WO2018173955A1 - 画像表示装置、虚像表示装置、移動体 - Google Patents

画像表示装置、虚像表示装置、移動体 Download PDF

Info

Publication number
WO2018173955A1
WO2018173955A1 PCT/JP2018/010495 JP2018010495W WO2018173955A1 WO 2018173955 A1 WO2018173955 A1 WO 2018173955A1 JP 2018010495 W JP2018010495 W JP 2018010495W WO 2018173955 A1 WO2018173955 A1 WO 2018173955A1
Authority
WO
WIPO (PCT)
Prior art keywords
fresnel lens
light
display device
image display
liquid crystal
Prior art date
Application number
PCT/JP2018/010495
Other languages
English (en)
French (fr)
Inventor
陽介 淺井
圭司 杉山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018173955A1 publication Critical patent/WO2018173955A1/ja

Links

Images

Definitions

  • the present disclosure generally relates to an image display device, a virtual image display device, and a moving body, and more specifically, includes an image display device that displays an image on a liquid crystal panel, a virtual image display device including the image display device, and a virtual image display device. Related to moving objects.
  • Patent Document 1 discloses a light source unit.
  • the light source unit of Patent Literature 1 includes a liquid crystal panel and an illumination device disposed behind the liquid crystal panel.
  • the illumination device includes a surface light source (light source device) formed by two-dimensionally arranging a plurality of LEDs (light emitting diodes), a condensing unit that converts light from the surface light source into substantially parallel light, and a light diffusing unit.
  • the light collecting means is composed of Fresnel lenses provided at positions corresponding to the respective LEDs, and the light diffusing means is arranged with a Fresnel lens having a smaller diameter than the Fresnel lens of the light collecting means at a higher density than the light collecting means. Do it.
  • An object of the present disclosure is to provide an image display device that can display a high-quality image while being small, a virtual image display device that includes the image display device, and a moving body that includes the virtual image display device.
  • An image display device includes a light source device, a liquid crystal panel, and a Fresnel lens.
  • the light source device emits light
  • the liquid crystal panel has a display surface
  • the Fresnel lens includes the light source device and the light source device. Light from the light source device is diverged so that the incident angle of light to the liquid crystal panel increases from the center to the end of the liquid crystal panel.
  • the Fresnel lens has a Fresnel lens surface constituting a Fresnel lens that has a plurality of grooves and acts as a concave lens, and a surface that is on the opposite side of the Fresnel lens surface and does not satisfy the conditions for acting as a Fresnel lens. And a Fresnel lens surface.
  • the Fresnel lens surface is directed to the light source device, and the non-Fresnel lens surface is directed to the liquid crystal panel.
  • a virtual image display device includes the image display device, and a projection unit that projects a virtual image corresponding to the image onto a target space by light transmitted through the liquid crystal panel of the image display device.
  • a moving body includes the virtual image display device and a reflecting member that reflects light from the projection unit of the virtual image display device.
  • a small-sized image display device that can display a high-quality image
  • a virtual image display device that includes the image display device
  • a moving body that includes the virtual image display device
  • FIG. 1 is a conceptual diagram of an automobile including a virtual image display device including an image display device according to an embodiment.
  • FIG. 2 is a conceptual diagram showing a user's field of view when the virtual image display device is used.
  • FIG. 3 is a conceptual diagram for explaining the operation of the above virtual image display device.
  • FIG. 4 is an exploded perspective view of the above image display device.
  • FIG. 5 is a schematic diagram geometrically showing the optical path of the virtual image display device.
  • FIG. 6 is a schematic diagram of an image display apparatus according to a modification of the above.
  • a virtual image display device 10 including an image display device 110 includes, for example, a head-up display (HUD: Head-Up) used in an automobile 100 as a moving body. Display).
  • HUD Head-Up
  • Display a head-up display
  • the virtual image display device 10 is installed in the passenger compartment of the automobile 100 so as to project an image onto the windshield 101 of the automobile 100 from below.
  • the virtual image display device 10 is disposed in the dashboard 102 below the windshield 101.
  • the image reflected by the windshield 101 as a reflecting member is visually recognized by the user 200 (driver).
  • the user 200 visually recognizes the virtual image 300 projected on the target space 400 set in front of the automobile 100 (outside the vehicle) through the windshield 101.
  • the “virtual image” means an image that is formed so that an object is actually present by the diverging light beam when the light emitted from the virtual image display device 10 diverges by a reflector such as the windshield 101. Therefore, as shown in FIG. 2, the user 200 driving the automobile 100 can see the virtual image 300 projected by the virtual image display device 10 so as to overlap the real space spreading in front of the automobile 100. Therefore, according to the virtual image display device 10, for example, various driving support information such as vehicle speed information, navigation information, pedestrian information, forward vehicle information, lane departure information, and vehicle condition information is displayed as a virtual image 300.
  • the user 200 can visually recognize it.
  • the virtual image 300 is vehicle speed information, and information “53 km / h” is displayed as an example.
  • the user 200 can visually acquire the driving support information by only a slight line-of-sight movement from a state where the line-of-sight is directed in front of the windshield 101.
  • the virtual image 300 formed in the target space 400 is formed on a virtual surface 501 that intersects the optical axis 500 of the virtual image display device 10.
  • the optical axis 500 is along the road surface 600 in front of the automobile 100 in the target space 400 in front of the automobile 100.
  • a virtual surface 501 on which the virtual image 300 is formed is substantially perpendicular to the road surface 600. For example, when the road surface 600 is a horizontal plane, the virtual image 300 is displayed along the vertical plane.
