WO2022121937A1 - 摄像模组、电子设备、拍摄控制方法及装置 - Google Patents

摄像模组、电子设备、拍摄控制方法及装置 Download PDF

Info

Publication number
WO2022121937A1
WO2022121937A1 PCT/CN2021/136407 CN2021136407W WO2022121937A1 WO 2022121937 A1 WO2022121937 A1 WO 2022121937A1 CN 2021136407 W CN2021136407 W CN 2021136407W WO 2022121937 A1 WO2022121937 A1 WO 2022121937A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
interferometer
image sensor
lens assembly
faber
Prior art date
Application number
PCT/CN2021/136407
Other languages
English (en)
French (fr)
Inventor
王丹妹
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022121937A1 publication Critical patent/WO2022121937A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application belongs to the technical field of electronic equipment, and specifically relates to a camera module, electronic equipment, and a shooting control method and device.
  • the second is that it will occupy a large space in the inner cavity of the smart mobile terminal product, which is not conducive to the structural design of the product and squeezes the battery design space;
  • the third is that it will lead to more loads of external electronic components on the intelligent terminal product platform, which is not conducive to the electronic protection design of products in terms of temperature rise, static electricity and interference;
  • the present application aims to provide a camera module, an electronic device, a shooting control method and device, which at least solve one of the problems of how to reduce the number of cameras while ensuring the functions of the cameras.
  • an embodiment of the present application proposes a camera module, including: a circuit board, a base, an image sensor, a lens assembly, a Faber interferometer, and an adjustment assembly;
  • the base has a through hole, the base is arranged on the circuit board; the image sensor is arranged on the circuit board, and the image sensor is opposite to the through hole; the lens assembly is arranged on the circuit board a side of the base away from the circuit board, and the lens assembly covers the through hole;
  • the Faber interferometer is arranged on the side of the lens assembly away from the base, and the adjustment component is connected with the Faber interferometer; by controlling the adjustment component, the Faber interferometer is adjusted relative to the The location of the lens assembly.
  • an embodiment of the present application provides an electronic device, including the camera module described in the first aspect.
  • an embodiment of the present application proposes a shooting control method, which is applied to an electronic device, where the electronic device includes the camera module as described in the first aspect, and the method includes:
  • the image sensor In response to the input operation, the image sensor is regulated to be in the corresponding working mode, and the position of the Faber interferometer relative to the lens component is regulated by controlling the regulating component.
  • an embodiment of the present application proposes a shooting control device, which is applied to an electronic device, where the electronic device includes the camera module described in the first aspect, and the device includes:
  • a receiving module configured to receive an input operation for selecting a target photographing function mode
  • a response module configured to adjust the image sensor to be in a corresponding working mode in response to the input operation, and adjust the position of the Fa-Perfer interferometer relative to the lens assembly by controlling the adjustment assembly, and/or through The wavelength of light of the Far-Pert interferometer.
  • the embodiments of the present application provide an electronic device, including a processor, a memory, and a program or instruction stored on the memory and executable on the processor, where the program or instruction is executed by the processor When implementing the steps of the shooting control method described in the third aspect.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the shooting control method described in the third aspect are implemented .
  • an embodiment of the present application provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the third aspect The described shooting control method.
  • a communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being implemented when executed by the processor.
  • a computer program product is provided, the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the shooting control method according to the third aspect.
  • no filter is provided in the camera module, that is, the filter in the original camera module is cancelled, and a controllable Faroese interferometer is added to the end face of the camera module, which can realize control Adjusting the assembly to adjust the position of the Far-Perspective interferometer relative to the lens assembly, thereby controlling whether the Far-Perspective interferometer is located directly in front of the lens component, and/or regulating the wavelength of light passing through the Far-Perspective interferometer, further combining the multiple factors of the image sensor.
  • the multi-function mode design of the camera module can be realized by the cooperation and switching of various working modes, which can reduce the number of cameras while ensuring the camera functions, save space, beautify the appearance, reduce costs, and improve user satisfaction with product experience.
  • FIG. 1 is one of the schematic diagrams of a camera module according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the working principle of the Faroese interferometer according to an embodiment of the present invention
  • FIG 3 is the second schematic diagram of the camera module according to the embodiment of the present invention.
  • FIG. 4 is the third schematic diagram of the camera module according to the embodiment of the present invention.
  • FIG. 5 is a schematic top view of a roller according to an embodiment of the present invention.
  • FIG. 6 is one of the schematic diagrams of the states of the Far-Pert interferometer and the retractable component according to the embodiment of the present invention.
  • FIG. 7 is the second schematic diagram of the state of the Far-Pert interferometer and the retractable component according to the embodiment of the present invention.
  • FIG. 8 is a schematic circuit diagram of an image sensor according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a shooting control method according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of a shooting control device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a hardware structure of an electronic device according to an embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • a camera module includes: a circuit board 1, a base 2, an image sensor 3, a lens assembly 4, a Faber interferometer 5, and an adjustment assembly;
  • the base 2 has a through hole, The base 2 is arranged on the circuit board 1;
  • the image sensor 3 is arranged on the circuit board 1, and the image sensor 3 is opposite to the through hole;
  • the lens assembly 4 is arranged on the base 2 a side away from the circuit board 1, and the lens assembly 4 covers the through hole;
  • the Far-Perfer interferometer 5 is arranged on the side of the lens assembly 4 away from the base 2, and the adjustment component is connected with the Far-Perfer interferometer 5; by controlling the adjustment component, the Far-Perfer interferometer is adjusted The position of the camera 5 relative to the lens assembly 4.
  • the Fabry-Pérot interferometer 5 is a Fabry-Pérot interferometer, which is a multi-beam interferometer composed of two parallel glass plates (a first flat plate 51 and a second flat plate 52 ). . The opposing inner surfaces of two of the glass sheets are highly reflective. As in Figure 2, a schematic diagram of the propagation path of the light beam is shown.
  • the characteristics of the Fa-Pert interferometer are: when the frequency of the incident light satisfies its resonance condition, its transmission spectrum will have a very high peak, so it has a high transmittance; When there is a relative distance between the two flat plates 52, the wavelength of light of the Fa-Pert interferometer can be selectively transmitted; therefore, changing the distance between the first flat plate 51 and the second flat plate 52 can control the transmission of light of a specific wavelength. .
  • adjusting the position of the Far-Perspective interferometer 5 relative to the lens assembly 4 includes: adjusting the position of the Far-Perspective interferometer 5 relative to the lens assembly 4 in the horizontal position direction to control whether the Far-Perspective interferometer 5 is located at the position of the lens assembly 4 Right in front, and/or adjust the vertical distance between the second flat plate 52 of the Far-Perspective interferometer 5 relative to the lens assembly 4 to adjust the wavelength of light passing through the Far-Perspective interferometer 5; wherein, the first flat plate 51 and the The distance between the lens assemblies 4 remains unchanged, wherein the first flat plate 51 is disposed close to the lens assembly 4 , and the second flat plate 52 is disposed away from the lens assembly 4 .
  • no filter is provided in the camera module, that is, the filter in the original camera module is canceled, and an adjustable Faber interferometer 5 is added to the end face of the camera module, which can realize the adjustment of the components by controlling , adjust the position of the Fa-Per interferometer 5 relative to the lens assembly 4, so as to control whether the Fa-Per interferometer 5 is located directly in front of the lens assembly 4, and/or adjust the wavelength of light passing through the Fa-Per interferometer 5, and further combine the image
  • the cooperation and switching of the various working modes of the sensor 3 can realize the multi-functional mode design of the camera module, which can reduce the number of cameras while ensuring the functions of the cameras, save space, beautify the appearance, reduce costs, and improve the user experience of the product. satisfaction.
  • the adjustment assembly includes: a first adjustment mechanism
  • the Far-Pert interferometer 5 includes a first flat plate 51 and a second flat plate 52 arranged in parallel for adjusting the optical path, the first flat plate 51 is disposed close to the lens assembly 4, and the first flat plate 51 and the The first adjustment mechanism is connected, and through the first adjustment mechanism, the Faber interferometer 5 is regulated to be placed in a first position directly in front of the lens assembly 4, or placed in a position moved directly in front of the lens assembly 4. open second position.
  • the Fa-Per interferometer 5 can be controlled to translate from the first position to the second position, or from the second position to the first position through the first adjustment mechanism, so that the Fa-Per interferometer 5 can be moved to The top of the camera module or removed from the top of the camera module are two states. Wherein, when the Faber interferometer 5 is in the first position or the second position, in coordination with different working modes of the image sensor, different photographing modes of the camera module can be realized, thereby realizing different photographing functions.
  • the camera module further includes: a bracket 7 , a first end of the bracket 7 is fixedly connected to the base 2 , and a second end of the bracket 7 is connected to the first adjustment mechanism.
  • the first adjustment mechanism includes a moving part and a first controller; the first controller is connected to the moving part, one end of the moving part is connected to the bracket 7, and the other end is connected to the bracket 7.
  • the first plate 51 is connected; the first adjusting mechanism controls the movement of the moving part through the first controller, and drives the Faber interferometer 5 to translate to the first position or the second position.
  • the first controller may be a driver such as a micro-motor controller, and the first controller controls the movement of the moving parts, thereby driving the Fa-Pert interferometer 5 to move in parallel.
  • the moving part includes: at least one roller 6 ; the second end of the bracket 7 is provided with a groove 71 , and the roller 6 is provided in the groove 71 , the roller 6 is controlled to rotate in the groove 71 by the first controller, and the Faber interferometer 5 is driven to translate to the first position or the second position.
