WO2018173983A1 - 第5世代通信の3次元化 - Google Patents

第5世代通信の3次元化 Download PDF

Info

Publication number
WO2018173983A1
WO2018173983A1 PCT/JP2018/010663 JP2018010663W WO2018173983A1 WO 2018173983 A1 WO2018173983 A1 WO 2018173983A1 JP 2018010663 W JP2018010663 W JP 2018010663W WO 2018173983 A1 WO2018173983 A1 WO 2018173983A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
relay station
altitude
formation target
airspace
Prior art date
Application number
PCT/JP2018/010663
Other languages
English (en)
French (fr)
Inventor
潤一 宮川
木村 潔
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to KR1020197029269A priority Critical patent/KR102067370B1/ko
Priority to EP18771822.6A priority patent/EP3606128B1/en
Priority to US16/491,345 priority patent/US10651922B2/en
Priority to CN201880019917.2A priority patent/CN110506431B/zh
Priority to CA3057281A priority patent/CA3057281C/en
Priority to AU2018237814A priority patent/AU2018237814C1/en
Priority to BR112019019093-7A priority patent/BR112019019093B1/pt
Publication of WO2018173983A1 publication Critical patent/WO2018173983A1/ja
Priority to IL268989A priority patent/IL268989B/en
Priority to ZA2019/06075A priority patent/ZA201906075B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to three-dimensionalization of fifth generation communication.
  • LTE-AdvancedPro which is an extension of 3GPP LTE (Long Term Evolution) -Advanced
  • Non-Patent Document 1 which is a communication standard for mobile communication systems
  • Non-Patent Document 2 a communication standard for mobile communication systems
  • LTE-AdvancedPro specifications for providing communication to devices for recent IoT (Internet of Things) have been formulated.
  • IoT Internet of Things
  • the fifth generation mobile that supports simultaneous connection and low delay to many terminal devices (also referred to as “UE (user equipment)”, “mobile station”, “communication terminal”) such as devices for IoT. Communication has been studied (for example, see Non-Patent Document 3).
  • the propagation delay is low, it can be simultaneously connected to a large number of terminals in a wide range, high-speed communication is possible, and the system capacity per unit area There is a problem of realizing a large three-dimensional network.
  • a communication system is a communication system including a wireless relay station that relays wireless communication with a terminal device, and the wireless relay station is 100 [from the ground or sea surface by autonomous control or external control. km] is provided in a levitation body controlled to be located in a floating airspace of less than or equal to, and when the levitation body is located in the levitation airspace, the radio relay station has a predetermined cell formation target between the ground and the sea surface. A three-dimensional cell is formed in the airspace.
  • a levitation body is a levitation body provided with a radio relay station that relays radio communication with a terminal device, and has an altitude of 100 [km] or less by autonomous control or external control.
  • the wireless relay station When the levitation body is controlled to be located in an airspace and the levitation body is located in the levitation airspace, the wireless relay station forms a three-dimensional cell in a predetermined cell formation target airspace between the ground and the sea surface.
  • the communication system includes a plurality of radio relay stations provided on the levitation body, and each of the plurality of radio relay stations forms a beam for radio communication with the terminal device toward a ground surface or a sea surface, and the cell A plurality of beams adjacent to each other in the formation target airspace may partially overlap.
  • the plurality of beams may be formed so as to cover the entire upper end surface of the cell formation target airspace.
  • the plurality of beams are formed in a conical shape, a divergence angle of the beams is ⁇ [rad], an altitude of the radio relay station of the levitation body is Hrs [m], When the horizontal interval between the plurality of radio relay stations is Drs [m] and the altitude at the upper end of the cell formation target airspace is Hcu [m], the following equation (1) may be satisfied. Further, in the communication system and the levitation body, the altitude at the lower end of the cell formation target airspace is Hcl [m], and the maximum reachable distance of the radio signal between the radio relay station of the levitation body and the terminal device is When Lmax [m], the following equation (2) may be satisfied.
  • the communication system may further include a ground or sea radio relay station that forms a beam for wireless communication with a terminal device toward the cell formation target airspace.
  • the ground or sea radio relay station may form a beam in a portion where the beam formed by the radio relay station on the levitation body does not pass in the cell formation target airspace.
  • the communication system may further include a feeder station on the ground or on the sea that performs radio communication with the floating relay radio station directly or via an artificial satellite.
  • the communication system may further include a remote control device that remotely controls at least one of the levitation body and the wireless relay station.
  • the levitation body provided with the wireless relay station is a three-dimensional cell in the cell formation target airspace with respect to the ground based on the altitude of the ground located below the levitation body.
  • the position may be controlled so that the altitude is maintained at a predetermined altitude.
  • the communication system may further include a remote control device that controls a position of a radio relay station provided on the levitation body, a direction and a spread angle of a beam formed by the radio relay station, and the like.
  • the altitude of the cell formation target airspace may be 10 [km] or less.
  • the altitude of the cell formation target airspace may be 50 [m] or more and 1 [km] or less.
  • the levitation body provided with the radio relay station may be located in a stratosphere having an altitude of 11 km or more and 50 km or less.
  • the radio relay station may be a base station or a repeater of a mobile communication network.
  • the radio relay station may include an edge computing unit.
  • the levitation body may include a battery that supplies power to the radio relay station, and includes a solar power generation device that generates power to be supplied to the radio relay station. Also good.
  • the levitation body includes a wing provided with a photovoltaic power generation panel for generating electric power to be supplied to the wireless relay station, and a propeller capable of being driven to rotate provided in the wing. It may be a solar plane provided, or an airship provided with a battery for supplying power to the wireless relay station.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating an example of an overall configuration of a communication system that realizes a three-dimensional network according to another embodiment.
  • FIG. 3 is an explanatory diagram showing the relationship between the position of the HAPS that realizes the three-dimensional network of the embodiment, the beam formed by each HAPS, and the three-dimensional cell.
  • FIG. 4 is a perspective view showing an example of HAPS used in the communication system of the embodiment.
  • FIG. 5 is a side view showing another example of HAPS used in the communication system of the embodiment.
  • FIG. 6 is a block diagram illustrating a configuration example of a HAPS wireless relay station according to the embodiment.
  • FIG. 7 is a block diagram illustrating another configuration example of the HAPS wireless relay station of the embodiment.
  • FIG. 8 is a block diagram illustrating still another configuration example of the HAPS wireless relay station according to the embodiment.
  • FIG. 9 is an explanatory diagram showing an example of selective use of normal HAPS and high-latitude HAPS according to the season.
  • FIG. 10 is an explanatory diagram illustrating an example of a state of remote energy beam beam feeding for the high-latitude HAPS according to the embodiment.
  • FIG. 11 is a block diagram illustrating a configuration example of the remote latitude energy beam receiving unit of the high-latitude HAPS according to the embodiment.
  • FIG. 12 is a block diagram illustrating a configuration example of a power supply control system in a high latitude compatible HAPS that can support solar power supply and remote energy beam power supply according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system according to an embodiment of the present invention.
  • the communication system according to the present embodiment is a fifth generation that supports simultaneous connection to a large number of terminal devices (also referred to as “mobile station”, “mobile device”, or “user equipment (UE)”), low delay, and the like. Suitable for realizing a three-dimensional network for mobile communications.
  • the mobile communication standards applicable to the communication system, radio relay station, base station, repeater, and terminal device disclosed in this specification are the fifth generation mobile communication standards and the fifth generation and later. Includes standards for next generation mobile communications.
  • the communication system includes a plurality of high-altitude platform stations (HAPS) (also referred to as “high-altitude pseudo-satellite”) 10, 20. Three-dimensional cells (three-dimensional areas) 41 and 42 as shown by regions are formed.
  • the HAPS 10 and 20 are controlled to float in a high altitude floating airspace (hereinafter also simply referred to as “airspace”) 50 from the ground or the sea surface by autonomous control or external control.
  • a radio relay station is mounted on a floating body (eg, solar plane, airship).
  • the airspace 50 where the HAPS 10 and 20 are located is, for example, a stratospheric airspace with an altitude of 11 km or more and 50 km or less.
  • the airspace 50 where the HAPS 10 and 20 are located may be an airspace in which the altitude where the weather conditions are relatively stable is in the range of 15 [km] or more and 25 [km] or less, and particularly the altitude is approximately 20 [km].
  • the airspace may be Hrsl and Hrsu in the figure indicate relative altitudes of the lower end and the upper end of the airspace 50 where the HAPSs 10 and 20 are located with respect to the ground (GL), respectively.
  • the cell formation target airspace 40 is a target airspace that forms a three-dimensional cell with one or a plurality of HAPS in the communication system of the present embodiment.
  • the cell formation target airspace 40 is a predetermined altitude range (for example, 50 [ m] to an altitude range of 1000 [m] or less.
  • Hcl and Hcu in the figure respectively indicate the relative altitudes of the lower end and the upper end of the cell formation target airspace 40 with respect to the ground (GL).
  • the cell formation target airspace 40 in which the three-dimensional cell of the present embodiment is formed may be above the sea, river, or lake.
  • the wireless relay stations of the HAPS 10 and 20 respectively form beams 100 and 200 for wireless communication with a terminal device that is a mobile station toward the ground.
  • the terminal device may be a communication terminal module incorporated in the drone 60 which is a small helicopter capable of being remotely controlled, or may be a user terminal device used by the user in the airplane 65.
  • the regions through which the beams 100 and 200 pass in the cell formation target airspace 40 are three-dimensional cells 41 and 42.
  • the plurality of beams 100 and 200 adjacent to each other in the cell formation target airspace 40 may partially overlap.
  • the wireless relay stations of the HAPS 10 and 20 are connected to the core network of the mobile communication network 80 via a feeder station 70 that is a relay station installed on the ground or the sea.
  • Each of the HAPS 10 and 20 may autonomously control its own floating movement (flight) and processing at the radio relay station by executing a control program by a control unit configured by a computer or the like incorporated therein.
  • each of the HAPS 10 and 20 acquires its own current position information (for example, GPS position information), pre-stored position control information (for example, flight schedule information), position information of other HAPS located in the vicinity, etc. Based on this information, the levitating movement (flight) and the processing at the radio relay station may be autonomously controlled.
  • the floating movement (flight) of each of the HAPS 10 and 20 and the processing at the radio relay station may be controlled by a remote control device 85 of a communication operator provided in a communication center of the mobile communication network 80 or the like.