  • the virtual image display device 10 includes an image display device 110, a projection unit 120, and a control unit 130.
  • the image display device 110 is used to display an image projected as a virtual image 300 in the target space 400.
  • the image display device 110 includes a light source device 20, a liquid crystal panel 30, an optical system 40, and a diffusion member 50.
  • the direction of each member will be described in association with the x, y, and z directions shown in FIG. 4 as necessary.
  • the x direction is a direction parallel to the length direction of the light guide plate 22 of the light source device 20.
  • the y direction is the width direction of the light guide plate 22, and the z direction is the thickness direction of the light guide plate 22.
  • FIG. 5 is a schematic diagram geometrically showing an optical path from the liquid crystal panel 30 through the projection unit 120 and the windshield 101 to the eye box 700 which is an area that the user 200 can visually recognize without missing the virtual image 300.
  • the light emitted from the liquid crystal panel 30 has a larger emission angle at the end than the center.
  • the angle of the light traveling direction with respect to the display surface of the liquid crystal panel 30 is preferably larger at the center than at the end ( ⁇ 1> ⁇ 2).
  • the Fresnel lens 41 (see FIG. 4) is used in order to achieve such an orientation of emitted light.
  • the Fresnel lens has a periodic structure, moire may occur in the image of the liquid crystal panel 30. Further, the shadow of the groove 4111 (see FIG. 4) of the Fresnel lens 41 may appear in the image. These can cause deterioration of image quality. According to the virtual image display device 10 of the present embodiment, a small virtual image display device 10 can be realized while reducing the influence of the shadow of the groove 4111 of the Fresnel lens 41.
  • the light source device 20 is a surface light source used as a backlight of the liquid crystal panel 30.
  • the light source device 20 is a side light type light source device. As illustrated in FIG. 4, the light source device 20 includes a light source unit 21, a light guide plate 22, and a reflection plate 23.
  • the light source unit 21 has a plurality of light sources arranged in a predetermined direction. As the light source, a solid light emitting element such as a light emitting diode or a laser diode is used.
  • the light guide plate 22 is used to guide light from the light source unit 21 to the liquid crystal panel 30.
  • the light guide plate 22 has a rectangular plate shape and is formed of a light transmissive material (for example, glass or resin).
  • One surface (side surface) in the length direction (x direction) of the light guide plate 22 is flat and serves as a light receiving surface 221 on which light from the light source unit 21 is incident.
  • One surface (front surface) of the light guide plate 22 in the thickness direction (z direction) is flat and serves as a light emitting surface 222 that intersects the light receiving surface 221 and emits light from the light receiving surface 221 toward the liquid crystal panel 30.
  • the light receiving surface 221 and the light emitting surface 222 are orthogonal to each other.
  • the other surface (rear surface) in the thickness direction (z direction) of the light guide plate 22 is an inclined surface 223 that is inclined so that the light guide plate 22 becomes thinner from one surface in the length direction (light receiving surface 221) toward the other surface. Yes.
  • the reflection plate 23 is formed on the inclined surface 223 of the light guide plate 22.
  • the reflection plate 23 is provided to reflect the light traveling in the light guide plate 22 toward the light emitting surface 222 side.
  • the reflecting plate 23 should just cover the area
  • the reflection plate 23 is provided in order to increase the utilization efficiency of light from the light source unit 21.
  • the light incident on the light guide plate 22 from the light receiving surface 221 repeats total reflection on the light emitting surface 222 and reflection on the reflecting plate 23, and the condition of total reflection on the light emitting surface 222 is not satisfied.
  • the light is emitted outward from the light emitting surface 222 of the light guide plate 22. In this way, the light source device 20 emits light from the light emitting surface 222 of the light guide plate 22.
  • the liquid crystal panel 30 has a rectangular plate shape as a whole.
  • the liquid crystal panel 30 has a display surface 31 on the front surface.
  • the display surface 31 includes a first direction (y direction) and a second direction (x direction) that are orthogonal to each other.
  • the display surface 31 has a rectangular shape whose dimension in the first direction (y direction) is smaller than that in the second direction (x direction). That is, the first direction is the horizontal direction of the display surface 31, and the second direction is the vertical direction of the display surface 31.
  • the liquid crystal panel 30 forms an image on the display surface 31 by selectively transmitting light from the light source device 20 disposed on the rear side of the liquid crystal panel 30.
  • the liquid crystal panel 30 is configured to transmit a component in the first direction (y direction) of the light from the light source device 20 to form an image on the display surface 31.
  • a component in the first direction (y direction) of the light from the light source device 20 is an incident surface (xz plane in FIG. 4, hereinafter, as necessary) orthogonal to the display surface 31 and parallel to the second direction (x direction). (Referred to as “reference incidence surface”). That is, the liquid crystal panel 30 transmits only the s component light on the reference incident surface.
  • Such a liquid crystal panel 30 generally includes a liquid crystal layer, a pair of alignment films sandwiching the liquid crystal layer, a pair of transparent electrodes for applying a voltage to the liquid crystal layer, a color filter for defining the color of each pixel, and a reference incidence A polarizing plate that transmits only the s component on the surface is provided. Since the structure of the liquid crystal panel 30 may be well known, detailed description thereof is omitted.
  • the optical system 40 and the diffusing member 50 are disposed between the light source device 20 and the liquid crystal panel 30 as shown in FIG.
  • the optical system 40 is disposed between the light source device 20 and the liquid crystal panel 30.