  • the moving parts include four cylindrical rollers 6 , the rollers 6 are located in the grooves 71 of the bracket 7 , and both ends of the rollers 6 are mounted on the bracket 7 . .
  • the roller 6 rotates in the groove 71 above the bracket 71, it can drive the Faber interferometer 5 to roll synchronously, so that the Faber interferometer 5 can be moved to the top of the camera module (directly in front) or from the camera module.
  • the top of the camera module is removed, and the dotted lines in FIGS. 3 and 4 are schematic diagrams of the moving direction of the Fa-Pert interferometer 5 .
  • the adjustment assembly further includes: a second adjustment mechanism, the second adjustment mechanism is disposed between the first flat plate 51 and the second flat plate 52, and the second flat plate 52 is far away from the The lens assembly 4 is provided, and the second adjustment mechanism is located outside the optical area of the lens assembly 4; by controlling the second adjustment mechanism, the distance between the second flat plate 52 and the first flat plate 51 is adjusted. , wherein the distance between the first flat plate and the lens assembly 4 is fixed.
  • the second adjustment mechanism includes: a telescopic member 8 and a second controller connected to the telescopic member 8; two ends of the telescopic member 8 are respectively connected to the first A flat plate 51 and the second flat plate 52; the retractable member 8 is controlled by the second controller to perform telescopic movement, and the distance between the second flat plate 52 and the lens assembly 4 is adjusted, that is, the adjustment of the first flat plate 52 is realized.
  • the distance between the two flat plates 52 and the first flat plate 51 adjusts the wavelength transmitted through the Faroese interferometer.
  • the retractable member 8 has the function of controlling the up and down expansion and contraction (in the compressed state in FIG. 6 , and in the extended state in FIG. 7 ) when powered on, and the second controller can be driven by a micro-motor control system or the like. mechanism; when the second adjusting mechanism works, the first flat plate 51 is in a static state relative to the second adjusting mechanism, and the second adjusting mechanism drives the second flat plate 52 to move up and down; therefore, the retractable part 8 is under the control of the second controller , by controlling the relative distance between the first flat plate 51 and the second flat plate 52 , the function of controlling the wavelength of light transmitted by the Faber-Pert interferometer 5 is realized.
  • the image sensor 3 includes at least an image mode and a dynamic visual mode; the image mode is used to record the shooting scene corresponding to the exposure time of the image sensor 3; the dynamic visual mode is used to record the shooting scene where dynamic brightness changes exist.
  • FIG 8 it shows the circuit block diagram of the image sensor 3, wherein the reset port is RG (reset gate), the conversion port is TG (transfer gate), the source follow is SF (source follow), and the photodiode is PD ( photodiode), select port is SEL (select gate), switch 1 is SW1 (switch1), switch 2 is SW2 (switch2), power supply is VDD (power), and dynamic vision sensor is DVS (dynamic version sensor).
  • the characteristic of image sensor 3 is that there is a pixel circuit, and there are two kinds of signal processing circuits at the back end: image processing circuit (image pixel back end circuit) and dynamic visual signal processing circuit (DVS pixel back end circuit); The mode is selected and controlled by switches SW1 and SW2.
  • the image mode is mainly used to record the shooting scene corresponding to the exposure time of the image sensor 3, and the output is a black and white grayscale image; because there is no color filter in the image sensor 3, the electrical signal output by each pixel unit No color information, only brightness information.
  • the dynamic visual mode records the point in the shooting scene where the dynamic brightness changes, that is, its position information; that is, only when there is a brightness change at a certain point or a certain position in the shooting scene, can a response be generated on the image sensor and a corresponding electrical signal can be output for recording. ; Therefore, in this mode, the image sensor 3 only records the corresponding brightness change information for the position where the brightness changes.
  • the camera module further includes a motor 9 , the lens assembly 4 is mounted on the motor 9 , and the lens assembly 4 is driven by the motor 9 to move in the shooting direction to achieve the purpose of focusing.
  • the electronic components 10 in the camera module are mounted on the circuit board 1 .
  • an embodiment of the present application further provides an electronic device, including the above-mentioned camera module.
  • no filter is provided in the camera module of the electronic device, that is, the filter in the original camera module is canceled, and an adjustable Faber interferometer 5 is added to the end face of the camera module, which can realize control Adjusting the assembly, adjusting the position of the Fa-Perfer interferometer 5 relative to the lens assembly 4, and/or the wavelength of light passing through the Fa-Per interferometer 5, and further combining with the cooperation and switching of various working modes of the image sensor 3, can be achieved
  • the multi-functional mode design of the camera module reduces the number of cameras while ensuring the camera function, which can save space, beautify the appearance, reduce costs, and improve user satisfaction with product experience.
  • the present application provides a shooting control method, which is applied to an electronic device.
  • the electronic device includes the above-mentioned camera module, and the method includes the following steps:
  • Step 111 receiving an input operation for selecting a target photographing function mode
  • the input operation may be a touch input based on the display interface of the electronic device, or may be an input operation based on a function selection button of the electronic device, and through the drive-in operation, the user can select the target photographing function mode. .
  • Step 112 in response to the input operation, adjust the image sensor 3 to be in a corresponding working mode, and adjust the position of the Faber-Pert interferometer 5 relative to the lens assembly by controlling the adjustment assembly.
  • adjusting the position of the Far-Perspective interferometer 5 relative to the lens assembly 4 includes: adjusting the position of the Far-Perspective interferometer 5 relative to the lens assembly 4 in the horizontal position direction to control whether the Far-Perspective interferometer 5 is located at the position of the lens assembly 4 directly in front, and/or adjust the distance between the second flat plate 52 of the Far-Pert interferometer 5 relative to the lens assembly 4 to adjust the wavelength of the light passing through the Far-Pert interferometer 5 .
  • the position of the Far-Pert interferometer 5 relative to the lens assembly 4 is adjusted to control whether the Far-Pert interferometer 5 is located directly in front of the lens assembly 4, and / or adjusting the wavelength of light passing through the Faber interferometer 5, and further combining with the cooperation and switching of various working modes of the image sensor 3, the multi-functional mode design of the camera module can be realized, which can ensure the function of the camera and reduce the Quantity can save space, beautify the appearance, reduce costs, and improve user satisfaction with the product experience.
  • the image sensor 3 includes an image mode and a dynamic visual mode, the image mode is used to record the shooting scene corresponding to the exposure time of the image sensor 3, and the dynamic visual mode is used to record the dynamic brightness change in the shooting scene s position.
  • step 112 includes:
  • the target photographing function mode is the function mode of simulating a 3D TOF camera
  • the working mode of the image sensor 3 is adjusted to be the image mode, and the adjustment component is controlled to drive the method
  • the Perrin interferometer 5 is moved to a first position placed directly in front of the lens assembly 4;
  • the target photographing function mode is the function mode of simulating the multi-spectral camera
  • the working mode of the image sensor 3 is adjusted to be the image mode, and the adjustment component is controlled to drive the method
  • the Perspective interferometer 5 is moved to a first position placed directly in front of the lens assembly 4, and at the same time, the wavelength of the light passing through the Perspective interferometer 5 is adjusted;
  • the target photographing function mode is the function mode of simulating a black and white camera or a blurring camera
  • the working mode of the image sensor 3 is adjusted to be the image mode, and the adjustment component is controlled to drive the
  • the Far-Pert interferometer 5 is moved to a second position moved away from the front of the lens assembly 4;
  • the target photographing function mode is a function mode simulating a dynamic camera
  • the working mode of the image sensor 3 is adjusted to be the dynamic vision mode, and the adjustment component is controlled to drive the method
  • the Perferometer 5 is moved to a second position moved away from directly in front of the lens assembly 4 .
  • Case 1 The first adjustment mechanism drives the Faber interferometer 5 to move to the first position directly in front of the lens assembly 4 , the second adjustment mechanism does not act, and the working mode of the image sensor 3 is the image mode ;
  • the light band that the image sensor 3 can receive is a single fixed narrow-band wavelength, such as: 850nm/940nm, which can replace the conventional camera module type is 3D TOF camera module, and the functions that can be realized are: (1) 3D related All functions can be realized (such as: AR, VR, face payment, 3D beauty, etc.; (2) with the function of avoiding ambient light interference; (3) avoiding the function of multi-machine interference.
  • Case 2 The first adjustment mechanism drives the Faber interferometer 5 to move to the first position placed directly in front of the lens assembly 4, the second adjustment mechanism does not move, and the working mode of the image sensor 3 is the dynamic vision mode;
  • the light band that can be received by the image sensor 3 is a single fixed narrowband wavelength, such as: 850nm/940nm.
  • the type that can replace the conventional camera module is: new function mode, and the new function that can be realized is: single fixed narrowband Under the wavelength: the corresponding function of the dynamic vision camera module.
  • Case 3 The first adjusting mechanism drives the Faber interferometer 5 to move to the first position directly in front of the lens assembly 4, and the second adjusting mechanism controls the second flat plate 52 to move continuously, thereby adjusting the first flat plate 51 and the distance between the second flat plate 52, the working mode of the image sensor 3 is the image mode;
  • the light band that the image sensor 3 can receive is: continuous narrow-band wavelength, such as: 380-1100nm; the type that can replace the conventional camera module is: multi-spectral camera module; the new functions implemented are: (1) Biometrics-related functions; (2) Cooperate with other cameras to improve the clarity of photos; (3) Cooperate with other cameras to improve the quality of photos (such as increasing sensitivity and dynamic range).
  • Case 4 The first adjustment mechanism drives the Faber interferometer 5 to move to the first position directly in front of the lens assembly 4, and the second adjustment mechanism controls the second plate 52 to move continuously, thereby adjusting the first plate 51 and the distance between the second flat plate 52, the working mode of the image sensor 3 is the dynamic visual mode;
  • the optical band that the image sensor 3 can receive is: continuous narrow-band wavelength, such as: 380-1100 nm; the type that can replace the conventional camera module is: new function mode; the new function realized is: continuous narrow-band wavelength : The corresponding function of the dynamic vision camera module.
  • Case 5 The first adjusting mechanism drives the Faber interferometer 5 to move to the second position moved away from the front of the lens assembly 4, and the working mode of the image sensor 3 is the image mode;
  • the light band that the image sensor 3 can receive is: the full-band light existing in the photographing environment;