  • the HAPS 10 and 20 incorporate a terminal communication device (for example, a mobile communication module) so that the control information from the remote control device 85 can be received. IP address, telephone number, etc.) may be assigned.
  • each of the HAPSs 10 and 20 may transmit information related to levitation movement (flight) of the own or the surrounding HAPS and processing at the radio relay station to a predetermined transmission destination such as the remote control device 85.
  • a region where the beams 100 and 200 of the HAPS 10 and 20 do not pass may occur.
  • a radial beam 300 is formed upward from the ground side or the sea side to form a three-dimensional cell 43 to form an ATG (Air To Ground) connection.
  • a base station (hereinafter referred to as “ATG station”) 30 may be provided.
  • the radio relay station of the HAPS 10 and 20 can be three-dimensionally arranged in the cell formation target airspace 40.
  • the beams 100 and 200 covering the entire upper end surface of the cell formation target airspace 40 may be formed so that the cells are formed throughout.
  • FIG. 2 is a schematic configuration diagram showing an example of the overall configuration of a communication system that realizes a three-dimensional network according to another embodiment.
  • the place where the three-dimensional network is formed is an example in the case of an inland region or a mountainous area where the elevation of the ground (GL) is fluctuating and the altitude is fluctuating.
  • the HAPS 10 is based on the altitude (terrain data) of the ground located below so that the relative altitude of the cell formation target airspace 40 from the ground (GL) is maintained constant. Altitude is controlled.
  • the altitude of the HAPS 10 is controlled to 20 [km] in a plain area where the altitude is low, and the altitude of the HAPS 10 is controlled to 23 [km] in a mountainous area where the altitude is about 3000 [m] higher than the plain.
  • the three-dimensional cells 41 having the same height and a constant height from the ground, and the size of the spot of the beam 100 on the upper end surface of the cell formation target airspace 40. It can also be kept constant.
  • the HAPS 10 forms a three-dimensional cell 41 of substantially the same size according to the undulation on the ground below, so that the divergence angle of the beam 100 is formed. (Beam width) and beam direction may be finely adjusted (tracked).
  • FIG. 3 is an explanatory diagram illustrating the relationship between the positions of the HAPS 10 and 20 that realize the three-dimensional network of the embodiment, the beams 100 and 200 formed by the HAPS 10 and 20, and the three-dimensional cells 41 and 42.
  • the formation of the three-dimensional cells 41 and 42 by the HAPS 10 and 20 is controlled as follows, for example.
  • the radius R2 [m] of the beam 200 at the upper end of the cell formation target airspace 40 is expressed by the following equation (4). It is represented by
  • the beam 100, 200 of the HAPS 10, 20 is used to cover the entire upper end surface of the cell formation target airspace 40.
  • the conditional expression is as shown in the following expression (5).
  • At least one of the altitude of each HAPS 10, 20 and the divergence angle (beam width) of the beams 100, 200 and the horizontal spacing Drs of the HAPS 10, 20 is adjusted so as to satisfy the above formula (5) or formula (6).
  • the entire upper end surface of the cell formation target airspace 40 can be covered by the beams 100 and 200 of the HAPS 10 and 20.
  • conditional expressions (5) and (6) are derived and set in consideration of the inclination angle. That's fine.
  • the maximum reachable distance at which a wireless signal (radio wave) can be received with a predetermined strength between the wireless relay stations of the HAPS 10 and 20 and the terminal device is finite (for example, 100 [km]).
  • the maximum reachable distance is Lmax [m] and the altitude at the lower end of the cell formation target airspace 40 is Hcl [m]
  • each of the HAPS 10 and 20 and the terminal devices located at the lower end of the cell formation target airspace 40 communicate with each other.
  • the altitude Hrs1 of the HAPS 10 and the altitude Hrs1 of the HAPS 20 are the same altitude (Hrs), and the divergence angles ⁇ 1 and ⁇ 2 of each beam are the same angle ( ⁇ ), the HAPS 10 and 20 and the cell formation target airspace respectively.
  • the conditional expression with which the terminal devices located at the lower end of 40 can communicate with each other is as shown in the following expression (9).
  • the HAPS 10 , 20 and the terminal device located at the lower end of the cell formation target airspace 40 can reliably communicate with each other.
  • the three-dimensional cell formed by the HAPS 10 and 20 may be formed so as to reach the ground or the sea level so as to be able to communicate with a terminal device located on the ground or the sea.
  • FIG. 4 is a perspective view showing an example of the HAPS 10 used in the communication system of the embodiment.
  • the HAPS 10 in FIG. 4 is a solar plane type HAPS.
  • a solar panel 102 as a solar power generation unit having a solar power generation function is provided on the upper surface, and a main wing part 101 having both ends in the longitudinal direction extending upward, and a bus power system at one end edge in the short direction of the main wing part 101 And a plurality of motor-driven propellers 103 as propulsion devices.
  • a pod 105 serving as a plurality of device accommodating portions in which mission devices are accommodated is connected to two places in the longitudinal direction of the lower surface of the main wing portion 101 via a plate-like connecting portion 104.
  • Each pod 105 accommodates a radio relay station 110 as a mission device and a battery 106.
  • wheels 107 used at the time of taking off and landing are provided on the lower surface side of each pod 105.
  • the electric power generated by the solar panel 102 is stored in the battery 106, and the electric power supplied from the battery 106 rotates the motor of the propeller 103, so that the radio relay station 110 performs radio relay processing.
  • the solar plane type HAPS 10 can be levitated by lift by performing, for example, turning flight or 8-shaped flight, and can be levitated so as to stay in a predetermined range in a horizontal direction at a predetermined altitude.
  • the solar plane type HAPS 10 can fly like a glider when the propeller 103 is not driven to rotate. For example, when the power of the battery 106 is surplus due to the power generation of the solar panel 102 during the daytime or the like, the battery 106 rises to a higher position, and when the solar panel 102 cannot generate power during the nighttime or the like, the power supply from the battery 106 to the motor is stopped. Can fly like.
  • FIG. 5 is a perspective view showing another example of the HAPS 20 used in the communication system of the embodiment.
  • the HAPS 20 shown in FIG. 4 is an unmanned airship type HAPS and has a large payload, so that a large-capacity battery can be mounted.
  • the HAPS 20 includes an airship body 201 filled with a gas such as helium gas for buoyancy, a motor-driven propeller 202 as a propulsion device for a bus power system, and a device storage unit 203 for storing mission devices.
  • a radio relay station 210 and a battery 204 are housed inside the device housing unit 203. With the electric power supplied from the battery 204, the motor of the propeller 202 is driven to rotate, and the wireless relay processing by the wireless relay station 210 is executed.
  • a solar panel having a solar power generation function may be provided on the top surface of the airship body 201 so that the electric power generated by the solar panel is stored in the battery 204.
  • FIG. 6 is a block diagram illustrating a configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • the radio relay stations 110 and 210 in FIG. 6 are examples of repeater type radio relay stations.
  • Each of the radio relay stations 110 and 210 includes a 3D cell (three-dimensional cell) forming antenna unit 111, a transmission / reception unit 112, a feed antenna unit 113, a transmission / reception unit 114, a repeater unit 115, a monitoring control unit 116, and a power supply unit 117. .
  • the 3D cell formation antenna unit 111 includes antennas that form the radial beams 100 and 200 toward the cell formation target airspace 40, and forms three-dimensional cells 41 and 42 that can communicate with the terminal device.
  • the transmission / reception unit 112 includes a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to a terminal device located in the three-dimensional cell 41 or 42 via the 3D cell forming antenna unit 111 or a terminal Receive radio signals from the device.
  • DUP DUPlexer
  • the feed antenna unit 113 includes a directional antenna for wireless communication with the ground or sea feeder station 70.
  • the transmission / reception unit 114 includes a duplexer (DUP: DUPlexer), an amplifier, and the like, and transmits a radio signal to the feeder station 70 and receives a radio signal from the feeder station 70 via the 3D cell forming antenna unit 111. To do.
  • DUP DUPlexer
  • the repeater unit 115 relays the signal of the transmission / reception unit 112 transmitted / received to / from the terminal device and the signal of the transmission / reception unit 114 transmitted / received to / from the feeder station 70.
  • the repeater unit 115 may have a frequency conversion function.
  • the monitoring control unit 116 is configured by, for example, a CPU and a memory, and monitors the operation processing status of each unit in the HAPS 10 and 20 and controls each unit by executing a program incorporated in advance.
  • the power supply unit 117 supplies the power output from the batteries 106 and 204 to each unit in the HAPS 10 and 20.
  • the power supply unit 117 may have a function of storing in the batteries 106 and 204 power generated by a solar power generation panel or the like or power supplied from the outside.
  • FIG. 7 is a block diagram illustrating another configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • Radio relay stations 110 and 210 in FIG. 7 are examples of base station type radio relay stations. In FIG. 7, the same components as those in FIG.
  • Each of the radio relay stations 110 and 210 in FIG. 7 further includes a modem unit 118 and a base station processing unit 119 instead of the repeater unit 115.
  • the modem unit 118 performs, for example, a demodulation process and a decoding process on the reception signal received from the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114, and outputs the data signal to the base station processing unit 119 side. Is generated. Further, the modem unit 118 performs encoding processing and modulation processing on the data signal received from the base station processing unit 119 side, and transmits to the feeder station 70 via the feed antenna unit 113 and the transmission / reception unit 114. Generate a signal.
  • the base station processing unit 119 has a function as e-NodeB that performs baseband processing based on, for example, a method compliant with the LTE / LTE-Advanced standard.
  • the base station processing unit 119 may perform processing by a method based on a standard for future mobile communication such as the fifth generation or the next generation after the fifth generation.
  • the base station processing unit 119 performs demodulation processing and decoding processing on the received signals received from the terminal devices located in the three-dimensional cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A data signal to be output to the modem unit 118 side is generated. In addition, the base station processing unit 119 performs encoding processing and modulation processing on the data signal received from the modem unit 118 side, and the 3D cells 41 and 42 via the 3D cell forming antenna unit 111 and the transmission / reception unit 112. A transmission signal to be transmitted to the terminal device is generated.
  • FIG. 8 is a block diagram illustrating still another configuration example of the wireless relay stations 110 and 210 of the HAPS 10 and 20 according to the embodiment.
  • the radio relay stations 110 and 210 in FIG. 8 are examples of high-function base station type radio relay stations having an edge computing function.
  • the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals, and description thereof is omitted.
  • Each of the radio relay stations 110 and 210 of FIG. 8 further includes an edge computing unit 120 in addition to the components of FIG.
  • the edge computing unit 120 is configured by a small computer, for example, and can execute various types of information processing related to wireless relaying in the wireless relay stations 110 and 210 of the HAPS 10 and 20 by executing a program incorporated in advance. it can.