  • the diffusion member 50 is disposed between the optical system 40 and the liquid crystal panel 30. That is, the optical system 40 is closest to the light source device 20 among the optical system 40 and the diffusing member 50, and the diffusing member 50 is closest to the liquid crystal panel 30 among the optical system 40 and the diffusing member 50.
  • the optical system 40 is used for diverging light from the light source device 20 in a third direction that is parallel to the display surface 31 of the liquid crystal panel 30 and intersects the first direction (y direction).
  • the third direction is a direction (x direction) parallel to the length direction of the light guide plate 22 of the light source device 20. Therefore, the third direction is parallel to the second direction and is orthogonal to the first direction. Therefore, the component of light in the first direction (y direction) is the s component on the incident surface (xz plane) orthogonal to the display surface 31 and parallel to the third direction.
  • the optical system 40 includes a Fresnel lens 41 and a prism sheet 42.
  • the Fresnel lens 41 has a rectangular plate shape and is formed of a light-transmitting material (for example, glass or resin).
  • the Fresnel lens 41 is disposed so as to face the light emitting surface 222 of the light source device 20.
  • the Fresnel lens 41 functions as a diverging lens for diverging light from the light source device 20 in the third direction (x direction).
  • the first surface in the thickness direction (z direction) of the Fresnel lens 41 is a Fresnel lens surface 411.
  • the Fresnel lens surface 411 has a plurality of grooves 4111 and constitutes a Fresnel lens (concave Fresnel lens) that functions as a concave lens.
  • the Fresnel lens surface 411 may function as a concave lens at least in a cross section orthogonal to the width direction (y direction) of the Fresnel lens 41.
  • the Fresnel lens include a Fresnel lens having a plurality of circular grooves sharing the center (circular Fresnel lens) and a Fresnel lens having a plurality of linear grooves arranged in parallel (linear Fresnel lens).
  • the second surface in the thickness direction (z direction) of the Fresnel lens 41 is a non-Fresnel lens surface 412 on the opposite side to the Fresnel lens surface 411.
  • the non-Fresnel lens surface 412 is a surface that does not satisfy the conditions for acting as a Fresnel lens.
  • the non-Fresnel lens surface 412 is a non-grooved surface (a surface not having a periodic structure) such as a flat surface and a curved surface (convex surface and concave surface).
  • the non-Fresnel lens surface 412 is a flat surface.
  • the Fresnel lens 41 has a saw blade shape only on one side.
  • the Fresnel lens surface 411 is directed to the light source device 20, and the non-Fresnel lens surface 412 is directed to the liquid crystal panel 30.
  • the Fresnel lens 41 diverges the light from the light source device 20 in the length direction (x direction) of the Fresnel lens 41. That is, in the Fresnel lens 41, the light from the light source device 20 is increased so that the angle between the direction of light transmitted through the Fresnel lens 41 and the optical axis P 41 of the Fresnel lens 41 increases as the distance from the optical axis P 41 of the Fresnel lens 41 increases. Diverge. Thereby, the Fresnel lens 41 diverges the light from the light source device 20 so that the incident angle of the light to the liquid crystal panel 30 increases from the center to the end of the liquid crystal panel 30.
  • the Fresnel lens 41 of the present embodiment is not a lens array including a plurality of Fresnel lenses corresponding to a plurality of light sources of the light source device 20, but the light source device 20 including a plurality of light sources as one light source. It is a single lens that diverges the light.
  • the prism sheet 42 has a rectangular plate shape and is formed of a light-transmitting material (for example, glass or resin).
  • the prism sheet 42 is disposed between the Fresnel lens 41 and the light emitting surface 222 of the light source device 20.
  • the prism sheet 42 functions as an optical element having a deflection function for directing light from the light emitting surface 222 of the light source device 20 toward the Fresnel lens 41.
  • the first surface 421 in the thickness direction (z direction) of the prism sheet 42 is a prism surface, and the second surface 422 is a flat surface. The first surface 421 is directed to the light source device 20, and the second surface 422 is directed to the Fresnel lens 41.
  • a plurality of prisms extending in the width direction (y direction) of the prism sheet 42 are arranged in the length direction (x direction) of the prism sheet 42.
  • Each of the plurality of prisms has a triangular prism shape, and the tip angle thereof is, for example, 50 ° to 70 °. In the present embodiment, the tip angle is 60 °.
  • the diffusion member 50 diffuses light from the optical system 40.
  • the diffusion member 50 has a rectangular plate shape (sheet shape).
  • the diffusion member 50 is provided in order to suppress the occurrence of moire in the image of the liquid crystal panel 30.
  • the diffusing member 50 also exhibits an effect of making the brightness of the display surface 31 uniform. That is, according to the diffusing member 50, it is possible to expect an effect that the uniformity of light on the display surface 31 of the liquid crystal panel 30 can be improved.
  • the projection unit 120 uses a light transmitted through the liquid crystal panel 30 of the image display device 110 to generate a virtual image 300 (see FIG. 1) corresponding to an image (an image formed on the display surface 31 of the liquid crystal panel 30) in the target space 400 (see FIG. 1). 1).
  • the projection unit 120 includes a first mirror 121 and a second mirror 122.
  • the first mirror 121 reflects the light transmitted through the liquid crystal panel 30 of the image display device 110 toward the second mirror 122.
  • the second mirror 122 reflects the light from the first mirror 121 toward the windshield 101 (see FIG. 1). That is, the projection unit 120 projects the virtual image 300 on the target space 400 by projecting the image formed on the display surface 31 of the liquid crystal panel 30 of the image display device 110 onto the windshield 101.
  • the control unit 130 is configured to control the light source device 20 and the liquid crystal panel 30 of the image display device 110.