  • the type that can replace the conventional camera module is: the virtual camera module, and the added function is: cooperate with other cameras , to achieve background blur and replace the blur camera module;
  • black and white camera module or alternative types of conventional camera modules are: black and white camera module; the new functions implemented include: (1) black and white style imaging function; (2) phase information that can be obtained for distance measurement; (3) phase information obtained , to assist other camera modules to achieve fast focusing.
  • Case 6 The first adjusting mechanism drives the Faber interferometer to move to a second position moved away from the front of the lens assembly 4, and the working mode of the image sensor 3 is a dynamic vision mode;
  • the light band that the image sensor 3 can receive is: the full-band light existing in the photographing environment; the type that can replace the conventional camera module is: the dynamic vision camera module, and the new functions implemented include: (1) Posture (2) Prevent theft; (3) Assist with high-speed frame insertion for the main camera video; (4) Assist focus tracking when the main camera video is recorded.
  • At least 5 types of camera modules can be replaced at present, including: 3D TOF camera module, multi-spectral camera module, black and white camera module, blurred camera module, and dynamic camera module. Therefore, it can reduce the number of camera modules in electronic equipment products, optimize product appearance design, structural design, and electronic related design; reduce the weight of smart terminal products, and improve consumers' portable experience of products; moreover, this camera module can also avoid the current situation.
  • Some of the shortcomings of the camera module and the addition of new functional modes can increase the diversification of camera product functions and improve the user experience of consumers.
  • the execution subject may be a photographing control device, or, or a control module in the photographing control device for executing the loading of the photographing control method.
  • the photographing control method provided by the embodiment of the present application is described by taking the photographing control device executing the loading photographing control method as an example.
  • the present application provides a photographing control device, which is applied to electronic equipment.
  • the electronic equipment includes the above-mentioned camera module, and the device 1000 includes:
  • a receiving module 1001 configured to receive an input operation for selecting a target photographing function mode
  • the response module 1002 is configured to adjust the image sensor to be in a corresponding working mode in response to the input operation, and adjust the position of the Faber interferometer relative to the lens assembly by controlling the adjustment assembly, and/or the transparent wavelength of light passing through the Far-Perfer interferometer.
  • the image sensor includes an image mode and a dynamic visual mode
  • the image mode is used to record the shooting scene corresponding to the exposure time of the image sensor
  • the dynamic visual mode is used to record the dynamic brightness change in the shooting scene. s position.
  • the response module 1002 includes:
  • the first response sub-module is used to control the working mode of the image sensor to be the image mode in response to the input operation when the target photographing function mode is the function mode of simulating the 3D TOF camera, and control all the adjusting assembly drives the Faber interferometer to move to a first position placed in front of the top of the lens assembly;
  • the second response sub-module is configured to adjust the working mode of the image sensor to the image mode in response to the input operation when the target photographing function mode is the function mode of simulating a multi-spectral camera, and control all
  • the adjusting component drives the Fa-Pert interferometer to move to a first position directly in front of the lens component, and simultaneously adjusts the wavelength of the light passing through the Fa-Per interferometer;
  • a third response sub-module configured to control the working mode of the image sensor to be the image mode in response to the input operation when the target photographing function mode is the function mode of simulating a black and white camera or a blurring camera, and controlling the adjusting assembly to drive the Faber interferometer to move to a second position moved away from the front of the lens assembly;
  • the fourth response sub-module is used to control the working mode of the image sensor to be the dynamic vision mode in response to the input operation when the target photographing function mode is the function mode of simulating a dynamic camera, and control all
  • the adjusting assembly drives the Faber interferometer to move to a second position moved away from the front of the lens assembly.
  • the photographing control device in this embodiment of the present application may be a device, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • non-mobile electronic devices can be servers, network attached storage (Network Attached Storage, NAS), personal computer (personal computer, PC), television (television, TV), teller machine or self-service machine, etc., this application Examples are not specifically limited.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine or self-service machine etc.
  • the photographing control device in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android (Android) operating system, an iOS operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the photographing control apparatus provided in this embodiment of the present application can implement each process implemented by the photographing control apparatus in the method embodiment of FIG. 8 , and to avoid repetition, details are not described here.
  • the photographing control device of the embodiment of the present application controls the adjustment component by responding to the input operation, so as to adjust the position of the Far-Perspective interferometer 5 relative to the lens component 4 and/or the wavelength of light passing through the Far-Perspective interferometer 5 , and further combined with the cooperation and switching of various working modes of the image sensor 3, the multi-functional mode design of the camera module can be realized, which can reduce the number of cameras while ensuring the functions of the cameras, save space, beautify the appearance, reduce costs, improve User satisfaction with the product experience.
  • an embodiment of the present application further provides an electronic device, including a processor 1110, a memory 1109, a program or instruction stored in the memory 1109 and executable on the processor 1110, the program or instruction being processed by the processor
  • an electronic device including a processor 1110, a memory 1109, a program or instruction stored in the memory 1109 and executable on the processor 1110, the program or instruction being processed by the processor
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • FIG. 11 is a schematic diagram of a hardware structure of an electronic device implementing an embodiment of the present application.
  • the electronic device 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and a processor 1110, etc. part.
  • the electronic device 1100 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1110 through a power management system, so that the power management system can manage charging, discharging, and power consumption. consumption management and other functions.
  • a power source such as a battery
  • the structure of the electronic device shown in FIG. 11 does not constitute a limitation on the electronic device.
  • the electronic device may include more or less components than those shown in the figure, or combine some components, or arrange different components, which will not be repeated here. .
  • the input unit 1104 is configured to receive an input operation for selecting a target photographing function mode
  • the processor 1110 is configured to control the image sensor to be in a corresponding working mode in response to the input operation, and adjust the position of the Fa-Perfer interferometer relative to the lens component by controlling the regulating component, and/or through the Fa-Per interference the wavelength of light from the instrument.
  • the electronic device 1100 in this embodiment of the present application controls the adjustment component in response to the input operation, so as to adjust the position of the Far-Perspective interferometer relative to the lens component, and/or the wavelength of light transmitted through the Far-Perspective interferometer, further combining
  • the cooperation and switching of various working modes of the image sensor can realize the multi-functional mode design of the camera module, which can reduce the number of cameras while ensuring the functions of the cameras, save space, beautify the appearance, reduce costs, and improve the user experience of the product. satisfaction.
  • the image sensor includes an image mode and a dynamic visual mode
  • the image mode is used to record the shooting scene corresponding to the exposure time of the image sensor
  • the dynamic visual mode is used to record the dynamic brightness change in the shooting scene. s position.
  • processor 1110 is further configured to perform the following steps:
  • the target photographing function mode is the function mode of simulating the 3D TOF camera
  • the working mode of the image sensor is adjusted to be the image mode, and the adjustment component is controlled to drive the Faber the interferometer is moved to a first position placed directly in front of the top end of the lens assembly;
  • the target photographing function mode is the function mode of simulating a multi-spectral camera
  • the working mode of the image sensor is adjusted to be the image mode, and the adjustment component is controlled to drive the Faber
  • the interferometer is moved to a first position placed directly in front of the lens assembly, and the wavelength of the light passing through the Fa-Per interferometer is adjusted at the same time;
  • the target photographing function mode is the function mode of simulating a black and white camera or a blurring camera
  • the working mode of the image sensor is adjusted to be the image mode, and the adjustment component is controlled to drive the moving the Faber interferometer to a second position moved away from directly in front of the lens assembly;
  • the target photographing function mode is a function mode simulating a dynamic camera
  • the working mode of the image sensor in response to the input operation, is regulated to be the dynamic visual mode, and the regulating component is controlled to drive the Faber
  • the interferometer is moved to a second position moved away from directly in front of the lens assembly.
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 1106 may include a display panel 11061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 .
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • Memory 1109 may be used to store software programs as well as various data including, but not limited to, application programs and operating systems.
  • the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, and the like, and the modem processor mainly processes wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 1110.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium.
  • a program or an instruction is stored on the readable storage medium.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned embodiments of the shooting control method.
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above-mentioned embodiments of the shooting control method.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • An embodiment of the present application further provides a communication device, the communication device includes a processor, a memory, and a program or instruction stored on the memory and executable on the processor, where the program or instruction is processed by the processor.
  • the embodiments of the present application further provide a computer program product, the computer program product is stored in a non-volatile storage medium, and the computer program product is configured to be executed by at least one processor to implement the steps of the above shooting control method , in order to avoid repetition, it will not be repeated here.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