  • the edge computing unit 120 determines the transmission destination of the data signal based on the data signal received from the terminal device located in the three-dimensional cell 41 or 42, and relays the communication based on the determination result. Executes the process of switching. More specifically, when the transmission destination of the data signal output from the base station processing unit 119 is a terminal device located in its own three-dimensional cell 41 or 42, the data signal is not passed to the modem unit 118. Then, it returns to the base station processing unit 119 and transmits it to the transmission destination terminal device located in its own three-dimensional cell 41, 42.
  • the transmission destination of the data signal output from the base station processing unit 119 is a terminal device residing in a cell other than its own three-dimensional cells 41 and 42
  • the data signal is passed to the modem unit 118.
  • the data is transmitted to the feeder station 70 and transmitted to the terminal device of the transmission destination located in another cell of the transmission destination via the mobile communication network 80.
  • the edge computing unit 120 may execute processing for analyzing information received from a large number of terminal devices located in the three-dimensional cells 41 and 42. This analysis result may be transmitted to a large number of terminal devices located in the three-dimensional cells 41 and 42, or may be transmitted to a server of the mobile communication network 80 or the like.
  • the uplink and downlink duplex schemes for wireless communication with the terminal devices via the radio relay stations 110 and 210 are not limited to specific schemes. For example, even in a time division duplex (TDD) scheme Alternatively, a frequency division duplex (FDD) method may be used.
  • the access method of wireless communication with the terminal device via the wireless relay stations 110 and 210 is not limited to a specific method, for example, FDMA (Frequency Division Multiple Access) method, TDMA (Time Division Multiple Access) method, It may be a CDMA (Code Division Multiple Access) system or OFDMA (Orthogonal Frequency Division Multiple Access).
  • the wireless communication has functions such as diversity coding, transmission beamforming, and spatial division multiplexing (SDM), and by using multiple antennas simultaneously for both transmission and reception, MIMO (multi-input and multi-output) technology capable of increasing the transmission capacity of the network may be used.
  • the MIMO technology may be a SU-MIMO (Single-User MIMO) technology in which one base station transmits a plurality of signals at the same time and the same frequency as one terminal device. Even in the MU-MIMO (Multi-User MIMO) technology in which signals are transmitted to different communication terminal devices at the same time and the same frequency, or a plurality of different base stations transmit signals to one terminal device at the same time and the same frequency. Good.
  • FIG. 9 is an explanatory diagram illustrating an example of selective use of normal HAPS and high-latitude HAPS according to the season.
  • the high latitude corresponding HAPS with higher power supply is used because the sunshine time is shorter and the air current is stronger than in the low latitude area 55C, and the low latitude area 55L including the area directly below the equator is usually compatible with the low latitude.
  • HAPS (for example, the above-described HAPS in FIG. 4) may be used.
  • the boundary lines A and B between the high latitude regions 55N and 55S and the low latitude region 55L vary depending on the season
  • the intermediate latitude regions 55MA and 55MB A In the region between -A 'and the region between BB', the HAPS to be used may be switched according to the season. For example, in the summer, the boundary line moves to positions A and B. Therefore, normal HAPS is used in the mid-latitude region 55MA between AA ′, and high-latitude HAPS is used in the mid-latitude region 55MB between BB ′. Is used.
  • the boundary line moves to the position of A ′ and B ′. Therefore, the high latitude corresponding HAPS is used in the intermediate latitude region 55MA between AA ′ and the intermediate latitude region 55MB between BB ′.
  • HAPS is used.
  • FIG. 10 is an explanatory diagram showing an example of a state of remote energy beam feeding to the high latitude corresponding HAPS (solar plane type) 11.
  • HAPS10 in FIG. 10 the same code
  • the high-latitude HAPS 11 includes power receiving pods 108 at both ends in the longitudinal direction of the main wing 101. Inside the power receiving pod 108, a microwave power receiving unit 130 and a battery 106 as a remote energy beam power receiving unit are accommodated.
  • the microwave power reception unit 130 receives the high-power microwave beam 750 or 250 for power transmission transmitted from the microwave power supply station 75 as a power supply device on the ground or the sea or the power supply airship 25 as a power supply device in the air. Convert to and output.
  • the electric power output from the microwave power reception unit 130 is stored in the battery 106.
  • the power supply airship 25 drifts by, for example, an air current, and sequentially supplies power to the stationary HAPS by transmitting a power supply microwave beam.
  • FIG. 11 is a block diagram illustrating a configuration example of the microwave power receiving unit 130 of the high-latitude HAPS 11.
  • the microwave power reception unit 130 includes a rectenna unit 131, a rectenna control unit 132, an output device 133, a pilot signal transmission antenna unit 134, and a beam direction control unit 135.
  • the rectenna unit 131 receives and rectifies the high-power feed microwave beam 750 or 250 transmitted from the ground or sea microwave feed station 75 or the power supply airship 25.
  • the rectenna control unit 132 controls power reception processing and rectification processing of the feeding microwave beam by the rectenna unit 131.
  • the output device 133 outputs the rectified power output from the rectenna unit 131 to the battery 106.
  • the pilot signal transmitting antenna unit 134 transmits a pilot signal beam including a laser beam or the like for guiding the feeding microwave beam to the microwave feeding station 75 or the feeding airship prior to receiving the feeding microwave beam 750 or 250. To 25.
  • the beam direction control unit 135 controls the beam direction of the pilot signal.
  • FIG. 12 is a block diagram showing a configuration example of a power supply control system (energy management system) 140 in the high-latitude HAPS 11 that can support solar power supply and remote energy beam power supply.
  • the power supply control system 140 of the high-latitude HAPS 11 includes a bus power system power supply 141, a mission system power supply 142, a power supply adjustment device 143, and a control unit 144.
  • the bus power system power supply 141 supplies power to a bus power system such as a motor-driven propeller 103, and the mission system power supply 142 supplies power to communication equipment (mission system) such as the radio relay station 110.
  • the power supply adjustment device 143 adjusts the power supplied to each of the bus power system power supply 141 and the mission system power supply 142 with respect to the power output from the battery 106.
  • the control unit 144 controls output of power from the battery 106, adjustment of power supply by the power supply adjustment device 143, and output of power from the bus power system power supply 141 and the mission system power supply 142.
  • the control in the power supply control system (energy management system) 140 in FIG. 12 is executed so as to perform efficient energy management by an algorithm according to the situation as follows.
  • the power supply adjustment device 143 adjusts and changes the balance between the power supplied to the bus power system and the power supplied to the mission system according to the situation. To do.
  • the power supply amount from the mission system to the bus power system is interchanged to increase the altitude of the high-latitude HAPS 11. You may control so that it may store as energy.
  • the supply amount to the bus power system may be reduced, and the flight mode of the high-latitude HAPS 11 may be controlled to shift to the glider mode using potential energy.
  • the cell formation target airspace 40 in a predetermined altitude range (for example, an altitude range of 50 [m] or more and 1000 [m] or less) on the ground or the sea surface.
  • Wide-area three-dimensional cells 41 and 42 can be formed, and communication between a plurality of terminal devices located in the three-dimensional cells 41 and 42 and the mobile communication network 80 can be relayed.
  • the terminal devices and mobile communication networks located in the three-dimensional cells 41 and 42 are located at a lower altitude (for example, the stratospheric altitude) than the artificial satellites, the terminal devices and mobile communication networks located in the three-dimensional cells 41 and 42
  • the propagation delay in wireless communication with 80 is smaller than that in the case of satellite communication via an artificial satellite.
  • the three-dimensional cells 41 and 42 can be formed and the propagation delay of the wireless communication is low, a three-dimensional network for fifth generation mobile communication having a low propagation delay of the wireless communication can be realized.
  • the high-latitude HAPS 11 by using the high-latitude HAPS 11, it is possible to stably realize a three-dimensional network for fifth generation mobile communication with low radio communication propagation delay over a long period of time even in a high-latitude region. it can.
  • the processing steps described in this specification and the components of the base station apparatus in the radio relay station, feeder station, remote control apparatus, terminal apparatus (user apparatus, mobile station, communication terminal) and base station are various means. Can be implemented. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof.
  • entity eg, wireless relay station, feeder station, base station device, wireless relay device, terminal device (user device, mobile station, communication terminal), remote control device, hard disk drive device, or optical disk drive
  • the means such as processing units used to realize the above steps and components are one or more application specific IC (ASIC), digital signal processor (DSP), digital signal processor (DSPD) Designed to perform the functions described herein, programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, electronic devices Other electronic units, computers Over data, or it may be implemented in a combination thereof.
  • ASIC application specific IC
  • DSP digital signal processor
  • DSPD digital signal processor
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, electronic devices Other electronic units, computers Over data, or it may be implemented in a combination thereof.
  • firmware and / or software implementation means such as processing units used to implement the above components may be programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.).
  • any computer / processor readable medium that specifically embodies firmware and / or software code is means such as a processing unit used to implement the steps and components described herein. May be used to implement
  • the firmware and / or software code may be stored in a memory, for example, in a control device, and executed by a computer or processor.
  • the memory may be implemented inside the computer or processor, or may be implemented outside the processor.
  • the firmware and / or software code is, for example, random access memory (RAM), read only memory (ROM), nonvolatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM) ), FLASH memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage, etc. Good.
  • the code may be executed by one or more computers or processors, and may cause the computers or processors to perform the functional aspects described herein.
  • HAPS (solar plane type), normal HAPS 11 High Latitude HAPS (Solar Plane Type) 20 HAPS (Airship type) 25 Power supply airship 30 ATG station 40 Cell formation target airspace 41, 42, 43 3D cell 50 Airspace where HAPS is located 60 Drone 65 Airplane 70 Feeder station 75 Microwave power supply station 80 Mobile communication network 85 Remote control device 100, 200, DESCRIPTION OF SYMBOLS 300 Beam 101 Main wing part 102 Solar power generation panel 103 Propeller 104 Connection part 105 Pod 106 Battery 107 Wheel 108 Power receiving pod 110,210 Radio relay station 111 Three-dimensional (3D) cell formation antenna part 112 Transmission / reception part 113 Feeding antenna part 114 Transmission / reception unit 115 Repeater unit 116 Monitoring control unit 117 Power supply unit 118 Modem unit 119 Base station processing unit 120 Edge computing unit 130 Remote energy beam power receiving unit 131 Rectenna unit 132 Rectenna control Unit 133 output device 134 pilot signal transmitting antenna unit 135 beam direction control unit 140 power supply control system