  • the controller 130 forms an image on the display surface 31 of the liquid crystal panel 30 by controlling the liquid crystal panel 30 and the light source device 20 based on the supplied image signal.
  • the control unit 130 can be configured by a conventionally known control circuit of a liquid crystal display.
  • the image display device 110 includes the Fresnel lens 41 between the light source device 20 and the liquid crystal panel 30.
  • the Fresnel lens 41 diverges the light from the light source device 20 so that the incident angle of light to the liquid crystal panel 30 increases from the center to the end of the liquid crystal panel 30. Therefore, light from the light source device 20 can be diverged while achieving a reduction in thickness as compared with the case of using a spherical lens or a cylindrical lens.
  • the Fresnel lens 41 is disposed between the light source device 20 and the liquid crystal panel 30 so that the Fresnel lens surface 411 faces the light source device 20 and the non-Fresnel lens surface 412 faces the liquid crystal panel 30.
  • the Fresnel lens surface 411 can be moved away from the display surface 31 of the liquid crystal panel 30. Therefore, the generation of moire can be suppressed, and the reflection of the groove 4111 on the Fresnel lens surface 411 can also be suppressed.
  • the image display device 110 it is possible to diverge the light from the light source device 20 while reducing the thickness, and to improve the image quality. That is, according to the image display device 110, it is possible to display a high-quality image while being small.
  • the image display device 110 further includes a diffusing member 50 between the Fresnel lens 41 and the liquid crystal panel 30, and the diffusing member 50 diffuses light from the Fresnel lens 41. Therefore, the occurrence of moire in the image can be suppressed, and the reflection of the shadow of the groove 4111 of the Fresnel lens surface 411 in the image can also be suppressed. Therefore, the image quality of the image formed on the display surface 31 can be improved.
  • the haze of the diffusing member 50 is larger, the generation of moire in the image can be suppressed, and the reflection of the shadow of the groove 4111 of the Fresnel lens surface 411 can be suppressed.
  • the haze of the diffusing member 50 is too large, the directivity of light transmitted through the liquid crystal panel 30 of the image display device 110 may deteriorate, and the display of a virtual image may be affected. Therefore, the haze of the diffusing member 50 is preferably as small as possible.
  • the greater the thickness of the Fresnel lens 41 the farther the Fresnel lens surface 411 moves away from the liquid crystal panel 30. Therefore, the occurrence of moire in the image can be suppressed, and the reflection of the shadow of the groove 4111 of the Fresnel lens surface 411 in the image can also be suppressed.
  • the thickness of the Fresnel lens 41 becomes too large, the amount of light transmitted through the Fresnel lens 41 decreases, so that the light use efficiency may be reduced, leading to an increase in the size of the image display device 110.
  • the interval (pitch) between the grooves 4111 of the Fresnel lens 41 is reduced, the difficulty of manufacturing the Fresnel lens 41 is increased. Therefore, there is a limit to reducing the interval (pitch) between the grooves 4111 of the Fresnel lens 41. There is.
  • the image display device 110 preferably satisfies the relational expression of H ⁇ d / p> 0.1.
  • Table 1 An example of a combination of H, d, and p is shown in Table 1 below. In the determination of Table 1 below, “good” indicates that the occurrence of moiré in the image could not be confirmed, and the reflection of the shadow of the groove 4111 of the Fresnel lens surface 411 could not be confirmed. “Average” indicates that there is no influence on the image quality although there is moire in the image and the shadow of the groove 4111 of the Fresnel lens surface 411 is reflected in the image.
  • H is 0.7 or less after satisfying the relational expression of Hd / p> 0.1.
  • H exceeds 0.7, the amount of transmitted light decreases and the brightness of the image display device 110 decreases.
  • p is preferably in the range of 0.1 to 1.0.
  • the value of p is less than 0.1, the influence of diffraction by the groove of the Fresnel lens becomes large, and the image quality is deteriorated.
  • d is preferably in the range of 0.1 to 10.0. When the value of d is less than 0.1, a sufficient lens effect cannot be achieved. On the other hand, if the value of d exceeds 10.0, the image display device 110 is increased in size.
  • the light source device 20 includes a light guide plate 22.
  • the light guide plate 22 includes a light receiving surface 221 on which light from the light source unit 21 is incident, and a light emitting surface 222 that intersects the light receiving surface 221 and emits light from the light receiving surface 221 toward the liquid crystal panel 30.
  • the light source device 20 can be thinned, and the image display device 110 as a whole can be thinned.
  • the virtual image display device 10 projects an image display device 110 and a virtual image 300 corresponding to the image onto the target space 400 by light transmitted through the liquid crystal panel 30 of the image display device 110. And comprising.
  • the image display device 110 it is possible to display a high-quality image while being small. Therefore, the virtual image display device 10 as a whole can be downsized.
  • the automobile (moving body) 100 includes a virtual image display device 10 and a reflection member 101 that reflects light from the projection unit 120 of the virtual image display device 10.
  • the image display device 110 it is possible to display a high-quality image while being small.
  • the overall size of the virtual image display device 10 can be reduced, and a space for arranging the virtual image display device 10 can be easily secured.
  • Embodiments of the present disclosure are not limited to the above-described embodiments.
  • the above embodiment can be variously modified according to the design and the like as long as the object of the present disclosure can be achieved.
  • the modification of the said embodiment is enumerated.
  • FIG. 6 shows a modified example of the image display device 110A.
  • the image display device 110 ⁇ / b> A includes a light source device 20 ⁇ / b> A, a liquid crystal panel 30, an optical system 40, and a diffusion member 50.