本申请公开了一种摄像模组、电子设备、拍摄控制方法及装置,摄像模组包括:电路板、底座、图像传感器、镜头组件、法珀干涉仪、调节组件;所述底座具有通孔,所述底座设置于所述电路板上;所述图像传感器设置于所述电路板上,且所述图像传感器与所述通孔相对;所述镜头组件设置在所述底座远离所述电路板的一侧,且所述镜头组件覆盖所述通孔;所述法珀干涉仪设置在所述镜头组件远离所述底座的一侧,所述调节组件与所述法珀干涉仪连接;通过控制所述调节组件,调节所述法珀干涉仪相对所述镜头组件的位置,和/或,透过所述法珀干涉仪的光线波长。

Description

摄像模组、电子设备、拍摄控制方法及装置
相关申请的交叉引用
本申请主张在2020年12月11日在中国提交的中国专利申请No.202011459342.1的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于电子设备技术领域,具体涉及一种摄像模组、电子设备、拍摄控制方法及装置。
背景技术
目前,移动终端产品的市场竞争越来越激烈,尤其是在智能手机拍照方面,产品配置也是水涨船高,主要表现为以下几个方面:
其一,在摄像模组的数量方面,从单摄,双摄,再到三摄,截止目前发展到四摄称为各个产品价位端的标配,甚至部分市场产品已经到了五摄及更多。
在实现本申请过程中,发明人发现现有技术中摄像模组的数量越来越多,至少存在如下问题:
一是会导致智能移动终端产品外观开孔较多,不美观;
二是会导致在智能移动终端产品内腔中占据空间较大,不利于产品的结构设计,挤压电池设计空间;
三是会导致智能终端产品平台上外挂的电子元器件负载越多,不利于产品在温升、静电及干扰等方面的电子防护设计;
四是导致智能终端产品越重,不利于消费者用户手感和便携度体验。
因此,如何在保证摄像头功能的同时减少摄像头的数量是目前亟待解决的问题。
发明内容
本申请旨在提供一种摄像模组、电子设备、拍摄控制方法及装置,至少解决如何在保证摄像头功能的同时减少摄像头的数量的问题之一。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提出了一种摄像模组,包括:电路板、底座、图像传感器、镜头组件、法珀干涉仪、调节组件;
所述底座具有通孔,所述底座设置于所述电路板上;所述图像传感器设置于所述电路板上,且所述图像传感器与所述通孔相对;所述镜头组件设置在所述底座远离所述电路板的一侧,且所述镜头组件覆盖所述通孔;
所述法珀干涉仪设置在所述镜头组件远离所述底座的一侧,所述调节组件与所述法珀干涉仪连接;通过控制所述调节组件,调节所述法珀干涉仪相对所述镜头组件的位置。
第二方面,本申请实施例提出了一种电子设备,包括如第一方面所述的摄像模组。
第三方面,本申请实施例提出了一种拍摄控制方法,应用于电子设备,所述电子设备包括如第一方面所述的摄像模组,所述方法包括:
接收用于进行目标拍照功能模式选择的输入操作;
响应于所述输入操作,调控图像传感器处于相对应的工作模式,并通过控制调节组件,调节法珀干涉仪相对镜头组件的位置。
第四方面,本申请实施例提出了拍摄控制装置,应用于电子设备,所述电子设备包括如第一方面所述的摄像模组,所述装置包括:
接收模块,用于接收用于进行目标拍照功能模式选择的输入操作;
响应模块,用于响应于所述输入操作,调控图像传感器处于相对应的工作模式,并通过控制所述调节组件,调节所述法珀干涉仪相对所述镜头组件的位置,和/或透过所述法珀干涉仪的光线波长。
第五方面,本申请实施例提出了电子设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的拍摄控制方法的步骤。
第六方面,本申请实施例提出了可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第三方面所述的拍摄控制方法的步骤。
第七方面,本申请实施例提出了一种芯片,所述芯片包括处理器和通信 接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第三方面所述的拍摄控制方法。
第八方面,提供了一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的拍摄控制方法的步骤。
第九方面,提供了一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第三方面所述的拍摄控制方法。
在本申请的实施例中,在摄像模组中未设置滤波片,即取消了原有摄像模组中的滤波片,在摄像模组的端面增加可调控的法珀干涉仪,能够实现通过控制调节组件,调节所述法珀干涉仪相对镜头组件的位置,从而控制法珀干涉仪是否位于镜头组件的正前方,和/或调控透过法珀干涉仪的光线波长,进一步结合图像传感器的多种工作模式的配合和切换,即可实现摄像模组的多功能模式设计,在保证摄像头功能的同时减少摄像头的数量,可节省空间,美化外观,降低成本,提升用户对产品体验的满意度。
附图说明
图1是本发明实施例的摄像模组的示意图之一;
图2是本发明实施例的法珀干涉仪的工作原理示意图;
图3是本发明实施例的摄像模组的示意图之二;
图4是本发明实施例的摄像模组的示意图之三;
图5是本发明实施例的滚轴的俯视示意图;
图6是本发明实施例的法珀干涉仪与可伸缩部件的状态示意图之一;
图7是本发明实施例的法珀干涉仪与可伸缩部件的状态示意图之二;
图8是本发明实施例的图像传感器的电路示意图;
图9是本发明实施例的拍摄控制方法的流程图;
图10是本发明实施例的拍摄控制装置的框图;
图11是本发明实施例的电子设备的硬件结构示意图。
具体实施方式
下面将详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合图1-图7描述本发明实施例提供的摄像模组。
如图1所示,本发明一些实施例的摄像模组,包括:电路板1、底座2、图像传感器3、镜头组件4、法珀干涉仪5、调节组件;所述底座2具有通孔,所述底座2设置于所述电路板1上;所述图像传感器3设置于所述电路板1上,且所述图像传感器3与所述通孔相对;所述镜头组件4设置在所述底座2远离所述电路板1的一侧,且所述镜头组件4覆盖所述通孔;
所述法珀干涉仪5设置在所述镜头组件4远离所述底座2的一侧,所述调节组件与所述法珀干涉仪5连接;通过控制所述调节组件,调节所述法珀干涉仪5相对所述镜头组件4的位置。
其中,法珀干涉仪5是法布里-珀罗干涉仪(Fabry-Pérot interferometer),是一种由两块平行的玻璃板(第一平板51和第二平板52)组成的多光束干涉仪。其中两块玻璃板相对的内表面都具有高反射率。如图2中,其示出有光束的传播路径示意图。法珀干涉仪的特性为:当入射光的频率满足其共振条件时,其透射频谱会出现很高的峰值,因此具备很高的透射率;当改变法珀干涉仪中第一平板51和第二平板52之间的相对距离时,可选择性透过法珀干涉仪的光线波长;因此改变第一平板51和第二平板52之间的距离,即可具备控制特定波长光线透过的功能。
其中,调节所述法珀干涉仪5相对所述镜头组件4的位置包括:调节法珀干涉仪5水平位置方向上相对镜头组件4的位置,以控制法珀干涉仪5是否位于镜头组件4的正前方,和/或调节法珀干涉仪5的第二平板52相对镜头组件4之间的竖直距离,以调节透过所述法珀干涉仪5的光线波长;其中,第一平板51与镜头组件4之间的距离不变,其中第一平板51靠近所述镜头组件4设置,第二平板52远离所述镜头组件4设置。
该实施例中,在摄像模组中未设置滤波片,即取消了原有摄像模组中的滤波片,在摄像模组的端面增加可调的法珀干涉仪5,能够实现通过控制调节组件,调节所述法珀干涉仪5相对镜头组件4的位置,从而控制法珀干涉仪5是否位于镜头组件4的正前方,和/或调控透过法珀干涉仪5的光线波长,进一步结合图像传感器3的多种工作模式的配合和切换,即可实现摄像模组的多功能模式设计,在保证摄像头功能的同时减少摄像头的数量,可节省空间,美化外观,降低成本,提升用户对产品体验的满意度。
根据本发明的又一些实施例,所述调节组件包括:第一调节机构;
所述法珀干涉仪5包括平行设置的用于进行光路调整的第一平板51和第二平板52,所述第一平板51靠近所述镜头组件4设置,且所述第一平板51与所述第一调节机构连接,通过所述第一调节机构,调控所述法珀干涉仪5置于所述镜头组件4正前方的第一位置,或者置于从所述镜头组件4的正前 方移开的第二位置。
该实施例中,通过第一调节机构能够控制法珀干涉仪5从第一位置平移至第二位置,或者从第二位置平移至第一位置,这样即可实现将法珀干涉仪5移动到摄像模组顶端或者从摄像模组顶端移除两种状态。其中,在法珀干涉仪5处于第一位置或者第二位置时,配合图像传感器的不同工作模式,即可实现摄像模组的不同拍照模式,从而实现不同的拍照功能。
在一实施例中,摄像模组还包括:支架7,所述支架7的第一端与所述底座2固定连接,所述支架7的第二端与所述第一调节机构连接。
该实施例中,通过在镜头组件4的外侧设置用于承载法珀干涉仪5的支架,并将第一调节机构设置在支架7上,能够实现在第一调节机构运动时,带动法珀干涉仪5平行移动,从而改变法珀干涉仪5整体与镜头组件4的相对位置关系。
在一实施例中,所述第一调节机构包括运动部件和第一控制器;所述第一控制器与所述运动部件连接,所述运动部件的一端与所述支架7连接,另一端与所述第一平板51连接;所述第一调节机构通过所述第一控制器控制所述运动部件运动,带动所述法珀干涉仪5平移至所述第一位置或者所述第二位置。
该实施例中,第一控制器可以为微电机控制器等驱动器,通过第一控制器控制运动部件运动,从而带动法珀干涉仪5平行移动。
具体的,在一可选实施例中,所述运动部件包括:至少一个滚轴6;所述支架7的第二端设置有凹槽71,所述滚轴6设置于所述凹槽71内,通过所述第一控制器控制所述滚轴6在所述凹槽71内转动,带动所述法珀干涉仪5平移至所述第一位置或者所述第二位置。
示例性的,如图1、图3至5所示,运动部件包括4个圆柱形的滚轴6,滚轴6位于支架7的凹槽71内,滚轴6的两端搭载在支架7上。滚轴6在驱动力下,在支架71上方凹槽71内转动时,可带动法珀干涉仪5同步滚动,因而可实现将法珀干涉仪5移动到摄像模组顶端(正前方)或从摄像模组顶端移除,图3和4中的虚线为法珀干涉仪5移动方向示意图。
在一实施例中,所述调节组件还包括:第二调节机构,所述第二调节机 构设置于所述第一平板51和所述第二平板52之间,所述第二平板52远离所述镜头组件4设置,且所述第二调节机构位于所述镜头组件4的光学区域之外;通过控制所述第二调节机构,调整所述第二平板52与所述第一平板51之间的距离,其中,所述第一平板与镜头组件4之间的距离固定不变。
具体的,在一实施例中,所述第二调节机构包括:可伸缩部件8和与所述可伸缩部件8连接的第二控制器;所述可伸缩部件8的两端分别连接所述第一平板51和所述第二平板52;通过所述第二控制器控制所述可伸缩部件8做伸缩运动,调整第二平板52与镜头组件4之间的距离,即实现了调整所述第二平板52与所述第一平板51之间的距离,从而调节了透过法珀干涉仪的波长。
示例性的,如图6和7中,可伸缩部件8具有通电可控制上下伸缩的功能(图6中为压缩状态,图7为伸展状态),第二控制器可以为微电机控制系统等驱动机构;在第二调节机构工作时,第一平板51相对第二调节机构为静止状态,第二调节机构驱动的是第二平板52上下移动;因此可伸缩部件8在第二控制器的控制下,通过控制第一平板51与第二平板52的相对距离,实现控制法珀干涉仪5可透过光线波长的功能。
在一实施例中,所述图像传感器3至少包括图像模式和动态视觉模式;所述图像模式用于记录所述图像传感器3曝光时间所对应的拍摄场景;所述动态视觉模式用于记录拍摄场景中存在动态亮度变化的位置。
如图8中,其示出了图像传感器3的电路框图,其中,复位口为RG(reset gate)、转换口为TG(transfer gate)、源跟随为SF(source follow)、光电二极管为PD(photo diode)、选择口为SEL(select gate)、开关1为SW1(switch1)、开关2为SW2(switch2)、电源为VDD(power)、动态视觉传感器为DVS(dynamic version sensor)。图像传感器3的特点是,有一个像素(pixel)电路,后端的信号处理电路有两种:图像处理电路(image pixel back end circuit)和动态视觉信号处理电路(DVS pixel back end circuit);两种模式通过开关SW1和SW2进行选择控制。
其中,图像模式主要用来记录在图像传感器3的曝光时间内所对应的拍照场景,且输出的为黑白灰度图像;因为图像传感器3中没有色彩滤波片, 所以每个像素单元输出的电信号无色彩信息,只有亮度信息。
其中,动态视觉模式记录拍摄场景中存在动态亮度变化的点即其位置信息;即只有当拍摄场景中某点或某位置有亮度变化时,才能在图像传感器上产生响应并输出相应电信号进行记录;因此,此模式下,图像传感器3只对有亮度变化的位置,记录其相应亮度变化信息。
进一步的,如图1中,该摄像模组还包括马达9,所述镜头组件4安装在马达9上,镜头组件4在马达9的驱动下在拍摄方向移动,达到调焦的目的。
具体的,图1中,摄像模组中的电子元件10安装在电路板1上。
在一实施例中,本申请实施例还提供一种电子设备,包括上述的摄像模组。
该实施例中,电子设备的摄像模组中未设置滤波片,即取消了原有摄像模组中的滤波片,在摄像模组的端面增加可调的法珀干涉仪5,能够实现通过控制调节组件,调节所述法珀干涉仪5相对镜头组件4的位置,和/或透过法珀干涉仪5的光线波长,进一步结合图像传感器3的多种工作模式的配合和切换,即可实现摄像模组的多功能模式设计,在保证摄像头功能的同时减少摄像头的数量,可节省空间,美化外观,降低成本,提升用户对产品体验的满意度。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的拍摄控制方法进行详细地说明。
如图9所示,本申请提供一种拍摄控制方法,应用于电子设备,所述电子设备包括上述摄像模组,所述方法包括以下步骤:
步骤111,接收用于进行目标拍照功能模式选择的输入操作;
示例性的,该输入操作可以是基于电子设备的显示界面进行触控输入,还可以是基于电子设备的功能选择按钮进行的输入操作,通过该驶入操作,用户能够进行目标拍照功能模式的选择。
步骤112,响应于所述输入操作,调控图像传感器3处于相对应的工作模式,并通过控制调节组件,调节法珀干涉仪5相对镜头组件的位置。
其中,调节所述法珀干涉仪5相对所述镜头组件4的位置包括:调节法 珀干涉仪5水平位置方向上相对镜头组件4的位置,以控制法珀干涉仪5是否位于镜头组件4的正前方,和/或调节法珀干涉仪5的第二平板52相对镜头组件4之间的距离,以调节透过所述法珀干涉仪5的光线波长。
该实施例中,通过响应于所述输入操作,控制调节组件,实现调节所述法珀干涉仪5相对镜头组件4的位置,以控制法珀干涉仪5是否位于镜头组件4的正前方,和/或调控透过法珀干涉仪5的光线波长,进一步结合图像传感器3的多种工作模式的配合和切换,即可实现摄像模组的多功能模式设计,在保证摄像头功能的同时减少摄像头的数量,可节省空间,美化外观,降低成本,提升用户对产品体验的满意度。
其中,所述图像传感器3包括图像模式和动态视觉模式,所述图像模式用于记录所述图像传感器3曝光时间所对应的拍摄场景,所述动态视觉模式用于记录拍摄场景中存在动态亮度变化的位置。
进一步的,上述步骤112包括:
在所述目标拍照功能模式为模拟3D TOF摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器3的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪5运动至置于所述镜头组件4的正前方的第一位置;
在所述目标拍照功能模式为模拟多光谱摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器3的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪5运动至置于所述镜头组件4的正前方的第一位置,同时调节透过所述法珀干涉仪5的光线波长;
在所述目标拍照功能模式为模拟黑白摄像头或者虚化摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器3的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪5运动至置于从所述镜头组件4的正前方移开的第二位置;
在所述目标拍照功能模式为模拟动态摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器3的工作模式为所述动态视觉模式,并控制所述调节组件带动所述法珀干涉仪5运动至置于从所述镜头组件4的正前方移开的第二位置。
下面对摄像模组能够实现的功能做简要介绍。
如下表1所示,其示出的是本申请摄像模组的功能介绍。
Figure PCTCN2021136407-appb-000001
Figure PCTCN2021136407-appb-000002
表1
该表1中,主要包括以下情况:
情况一:第一调节机构带动所述法珀干涉仪5运动至置于所述镜头组件4的正前方的第一位置,第二调节机构不动作,图像传感器3的工作模式为所述图像模式;
该情况下,图像传感器3可接收到的光波段为单一固定窄带波长,如:850nm/940nm,可替代常规摄像头模组类型为3D TOF摄像头模组,可实现的功能为:(1)3D相关功能皆可实现(如:AR,VR,人脸支付,3D美颜等;(2)具备规避环境光干扰功能;(3)规避多机干扰功能。
情况二:第一调节机构带动所述法珀干涉仪5运动至置于所述镜头组件4的正前方的第一位置,第二调节机构不动作,图像传感器3的工作模式为动态视觉模式;