Abstract

無線通信の伝搬遅延が低い第5世代移動通信の3次元化ネットワークを実現することができる通信システムを提供する。通信システムは、端末装置との無線通信を中継する無線中継局を備える。前記無線中継局は、自律制御又は外部から制御により高度が100[km]以下の浮揚空域に位置するように制御される浮揚体に設けられ、浮揚体が前記浮揚空域に位置するとき、前記無線中継局は、地面又は海面との間の所定のセル形成目標空域に3次元セルを形成する。

Description

第5世代通信の3次元化
 本発明は、第5世代通信の3次元化に関するものである。
 従来、移動通信システムの通信規格である3GPPのLTE(Long Term Evolution)-Advanced(非特許文献1参照)を発展させたLTE-AdvancedProと呼ばれる通信規格が知られている(非特許文献2参照)。このLTE-AdvancedProでは、近年のIoT(Internet of Things)向けデバイスへの通信を提供するための仕様が策定された。更に、IoT向けデバイス等の多数の端末装置(「UE(ユーザ装置)」、「移動局」、「通信端末」ともいう。)への同時接続や低遅延化などに対応する第5世代の移動通信が検討されている(例えば、非特許文献3参照)。
3GPP TS 36.300 V10.12.0(2014-12). 3GPP TS 36.300 V13.5.0(2016-09). G. Romano,「3GPP RAN progress on "5G"」,3GPP,2016.
 上記第5世代移動通信等においてIoT向けデバイスを含む端末装置との間の無線通信にて、伝搬遅延が低く、広範囲の多数の端末と同時接続でき、高速通信可能で、単位面積あたりのシステム容量の大きい3次元化したネットワークを実現したいという課題がある。
 本発明の一態様に係る通信システムは、端末装置との無線通信を中継する無線中継局を備える通信システムであって、前記無線中継局は、自律制御又は外部から制御により地面又は海面から100[km]以下の浮揚空域に位置するように制御される浮揚体に設けられ、前記浮揚体が前記浮揚空域に位置するとき、前記無線中継局は、地面又は海面との間の所定のセル形成目標空域に3次元セルを形成する。
 本発明の他の態様に係る浮揚体は、端末装置との無線通信を中継する無線中継局が設けられた浮揚体であって、自律制御又は外部から制御により高度が100[km]以下の浮揚空域に位置するように制御され、前記浮揚体が前記浮揚空域に位置するとき、前記無線中継局は、地面又は海面との間の所定のセル形成目標空域に3次元セルを形成する。
 前記通信システムにおいて、前記浮揚体に設けられた無線中継局を複数備え、前記複数の無線中継局はそれぞれ、前記端末装置と無線通信するためのビームを地面又は海面に向けて形成し、前記セル形成目標空域において互いに隣り合う複数のビームは部分的に重なっていてもよい。
 また、前記通信システム及び前記浮揚体において、前記複数のビームは、前記セル形成目標空域の上端面の全体をカバーするように形成されていてもよい。
 また、前記通信システム及び前記浮揚体において、前記複数のビームは円錐状に形成され、そのビームの発散角をθ[rad]とし、前記浮揚体の無線中継局の高度をHrs[m]とし、前記複数の無線中継局の水平方向の間隔をDrs[m]とし、前記セル形成目標空域の上端の高度をHcu[m]としたとき、次式(1)を満たすようにしてもよい。
Figure JPOXMLDOC01-appb-M000003
 また、前記通信システム及び前記浮揚体において、前記セル形成目標空域の下端の高度をHcl[m]とし、前記浮揚体の無線中継局と前記端末装置との間の無線信号の最大到達可能距離をLmax[m]としたとき、次式(2)を満たすようにしてもよい。
Figure JPOXMLDOC01-appb-M000004
 また、前記通信システムにおいて、端末装置と無線通信するためのビームを前記セル形成目標空域に向けて形成する地上又は海上の無線中継局を備えてもよい。この地上又は海上の無線中継局は、前記セル形成目標空域のうち前記浮揚体側の無線中継局で形成されるビームが通過しない部分にビームを形成してもよい。
 また、前記通信システムにおいて、前記浮揚体の無線中継局と直接に又は人工衛星を介して無線通信する地上又は海上のフィーダ局を備えてもよい。
 また、前記通信システムにおいて、前記浮揚体及び前記無線中継局の少なくとも一方を遠隔的に制御する遠隔制御装置を備えてもよい。
 また、前記通信システム及び前記浮揚体において、前記無線中継局が設けられた浮揚体は、その浮揚体の下方に位置する地面の標高に基づいて、該地面に対する前記セル形成目標空域における3次元セルの高度が所定高度に維持されるように位置制御されてもよい。
 また、前記通信システムにおいて、前記浮揚体に設けられた無線中継局の位置、その無線中継局によって形成されるビームの方向及び広がり角度並びに制御する遠隔制御装置を備えてもよい。
 また、前記通信システム及び前記浮揚体において、前記セル形成目標空域の高度は10[km]以下であってもよい。また、前記セル形成目標空域の高度は50[m]以上1[km]以下であってもよい。
 また、前記通信システム及び前記浮揚体において、前記無線中継局を設けた浮揚体は、高度が11[km]以上及び50[km]以下の成層圏に位置してもよい。
 また、前記通信システム及び前記浮揚体において、前記無線中継局は、移動体通信網の基地局又はリピータであってもよい。
 また、前記通信システム及び前記浮揚体において、前記無線中継局は、エッジコンピューティング部を有してもよい。
 また、前記通信システム及び前記浮揚体において、前記浮揚体は、前記無線中継局に電力を供給するバッテリーを備えてもよく、前記無線中継局に供給する電力を発電する太陽光発電装置を備えてもよい。
 また、前記通信システム及び前記浮揚体において、前記浮揚体は、前記無線中継局に供給する電力を発電する太陽光発電パネルが設けられた翼と前記翼に設けられた回転駆動可能なプロペラとを備えたソーラープレーン、又は、前記無線中継局に電力を供給するバッテリーを備えた飛行船であってもよい。
 本発明によれば、無線通信の伝搬遅延が低い第5世代移動通信の3次元化ネットワークを実現することができる。
図1は本発明の一実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。 図2は他の実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。 図3は実施形態の3次元化ネットワークを実現するHAPSの位置と各HAPSで形成するビームと3次元セルとの関係を示す説明図である。 図4は実施形態の通信システムに用いられるHAPSの一例を示す斜視図である。 図5は実施形態の通信システムに用いられるHAPSの他の例を示す側面図である。 図6は実施形態のHAPSの無線中継局の一構成例を示すブロック図である。 図7は実施形態のHAPSの無線中継局の他の構成例を示すブロック図である。 図8は実施形態のHAPSの無線中継局の更に他の構成例を示すブロック図である。 図9は季節に応じた通常HAPS及び高緯度対応HAPSの選択利用の一例を示す説明図である。 図10は実施形態の高緯度対応HAPSに対する遠隔エネルビービーム給電の様子の一例を示す説明図である。 図11は実施形態の高緯度対応HAPSの遠隔エネルビービーム受電部の一構成例を示すブロック図である。 図12は実施形態のソーラ給電及び遠隔エネルビービーム給電に対応可能な高緯度対応HAPSにおける給電制御系の一構成例を示すブロック図である。
 以下、図面を参照して本発明の実施形態について説明する。
 図1は、本発明の一実施形態に係る通信システムの全体構成の一例を示す概略構成図である。本実施形態に係る通信システムは、多数の端末装置(「移動局」、「移動機」又は「ユーザ装置(UE)」ともいう。)への同時接続や低遅延化などに対応する第5世代移動通信の3次元化ネットワークの実現に適する。なお、本明細書に開示する通信システム、無線中継局、基地局、リピータ及び端末装置に適用可能な移動通信の標準規格は、第5世代の移動通信の標準規格、及び、第5世代以降の次々世代の移動通信の標準規格を含む。
 図1に示すように、通信システムは、複数の高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)10,20を備え、所定高度のセル形成目標空域40に、図中ハッチング領域で示すような3次元セル(3次元エリア)41,42を形成する。HAPS10,20は、自律制御又は外部から制御により地面又は海面から100[km]以下の高高度の浮揚空域(以下、単に「空域」ともいう。)50に浮遊して位置するように制御される浮揚体(例えば、ソーラープレーン、飛行船)に無線中継局が搭載されたものである。
 HAPS10,20の位置する空域50は、例えば、高度が11[km]以上及び50[km]以下の成層圏の空域である。HAPS10,20の位置する空域50は、気象条件が比較的安定している高度が15[km]以上及び25[km]以下の範囲の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。図中のHrsl及びHrsuはそれぞれ、地面(GL)を基準にしたHAPS10,20の位置する空域50の下端及び上端の相対的な高度を示している。
 セル形成目標空域40は、本実施形態の通信システムにおける一又は複数のHAPSで3次元セルを形成する目標の空域である。セル形成目標空域40は、HAPS10,20が位置する空域50と従来のマクロセル基地局等の基地局90がカバーする地面近傍のセル形成領域との間に位置する、所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)の空域である。図中のHcl及びHcuはそれぞれ、地面(GL)を基準にしたセル形成目標空域40の下端及び上端の相対的な高度を示している。
 なお、本実施形態の3次元セルが形成されるセル形成目標空域40は、海、川又は湖の上空であってもよい。
 HAPS10,20の無線中継局はそれぞれ、移動局である端末装置と無線通信するためのビーム100,200を地面に向けて形成する。端末装置は、遠隔操縦可能な小型のヘリコプターであるドローン60に組み込まれた通信端末モジュールでもよいし、飛行機65の中でユーザが使用するユーザ端末装置であってもよい。セル形成目標空域40においてビーム100,200が通過する領域が3次元セル41,42である。セル形成目標空域40において互いに隣り合う複数のビーム100,200は部分的に重なってもよい。
 HAPS10,20の無線中継局はそれぞれ、地上又は海上に設置された中継局であるフィーダ局70を介して、移動通信網80のコアネットワークに接続されている。
 HAPS10,20はそれぞれ、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の浮揚移動(飛行)や無線中継局での処理を自律制御してもよい。例えば、HAPS10,20はそれぞれ、自身の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や無線中継局での処理を自律制御してもよい。
 また、HAPS10,20それぞれの浮揚移動(飛行)や無線中継局での処理は、移動通信網80の通信センター等に設けられた通信オペレータの遠隔制御装置85によって制御できるようにしてもよい。この場合、HAPS10,20は、遠隔制御装置85からの制御情報を受信できるように端末通信装置(例えば、移動通信モジュール)が組み込まれ、遠隔制御装置85から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。また、HAPS10,20はそれぞれ、自身又は周辺のHAPSの浮揚移動(飛行)や無線中継局での処理に関する情報を遠隔制御装置85等の所定の送信先に送信するようにしてもよい。