  • the light source device 20 ⁇ / b> A includes a light source unit 21 ⁇ / b> A and a lens 24.
  • the light source unit 21A is a surface light source having a plurality of light sources 210 arranged in a matrix.
  • a solid light emitting element such as a light emitting diode or a laser diode is used.
  • the lens 24 is disposed on the optical axis of the light source unit 21 ⁇ / b> A and is used to collect light from the light source unit 21 ⁇ / b> A on the liquid crystal panel 30. Even in such an image display device 110A, as with the image display device 110, it is possible to display a high-quality image while being small.
  • the component in the first direction does not necessarily have to be the s component on the incident surface that is orthogonal to the display surface 31 and parallel to the third direction.
  • the liquid crystal panel 30 may be a rectangle having a dimension in the first direction larger than that in the second direction, or may be a square.
  • the optical system 40 does not need to include the prism sheet 42 as long as the amount of light incident from the light source device 20 to the Fresnel lens 41 is within an allowable range. Further, the optical system 40 may include one or more other Fresnel lenses between the Fresnel lens 41 and the light source device 20.
  • the non-Fresnel lens surface 412 of the Fresnel lens 41 is a flat surface.
  • the non-Fresnel lens surface 412 may be a convex surface or a concave surface.
  • the degree of light divergence can be adjusted for the entire Fresnel lens 41.
  • the configurations of the projection unit 120 and the control unit 130 are not particularly limited, and conventionally known configurations can be employed.
  • the virtual image display device 10 is not limited to the configuration that projects the virtual image 300 onto the target space 400 set in front of the traveling direction of the automobile 100, for example, on the side, rear, or above in the traveling direction of the automobile 100.
  • the virtual image 300 may be projected.
  • the projection unit 120 may include a relay optical system for forming an intermediate image, or may not include a relay optical system.
  • the virtual image display device 10 is not limited to the head-up display used in the automobile 100, and can be applied to a moving body other than the automobile 100 such as a motorcycle, a train, an aircraft, a construction machine, and a ship. Further, the virtual image display device 10 is not limited to a moving body, and may be used in an amusement facility, for example. Further, the virtual image display device 10 may be used as a wearable terminal such as a head-mounted display (HMD), a medical facility, a stationary device, or an electronic viewfinder of a camera.
  • HMD head-mounted display
  • the image display device (110; 110A) of the first aspect includes a light source device (20; 20A) that emits light, a liquid crystal panel (30), and a Fresnel lens. (41).
  • the liquid crystal panel (30) has a display surface (31), and is configured to transmit light from the light source device (20; 20A) to form an image on the display surface (31).
  • the Fresnel lens (41) is between the light source device (20; 20A) and the liquid crystal panel (30), and toward the liquid crystal panel (30) from the center of the liquid crystal panel (30) toward the end.
  • the light from the light source device (20; 20A) is diverged so that the incident angle of the light becomes larger.
  • the Fresnel lens (41) has a Fresnel lens surface (411) and a non-Fresnel lens surface (412) on the opposite side of the Fresnel lens surface (411).
  • the Fresnel lens surface (411) constitutes a Fresnel lens having a plurality of grooves (4111) and acting as a concave lens.
  • the non-Fresnel lens surface (412) is a surface that does not satisfy the conditions for acting as a Fresnel lens.
  • the Fresnel lens surface (411) is directed to the light source device (20; 20A), and the non-Fresnel lens surface (412) is directed to the liquid crystal panel (30). According to the first aspect, it is possible to display a high-quality image while being small.
  • the image display device (110; 110A) of the second mode can be realized by a combination with the first mode.
  • the image display device (110; 110A) is located between the Fresnel lens (41) and the liquid crystal panel (30) and diffuses light from the Fresnel lens (41). (50) is further provided. According to the second aspect, it is possible to display a high-quality image while being small.
  • the image display device (110; 110A) of the third aspect can be realized by a combination with the second aspect.
  • the haze of the diffusing member (50) is H
  • the thickness of the Fresnel lens (41) is d
  • the interval between the plurality of grooves (4111) of the Fresnel lens (41) is p
  • Hd / p> 0.1 is satisfied. According to the third aspect, it is possible to display a high-quality image while being small.
  • the image display device (110) of the fourth aspect can be realized by a combination with any one of the first to third aspects.
  • the light source device (20) includes a light guide plate (22).
  • the light guide plate (22) intersects with the light receiving surface (221) on which light from the light source unit (21) enters, and intersects the light receiving surface (221), and transmits light from the light receiving surface (221) to the liquid crystal panel (30).
  • a light emitting surface (222) that emits toward the light source. According to the 4th aspect, thickness reduction of the whole image display apparatus (110) can be achieved.
  • the virtual image display device (10) of the fifth aspect includes the image display device (110; 110A) of any one of the first to fourth aspects, and a projection unit (120).
  • the projection unit (120) is configured to project a virtual image (300) corresponding to the image onto the target space (400) by light transmitted through the liquid crystal panel (30) of the image display device (110; 110A). Is done. According to the fifth aspect, it is possible to display a high-quality image while being small.
  • the moving body (100) according to the sixth aspect includes a virtual image display device (10) according to the fifth aspect and a reflecting member (101) that reflects light from the projection unit (120) of the virtual image display device (10). And comprising. According to the sixth aspect, it is possible to display a high-quality image while being small.