该情况下,图像传感器3可接收到的光波段为单一固定窄带波长,如:850nm/940nm,可替代常规摄像头模组类型为:新增功能模式,可实现的新增功能为:单一固定窄带波长下:动态视觉摄像头模组相应功能。
情况三:第一调节机构带动所述法珀干涉仪5运动至置于所述镜头组件4的正前方的第一位置,通过第二调节机构控制第二平板52连续移动,从而调节第一平板51和第二平板52之间的距离,图像传感器3的工作模式为图像模式;
该情况下,图像传感器3可接收到的光波段为:连续窄带波长,如:380~1100nm;可替代常规摄像头模组类型为:多光谱摄像头模组;实现的新增功能为:(1)生物识别相关功能;(2)和其他摄像头配合,可提升拍照清晰度;(3)和其他摄像头配合,可提升拍照画质(如:提升感光度和动态范围)。
情况四:第一调节机构带动所述法珀干涉仪5运动至置于所述镜头组件4的正前方的第一位置,通过第二调节机构控制第二平板52连续移动,从而 调节第一平板51和第二平板52之间的距离,图像传感器3的工作模式为动态视觉模式;
该情况下,图像传感器3可接收到的光波段为:连续窄带波长,如:380~1100nm;可替代常规摄像头模组类型为:新增功能模式;实现的新增功能为:连续窄带波长下:动态视觉摄像头模组相应功能。
情况五:第一调节机构带动所述法珀干涉仪5运动至从所述镜头组件4的正前方移开的第二位置,图像传感器3的工作模式为图像模式;
该情况下,图像传感器3可接收到的光波段为:拍照环境中存在的全波段光;可替代常规摄像头模组类型为:虚化摄像头模组,实现的新增功能为:与其他摄像头配合,实现背景虚化,取代虚化摄像头模组;
或者可替代常规摄像头模组类型为:黑白摄像头模组;实现的新增功能包括:(1)黑白风格成像功能;(2)能够获得的相位信息,进行距离测量;(3)获得的相位信息,辅助其他摄像头模组实现快速对焦。
情况六:第一调节机构带动所述法珀干涉仪运动至从所述镜头组件4的正前方移开的第二位置,图像传感器3的工作模式为动态视觉模式;
该情况下,图像传感器3可接收到的光波段为:拍照环境中存在的全波段光;可替代常规摄像头模组类型为:动态视觉摄像头模组,实现的新增功能包括:(1)姿势识别;(2)防止盗窃;(3)对主摄录像进行高速插帧进行辅助;(4)对主摄录像时,进行辅助追焦。
上述实施例中,至少能够实现取代目前5种类型的摄像头模组,包括:3D TOF摄像头模组、多光谱摄像头模组、黑白摄像头模组、虚化摄像头模组、动态摄像头模组。因此,能够减少电子设备产品中摄像头模组数量,优化产品外观设计、结构设计、电子相关设计;减轻智能终端产品重量,提升消费者对产品的便携式体验;而且,此摄像模组还可规避当前摄像头模组的部分缺点以及增加新功能模式,因此能够增加摄像头产品功能的多样化,以及提升了消费者的用户体验。
需要说明的是,本申请实施例提供的拍摄控制方法,执行主体可以为拍摄控制装置,或者,或者该拍摄控制装置中的用于执行加载拍摄控制方法的控制模块。本申请实施例中以拍摄控制装置执行加载拍摄控制方法为例,说 明本申请实施例提供的拍摄控制方法。
如图10所示,本申请提供一种拍摄控制装置,应用于电子设备,所述电子设备包括上述摄像模组,所述装置1000包括:
接收模块1001,用于接收用于进行目标拍照功能模式选择的输入操作;
响应模块1002,用于响应于所述输入操作,调控图像传感器处于相对应的工作模式,并通过控制所述调节组件,调节所述法珀干涉仪相对所述镜头组件的位置,和/或透过所述法珀干涉仪的光线波长。
可选的,所述图像传感器包括图像模式和动态视觉模式,所述图像模式用于记录所述图像传感器曝光时间所对应的拍摄场景,所述动态视觉模式用于记录拍摄场景中存在动态亮度变化的位置。
可选的,所述响应模块1002包括:
第一响应子模块,用于在所述目标拍照功能模式为模拟3D TOF摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述镜头组件的顶端正前方的第一位置;
第二响应子模块,用于在所述目标拍照功能模式为模拟多光谱摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述镜头组件的正前方的第一位置,同时调节透过所述法珀干涉仪的光线波长;
第三响应子模块,用于在所述目标拍照功能模式为模拟黑白摄像头或者虚化摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置;
第四响应子模块,用于在所述目标拍照功能模式为模拟动态摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述动态视觉模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置。
本申请实施例中的拍摄控制装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。 示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的拍摄控制装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为iOS操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的拍摄控制装置能够实现图8的方法实施例中拍摄控制装置实现的各个过程,为避免重复,这里不再赘述。
本申请实施例的拍摄控制装置,通过响应于所述输入操作,控制调节组件,实现调节所述法珀干涉仪5相对镜头组件4的位置,和/或透过法珀干涉仪5的光线波长,进一步结合图像传感器3的多种工作模式的配合和切换,即可实现摄像模组的多功能模式设计,在保证摄像头功能的同时减少摄像头的数量,可节省空间,美化外观,降低成本,提升用户对产品体验的满意度。
可选的,本申请实施例还提供一种电子设备,包括处理器1110,存储器1109,存储在存储器1109上并可在所述处理器1110上运行的程序或指令,该程序或指令被处理器1110执行时实现上述拍摄控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
图11为实现本申请实施例的一种电子设备的硬件结构示意图。
该电子设备1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、以及处理器1110等部件。
本领域技术人员可以理解,电子设备1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示 出的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
其中,输入单元1104,用于接收用于进行目标拍照功能模式选择的输入操作;
处理器1110,用于响应于所述输入操作,调控图像传感器处于相对应的工作模式,并通过控制调节组件,调节法珀干涉仪相对镜头组件的位置,和/或透过所述法珀干涉仪的光线波长。
本申请实施例的电子设备1100,通过响应于所述输入操作,控制调节组件,实现调节所述法珀干涉仪相对镜头组件的位置,和/或透过法珀干涉仪的光线波长,进一步结合图像传感器的多种工作模式的配合和切换,即可实现摄像模组的多功能模式设计,在保证摄像头功能的同时减少摄像头的数量,可节省空间,美化外观,降低成本,提升用户对产品体验的满意度。
可选的,所述图像传感器包括图像模式和动态视觉模式,所述图像模式用于记录所述图像传感器曝光时间所对应的拍摄场景,所述动态视觉模式用于记录拍摄场景中存在动态亮度变化的位置。
可选的,处理器1110,还用于执行以下步骤:
在所述目标拍照功能模式为模拟3D TOF摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述镜头组件的顶端正前方的第一位置;
在所述目标拍照功能模式为模拟多光谱摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述镜头组件的正前方的第一位置,同时调节透过所述法珀干涉仪的光线波长;
在所述目标拍照功能模式为模拟黑白摄像头或者虚化摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置;
在所述目标拍照功能模式为模拟动态摄像头的功能模式情况下,响应于 所述输入操作,调控所述图像传感器的工作模式为所述动态视觉模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。存储器1109可用于存储软件程序以及各种数据,包括但不限于应用程序和操作系统。处理器1110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述拍摄控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述拍摄控制方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片、系统芯片、芯片系统或片上系统芯片等。