 セル形成目標空域40では、HAPS10,20のビーム100,200が通過していない領域(3次元セル41,42が形成されない領域)が発生するおそれがある。この領域を補完するため、図1の構成例のように、地上側又は海上側から上方に向かって放射状のビーム300を形成して3次元セル43を形成してATG(Air To Ground)接続を行う基地局(以下「ATG局」という。)30を備えてもよい。
 また、ATG局を用いずに、HAPS10,20の位置やビーム100,200の発散角(ビーム幅)等を調整することにより、HAPS10,20の無線中継局が、セル形成目標空域40に3次元セルがくまなく形成されるように、セル形成目標空域40の上端面の全体をカバーするビーム100,200を形成してもよい。
 図2は、他の実施形態に係る3次元化ネットワークを実現する通信システムの全体構成の一例を示す概略構成図である。図2の例では、3次元化ネットワークが形成される場所が、地面(GL)の起伏があって標高が変動している内陸部や山岳地帯の場合の例である。この場合、地面の標高にかかわらず、地面(GL)からのセル形成目標空域40の相対的な高度が一定に維持されるように、下方に位置する地面の標高(地形データ)に基づいてHAPS10の高度が制御される。例えば、標高が低い平野部ではHAPS10の高度を20[km]に制御し、平地よりも3000[m]ほど標高が高い山岳地帯ではHAPS10の高度を23[km]に制御する。これにより、平野部及び山岳地帯のいずれにおいても、地面から高さが一定のほぼ同じサイズの3次元セル41を形成することができ、セル形成目標空域40の上端面におけるビーム100のスポットの大きさも一定に維持することができる。また、HAPS10は、HAPS10の高度の制御に代えて又はその高度の制御に加えて、下方の地面に起伏に応じて、ほぼ同じサイズの3次元セル41を形成するように、ビーム100の発散角(ビーム幅)やビームの方向を微調整(トラッキング)してもよい。
 図3は、実施形態の3次元化ネットワークを実現するHAPS10,20の位置と各HAPS10,20で形成するビーム100,200と3次元セル41,42との関係を示す説明図である。HAPS10,20による3次元セル41,42の形成は、例えば以下のように制御される。
 HAPS10(無線中継局)の高度をHrs1[m]とし、セル形成目標空域40の上端の高度をHcu[m]とすると、HAPS10とセル形成目標空域40の上端との高度差はΔH1=Hrs1-Hcu[m]である。HAPS10から鉛直方向の下方に向けて形成される円錐状のビーム100の発散角をθ1[rad]とすると、セル形成目標空域40の上端におけるビーム100の半径R1[m]は次式(3)で表される。
Figure JPOXMLDOC01-appb-M000005
 また、HAPS20(無線中継局)の高度をHrs2[m]とすると、HAPS20とセル形成目標空域40の上端との高度差はΔH2=Hrs2-Hcu[m]である。HAPS20から鉛直方向の下方に向けて形成される円錐状のビーム200の発散角をθ2[rad]とすると、セル形成目標空域40の上端におけるビーム200の半径R2[m]は次式(4)で表される。
Figure JPOXMLDOC01-appb-M000006
 HAPS10(無線中継局)とHAPS20(無線中継局)の水平方向の間隔をDrs[m]とすると、HAPS10,20のビーム100,200によってセル形成目標空域40の上端面の全体をカバーするための条件式は、次式(5)のようになる。
Figure JPOXMLDOC01-appb-M000007
 ここで、HAPS10の高度Hrs1及びHAPS20の高度Hrs1が同一高度(Hrs)であり、各ビームの発散角θ1、θ2が同一角度(θ)であると仮定すると、HAPS10,20のビーム100,200によってセル形成目標空域40の上端面の全体をカバーするための条件式は、次式(6)のようになる。
Figure JPOXMLDOC01-appb-M000008
 上記式(5)又は式(6)を満たすように、各HAPS10,20の高度、ビーム100,200の発散角(ビーム幅)及びHAPS10,20の水平方向の間隔Drsの少なくとも一つを調整・制御することにより、HAPS10,20のビーム100,200によってセル形成目標空域40の上端面の全体をカバーすることができる。
 なお、HAPS10,20のビーム100,200それぞれの中心線の向きが鉛直方向から傾いている場合は、その傾きの角度を考慮して上記条件式(5)及び(6)を導出して設定すればよい。
 また、HAPS10,20の無線中継局と端末装置との間で無線信号(電波)を所定強度で受信できる最大到達可能距離は有限(例えば100[km])である。その最大到達可能距離をLmax[m]とし、セル形成目標空域40の下端の高度をHcl[m]すると、HAPS10,20それぞれとセル形成目標空域40の下端に位置する端末装置とが互いに通信することができる条件式は、次式(7)及び(8)で表される。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 ここで、HAPS10の高度Hrs1及びHAPS20の高度Hrs1が同一高度(Hrs)であり、各ビームの発散角θ1、θ2が同一角度(θ)であると仮定すると、HAPS10,20それぞれとセル形成目標空域40の下端に位置する端末装置とが互いに通信することができる条件式は、次式(9)のようになる。
Figure JPOXMLDOC01-appb-M000011
 上記式(7),(8)又は式(9)を満たすように、各HAPS10,20の高度及びビーム100,200の発散角(ビーム幅)の少なくとも一つを調整・制御することにより、HAPS10,20それぞれとセル形成目標空域40の下端に位置する端末装置とが確実に通信することができる。
 なお、上記HAPS10,20で形成する3次元セルは、地上又は海上に位置する端末装置との間でも通信できるよう地面又は海面に達するように形成してもよい。
 図4は、実施形態の通信システムに用いられるHAPS10の一例を示す斜視図である。図4のHAPS10はソーラープレーンタイプのHAPSである。上面に太陽光発電機能を有する太陽光発電部としてのソーラパネル102が設けられ長手方向の両端部側が上方に沿った主翼部101と、主翼部101の短手方向の一端縁部にバス動力系の推進装置としての複数のモータ駆動のプロペラ103とを備える。主翼部101の下面の長手方向の2箇所には、板状の連結部104を介して、ミッション機器が収容される複数の機器収容部としてのポッド105が連結されている。各ポッド105の内部には、ミッション機器としての無線中継局110と、バッテリー106とが収容されている。また、各ポッド105の下面側には離発着時に使用される車輪107が設けられている。ソーラパネル102で発電された電力はバッテリー106に蓄電され、バッテリー106から供給される電力により、プロペラ103のモータが回転駆動され、無線中継局110による無線中継処理が実行される。
 ソーラープレーンタイプのHAPS10は、例えば旋回飛行を行ったり8の字飛行を行ったりすることにより揚力で浮揚し、所定の高度で水平方向の所定の範囲に滞在するように浮揚することができる。なお、ソーラープレーンタイプのHAPS10は、プロペラ103が回転駆動されていないときは、グライダーのように飛ぶこともできる。例えば、昼間などのソーラパネル102の発電によってバッテリー106の電力が余っているときに高い位置に上昇し、夜間などのソーラパネル102で発電できないときにバッテリー106からモータへの給電を停止してグライダーのように飛ぶことができる。
 図5は、実施形態の通信システムに用いられるHAPS20の他の例を示す斜視図である。図4のHAPS20は、無人飛行船タイプのHAPSであり、ペイロードが大きいため大容量のバッテリーを搭載することができる。HAPS20は、浮力で浮揚するためのヘリウムガス等の気体が充填された飛行船本体201と、バス動力系の推進装置としてのモータ駆動のプロペラ202と、ミッション機器が収容される機器収容部203とを備える。機器収容部203の内部には、無線中継局210とバッテリー204とが収容されている。バッテリー204から供給される電力により、プロペラ202のモータが回転駆動され、無線中継局210による無線中継処理が実行される。
 なお、飛行船本体201の上面に、太陽光発電機能を有するソーラパネルを設け、ソーラパネルで発電された電力をバッテリー204に蓄電するようにしてもよい。
 図6は、実施形態のHAPS10,20の無線中継局110,210の一構成例を示すブロック図である。図6の無線中継局110,210はリピータータイプの無線中継局の例である。無線中継局110,210はそれぞれ、3Dセル(3次元セル)形成アンテナ部111と送受信部112とフィード用アンテナ部113と送受信部114とリピーター部115と監視制御部116と電源部117とを備える。
 3Dセル形成アンテナ部111は、セル形成目標空域40に向けて放射状のビーム100,200を形成するアンテナを有し、端末装置と通信可能な3次元セル41,42を形成する。送受信部112は、送受共用器(DUP:DUPlexer)や増幅器などを有し、3Dセル形成アンテナ部111を介して、3次元セル41,42に在圏する端末装置に無線信号を送信したり端末装置から無線信号を受信したりする。
 フィード用アンテナ部113は、地上又は海上のフィーダ局70と無線通信するための指向性アンテナを有する。送受信部114は、送受共用器(DUP:DUPlexer)や増幅器などを有し、3Dセル形成アンテナ部111を介して、フィーダ局70に無線信号を送信したりフィーダ局70から無線信号を受信したりする。
 リピーター部115は、端末装置との間で送受信される送受信部112の信号と、フィーダ局70との間で送受信される送受信部114の信号とを中継する。リピーター部115は、周波数変換機能を有してもよい。
 監視制御部116は、例えばCPU及びメモリ等で構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20内の各部の動作処理状況を監視したり各部を制御したりする。電源部117は、バッテリー106,204から出力された電力をHAPS10,20内の各部に供給する。電源部117は、太陽光発電パネル等で発電した電力や外部から給電された電力をバッテリー106,204に蓄電させる機能を有してもよい。
 図7は、実施形態のHAPS10,20の無線中継局110,210の他の構成例を示すブロック図である。図7の無線中継局110,210は基地局タイプの無線中継局の例である。なお、図7において、図6と同様な構成要素については同じ符号を付し、説明を省略する。図7の無線中継局110,210はそれぞれ、モデム部118を更に備え、リピーター部115の代わりに基地局処理部119を備える。
 モデム部118は、例えば、フィーダ局70からフィード用アンテナ部113及び送受信部114を介して受信した受信信号に対して復調処理及び復号処理を実行し、基地局処理部119側に出力するデータ信号を生成する。また、モデム部118は、基地局処理部119側から受けたデータ信号に対して符号化処理及び変調処理を実行し、フィード用アンテナ部113及び送受信部114を介してフィーダ局70に送信する送信信号を生成する。
 基地局処理部119は、例えば、LTE/LTE-Advancedの標準規格に準拠した方式に基づいてベースバンド処理を行うe-NodeBとしての機能を有する。基地局処理部119は、第5世代又は第5世代以降の次々世代等の将来の移動通信の標準規格に準拠する方式で処理するものであってもよい。
 基地局処理部119は、例えば、3次元セル41,42に在圏する端末装置から3Dセル形成アンテナ部111及び送受信部112を介して受信した受信信号に対して復調処理及び復号処理を実行し、モデム部118側に出力するデータ信号を生成する。また、基地局処理部119は、モデム部118側から受けたデータ信号に対して符号化処理及び変調処理を実行し、3Dセル形成アンテナ部111及び送受信部112を介して3次元セル41,42の端末装置に送信する送信信号を生成する。
 図8は、実施形態のHAPS10,20の無線中継局110,210の更に他の構成例を示すブロック図である。図8の無線中継局110,210はエッジコンピューティング機能を有する高機能の基地局タイプの無線中継局の例である。なお、図8において、図6、7と同様な構成要素については同じ符号を付し、説明を省略する。図8の無線中継局110,210はそれぞれ、図7の構成要素に加えてエッジコンピューティング部120を更に備える。
 エッジコンピューティング部120は、例えば小型のコンピュータで構成され、予め組み込まれたプログラムを実行することにより、HAPS10,20の無線中継局110,210における無線中継などに関する各種の情報処理を実行することができる。
 例えば、エッジコンピューティング部120は、3次元セル41,42に在圏する端末装置から受信したデータ信号に基づいて、そのデータ信号の送信先を判定し、その判定結果に基づいて通信の中継先を切り換える処理を実行する。より具体的には、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42に在圏する端末装置の場合は、そのデータ信号をモデム部118に渡さずに、基地局処理部119に戻して自身の3次元セル41,42に在圏する送信先の端末装置に送信するようにする。一方、基地局処理部119から出力されたデータ信号の送信先が自身の3次元セル41,42以外の他のセルに在圏する端末装置の場合は、そのデータ信号をモデム部118に渡してフィーダ局70に送信し、移動通信網80を介して送信先の他のセルに在圏する送信先の端末装置に送信するようにする。
 エッジコンピューティング部120は、3次元セル41,42に在圏する多数の端末装置から受信した情報を分析する処理を実行してもよい。この分析結果は3次元セル41,42に在圏する多数の端末装置に送信したり移動通信網80のサーバなどに送信したりしてもよい。
 無線中継局110、210を介した端末装置との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、無線中継局110、210を介した端末装置との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。また、上記無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、送受信両方で複数のアンテナを同時に利用することにより、単位周波数当たりの伝送容量を増やすことができるMIMO(多入力多出力:Multi-Input and Multi-Output)技術を用いてもよい。また、上記MIMO技術は、1つの基地局が1つの端末装置と同一時刻・同一周波数で複数の信号を送信するSU-MIMO(Single-User MIMO)技術でもよいし、1つの基地局が複数の異なる通信端末装置に同一時刻・同一周波数で信号を送信又は複数の異なる基地局が1つの端末装置に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術であってもよい。
 次に、高緯度の地域での使用に適した高緯度対応HAPSについて説明する。
 図9は、季節に応じた通常HAPS及び高緯度対応HAPSの選択利用の一例を示す説明図である。図9の高緯度地域55N,55Sでは、低緯度地域55Cよりも日照時間が短く気流が強いため給電力を高めた高緯度対応HAPSを用い、赤道直下地域を含む低緯度地域55Lでは低緯度対応の通常HAPS(例えば前述の図4のHAPS)を用いてもよい。
 また、高緯度地域55N,55Sと低緯度地域55Lとの境界線A,Bは季節によって変動するので、その境界線が変動する北回帰線周辺及び南回帰線周辺の中間緯度地域55MA,55MB(A-A’間の地域及びB-B’間の地域)では利用するHAPSを季節に応じて切り換えてもよい。例えば、夏の場合は境界線がA,Bの位置に移動するので、A-A’間の中間緯度地域55MAで通常HAPSを利用し、B-B’間の中間緯度地域55MBで高緯度対応HAPSを利用する。一方、冬の場合は境界線がA’,B’の位置に移動するので、A-A’間の中間緯度地域55MAで高緯度対応HAPSを利用し、B-B’間の中間緯度地域55MBで通常HAPSを利用する。
 図10は、高緯度対応HAPS(ソーラープレーンタイプ)11に対する遠隔エネルビービーム給電の様子の一例を示す説明図である。図10中のHAPS10において、図1と共通する構成要素については同じ符号を付し、説明を省略する。図10において、高緯度対応HAPS11は、主翼部101の長手方向の両端部側それぞれに受電用ポッド108を備えている。受電用ポッド108の内部には、遠隔エネルギービーム受電部としてのマイクロ波受電部130とバッテリー106とが収容されている。マイクロ波受電部130は、地上又は海上の給電装置としてのマイクロ波給電局75又は空中の給電装置としての給電用飛行船25から送信された高出力の給電用マイクロ波ビーム750又は250を受けて電力に変換して出力する。マイクロ波受電部130から出力された電力は、バッテリー106に蓄電される。
 給電用飛行船25は、例えば、気流にまかせてドリフトし、静止中のHAPSに順次、給電用マイクロ波ビームを送信して給電する。
 図11は、高緯度対応HAPS11のマイクロ波受電部130の一構成例を示すブロック図である。図11において、マイクロ波受電部130は、レクテナ部131とレクテナ制御部132と出力装置133とパイロット信号送信アンテナ部134とビーム方向制御部135とを備える。レクテナ部131は、地上又は海上のマイクロ波給電局75又は給電用飛行船25から送信された高出力の給電用マイクロ波ビーム750又は250を受けて整流する。レクテナ制御部132は、レクテナ部131による給電用マイクロ波ビームの受電処理及び整流処理を制御する。出力装置133は、レクテナ部131から出力される整流後の電力をバッテリー106に出力する。パイロット信号送信アンテナ部134は、給電用マイクロ波ビーム750又は250の受電に先立って、給電用マイクロ波ビームを案内するレーザビーム等からなるパイロット信号のビームを、マイクロ波給電局75又は給電用飛行船25に向けて送信する。ビーム方向制御部135は、パイロット信号のビームの方向を制御する。
 なお、図10及び図11の遠隔エネルギービーム給電では、エネルギービームとしてマイクロ波ビームを用いた場合について説明したが、レーザビームなどの他のエネルビービームを用いてもよい。
 図12は、ソーラ給電及び遠隔エネルビービーム給電に対応可能な高緯度対応HAPS11における給電制御系(エネルギー・マネージメント・システム)140の一構成例を示すブロック図である。高緯度対応HAPS11の給電制御系140は、バス動力系電源141とミッション系電源142と電力供給調整装置143と制御部144とを備える。バス動力系電源141は、モータ駆動のプロペラ103等のバス動力系に電力を供給し、ミッション系電源142は無線中継局110等の通信設備(ミッション系)に電力を供給する。電力供給調整装置143は、バッテリー106から出力される電力について、バス動力系電源141及びミッション系電源142それぞれへ供給する電力を調整する。制御部144は、バッテリー106からの電力の出力と、電力供給調整装置143による電力供給の調整と、バス動力系電源141及びミッション系電源142それぞれからの電力の出力とを制御する。
 図12の給電制御系(エネルギー・マネージメント・システム)140における制御は、次のように状況に応じたアルゴリズムにより効率的なエネルギーマネジメントを行うように実行する。例えば、バッテリー106に蓄電された電力を、制御部144からの指示により、電力供給調整装置143にて、バス動力系へ供給する電力とミッション系へ供給する電力のバランスを状況に応じて調整変更する。また、高緯度対応HAPS11で形成する3次元セル内にアクティブユーザ数(端末装置の数)が少ない場合は、ミッション系からバス動力系への給電量を融通して高緯度対応HAPS11の高度を上げて位置エネルギーとして蓄えるように制御してもよい。また、ミッション系が電力を必要とする場合には、バス動力系への供給量を減らし、高緯度対応HAPS11の飛行モードを位置エネルギーを利用したグライダーモードに移行するように制御してもよい。
 以上、本実施形態によれば、従来の地上の基地局90とは異なり、地面又は海面の所定高度範囲(例えば、50[m]以上1000[m]以下の高度範囲)のセル形成目標空域40に広域の3次元セル41,42を形成し、その3次元セル41,42に在圏する複数の端末装置と移動通信網80との通信を中継することができる。しかも、上記3次元セル41,42を形成するHAPS10,20は、人工衛星よりも低い高度(例えば成層圏の高度)に位置するので、3次元セル41,42に在圏する端末装置と移動通信網80との間の無線通信における伝搬遅延が、人工衛星を介した衛星通信の場合よりも小さい。このように3次元セル41,42を形成できるとともに無線通信の伝搬遅延が低いので、無線通信の伝搬遅延が低い第5世代移動通信の3次元化ネットワークを実現することができる。
 特に、本実施形態によれば、高緯度対応HAPS11を用いることにより、高緯度地域においても、無線通信の伝搬遅延が低い第5世代移動通信の3次元化ネットワークを長期間にわたって安定的に実現することができる。
 なお、本明細書で説明された処理工程並びに無線中継局、フィーダ局、遠隔制御装置、端末装置(ユーザ装置、移動局、通信端末)及び基地局における基地局装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
 ハードウェア実装については、実体(例えば、無線中継局、フィーダ局、基地局装置、無線中継装置、端末装置(ユーザ装置、移動局、通信端末)、遠隔制御装置、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
 また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
 10 HAPS(ソーラープレーンタイプ)、通常HAPS
 11 高緯度対応HAPS(ソーラープレーンタイプ)
 20 HAPS(飛行船タイプ)
 25 給電用飛行船
 30 ATG局
 40 セル形成目標空域
 41,42,43 3次元セル
 50 HAPSが位置する空域
 60 ドローン
 65 飛行機
 70 フィーダ局
 75 マイクロ波給電局
 80 移動通信網
 85 遠隔制御装置
 100,200,300 ビーム
 101 主翼部
 102 太陽光発電パネル
 103 プロペラ
 104 連結部
 105 ポッド
 106 バッテリー
 107 車輪
 108 受電用ポッド
 110,210 無線中継局
 111 3次元(3D)セル形成アンテナ部
 112 送受信部
 113 フィード用アンテナ部
 114 送受信部
 115 リピーター部
 116 監視制御部
 117 電源部
 118 モデム部
 119 基地局処理部
 120 エッジコンピューティング部
 130 遠隔エネルギービーム受電部
 131 レクテナ部
 132 レクテナ制御部
 133 出力装置
 134 パイロット信号送信アンテナ部
 135 ビーム方向制御部
 140 給電制御系
 141 バス動力系電源
 142 ミッション系電源
 143 電力供給調整装置
 144 制御部
 201 飛行船本体
 202 プロペラ
 203 機器収容部
 204 バッテリー
 205 マイクロ波ビーム送電部
 250,750 給電用マイクロ波ビーム

Claims (27)

  1.  端末装置との無線通信を中継する無線中継局を備える通信システムであって、
     前記無線中継局は、自律制御又は外部から制御により高度が100[km]以下の浮揚空域に位置するように制御される浮揚体に設けられ、
     前記浮揚体が前記浮揚空域に位置するとき、前記無線中継局は、地面又は海面との間の所定のセル形成目標空域に3次元セルを形成することを特徴とする通信システム。
  2.  請求項1の通信システムにおいて、
     前記浮揚体に設けられた無線中継局を複数備え、
     前記複数の無線中継局はそれぞれ、前記端末装置と無線通信するためのビームを地面又は海面に向けて形成し、
     前記セル形成目標空域において互いに隣り合う複数のビームは部分的に重なっていることを特徴とする通信システム。
  3.  請求項2の通信システムにおいて、
     前記複数のビームは、前記セル形成目標空域の上端面の全体をカバーするように形成されていることを特徴とする通信システム。
  4.  請求項3の通信システムにおいて、
     前記複数のビームは円錐状に形成され、そのビームの発散角をθ[rad]とし、前記浮揚体の無線中継局の高度をHrs[m]とし、前記複数の無線中継局の水平方向の間隔をDrs[m]とし、前記セル形成目標空域の上端の高度をHcu[m]としたとき、次式(1)を満たすことを特徴とする通信システム。
    Figure JPOXMLDOC01-appb-M000001
     
  5.  請求項4の通信システムにおいて、
     前記セル形成目標空域の下端の高度をHcl[m]とし、前記浮揚体の無線中継局と前記端末装置との間の無線信号の最大到達可能距離をLmax[m]としたとき、次式(2)を満たすことを特徴とする通信システム。
    Figure JPOXMLDOC01-appb-M000002
     
  6.  請求項1乃至5のいずれかの通信システムにおいて、
     端末装置と無線通信するためのビームを前記セル形成目標空域に向けて形成する地上又は海上の無線中継局を備えることを特徴とする通信システム。
  7.  請求項6の通信システムにおいて、
     前記地上又は海上の無線中継局は、前記セル形成目標空域のうち前記浮揚体側の無線中継局で形成されるビームが通過しない部分にビームを形成することを特徴とする通信システム。
  8.  請求項1乃至7のいずれかの通信システムにおいて、
     前記浮揚体の無線中継局と直接に又は人工衛星を介して無線通信する地上又は海上のフィーダ局を備えることを特徴とする通信システム。
  9.  請求項1乃至8のいずれかの通信システムにおいて、
     前記浮揚体及び前記無線中継局の少なくとも一方を遠隔的に制御する遠隔制御装置を備えることを特徴とする通信システム。
  10.  請求項1乃至9のいずれかの通信システムにおいて、
     前記無線中継局が設けられた浮揚体は、その浮揚体の下方に位置する地面の標高に基づいて、該地面に対する前記セル形成目標空域における3次元セルの高度が所定高度に維持されるように位置制御されることを特徴とする通信システム。
  11.  請求項1乃至10のいずれかの通信システムにおいて、
     前記浮揚体に設けられた無線中継局の位置、その無線中継局によって形成されるビームの方向及び広がり角度並びに制御する遠隔制御装置を備えることを特徴とする通信システム。
  12.  請求項1乃至11のいずれかの通信システムにおいて、
     前記セル形成目標空域の高度は10[km]以下であることを特徴とする通信システム。
  13.  請求項12の通信システムにおいて、
     前記セル形成目標空域の高度は50[m]以上1[km]以下であることを特徴とする通信システム。
  14.  請求項1乃至13のいずれかの通信システムにおいて、
     前記無線中継局を設けた浮揚体は、高度が11[km]以上及び50[km]以下の成層圏に位置することを特徴とする通信システム。
  15.  請求項1乃至14のいずれかの通信システムにおいて、
     前記無線中継局は、移動体通信網の基地局であることを特徴とする通信システム。
  16.  請求項1乃至14のいずれかの通信システムにおいて、
     前記無線中継局は、リピータであることを特徴とする通信システム。
  17.  請求項1乃至16のいずれかの通信システムにおいて、
     前記無線中継局は、エッジコンピューティング部を有することを特徴とする通信システム。
  18.  請求項1乃至17のいずれかの通信システムにおいて、
     前記浮揚体は、前記無線中継局に電力を供給するバッテリーを備えることを特徴とする通信システム。
  19.  請求項1乃至18のいずれかの通信システムにおいて、
     前記浮揚体は、前記無線中継局に供給する電力を発電する太陽光発電装置を備えることを特徴とする通信システム。
  20.  請求項1乃至19のいずれかの通信システムにおいて、
     前記浮揚体は、前記無線中継局に供給する電力を発電する太陽光発電パネルが設けられた翼と前記翼に設けられた回転駆動可能なプロペラとを備えたソーラープレーン、又は、前記無線中継局に電力を供給するバッテリーを備えた飛行船であることを特徴とする通信システム。
  21.  端末装置との無線通信を中継する無線中継局が設けられた浮揚体であって、
     自律制御又は外部から制御により高度が100[km]以下の浮揚空域に位置するように制御され、
     前記浮揚体が前記浮揚空域に位置するとき、前記無線中継局は、地面又は海面との間の所定のセル形成目標空域に3次元セルを形成することを特徴とする浮揚体。
  22.  請求項21の浮揚体において、
     前記浮揚体の下方に位置する地面の標高に基づいて、該地面に対する前記セル形成目標空域における3次元セルの高度が所定高度に維持されるように位置制御されることを特徴とする浮揚体。
  23.  請求項21又は22の浮揚体において、
     前記セル形成目標空域の高度は10[km]以下であることを特徴とする浮揚体。
  24.  請求項21乃至23のいずれかの浮揚体において、
     高度が11[km]以上及び50[km]以下の成層圏に位置することを特徴とする浮揚体。
  25.  請求項21乃至24のいずれかの浮揚体において、
     前記無線中継局は、移動体通信網の基地局又はリピータであることを特徴とする浮揚体。
  26.  請求項21乃至25のいずれかの浮揚体において、
     前記無線中継局に電力を供給するバッテリー及び前記無線中継局に供給する電力を発電する太陽光発電装置の少なくとも一方を備えることを特徴とする浮揚体。
  27.  請求項21乃至26のいずれかの通信システムにおいて、
     前記無線中継局に供給する電力を発電する太陽光発電パネルが設けられた翼と前記翼に設けられた回転駆動可能なプロペラとを備えたソーラープレーン、又は、前記無線中継局に電力を供給するバッテリーを備えた飛行船であることを特徴とする浮揚体。
PCT/JP2018/010663 2017-03-21 2018-03-17 第5世代通信の3次元化 WO2018173983A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020197029269A KR102067370B1 (ko) 2017-03-21 2018-03-17 제5세대 통신의 3차원화
EP18771822.6A EP3606128B1 (en) 2017-03-21 2018-03-17 Three dimensionalization of fifth generation communication
US16/491,345 US10651922B2 (en) 2017-03-21 2018-03-17 Three-dimensionalization of fifth generation communication
CN201880019917.2A CN110506431B (zh) 2017-03-21 2018-03-17 第五代通信的三维化
CA3057281A CA3057281C (en) 2017-03-21 2018-03-17 Three-dimensionalization of fifth generation communication
AU2018237814A AU2018237814C1 (en) 2017-03-21 2018-03-17 Three-dimensionalization of fifth generation communication
BR112019019093-7A BR112019019093B1 (pt) 2017-03-21 2018-03-17 sistema de comunicação, objeto flutuante, aparelho de controle remoto e método para usar o objeto flutuante
IL268989A IL268989B (en) 2017-03-21 2019-08-28 Three dimensionalization of fifth generation communication
ZA2019/06075A ZA201906075B (en) 2017-03-21 2019-09-13 Three dimensionalization of fifth generation communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054957A JP6580082B2 (ja) 2017-03-21 2017-03-21 通信システム、遠隔制御装置、浮揚体、及び浮揚体を使用する方法
JP2017-054957 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173983A1 true WO2018173983A1 (ja) 2018-09-27