Abstract

画像表示装置(110)は、光源装置(20)と液晶パネル(30)との間にあるフレネルレンズ(41)を備える。フレネルレンズ(41)は、液晶パネル(30)の中央から端に向かうにつれて、液晶パネル(30)への光の入射角が大きくなるように、光源装置(20)からの光を発散させる。フレネルレンズ(41)は、複数の溝(4111)を有し凹レンズとして作用するフレネルレンズを構成するフレネルレンズ面(411)と、フレネルレンズ面(411)とは反対側にある、フレネルレンズとして作用する条件を満たしてない面である非フレネルレンズ面(412)と、を有する。フレネルレンズ面(411)は、光源装置(20)に向けられ、非フレネルレンズ面(412)は、液晶パネル(30)に向けられる。

Description

画像表示装置、虚像表示装置、移動体
 本開示は、一般に画像表示装置、虚像表示装置、及び移動体に関し、より詳細には、液晶パネル上に画像を表示する画像表示装置、画像表示装置を備える虚像表示装置、及び虚像表示装置を備える移動体に関する。
 特許文献1は、光源ユニットを開示する。特許文献1の光源ユニットは、液晶パネルと、液晶パネルの背後に配置された照明装置とを備える。照明装置は、複数のLED(発光ダイオード)を二次元状に配列してなる面光源(光源装置)と、面光源からの光を略平行光に変換する集光手段と、光拡散手段とを備える。集光手段は、それぞれのLEDに対応する位置に設けられたフレネルレンズからなり、光拡散手段は、集光手段のフレネルレンズよりも口径の小さいフレネルレンズを、集光手段よりも高密度に配列してなる。
特開2007-87792号公報
 本開示の目的は、小型でありながら高品質の画像を表示することができる画像表示装置、画像表示装置を備える虚像表示装置、及び虚像表示装置を備える移動体を提供することである。
 本開示の一態様に係る画像表示装置は、光源装置と、液晶パネルと、フレネルレンズと、を備える。前記光源装置は、光を放射し、前記液晶パネルは、表示面を有し、前記光源装置からの光を透過させて前記表示面に画像を形成し、前記フレネルレンズは、前記光源装置と前記液晶パネルとの間にあり、前記液晶パネルの中央から端に向かうにつれて、前記液晶パネルへの光の入射角が大きくなるように、前記光源装置からの光を発散させる。前記フレネルレンズは、複数の溝を有し凹レンズとして作用するフレネルレンズを構成するフレネルレンズ面と、前記フレネルレンズ面とは反対側にある、フレネルレンズとして作用する条件を満たしてない面である非フレネルレンズ面と、を有する。前記フレネルレンズ面は、前記光源装置に向けられ、前記非フレネルレンズ面は、前記液晶パネルに向けられる。
 本開示の一態様に係る虚像表示装置は、上記画像表示装置と、前記画像表示装置の前記液晶パネルを透過した光により対象空間に前記画像に対応する虚像を投影する投影部と、を備える。
 本開示の一態様に係る移動体は、上記虚像表示装置と、前記虚像表示装置の前記投影部からの光を反射する反射部材と、を備える。
 本開示によれば、小型でありながら高品質の画像を表示することができる画像表示装置、画像表示装置を備える虚像表示装置、及び虚像表示装置を備える移動体を提供することができる。
図1は、一実施形態に係る画像表示装置を備える虚像表示装置を備える自動車の概念図である。 図2は、同上の虚像表示装置を用いた場合のユーザの視野を示す概念図である。 図3は、同上の虚像表示装置の動作を説明するための概念図である。 図4は、同上の画像表示装置の分解斜視図である。 図5は、同上の虚像表示装置の光路を幾何学的に示す模式図である。 図6は、同上の変形例の画像表示装置の概略図である。
 1.実施形態
 1.1 概要
 本実施形態に係る画像表示装置110を備える虚像表示装置10は、図1に示すように、例えば、移動体としての自動車100に用いられるヘッドアップディスプレイ(HUD:Head-Up Display)である。
 この虚像表示装置10は、自動車100のウインドシールド101に下方から画像を投影するように、自動車100の車室内に設置されている。図1の例では、ウインドシールド101の下方のダッシュボード102内に、虚像表示装置10が配置されている。虚像表示装置10からウインドシールド101に画像が投影されると、反射部材としてのウインドシールド101で反射された画像がユーザ200(運転者)に視認される。
 虚像表示装置10によれば、ユーザ200は、自動車100の前方(車外)に設定された対象空間400に投影された虚像300を、ウインドシールド101越しに視認する。ここでいう「虚像」は、虚像表示装置10から出射される光がウインドシールド101等の反射物にて発散するとき、その発散光線によって、実際に物体があるように結ばれる像を意味する。そのため、自動車100を運転しているユーザ200は、図2に示すように、自動車100の前方に広がる実空間に重ねて、虚像表示装置10にて投影される虚像300を見ることができる。したがって、虚像表示装置10によれば、例えば、車速情報、ナビゲーション情報、歩行者情報、前方車両情報、車線逸脱情報、及び車両コンディション情報等の、種々の運転支援情報を、虚像300として表示し、ユーザ200に視認させることができる。図2では、虚像300は、車速情報であり、一例として「53km/h」という情報を表示している。これにより、ユーザ200は、ウインドシールド101の前方に視線を向けた状態から僅かな視線移動だけで、運転支援情報を視覚的に取得することができる。
 虚像表示装置10では、対象空間400に形成される虚像300は、虚像表示装置10の光軸500に交差する仮想面501上に形成される。本実施形態では、光軸500は、自動車100の前方の対象空間400において、自動車100の前方の路面600に沿っている。そして、虚像300が形成される仮想面501は、路面600に対して略垂直である。例えば、路面600が水平面である場合には、虚像300は鉛直面に沿って表示されることになる。
 1.2 構成
 虚像表示装置10は、図3に示すように、画像表示装置110と、投影部120と、制御部130と、を備える。
 画像表示装置110は、対象空間400に虚像300として投影される画像を表示するために用いられる。画像表示装置110は、図4に示すように、光源装置20と、液晶パネル30と、光学系40と、拡散部材50と、を備える。画像表示装置110において、各部材の方向は、必要に応じて、図4に示すx、y、z方向に関連付けて説明する。図4に示すようにx方向は光源装置20の導光板22の長さ方向と平行な方向である。また、y方向は、導光板22の幅方向であり、z方向は、導光板22の厚み方向である。
 図5は、液晶パネル30から投影部120及びウインドシールド101を介してユーザ200が虚像300を欠けることなく視認可能な領域であるアイボックス700までの光路を幾何学的に示す模式図である。ヘッドアップディスプレイである虚像表示装置10により虚像300を表示するには、幾何学上、液晶パネル30が出射する光は、中央に比べて端部の出射角が大きいことが好ましい。換言すれば、液晶パネル30の表示面に対する光の進行方向の角度が端部に比べて中央で大きくなることが好ましい(β1>β2)。このような出射光の配向とするために、本実施形態では、フレネルレンズ41(図4参照)を用いている。一般にフレネルレンズは周期的な構造を有していることから、液晶パネル30の画像にモアレが発生する可能性がある。また、フレネルレンズ41の溝4111(図4参照)の影が画像に写ってしまう可能性がある。これらは、画質の悪化の原因になり得る。本実施形態の虚像表示装置10によれば、フレネルレンズ41の溝4111の影の影響を低減しつつ、小型な虚像表示装置10を実現できる。
 光源装置20は、液晶パネル30のバックライトとして用いられる面光源である。光源装置20は、サイドライト方式の光源装置である。光源装置20は、図4に示すように、光源部21と、導光板22と、反射板23と、を備える。光源部21は、所定方向に並ぶ複数の光源を有する。光源としては、発光ダイオードやレーザダイオード等の固体発光素子が用いられる。導光板22は、光源部21からの光を液晶パネル30に導くために用いられる。導光板22は、長方形の板状であり、光透過性を有する材料(例えば、ガラスや樹脂)で形成されている。導光板22の長さ方向(x方向)の一面(側面)は、平坦であり、光源部21からの光が入射する受光面221となる。導光板22の厚み方向(z方向)の一面(前面)は、平坦であり、受光面221と交差し受光面221からの光を液晶パネル30に向けて出射させる発光面222となる。本実施形態において、受光面221と発光面222とは互いに直交している。導光板22の厚み方向(z方向)の他面(後面)は、導光板22が長さ方向の一面(受光面221)から他面に向かって薄くなるように傾斜した傾斜面223となっている。反射板23は、導光板22の傾斜面223上に形成される。反射板23は、導光板22内を進行する光を発光面222側へ反射するために設けられる。なお、反射板23は、少なくとも、傾斜面223において、光源部21からの光を反射させる必要がある領域を覆っていればよい。反射板23は、光源部21からの光の利用効率を高めるために設けられる。光源装置20において、受光面221から導光板22内に入射した光は、発光面222での全反射と反射板23での反射とを繰り返し、発光面222での全反射の条件が成立しなくなった際に、導光板22の発光面222から外方へ出射される。このようにして、光源装置20は、導光板22の発光面222から光を放射する。
 液晶パネル30は、全体として矩形の板状である。特に、液晶パネル30は、前面に、表示面31を有する。表示面31は、互いに直交する第1方向(y方向)と第2方向(x方向)とを含む。表示面31は、第1方向(y方向)の寸法が第2方向(x方向)の寸法より小さい長方形である。つまり、第1方向は、表示面31の横方向であり、第2方向は、表示面31の縦方向である。液晶パネル30は、液晶パネル30の後側に配置される光源装置20からの光を選択的に透過させることで、表示面31に画像を形成する。本実施形態において、液晶パネル30は、光源装置20からの光のうち第1方向(y方向)の成分を透過させて表示面31に画像を形成するように構成される。光源装置20からの光のうちの第1方向(y方向)の成分は、表示面31に直交し第2方向(x方向)に平行する入射面(図4のxz平面、以下、必要に応じて「基準入射面」という)においてs成分である。つまり、液晶パネル30は、基準入射面においては、s成分の光のみを透過させる。このような液晶パネル30は、一般に、液晶層、液晶層を挟む一対の配向膜、液晶層に電圧を印加するための一対の透明電極、各画素の色を規定するカラーフィルタ、及び、基準入射面におけるs成分のみを透過させる偏光板などを備える。このような液晶パネル30の構造は周知のものでよいから、詳細な説明は省略する。
 光学系40と、拡散部材50とは、図4に示すように、光源装置20と液晶パネル30との間に配置される。ここで、光学系40は、光源装置20と液晶パネル30との間に配置される。拡散部材50は、光学系40と液晶パネル30との間に配置される。つまり、光学系40は、光学系40と拡散部材50とのうち、光源装置20に最も近く、拡散部材50は、光学系40と拡散部材50とのうち、液晶パネル30に最も近い。
