06-30 2016-01-21 セイコーエプソン株式会社 分光画像撮像装置、分光画像撮像方法
WO2016124659A1 (en) * 2015-02-03 2016-08-11 Vito Nv Method and system for estimating an input spectrum from sensor data

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955721A (zh) * 2018-10-31 2021-06-11 浜松光子学株式会社 分光单元及分光模块
US11971301B2 (en) 2018-10-31 2024-04-30 Hamamatsu Photonics K.K. Spectroscopic unit and spectroscopic module
WO2022121937A1 (zh) * 2020-12-11 2022-06-16 维沃移动通信有限公司 摄像模组、电子设备、拍摄控制方法及装置

Similar Documents

Publication Publication Date Title
US9826172B2 (en) Spectroscopic camera and spectroscopic image processing method
US9797774B2 (en) Spectrometry system, spectroscopic module, and positional deviation detection method
US8711368B2 (en) Prompt gap varying optical filter, analytical instrument, optical device, and characteristic measurement method
US9880055B2 (en) Spectroscopic imaging apparatus and spectroscopic imaging method
US20140240508A1 (en) Spectroscopic camera
US9835492B2 (en) Spectroscopic image acquiring apparatus and spectroscopic image acquiring method
US8351044B2 (en) Spectral imaging apparatus provided with spectral transmittance variable element and method of adjusting spectral transmittance variable element in spectral imaging apparatus
US9426380B2 (en) Camera having a light correction unit to correct the light quantity of abnormal pixels and an image processing method
US9857221B2 (en) Spectral image acquisition apparatus and light reception wavelength acquisition method
WO2018174047A1 (ja) 光学装置、撮像装置、撮像方法及びプログラム
WO2015182571A1 (ja) 光学特性測定装置および光学特性測定方法
JP2017072757A (ja) 波長可変干渉フィルター、電子機器、波長可変干渉フィルターの設計方法、波長可変干渉フィルターの製造方法
JP6930869B2 (ja) 撮像装置、撮像方法及びプログラム
US10921185B2 (en) Spectroscopic camera and electronic device
US11754445B2 (en) Interferometer element, spectrometer and method for operating an interferometer
JP2018084460A (ja) 波長選択装置及び分光測定装置
JP6958131B2 (ja) 光学モジュール、電子機器、及び光学モジュールの制御方法
JP2016011844A (ja) 分光画像撮像システム、及び分光画像撮像システムの制御方法
US11079274B2 (en) Spectroscopic system
US20210364903A1 (en) Driving current correction method and apparatus for multiple laser devices, and laser projector
TW201827890A (zh) 顯示裝置
JP2019007826A (ja) 測距カメラおよび測距方法
JP2017181361A (ja) 波長選択装置及び分光測定装置
WO2019172166A1 (ja) 走査装置及び測距装置
JP2017040491A (ja) 光学モジュール及び分光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP