JP2017181361A - 波長選択装置及び分光測定装置 - Google Patents

波長選択装置及び分光測定装置 Download PDF

Info

Publication number
JP2017181361A
JP2017181361A JP2016070654A JP2016070654A JP2017181361A JP 2017181361 A JP2017181361 A JP 2017181361A JP 2016070654 A JP2016070654 A JP 2016070654A JP 2016070654 A JP2016070654 A JP 2016070654A JP 2017181361 A JP2017181361 A JP 2017181361A
Authority
JP
Japan
Prior art keywords
filter
wavelength
selection
light
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016070654A
Other languages
English (en)
Inventor
北澤 正吾
Shogo Kitazawa
正吾 北澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2016070654A priority Critical patent/JP2017181361A/ja
Publication of JP2017181361A publication Critical patent/JP2017181361A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】フィルタの正確な波長選択特性を得ることが可能な波長選択装置及び分光測定装置を提供する。【解決手段】互いに対向する基板上に設けられ、光学距離をおいて互いに対向する一対の反射膜を有する第1のフィルタと、互いに選択波長が異なる複数のフィルタ領域を有する第2のフィルタと、第1のフィルタを通過した光の光強度を検出する第1の検出領域と第1及び第2のフィルタを通過した光の光強度を検出する第2の検出領域とを有する検出部と、第2の検出領域が検出した光強度に基づいて第1のフィルタの選択波長を算出する算出部と、を有する。【選択図】図2

Description

本発明は、光フィルタを有する波長選択装置及び分光測定装置に関する。
光フィルタは、例えば、入射された光の中から所定の波長(波長帯域)の光のみを選択的に出射するように構成された光学素子である。例えば、光フィルタのような波長選択素子は、互いに対向する一対の反射膜を配置した構成を有している。反射膜間の間隔は、取出されるべき光の波長に応じて設定される。特許文献1には、反射膜間ギャップを介して対向する第1及び第2反射膜と、駆動電極間ギャップを介して対向する第1及び第2駆動電極と、容量検出電極間ギャップを介して対向する第1及び第2容量検出電極とを具備し、当該3つのギャップが互いに異なる波長可変干渉フィルタが開示されている。
特開2014-21264号公報
光フィルタの用途としては、例えば、光フィルタを用いて選択された光の分析を行う分光測定装置が挙げられる。分光測定装置の測定精度を高めるためには、光フィルタには確実に所望の光を選択するように構成されていることが求められる。
例えば、光フィルタのフィルタリング特性(波長選択特性)は、反射膜間の光学距離によって定まる。また、波長可変型の光フィルタは、光学距離を調節することでフィルタリング特性を調節する機能を有する。一般に、波長可変型の光フィルタの反射膜は可動部上に形成されており、当該可動部を動作させることで反射膜を変位させ、これによってフィルタリング特性を調整する。
一方、波長可変型の光フィルタにおいては、可動部及び反射膜の変位が何度も行われることで、設計上の変位量と実際の変位量がずれてくる場合がある。この場合、例えば設計上の制御パラメータを可動部に与えても所望のフィルタリング特性(取り出し光)を得ることができないという問題が一例として挙げられる。また、波長固定型の光フィルタにおいても、例えば使用環境などによって波長選択特性が異なる場合がある。
本発明は上記した点に鑑みてなされたものであり、フィルタの正確な波長選択特性を得ることが可能な波長選択装置及び分光測定装置を提供することを課題の1つとしている。
請求項1に記載の発明は、互いに対向する基板上に設けられ、光学距離をおいて互いに対向する一対の反射膜を有する第1のフィルタと、互いに選択波長が異なる複数のフィルタ領域を有する第2のフィルタと、第1のフィルタを通過した光の光強度を検出する第1の検出領域と第1及び第2のフィルタを通過した光の光強度を検出する第2の検出領域とを有する検出部と、第2の検出領域が検出した光強度に基づいて第1のフィルタの選択波長を算出する算出部と、を有することを特徴とする。
請求項7に記載の発明は、互いに対向する基板上に設けられ、光学距離をおいて互いに対向する一対の反射膜を有する第1のフィルタと、対向する基板の間隔を制御値に応じて変化させて光学距離を変化させる制御部と、互いに選択波長が異なる複数のフィルタ領域を有する第2のフィルタと、第1のフィルタと複数のフィルタ領域のそれぞれとを通過した光の光強度を検出する検出部と、制御値及び光強度に基づいて、制御値に対応する第1のフィルタの選択波長を算出する算出部と、を有し、制御部は、算出部が算出した制御値と第1のフィルタの選択波長との関係に基づいて光学距離を変化させることを特徴とする。
実施例1に係る分光測定装置の構成を模式的に示す断面図である。 (a)は、実施例1に係る分光測定装置の詳細構成を示す模式的な断面図であり、(b)は実施例1に係る分光測定装置の第1及び第2のフィルタの模式的な上面図である。 (a)は実施例1に係る分光測定装置内の模式的な光路図であり、(b)は実施例1に係る分光測定装置の撮像素子の上面図である。 実施例1に係る分光測定装置における第1及び第2のフィルタの波長選択特性並びに入射光及び選択光のスペクトル例を示す図である。 実施例1に係る分光測定装置の測定動作及び電圧値の校正動作のフロー図である。 実施例1の変形例1に係る分光測定装置の構成を模式的に示す断面図である。 実施例1の変形例2に係る分光測定装置の構成を模式的に示す断面図である。 実施例2に係る波長選択装置の構成を模式的に示す図である。
以下に本発明の実施例について詳細に説明する。
図1は、実施例1に係る分光測定装置10の構成を模式的に示す断面図である。分光測定装置10は、例えば対象物OBJに光を照射し、対象物OBJから反射された光又は対象物OBJを透過した光の分析(例えば光強度の測定)を行う。分光測定装置10は、第1の光フィルタ(以下、第1のフィルタと称する)20、第2の光フィルタ(以下、第2のフィルタと称する)30、検出部40、算出部50及びフィルタ制御部(制御部)60を含む。
第1及び第2のフィルタ20及び30は、対象物OBJからの入射光ILの波長を選択して選択光SLを出力する。第2のフィルタ30には第1のフィルタ20が選択した光の一部が入射し、第2のフィルタ30は当該入射した一部の光に対して波長選択を行う。すなわち、選択光SLは、第1のフィルタ20が波長選択を行った光と、第1及び第2のフィルタ20及び30が波長選択を行った光とを含む。検出部40は、選択光SLの光強度を検出する。
本実施例においては、分光測定装置10は、入射光ILを第1のフィルタ20に集光する第1の光学系OS1と、選択光SLを検出部40に集光する第2の光学系OS2とを含む。なお、図1においては第1及び第2の光学系OS1及びOS2へのハッチングを省略している。第1及び第2の光学系OS1及びOS2は、第1及び第2のフィルタ20及び30を介して検出部40の検出面で対象物OBJの像を結像するリレー光学系を構成する。第1及び第2の光学系OS1及びOS2は、例えば凸レンズ及び凹レンズを含む。なお、各光学系OS1及びOS2の構成及び配置は一例に過ぎず、また分光測定装置10の必須の要件ではない。例えば、入射光ILを検出部40の検出面へ集光(合焦)させる第1の光学系OS1のみから構成されるものであってもよい。この場合、第1の光学系OS1から検出部40の検出面への光路上に第1のフィルタ20を配置し、検出部40の検出面上、または検出面の直近に第2のフィルタ30を配置するようにしてもよい。
また、本実施例においては、第1のフィルタ20は、分光測定(光検出)を行うための光を生成するフィルタであり、その波長選択特性を調節することが可能な構成を有する。算出部50は、検出部40が検出した選択光SLの光強度に基づいて第1のフィルタ20の波長選択特性を算出する。また、フィルタ制御部60は、制御値に応じて第1のフィルタ20の波長選択特性を調節する。
図2(a)は、実施例1に係る分光測定装置10における第1及び第2のフィルタ20及び30並びに検出部40の構成を示す断面図である。図2(a)においては、第1及び第2の光学系OS1及びOS2の図示を省略している。また、図2(b)は、第1のフィルタ20の入光面ENから見たときの第1及び第2のフィルタ20及び30の模式的な上面図である。まず、図2(a)に示すように、第1のフィルタ20は、互いに対向する第1及び第2の基板21A及び21B上に設けられ、光学距離DTをおいて互いに対向する第1及び第2の反射膜22A及び22Bを有する。
具体的には、第1のフィルタ20は、間隙GPをおいて対向する第1及び第2の主表面PL1及びPL2をそれぞれ有する透光性の第1及び第2の基板21A及び21Bを有する。なお、本明細書において、透光性とは、光(可視光)を含む電磁波のうち、少なくとも一部の電磁波を透過する特性をいう。本実施例においては、第1及び第2の基板21A及び21Bは、平板形状を有する。第1の主表面PL1は第1の基板21Aの主面の一方である。第1の反射膜22Aは、第1の主表面PL1上に形成されている。第1の基板21Aの第1の主表面PL1とは反対側の主面は入射光ILの入光面ENとして機能する。
また、本実施例においては、第2の基板21Bの主面の一方における中央部分に柱状の凹部が設けられ、当該凹部の底面が第2の主表面PL2である。また、本実施例においては、第2の基板21Bは、第2の主表面PL2上に形成された凸部を有する。第2の反射膜22Bは当該凸部上に形成され、光学距離DTをおいて第1の反射膜22Aに対向して配置されている。第2の基板21Bの第2の主表面PL2とは反対側の主面は選択光SLの出光面EXとして機能する。なお、第1及び第2の基板21A及び21Bは、第2の主表面PL2の外側において、接合部BDによって互いに接合されている。
なお、以下においては、第1及び第2の基板21A及び21Bの全体を基板対21と、第1及び第2の主表面PL1及びPL2の全体を主表面対PPと、第1及び第2の反射膜22A及び22Bの全体を反射膜対22と称する場合がある。
第1及び第2の基板21A及び21Bは、例えば、石英、ホウケイ酸ガラス、シリコンなどからなる。また、反射膜対22は、電磁波を選択的に透過する共振器特性を有する。反射膜対22は、例えば、ファブリペローエタロンを構成する。第1及び第2の反射膜22A及び22Bは、例えばAg及びAgを含む合金からなる薄膜であり、透過性を有する反射膜(反射性の膜)である。
第1のフィルタ20は、底面が第1の主表面PL1を構成し、第1の主表面PL1に垂直な方向Dに移動する可動部23を有する。また、第1のフィルタ20は、第1の主表面PL1における可動部23の周りに形成されて可動部23を移動可能に支持する支持部24を有する。第1の反射膜22Aは、可動部23上に形成されている。第1の反射膜22Aは、可動部23の移動に従って、第1の主表面PL1に垂直な方向Dに変位する(光学距離DTが増減する)。すなわち、可動部23は、第1の主表面PL1に形成されて第1の反射膜22Aを第1の主表面PL1に垂直な方向Dに変位させる。
本実施例においては、支持部24は、可動部23の外側に設けられた第1の基板21Aの薄膜部からなる。より具体的には、第1の基板21Aの入光面ENには溝が設けられており、支持部24は当該溝によって設けられた第1の基板21Aの比較的薄い部分である。そして、第1の基板21Aにおける支持部24の内側部分は変位可能な可動部23として機能する。可動部23及び支持部24における第2の基板21Bに対向する面(底面)は、第1の主表面PL1を構成する。
また、第1のフィルタ20は、第1及び第2の主表面PL1及びPL2上にそれぞれ形成され、可動部23を移動させる静電気力を生成する第1及び第2の電極25A及び25Bからなるフィルタ駆動部25を有する。第1及び第2の電極25A及び25Bは、例えば、Ag、Al、Cr、Ni、Auなどの金属材料からなる。また、第1及び第2の電極25A及び25Bは、例えばITO(Indium Tin Oxide)の薄膜からなる透明電極であってもよい。本実施例においては、第1及び第2の電極25A及び25Bは、それぞれ、第1及び第2の主表面PL1及びPL2上において第1及び第2の反射膜22A及び22Bの外側に膜状に形成されている。
フィルタ制御部60は、互いに対向する第1及び第2の基板21A及び21Bの間隔を制御値に応じて変化させ、光学距離DTを変化させる。本実施例においては、フィルタ制御部60は、フィルタ駆動部25の第1及び第2の電極25A及び25Bに電圧を印加し、また、その電圧値を制御する。フィルタ制御部60によって第1及び第2の電極25A及び25Bに電圧が印加されると、可動部23が移動し、第1の反射膜22Aが第1の主表面PL1に垂直な方向Dに変位する。すなわち、第1のフィルタ20は、可動部23の移動に従って反射膜対22の光学距離DTが変化するように構成されている。
ここで、第1のフィルタ20において、第2の主表面PL2上の凸部は、設計上のフィルタリング特性(反射膜対22の光学距離DT)と、設計上のフィルタリング特性の変調力(フィルタ駆動部25が生成する静電気力など)と、などを考慮して設けられる。例えば、第1及び第2の電極25A及び25B間の間隔よりも第1及び第2の反射膜22A及び22B間の間隔を小さくするように設計する場合、第2の主表面PL2上には凸部が設けられる。従って、波長可変型の光フィルタにおいても、当該凸部が設けられる必要はなく、例えば第2の主表面PL2上に第2の反射膜22Bが設けられていてもよい。
本実施例においては、第1及び第2の電極25A及び25Bに電圧を印加すると、例えば、第1及び第2の電極25A及び25B間に静電引力が生ずる。支持部24は、この静電引力によって弾性変形を起こし、第2の基板21Bに向かって屈曲(傾斜)する。従って、可動部23が第2の基板21Bに向かって移動する。これによって、例えば、第1及び第2の反射膜22A及び22B間の間隔が減少する。なお、印加する電圧値によっては、第1及び第2の電極25A及び25B間に静電斥力を生じさせ、光学距離DTが増加する方向に可動部23を移動させることもできる。このように、フィルタ制御部60は、反射膜対22の光学距離DTを電圧値(制御値)に応じて変化させる。従って、本実施例においては、第1のフィルタ20は、フィルタ制御部60によって波長選択特性が変化する波長可変型の光フィルタである。
第2のフィルタ30は、本実施例においては第1のフィルタ20の出光面EX上において第2の反射膜22Bの外周部に対向して形成されている。また、図2(b)に示すように、第2のフィルタ30は、互いに選択波長が異なる複数のフィルタ領域31を有する。第2のフィルタ30は、出光面EX上において、第1及び第2の反射膜22A及び22Bの対向方向(第2の反射膜22Bに垂直な方向)から見たとき、複数のフィルタ領域31が第2の反射膜22Bの外周部に沿って配置された構造を有する。例えば、フィルタ領域31の各々は光学距離をおいて互いに対向する一対の反射膜を有する。例えば、第2のフィルタ30は、複数のフィルタ領域31に対応し、互いに波長選択特性が異なる複数のバンドパスフィルタを含む。
なお、図2(b)に示すように、基板対21は、上面視、すなわち第1及び第2の主表面PL1及びPL2に垂直な方向Dから見たとき、矩形の形状を有する。反射膜対22(図2(b)では第2の反射膜22Aの形状を示している)は、上面視において矩形の形状を有する。可動部23は上面視において円柱形状を有している。支持部24は、上面視において可動部23の外周を取り囲むように環状に形成されている。また、第2のフィルタ30は、第1及び第2の反射膜22A及び22Bに垂直な方向から見たときに、複数のフィルタ領域31が第2の反射膜22Bの外周部に沿って、枠状、環状、又はライン状に配置された構造を有する。なお、図の明確さのため、図2(b)においては、第2のフィルタ30の領域にハッチングを施している。
また、本実施例においては、第1及び第2の反射膜22A及び22B、可動部23、支持部24並びに第2のフィルタ30は、上面視において、1点を中心として回転対称に形成されていてもよい。なお、本実施例においては、基板対21及び反射膜対22の上面視における形状を矩形としているが、基板対21及び反射膜対22の形状はこれに限定されない。反射膜対22を介して検出部40に入射する光が検出部40の検出面に照射されるように構成されていれば、基板対21及び反射膜対22の上面視における形状は、例えば円形であってもよい。
再度図2(a)を参照すると、検出部40は、第1のフィルタ20を通過した光の光強度を検出する第1の検出領域41と第1及び第2のフィルタ20及び30を通過した光の光強度を検出する第2の検出領域42とを有する。また、検出部40は、第1及び第2の検出領域41及び42における光強度の検出動作を制御する検出制御部43を有する。例えば、検出部40の第2の検出領域42は、第1のフィルタ20を透過してフィルタ領域31のそれぞれを透過した光の光強度を検出する。
算出部50は、第2の検出領域42が検出した光強度に基づいて第1のフィルタ20の選択波長を算出する。本実施例においては、算出部50は、制御部60が第1のフィルタ20に与える制御値と第2の検出領域42が検出した光強度とに基づいて、当該制御値に対応する第1のフィルタ20の選択波長を算出する。また、制御部60は、算出部50が算出した当該制御値と第1のフィルタ20の選択波長との関係に基づいて光学距離DTを変化させる(第1のフィルタ20を駆動する)。
図3(a)は、分光測定装置10内における光の進路を模式的に示す図である。図3(a)は、図2(a)と同様の断面図である。図3(a)を用いて、第1及び第2のフィルタ20に入射光ILが入射して選択光SLが取り出され、選択光SLが検出部40に受光されるまでの光の進路について説明する。
まず、第1及び第2のフィルタ20及び30のフィルタリング動作について説明する。対象物OBJから出射された光は、入射光ILとして、第1の基板21Aの入光面ENから第1の基板21Aに入射し、第1の基板21A内を透過して第1の反射膜22Aに入射する。入射光ILは、第1及び第2の反射膜22A及び22B間において多重反射を繰り返す。この際、入射光ILのうち、第1及び第2の反射膜22A及び22B間の光学距離DTに対応する波長の光は残存し、他の波長の光は減衰する。この残存した波長の光は、選択光SL1として第2の反射膜22Bを透過する。選択光SL1は、第2の反射膜22Bを透過した後、第2の基板21Bから取り出される。
次に、選択光SL1のうち、第2のフィルタ30に入射した光(選択光SL11)においては、第2のフィルタ30によって2回目のフィルタリングが行われる。第2のフィルタ30に入射した選択光SL11のうち、第2のフィルタ30の波長選択特性に対応する光は選択光SL2として取り出される。
第1のフィルタ20によって選択された選択光SL1は検出部40の第1の検出領域41に受光され、その光強度が測定(検出)される。一方、第1及び第2のフィルタ20及び30の両方を透過した選択光SL2は、検出部40の第2の検出領域42に受光され、その光強度が測定(検出)される。
図3(b)は、検出部40の模式的な上面図である。本実施例においては、検出部40は、マトリクス状に設けられた複数の光電変換素子OE1及びOE2を有する撮像素子である。また、本実施例においては、検出部40の第1の検出領域41は、複数の光電変換素子OE1及びOE2のうち、中央部の光電変換素子OE1からなる。また、第2の検出領域42は、複数の光電変換素子OE1及びOE2のうち、周辺部の光電変換素子OE2からなる。検出部40としての撮像素子は、各光電変換素子OE1及びOE2によって変換された電気信号をデータ化し、その画像データを出力する。
なお、本実施例においては、分光測定装置10における分光測定は、中央部の光電変換素子OE1の各々(すなわち第1の検出領域41)のみによって行われる。一方、分光測定装置10は、周辺部の光電変換素子OE2の各々(すなわち第2の検出領域42)を用いて、第1のフィルタ20の選択波長の算出及びこれに基づいた第1のフィルタ20の波長選択特性の制御部60へのフィードバックを行う。
図4は、制御部60によって第1のフィルタ20に供給される電圧値の変化に応じた選択光SL1及びSL2のスペクトルの変化を示す図である。図4は、制御部60が印加する電圧値を大、中、小の3段階で分けた場合における、入射光ILのスペクトル、第1及び第2のフィルタ20及び30の波長選択特性並びに選択光SL2のスペクトルの一例を示す図である。なお、本実施例においては、第1のフィルタ20のフィルタ駆動部25に印加される電圧値は大きいほど大きな静電引力が大きくなって光学距離DTが小さくなり、選択波長が短波長化する場合について説明する。
図4に示すように、例えば、電圧値が中程度に設定したとき、第1及び第2のフィルタ20及び30の選択波長(透過波長)が一致する又は一方の選択波長が他方の整数倍となる。従って、第1及び第2のフィルタ20及び30を透過した選択光SL2は大きな光強度を示す。一方、電圧値がこれより大きい場合及び小さい場合では、第1及び第2のフィルタ20及び30の一方の選択波長が他方の整数倍とならず、第2のフィルタ30からはほとんど光が取り出されない。従って、この場合の選択光SL2の光強度は小さなものとなる。
このように、第2のフィルタ30の各フィルタ領域31における選択波長を予め既知のものとして設定し、各フィルタ領域31からの取り出し光の光強度を検出することで、第1のフィルタ20の波長選択特性を特定することが可能となる。
なお、本実施例においては、第2のフィルタ30は、各フィルタ領域31として複数のバンドパスフィルタを含む。この場合、算出部50は、当該複数のバンドパスフィルタのうち、最も大きい光強度が検出されたバンドパスフィルタの波長選択特性に基づいて第1のフィルタ20の選択波長(本実施例においては制御部60の制御値に対応する第1のフィルタ20の選択波長)を算出する。
なお、第2のフィルタ30は、複数のバンドパスフィルタからなる場合に限定されない。例えば、第2のフィルタ30は、複数のフィルタ領域31に対応し、位置に応じて波長選択特性が異なるリニアバリアブルフィルタを含んでいてもよい。例えば、リニアバリアブルフィルタは、第2の反射膜21Bに垂直な方向からみたときに第2の反射膜21Bの外周部に沿って枠状、環状、又はライン状に配置されていてもよい。
リニアバリアブルフィルタは、例えば、バンドパスフィルタ型、ショートパスフィルタ型、又はロングパスフィルタ型のリニアバリアブルフィルタを含む。第2のフィルタ30がリニアバリアブルフィルタからなる場合、検出部40は、例えば、第2の検出領域42を構成し、当該リニアバリアブルフィルタの位置に対応して配された複数の検出器(例えば光電変換素子)を有していればよい。また、算出部50は、所定値以上の光強度が検出されたリニアバリアブルフィルタの位置の波長選択特性に基づいて第1のフィルタ20の選択波長を算出すればよい。
図5は、分光測定装置10における動作フローを示す図である。まず、制御部60は、予め設定された(例えば設計上の)電圧値Vと第1のフィルタ20の選択波長との関係に基づいて電圧値Vの設定を行う(ステップS1)。次に、制御部60は、当該電圧値Vを第1のフィルタ20に印加して第1のフィルタ20を駆動する(ステップS2)。ステップS2において第1のフィルタ20の波長選択特性が設定される。従って、第1及び第2のフィルタ20及び30に入射した入射光ILに対して所定の選択光SL1及びSL2が取り出される。
次に、検出部40としての撮像素子は、第1のフィルタ20を透過した選択光SL1を用いて撮像動作を行う(選択光SL1の光強度を検出する)。一方、検出部40としての撮像素子は、第1及び第2のフィルタ20及び30によって選択された選択光SL2の光強度を検出する(ステップS3)。続いて、検出部40としての撮像素子に撮像された画像は、例えばメモリ(図示せず)などの記録素子に記憶される(ステップS4)。
次に、算出部50は、電圧値Vと、検出部40としての撮像素子によって検出された選択光SL2の光強度とに基づいて、電圧値Vに対応する第1のフィルタ20の選択波長λを算出する(ステップS5)。具体的には、算出部50は、制御部60から電圧値Vを、検出部40から、第1のフィルタ20及び第2のフィルタ領域31のそれぞれを透過した選択光SL2の各々の光強度を、それぞれ取得し、これに基づいて電圧値Vと第1のフィルタ20の選択波長λとの関係を算出する。
なお、ステップS6において、算出部50は、例えば最も大きな光強度が検出されたフィルタ領域31の変化(遷移)を解析し、電圧値Vの変化と当該最も大きな光強度が検出されたフィルタ領域31の変化とに基づいて電圧値Vと第1のフィルタ20の選択波長λとの関係を算出する。また、算出部50は、いずれのフィルタ領域31からの選択光SL2においても所定値以上の光強度が検出されなかった場合、その前後の電圧値Vに対する検出結果に基づいて第1のフィルタ20の選択波長を推定してもよい。
次に、制御部60は、算出部50が算出した電圧値Vと第1のフィルタ20の選択波長λとの関係に基づいて、電圧値Vの設定を調整する(ステップS6)。ステップS6においては、例えば、予め準備されている電圧値V及び選択波長λの関係を示すテーブルのうち、算出部50の算出結果に最も近いテーブルに従って電圧値Vの設定を調整する。また、制御部60は、選択する好ましいテーブルがない場合、又はテーブルを新規に作成できる程度に算出部50の算出結果が得られた場合、算出部50の算出結果に基づいた電圧値Vの設定調整を行ってもよい。
制御部60は、電圧値Vの設定調整(再設定、校正)を行った後、これに基づいて第1のフィルタ20を駆動する(ステップS2に戻る)。分光測定装置10は、このように、電圧値Vの自動調整を行い、これに基づいて第1のフィルタ20の駆動及び分光測定を行う。
上記したように、分光測定装置10は、第1のフィルタ20と、互いに選択波長が異なる複数のフィルタ領域31を有する第2のフィルタ30と、第1のフィルタ20を透過した光SL1の光強度を検出する第1の検出領域41と第1及び第2のフィルタ20及び30を透過した光SL2の光強度を検出する第2の検出領域42とを有する検出部40と、第2の検出領域42が検出した光強度に基づいて第1のフィルタ20の選択波長λを算出する算出部50と、を有する。
従って、互いに異なる既知の波長選択特性を有する複数のフィルタ領域31を透過した光の光強度を分析することで、分光測定に用いる第1のフィルタ20の正確な選択波長を得ることができる。また、複数のフィルタ領域31に対応する光の光強度を別々に測定して比較することで、例えば第1のフィルタ20の波長選択特性のばらつき(例えば反射膜21A及び21B間の光学距離DTのばらつき)を検出することができる。また、これに基づいた第1のフィルタ20の波長選択特性の正確な調整を行うことができる。
また、第1のフィルタ20は第1の反射膜21Aが変位することで光学距離DTが変化する波長可変型の光フィルタであり、その光学距離DTは制御部60による電圧の印加によって変化する。従って、制御部60の印加電圧の変化に対応する第1のフィルタ20の正確な選択波長の変化を検出及び算出することができる。また、算出部50の算出結果に基づいて制御部60がその印加電圧の設定を調整することで、例えば使用環境に応じた正確なフィルタリング特性の調整を行うことができる。従って、分光測定装置10の測定精度が安定する。
また、例えば測定回数が増加することで経年的に第1のフィルタ20の選択波長の変化が設計上の変化からずれてきた場合でも、算出部50によって電圧値の変化に対応する実際の選択波長の変化量を算出することができ、分光測定装置10の測定精度の経年的な低下を抑制することができる。
なお、第1のフィルタ20の選択波長を測定する手段としては、反射膜21A及び21Bの近傍に検出用電極を形成し、当該検出用電極間の静電容量及びその変化を測定することが考えられる。しかし、分光測定装置10においては、当該静電容量を測定する場合に比べ、より直接的にかつ容易に第1のフィルタ20の選択波長を測定することができ、その測定精度も高いものとなる。また、当該検出用の電極や配線を設ける必要がないため、反射膜21A及び21Bに平行な方向への装置の大型化が抑制される。これによって、例えば駆動時における可動部23の反りを抑制することができ、反射膜21Aの反りを抑制することができる。従って、第1のフィルタ20の駆動時における波長選択特性が安定する。
また、本実施例においては、検出部40が複数の光電変換素子OE1及びOE2からなる撮像素子である。また、検出部40としての撮像素子は、その撮像領域の一部を分光測定に用い、他の撮像層領域を第1のフィルタ20の選択波長の測定、調整及び校正用に用いる。従って、第2のフィルタ30を設ける以外に、第1のフィルタ20の選択波長の測定用に新たに部品を追加する必要がない。また、撮像された画像の周辺部に第1のフィルタ20の選択波長を示す情報が記録されるため、例えば装置の動作後においても当該選択波長の特定を行うことができる。
図6は、実施例1の変形例1に係る分光測定装置10Aの構成を示す断面図である。分光測定装置10Aは、第2のフィルタ30Aの構成を除いては、分光測定装置10と同様の構成を有する。本変形例においては、第2のフィルタ30Aは、第1のフィルタ20における入射光ILの入光面EN上に形成されている。すなわち、分光測定装置10Aは、入射光ILが第1のフィルタ20に入射する前にその一部が第2のフィルタ30Aに入射するように構成されている。本変形例に示すように、第1のフィルタ30の入光面EN上に第2のフィルタ30Aが設けられていてもよい。
図7は、実施例1の変形例2に係る分光測定装置10Bの構成を示す断面図である。分光測定装置10Bは、第2のフィルタ30Bの構成を除いては、分光測定装置10と同様の構成を有する。本変形例においては、第2のフィルタ30Bは、検出部40の第2の検出領域42上に形成されている。すなわち、第2のフィルタ30Bは、第1のフィルタ20とは別に設けられている。本変形例のように、波長算出用の第2のフィルタが第1のフィルタ20に一体的に形成されている必要はない。上記したように、第2のフィルタは、第1のフィルタ20と検出部40との間の光路上に設けられていればよい。
なお、本実施例においては、第1のフィルタ20が制御部60によって波長選択特性が変化する波長可変型の光フィルタである場合について説明した。しかし、第1のフィルタ20は、光学距離DTが固定距離である波長固定型の光フィルタであってもよい。この場合、分光測定装置10、10A及び10Bは、制御部60や駆動部25、可動部23などを有していなくてもよい。この場合、例えば、第1のフィルタ20の組み立て公差に起因する選択波長の個体差があっても、第1のフィルタ20の真の選択波長の特定を行うことができる。
また、本実施例においては、第2のフィルタ30が複数のバンドパスフィルタ又はリニアバリアブルフィルタを含む場合について説明したが、第2のフィルタ30の構成はこれに限定されない。第2のフィルタ30は、互いに選択波長が異なる複数のフィルタ領域31を有していればよい。また、第2のフィルタ30は、校正用のマスターとなる既知の波長選択特性をフィルタ領域31の各々が有していれば、波長固定型のフィルタであってもよく、波長可変型のフィルタであってもよい。また、第2のフィルタ30は、例えばプリズムなど、波長毎に出射先が異なるように構成されていてもよい。
また、本実施例においては、検出部40が撮像素子からなる場合について説明したが、検出部40の構成はこれに限定されない。検出部40は、第1及び第2の検出領域41及び42に対応する複数のフォトディテクタやラインセンサから構成されていてもよい。
また、本実施例においては、制御部60が電圧値に応じて光学距離DTを変化させる場合について説明した。しかし、制御部60は、電圧値のみならず、例えばアクチュエータを用いて物理的なパラメータを変化させるなど、種々の制御値に応じて光学距離DTを変化させるように構成されていればよい。また、フィルタ駆動部25が静電気力によって光学距離DTを変化させる場合について説明したが、フィルタ駆動部25の構成はこれに限定されず、例えば電磁気的に光学距離DTを変化させるように構成されていてもよい。
また、本実施例においては、制御部60が算出部50の算出結果に基づいて制御値を補正する場合について説明したが、制御部60は必ずしも制御値を補正する必要はなく、算出部50によって第1のフィルタ20の正確な選択波長が算出されればよい。
本実施例及びその変形例においては、第2のフィルタ30は、互いに選択波長が異なる複数のフィルタ領域31を有する。また、検出部40が第1のフィルタ20を透過した光SL1の光強度を検出する第1の検出領域41と、第1のフィルタ20とフィルタ領域31のそれぞれとを透過した光SL2の光強度を検出する第2の検出領域42とを有する。また、算出部50は第2の検出領域42が検出した光強度に基づいて第1のフィルタ20の選択波長を算出する。従って、第1のフィルタ20の正確な選択波長を得ることができ、正確な分光測定を行うことが可能な分光測定装置10、10A及び10Bを提供することができる。
図8は、実施例2に係る波長選択装置70の構成を示す図である。波長選択装置70は、検出部40Aの構成を除いては、分光測定装置10と同様の構成を有する。本変形例においては、検出部40Aは、検出領域として、第2の検出領域42のみを有する。すなわち、検出部40Aは、第1及び第2のフィルタ20及び30を透過した選択光SL2のみを検出し、第1のフィルタ20を透過した光SL1を遮らない(光SL1は外部に取り出される)。
上記した実施例1、変形例1及び変形例2においては、検出部40が第1のフィルタ20の選択光SL1の光強度を検出する第1の検出領域41を有する場合、すなわち各構成要素が分光測定装置10を構成する場合を例に説明した。
しかし、第1の検出領域41を有していない検出部40Aを用いた場合、第1及び第2のフィルタ20及び30、検出部40A、算出部50及び制御部60は、第1のフィルタ20の選択波長の算出及び調整機能を有する波長選択装置70を構成する。このように波長選択装置70を構成しても、選択光SL2の光強度をフィルタ領域31毎に検出することで、第1のフィルタ20の選択波長を正確に得ることができる。従って、正確な選択波長に基づいた高精度なフィルタリング動作を行うことが可能な波長選択装置を提供することができる。
10、10A、10B 分光測定装置
20 第1の光フィルタ
30 第2の光フィルタ
31 フィルタ領域
40 検出部
41 第1の検出領域
42 第2の検出領域
50 算出部
60 制御部
70 波長選択装置

Claims (7)

  1. 互いに対向する基板上に設けられ、光学距離をおいて互いに対向する一対の反射膜を有する第1のフィルタと、
    互いに選択波長が異なる複数のフィルタ領域を有する第2のフィルタと、
    前記第1のフィルタを通過した光の光強度を検出する第1の検出領域と前記第1及び第2のフィルタを通過した光の光強度を検出する第2の検出領域とを有する検出部と、
    前記第2の検出領域が検出した前記光強度に基づいて前記第1のフィルタの選択波長を算出する算出部と、を有することを特徴とする分光測定装置。
  2. 前記検出部は、マトリクス状に設けられた複数の光電変換素子を有する撮像素子であり、
    前記第1の検出領域は、前記複数の光電変換素子のうちの中央部の光電変換素子からなり、
    前記第2の検出領域は、前記複数の光電変換素子のうちの周辺部の光電変換素子からなることを特徴とする請求項1に記載の分光測定装置。
  3. 前記対向する基板の間隔を制御値に応じて変化させて前記光学距離を変化させる制御部を有し、
    前記算出部は、前記制御値と前記第2の検出領域が検出した前記光強度とに基づいて、前記制御値に対応する前記第1のフィルタの選択波長を算出することを特徴とする請求項1又は2に記載の分光測定装置。
  4. 前記制御部は、前記算出部が算出した前記制御値と前記第1のフィルタの選択波長との関係に基づいて前記光学距離を変化させることを特徴とする請求項3に記載の分光測定装置。
  5. 前記第2のフィルタは、前記複数のフィルタ領域に対応し、互いに波長選択特性が異なる複数のバンドパスフィルタを含み、
    前記算出部は、前記複数のバンドパスフィルタのうち、最も大きい光強度が検出されたバンドパスフィルタの波長選択特性に基づいて前記第1のフィルタの選択波長を算出することを特徴とする請求項1乃至4のいずれか1つに記載の分光測定装置。
  6. 前記第2のフィルタは、前記複数のフィルタ領域に対応し、位置に応じて異なる波長選択特性を有するリニアバリアブルフィルタを含み、
    前記検出部は、前記第2の検出領域を構成し、前記リニアバリアブルフィルタの前記位置に対応して配された複数の検出器を有し、
    前記算出部は、所定値以上の光強度が検出された前記リニアバリアブルフィルタの位置の波長選択特性に基づいて前記第1のフィルタの選択波長を算出することを特徴とする請求項1乃至4のいずれか1つに記載の分光測定装置。
  7. 互いに対向する基板上に設けられ、光学距離をおいて互いに対向する一対の反射膜を有する第1のフィルタと、
    前記対向する基板の間隔を制御値に応じて変化させて前記光学距離を変化させる制御部と、
    互いに選択波長が異なる複数のフィルタ領域を有する第2のフィルタと、
    前記第1のフィルタと前記複数のフィルタ領域のそれぞれとを通過した光の光強度を検出する検出部と、
    前記制御値及び前記光強度に基づいて、前記制御値に対応する前記第1のフィルタの選択波長を算出する算出部と、を有し、
    前記制御部は、算出部が算出した前記制御値と前記第1のフィルタの選択波長との関係に基づいて前記光学距離を変化させることを特徴とする波長選択装置。
JP2016070654A 2016-03-31 2016-03-31 波長選択装置及び分光測定装置 Pending JP2017181361A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070654A JP2017181361A (ja) 2016-03-31 2016-03-31 波長選択装置及び分光測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070654A JP2017181361A (ja) 2016-03-31 2016-03-31 波長選択装置及び分光測定装置

Publications (1)

Publication Number Publication Date
JP2017181361A true JP2017181361A (ja) 2017-10-05

Family

ID=60005398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070654A Pending JP2017181361A (ja) 2016-03-31 2016-03-31 波長選択装置及び分光測定装置

Country Status (1)

Country Link
JP (1) JP2017181361A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396316A (zh) * 2019-11-19 2021-09-14 深圳市海谱纳米光学科技有限公司 可调法玻腔自校准方法和具有自校准功能的光谱采集装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248469A (ja) * 1985-04-25 1986-11-05 Nec Corp カラ−固体撮像装置
JP2010249808A (ja) * 2009-03-24 2010-11-04 Olympus Corp 分光透過率可変素子を備えた分光イメージング装置及び分光イメージング装置における分光透過率可変素子の調整方法
JP2014157140A (ja) * 2013-02-18 2014-08-28 Konica Minolta Inc 分光装置および分光方法ならびに光波長多重通信用波長監視装置および光波長多重通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248469A (ja) * 1985-04-25 1986-11-05 Nec Corp カラ−固体撮像装置
JP2010249808A (ja) * 2009-03-24 2010-11-04 Olympus Corp 分光透過率可変素子を備えた分光イメージング装置及び分光イメージング装置における分光透過率可変素子の調整方法
JP2014157140A (ja) * 2013-02-18 2014-08-28 Konica Minolta Inc 分光装置および分光方法ならびに光波長多重通信用波長監視装置および光波長多重通信装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396316A (zh) * 2019-11-19 2021-09-14 深圳市海谱纳米光学科技有限公司 可调法玻腔自校准方法和具有自校准功能的光谱采集装置
JP2022524361A (ja) * 2019-11-19 2022-05-02 深▲せん▼市海譜納米光学科技有限公司 調整可能なファブリーペロキャビティの自己校正方法及び自己校正機能を持つスペクトル収集装置
JP7215777B2 (ja) 2019-11-19 2023-01-31 深▲せん▼市海譜納米光学科技有限公司 調整可能なファブリーペロキャビティの自己校正方法及び自己校正機能を持つスペクトル収集装置
CN113396316B (zh) * 2019-11-19 2023-10-31 深圳市海谱纳米光学科技有限公司 可调法玻腔自校准方法和具有自校准功能的光谱采集装置
US11879781B2 (en) 2019-11-19 2024-01-23 Shenzhen Hypernano Optics Technology Co., Ltd. Tuneable Fabry-Perot cavity self-calibration method and spectrum acquisition device with a self-calibration function

Similar Documents

Publication Publication Date Title
JP5633334B2 (ja) 分光測定装置
US8860950B2 (en) Light measurement device with identifiable detection elements
EP2360459B1 (en) Optical etalon and colorimetric device
JP5798709B2 (ja) 光フィルター及びそれを備えた光モジュール
US8981281B2 (en) Optical module and optical measurement device
CN105391920B (zh) 分光图像取得装置以及分光图像取得方法
US20120188646A1 (en) Variable wavelength interference filter, optical module, and optical analysis device
JP2013096883A (ja) 分光測定装置
US9291502B2 (en) Spectroscopic measurement device and spectroscopic measurement method
US8848196B2 (en) Spectrophotometer having prompt spectrophotometric measurement
US9857221B2 (en) Spectral image acquisition apparatus and light reception wavelength acquisition method
US20130070247A1 (en) Spectroscopic measurement device, and spectroscopic measurement method
US20150138561A1 (en) Spectroscopic measurement apparatus and spectroscopic measurement method
US20140211315A1 (en) Optical module, and electronic apparatus
JP7000019B2 (ja) 波長選択装置及び分光測定装置
JP2017181361A (ja) 波長選択装置及び分光測定装置
US11060909B2 (en) Spectrometer, analysis equipment, and wavelength-variable light source
US11754445B2 (en) Interferometer element, spectrometer and method for operating an interferometer
JP2016090251A (ja) 分光測定装置、及び分光測定方法
JP2016050804A (ja) 分光測定装置、及び分光測定方法
JP6011592B2 (ja) 分光測定装置
CN113302464A (zh) 干涉仪装置和用于确定干涉仪装置中的第一镜装置和第二镜装置之间的第一间距的方法
JP5874776B2 (ja) 分光装置
JP2017040491A (ja) 光学モジュール及び分光装置
JP2017173687A (ja) 波長選択装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511