本申请实施例还提供一种通信设备,所述通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如上拍摄控制方法的步骤,为避免重复,这里不再赘述。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被配置成被至少一个处理器执行以实现如上拍摄控制方法的步骤,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同 的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种摄像模组,包括:电路板、底座、图像传感器、镜头组件、法珀干涉仪、调节组件;
    所述底座具有通孔,所述底座设置于所述电路板上;所述图像传感器设置于所述电路板上,且所述图像传感器与所述通孔相对;所述镜头组件设置在所述底座远离所述电路板的一侧,且所述镜头组件覆盖所述通孔;
    所述法珀干涉仪设置在所述镜头组件远离所述底座的一侧,所述调节组件与所述法珀干涉仪连接;通过控制所述调节组件,调节所述法珀干涉仪相对所述镜头组件的位置。
  2. 根据权利要求1所述的摄像模组,其中,所述调节组件包括:第一调节机构;
    所述法珀干涉仪包括平行设置的第一平板和第二平板,所述第一平板靠近所述镜头组件设置,且所述第一平板与所述第一调节机构连接,通过所述第一调节机构,调控所述法珀干涉仪置于所述镜头组件正前方的第一位置,或者置于从所述镜头组件的正前方移开的第二位置。
  3. 根据权利要求2所述的摄像模组,其中,所述调节组件还包括:第二调节机构,所述第二调节机构设置于所述第一平板和所述第二平板之间,且所述第二调节机构位于所述镜头组件的光学区域之外;
    通过控制所述第二调节机构,调整所述第二平板与所述第一平板之间的距离,其中,所述第一平板与镜头组件之间的距离固定不变。
  4. 根据权利要求3所述的摄像模组,其中,所述第二调节机构包括:可伸缩部件和与所述可伸缩部件连接的第二控制器;
    所述可伸缩部件的两端分别连接所述第一平板和所述第二平板;
    通过所述第二控制器控制所述可伸缩部件做伸缩运动,调整所述第二平板与所述第一平板之间的距离。
  5. 根据权利要求2所述的摄像模组,其中,还包括:
    支架,所述支架的第一端与所述底座固定连接,所述支架的第二端与所述第一调节机构连接。
  6. 根据权利要求5所述的摄像模组,其中,所述第一调节机构包括运动部件和第一控制器;
    所述第一控制器与所述运动部件连接,所述运动部件的一端与所述支架连接,另一端与所述第一平板连接;
    所述第一调节机构通过所述第一控制器控制所述运动部件运动,带动所述法珀干涉仪平移至所述第一位置或者所述第二位置。
  7. 根据权利要求6所述的摄像模组,其中,所述运动部件包括:至少一个滚轴;
    所述支架的第二端设置有凹槽,所述滚轴设置于所述凹槽内,通过所述第一控制器控制所述滚轴在所述凹槽内转动,带动所述法珀干涉仪平移至所述第一位置或者所述第二位置。
  8. 根据权利要求1所述的摄像模组,其中,所述图像传感器至少包括图像模式和动态视觉模式;
    所述图像模式用于记录所述图像传感器曝光时间所对应的拍摄场景;
    所述动态视觉模式用于记录拍摄场景中存在动态亮度变化的位置。
  9. 一种电子设备,包括:如权利要求1至8中任一项所述的摄像模组。
  10. 一种拍摄控制方法,应用于电子设备,所述电子设备包括如权利要求1至8中任一项所述的摄像模组,所述方法包括:
    接收用于进行目标拍照功能模式选择的输入操作;
    响应于所述输入操作,调控图像传感器处于相对应的工作模式,并通过控制调节组件,调节法珀干涉仪相对镜头组件的位置。
  11. 根据权利要求10所述的拍摄控制方法,其中,所述图像传感器包括图像模式和动态视觉模式,所述图像模式用于记录所述图像传感器曝光时间所对应的拍摄场景,所述动态视觉模式用于记录拍摄场景中存在动态亮度变化的位置。
  12. 根据权利要求11所述的拍摄控制方法,其中,所述响应于所述输入操作,调控图像传感器处于相对应的工作模式,并通过控制调节组件,调节法珀干涉仪相对所述镜头组件的位置,包括:
    在所述目标拍照功能模式为模拟3D TOF摄像头的功能模式情况下,响 应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述镜头组件的正前方的第一位置;
    在所述目标拍照功能模式为模拟多光谱摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述镜头组件的正前方的第一位置,同时调节透过所述法珀干涉仪的光线波长;
    在所述目标拍照功能模式为模拟黑白摄像头或者虚化摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置;
    在所述目标拍照功能模式为模拟动态摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述动态视觉模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置。
  13. 一种拍摄控制装置,应用于电子设备,所述电子设备包括如权利要求1至8中任一项所述的摄像模组,所述装置包括:
    接收模块,用于接收用于进行目标拍照功能模式选择的输入操作;
    响应模块,用于响应于所述输入操作,调控图像传感器处于相对应的工作模式,并通过控制所述调节组件,调节所述法珀干涉仪相对所述镜头组件的位置,和/或透过所述法珀干涉仪的光线波长。
  14. 根据权利要求13所述的拍摄控制装置,其中,所述图像传感器包括图像模式和动态视觉模式,所述图像模式用于记录所述图像传感器曝光时间所对应的拍摄场景,所述动态视觉模式用于记录拍摄场景中存在动态亮度变化的位置。
  15. 根据权利要求14所述的拍摄控制装置,其中,所述响应模块包括:
    第一响应子模块,用于在所述目标拍照功能模式为模拟3D TOF摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述 镜头组件的正前方的第一位置;
    第二响应子模块,用于在所述目标拍照功能模式为模拟多光谱摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于所述镜头组件的正前方的第一位置,同时调节透过所述法珀干涉仪的光线波长;
    第三响应子模块,用于在所述目标拍照功能模式为模拟黑白摄像头或者虚化摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述图像模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置;
    第四响应子模块,用于在所述目标拍照功能模式为模拟动态摄像头的功能模式情况下,响应于所述输入操作,调控所述图像传感器的工作模式为所述动态视觉模式,并控制所述调节组件带动所述法珀干涉仪运动至置于从所述镜头组件的正前方移开的第二位置。
  16. 一种电子设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,其中,所述程序或指令被所述处理器执行时实现如权利要求10至12中任一项所述的拍摄控制方法的步骤。
  17. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求10至12中任一项所述的拍摄控制方法的步骤。
  18. 一种通信设备,被配置为执行如权利要求10至12中任一项所述的业务处理方法的步骤。
  19. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求10至12中任一项所述的拍摄控制方法的步骤。
  20. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求10至12中任一项所述的拍摄控制方法的步骤。
PCT/CN2021/136407 2020-12-11 2021-12-08 摄像模组、电子设备、拍摄控制方法及装置 WO2022121937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011459342.1 2020-12-11
CN202011459342.1A CN112492182B (zh) 2020-12-11 2020-12-11 摄像模组、电子设备、拍摄控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022121937A1 true WO2022121937A1 (zh) 2022-06-16