Family

ID=63584329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010663 WO2018173983A1 (ja) 2017-03-21 2018-03-17 第5世代通信の3次元化

Country Status (12)

Country Link
US (1) US10651922B2 (ja)
EP (1) EP3606128B1 (ja)
JP (1) JP6580082B2 (ja)
KR (1) KR102067370B1 (ja)
CN (1) CN110506431B (ja)
AU (1) AU2018237814C1 (ja)
BR (1) BR112019019093B1 (ja)
CA (1) CA3057281C (ja)
IL (1) IL268989B (ja)
MA (1) MA49266A (ja)
WO (1) WO2018173983A1 (ja)
ZA (1) ZA201906075B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6689802B2 (ja) * 2017-09-14 2020-04-28 ソフトバンク株式会社 通信中継装置、システム及び管理装置
JP6689804B2 (ja) * 2017-09-19 2020-04-28 ソフトバンク株式会社 通信中継装置、システム及び管理装置
JP6643409B2 (ja) * 2018-06-22 2020-02-12 Hapsモバイル株式会社 無線通信サービスを提供する飛行体の編隊飛行及び通信エリア等制御
JP2020072417A (ja) * 2018-11-01 2020-05-07 ソフトバンク株式会社 移動局、飛行体及び移動通信システム
JP7249890B2 (ja) * 2019-06-14 2023-03-31 Hapsモバイル株式会社 アンテナ制御装置、プログラム、システム、及び制御方法
CN111611071B (zh) * 2020-04-21 2021-09-07 中国人民解放军军事科学院国防科技创新研究院 星-云-边-端架构的卫星系统及其数据处理方法
US11510102B2 (en) 2020-11-18 2022-11-22 At&T Intellectual Property I, L.P. Smart self cell configuration for aerial base station over 4G/5G network
JP2022110534A (ja) * 2021-01-18 2022-07-29 Hapsモバイル株式会社 制御装置、プログラム、システム、及び制御方法
CN113566794B (zh) * 2021-07-14 2022-10-21 河海大学 一种洋面流轨迹追踪系统及其追踪方法
WO2023010224A1 (en) * 2021-08-06 2023-02-09 Metasat Inc. Systems and methods for deployable and reusable networks of autonomous vehicles
JP7297173B1 (ja) 2023-01-26 2023-06-23 ソフトバンク株式会社 通信制御装置、プログラム、飛行体、及び通信制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066138A (ja) * 1996-08-21 1998-03-06 N T T Ido Tsushinmo Kk 移動通信システム
US20160050011A1 (en) * 2014-08-18 2016-02-18 Sunlight Photonics Inc. Distributed airborne communication systems
US20160046387A1 (en) * 2014-08-18 2016-02-18 Sunlight Photonics Inc. Methods and apparatus for a distributed airborne wireless communications fleet
US20160119052A1 (en) * 2014-10-27 2016-04-28 At&T Intellectual Property I, L.P. Techniques for In-Flight Connectivity
US20160156406A1 (en) * 2014-08-18 2016-06-02 Sunlight Photonics Inc. Distributed airborne wireless communication services
US20170064037A1 (en) * 2015-08-28 2017-03-02 Qualcomm Incorporated Small cell edge computing platform

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206601A1 (en) * 1985-06-10 1986-12-30 Slidex Corporation Propulsion apparatus for displaying a model
US6628941B2 (en) * 1999-06-29 2003-09-30 Space Data Corporation Airborne constellation of communications platforms and method
JP4040444B2 (ja) * 2002-12-06 2008-01-30 キヤノン株式会社 無線アクセスポイント装置、電源供給方法、及びそのためのプログラム
US7789339B2 (en) * 2005-07-07 2010-09-07 Sommer Geoffrey S Modular articulated-wing aircraft
US8334816B2 (en) * 2008-08-01 2012-12-18 Raytheon Company Rectenna cover for a wireless power receptor
US20100157826A1 (en) * 2008-12-19 2010-06-24 Telefonaktiebolaget Lm Local communication between mobile stations via one or more relay stations
US9030161B2 (en) * 2011-06-27 2015-05-12 Board Of Regents, The University Of Texas System Wireless power transmission
IN2014DN03208A (ja) * 2011-10-12 2015-05-22 Engineered Propulsion Systems Inc
US9014704B2 (en) * 2013-03-15 2015-04-21 Smartsky Networks LLC Concentric cells in a wireless communication system
JP6170173B2 (ja) * 2013-10-23 2017-07-26 ジヤトコ株式会社 無段変速機の制御装置
US9847828B2 (en) * 2013-12-18 2017-12-19 X Development Llc Adjusting beam width of air-to-ground communications based on distance to neighbor balloon(s) in order to maintain contiguous service
US9596020B2 (en) 2014-08-18 2017-03-14 Sunlight Photonics Inc. Methods for providing distributed airborne wireless communications
JP2016058929A (ja) * 2014-09-10 2016-04-21 ソフトバンク株式会社 緊急通報方法、航空基地局及び緊急通報プログラム
US9571180B2 (en) 2014-10-16 2017-02-14 Ubiqomm Llc Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access
US9712228B2 (en) * 2014-11-06 2017-07-18 Ubiqomm Llc Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access
US9491635B2 (en) * 2015-01-13 2016-11-08 Smartsky Networks LLC Architecture for simultaneous spectrum usage by air-to-ground and terrestrial networks
KR101755092B1 (ko) * 2015-02-27 2017-07-19 광운대학교 산학협력단 무선 네트워크를 위한 무인 비행체, 무인 비행체 시스템 및 그 제어 방법
CN105306131A (zh) * 2015-10-19 2016-02-03 深圳如果技术有限公司 一种移动信号增强系统及方法
JP6582123B2 (ja) 2016-03-23 2019-09-25 クラリオン株式会社 車載装置および車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066138A (ja) * 1996-08-21 1998-03-06 N T T Ido Tsushinmo Kk 移動通信システム
US20160050011A1 (en) * 2014-08-18 2016-02-18 Sunlight Photonics Inc. Distributed airborne communication systems
US20160046387A1 (en) * 2014-08-18 2016-02-18 Sunlight Photonics Inc. Methods and apparatus for a distributed airborne wireless communications fleet
US20160156406A1 (en) * 2014-08-18 2016-06-02 Sunlight Photonics Inc. Distributed airborne wireless communication services
US20160119052A1 (en) * 2014-10-27 2016-04-28 At&T Intellectual Property I, L.P. Techniques for In-Flight Connectivity
US20170064037A1 (en) * 2015-08-28 2017-03-02 Qualcomm Incorporated Small cell edge computing platform

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP TS 36.300, December 2014 (2014-12-01)
3GPP TS 36.300, September 2016 (2016-09-01)
ERICSSON: "Motivation for Study on Enhanced LTE Support for Aerial Vehicles", 3GPP TSG RAN #74 RP-162039, 29 November 2016 (2016-11-29), pages 2 - 4, XP051183472 *
G ROMANO: "3GPP RAN progress on ''5G", 3GPP, 2016
See also references of EP3606128A4

Also Published As

Publication number Publication date
IL268989A (en) 2019-10-31
CN110506431B (zh) 2022-05-27
MA49266A (fr) 2021-03-17
AU2018237814A1 (en) 2019-09-19
EP3606128B1 (en) 2022-05-04
KR20190118673A (ko) 2019-10-18
US20200028570A1 (en) 2020-01-23
CN110506431A (zh) 2019-11-26
US10651922B2 (en) 2020-05-12
BR112019019093B1 (pt) 2020-10-20
BR112019019093A2 (pt) 2020-04-07
KR102067370B1 (ko) 2020-01-16
IL268989B (en) 2020-04-30
CA3057281A1 (en) 2018-09-27
EP3606128A1 (en) 2020-02-05
ZA201906075B (en) 2021-04-28
JP6580082B2 (ja) 2019-09-25
JP2018157522A (ja) 2018-10-04
AU2018237814C1 (en) 2020-05-28
AU2018237814B2 (en) 2019-10-03
EP3606128A4 (en) 2021-03-17
CA3057281C (en) 2020-11-17

Similar Documents

Publication Publication Date Title
JP6580082B2 (ja) 通信システム、遠隔制御装置、浮揚体、及び浮揚体を使用する方法
JP6615827B2 (ja) 通信システム及び遠隔制御装置
WO2019155872A1 (ja) Haps協調飛行システム
US10985839B2 (en) 3D-compatible directional optical antenna
JP2019135823A (ja) フィーダリンクを利用した無線中継装置の監視
WO2019235324A1 (ja) Hapsのフィーダリンクに用いる電波資源の有効活用及びhapsのセル最適化
WO2018198593A1 (ja) ソーラープレーン・エナジーハーベスト・マネジメント
WO2019151055A1 (ja) 飛行体への無線電力供給システム
WO2019235329A1 (ja) Hapsの飛行制御用通信回線を介した遠隔制御によるセル最適化
WO2018173984A1 (ja) 高緯度地域に対応する第5世代通信の3次元化
OA19796A (en) Three dimensionalization of fifth generation communication.
OA19809A (en) Inter-HAPS communication that builds three-dimensionally formed network of fifthgeneration communication, and large-capacity and multi-cell captive airship-type HAPS.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018237814

Country of ref document: AU

Date of ref document: 20180317

Kind code of ref document: A

Ref document number: 3057281

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019093

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197029269

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018771822

Country of ref document: EP

Effective date: 20191021

ENP Entry into the national phase

Ref document number: 112019019093

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190913