Family

ID=74917765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136407 WO2022121937A1 (zh) 2020-12-11 2021-12-08 摄像模组、电子设备、拍摄控制方法及装置

Country Status (2)

Country Link
CN (1) CN112492182B (zh)
WO (1) WO2022121937A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115601633A (zh) * 2022-11-01 2023-01-13 四川云泷生态科技有限公司(Cn) 一种海洋馆水生物电子识别系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112492182B (zh) * 2020-12-11 2022-05-20 维沃移动通信有限公司 摄像模组、电子设备、拍摄控制方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162043A (ja) * 1998-12-01 2000-06-16 Hochiki Corp 波長可変干渉フィルタを用いた光学装置
CN104007528A (zh) * 2013-02-22 2014-08-27 精工爱普生株式会社 分光照相机
CN105319703A (zh) * 2014-06-30 2016-02-10 精工爱普生株式会社 分光图像拍摄装置、分光图像拍摄方法
CN107515503A (zh) * 2017-09-30 2017-12-26 广东欧珀移动通信有限公司 滤光片、镜头模组和成像模组
CN107561684A (zh) * 2017-09-30 2018-01-09 广东欧珀移动通信有限公司 滤光片、镜头模组和成像模组
WO2018174047A1 (ja) * 2017-03-22 2018-09-27 パイオニア株式会社 光学装置、撮像装置、撮像方法及びプログラム
CN112492182A (zh) * 2020-12-11 2021-03-12 维沃移动通信有限公司 摄像模组、电子设备、拍摄控制方法及装置
CN113099078A (zh) * 2020-01-08 2021-07-09 华为技术有限公司 摄像头模组、成像方法和成像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6452272B2 (ja) * 2013-02-22 2019-01-16 セイコーエプソン株式会社 分光カメラ、及び分光画像処理方法
FI126608B (en) * 2016-03-15 2017-03-15 Teknologian Tutkimuskeskus Vtt Oy Hyperspectral imaging arrangement

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162043A (ja) * 1998-12-01 2000-06-16 Hochiki Corp 波長可変干渉フィルタを用いた光学装置
CN104007528A (zh) * 2013-02-22 2014-08-27 精工爱普生株式会社 分光照相机
CN105319703A (zh) * 2014-06-30 2016-02-10 精工爱普生株式会社 分光图像拍摄装置、分光图像拍摄方法
WO2018174047A1 (ja) * 2017-03-22 2018-09-27 パイオニア株式会社 光学装置、撮像装置、撮像方法及びプログラム
CN107515503A (zh) * 2017-09-30 2017-12-26 广东欧珀移动通信有限公司 滤光片、镜头模组和成像模组
CN107561684A (zh) * 2017-09-30 2018-01-09 广东欧珀移动通信有限公司 滤光片、镜头模组和成像模组
CN113099078A (zh) * 2020-01-08 2021-07-09 华为技术有限公司 摄像头模组、成像方法和成像装置
CN112492182A (zh) * 2020-12-11 2021-03-12 维沃移动通信有限公司 摄像模组、电子设备、拍摄控制方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115601633A (zh) * 2022-11-01 2023-01-13 四川云泷生态科技有限公司(Cn) 一种海洋馆水生物电子识别系统
CN115601633B (zh) * 2022-11-01 2023-08-04 四川云泷生态科技有限公司 一种海洋馆水生物电子识别系统

Also Published As

Publication number Publication date
CN112492182A (zh) 2021-03-12
CN112492182B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
US20210168302A1 (en) Photographing Using Night Shot Mode Processing and User Interface
WO2022121937A1 (zh) 摄像模组、电子设备、拍摄控制方法及装置
CN113079306B (zh) 摄像模组、电子设备、拍摄方法以及拍摄装置
CN101753815A (zh) 成像设备
US11991426B2 (en) Photographing module and terminal device
US20160165141A1 (en) Camera timer
CN107637063B (zh) 用于基于用户的手势控制功能的方法和拍摄装置
WO2020098293A1 (zh) 一种显示装置
WO2022116961A1 (zh) 拍摄方法及装置、电子设备和可读存储介质
CN113242377A (zh) 摄像头模组及电子设备
WO2022237839A1 (zh) 拍摄方法、装置及电子设备
JP7404563B2 (ja) 画像取得方法、装置と電子機器
CN212727179U (zh) 摄像头模组、对焦机构及电子设备
WO2024093432A1 (zh) 拍摄帧率控制方法、电子设备、芯片系统及可读存储介质
CN112804381A (zh) 电子设备的控制方法、装置、电子设备及可读存储介质
WO2014141612A1 (ja) 撮像装置
WO2022242543A1 (zh) 一种电子设备
CN103164105A (zh) 多媒体文件的展示方法与电子装置
US9680976B2 (en) Electronic device
CN112637501B (zh) 光线强度调整方法、装置、电子设备及可读存储介质
CN112367467B (zh) 显示控制方法、装置、电子设备和介质
JP7475187B2 (ja) 表示制御装置および方法、プログラム、記憶媒体
CN103873756A (zh) 便携终端中双摄像头同时拍照的方法及装置
KR20220055230A (ko) 복수의 카메라를 이용한 사진 촬영 방법 및 그 장치
EP3340602B1 (en) Electronic device and method of controlling same for capturing digital images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902642

Country of ref document: EP

Kind code of ref document: A1