 光学系40は、液晶パネル30の表示面31に平行で第1方向(y方向)と交差する第3方向において光源装置20からの光を発散させるために用いられる。本実施形態において、第3方向は、光源装置20の導光板22の長さ方向と平行な方向(x方向)である。したがって、第3方向は、第2方向と平行であり、第1方向とは直交する。そのため、光の第1方向(y方向)の成分は、表示面31に直交し、第3方向に平行な入射面(xz平面)においてs成分である。
 光学系40は、フレネルレンズ41と、プリズムシート42と、を備える。
 フレネルレンズ41は、長方形の板状であり、光透過性を有する材料(例えば、ガラスや樹脂)で形成されている。フレネルレンズ41は、光源装置20の発光面222に対向するように配置される。フレネルレンズ41は、第3方向(x方向)において光源装置20からの光を発散させるための発散レンズとして機能する。フレネルレンズ41の厚み方向(z方向)の第1面は、フレネルレンズ面411である。フレネルレンズ面411は、複数の溝4111を有し、凹レンズとして作用するフレネルレンズ(凹フレネルレンズ)を構成する。フレネルレンズ面411は、少なくとも、フレネルレンズ41の幅方向(y方向)に直交する断面において、凹レンズとして作用すればよい。なお、フレネルレンズとしては、中心を共有する複数の円形状の溝を有するフレネルレンズ(サーキュラーフレネルレンズ)と、平行に並ぶ複数の直線状の溝を有するフレネルレンズ(リニアフレネルレンズ)とが挙げられる。フレネルレンズ41の厚み方向(z方向)の第2面は、フレネルレンズ面411とは反対側にある、非フレネルレンズ面412である。非フレネルレンズ面412は、フレネルレンズとして作用する条件を満たしてない面である。例えば、非フレネルレンズ面412は、平面及び曲面(凸面及び凹面)等の溝のない面(周期的な構造を有していない面)である。本実施形態では、非フレネルレンズ面412は、平面である。このように、フレネルレンズ41は、片面だけが、鋸刃形状となっている。フレネルレンズ41では、フレネルレンズ面411は、光源装置20に向けられ、非フレネルレンズ面412は、液晶パネル30に向けられる。したがって、フレネルレンズ41は、フレネルレンズ41の長さ方向(x方向)において、光源装置20からの光を発散させる。つまり、フレネルレンズ41では、フレネルレンズ41の光軸P41から離れるにつれて、フレネルレンズ41を透過する光の方向とフレネルレンズ41の光軸P41との角度が大きくなるように、光源装置20からの光を発散させる。これによって、フレネルレンズ41は、液晶パネル30の中央から端に向かうにつれて、液晶パネル30への光の入射角が大きくなるように、光源装置20からの光を発散させる。本実施形態のフレネルレンズ41は、光源装置20の複数の光源それぞれに対応する複数のフレネルレンズを備えるレンズアレイではなく、複数の光源を備える光源装置20を一つの光源として、この光源装置20からの光を発散させる単一のレンズである。
 プリズムシート42は、長方形の板状であり、光透過性を有する材料(例えば、ガラスや樹脂)で形成されている。プリズムシート42は、フレネルレンズ41と光源装置20の発光面222との間に配置される。プリズムシート42は、光源装置20の発光面222からの光をフレネルレンズ41に向けるための偏向機能を有する光学素子として機能する。プリズムシート42の厚み方向(z方向)の第1面421は、プリズム面であり、第2面422は、平坦な面である。第1面421は、光源装置20に向けられ、第2面422は、フレネルレンズ41に向けられる。第1面421では、プリズムシート42の幅方向(y方向)に延びる複数のプリズムがプリズムシート42の長さ方向(x方向)に並んでいる。複数のプリズムそれぞれは、三角柱状であり、その先端角度は例えば50°~70°である。なお、本実施形態では、先端角度は60°としている。
 拡散部材50は、光学系40からの光を拡散させる。拡散部材50は、長方形の板状(シート状)である。拡散部材50は、液晶パネル30の画像にモアレが発生することを抑制するために設けられる。拡散部材50は、表示面31の明るさを均一にする効果も発揮する。つまり、拡散部材50によれば、液晶パネル30の表示面31での光の均斉度を改善できるという効果も期待できる。
 投影部120は、画像表示装置110の液晶パネル30を透過した光により、対象空間400(図1参照)に画像(液晶パネル30の表示面31に形成される画像)に対応する虚像300(図1参照)を投影する。投影部120は、図3に示すように、第1ミラー121と、第2ミラー122と、を備える。第1ミラー121は、画像表示装置110の液晶パネル30を透過した光を第2ミラー122に向けて反射する。第2ミラー122は、第1ミラー121からの光を、ウインドシールド101(図1参照)に向けて反射する。すなわち、投影部120は、画像表示装置110の液晶パネル30の表示面31に形成される画像を、ウインドシールド101に投影することで、対象空間400に虚像300を投影する。
 制御部130は、画像表示装置110の光源装置20及び液晶パネル30を制御するように構成される。制御部130は、与えられた画像信号に基づいて、液晶パネル30及び光源装置20を制御することで、液晶パネル30の表示面31に画像を形成する。制御部130は、従来周知の液晶ディスプレイの制御回路により構成され得る。
 1.3 効果
 以上述べた本実施形態の画像表示装置110は、光源装置20と液晶パネル30との間にフレネルレンズ41を備えている。このフレネルレンズ41は、液晶パネル30の中央から端に向かうにつれて、液晶パネル30への光の入射角が大きくなるように、光源装置20からの光を発散させる。そのため、球面レンズやシリンドリカルレンズを用いる場合に比べれば、薄型化を図りながらも光源装置20からの光を発散させることができる。さらに、フレネルレンズ41は、フレネルレンズ面411が光源装置20を向き、非フレネルレンズ面412が液晶パネル30を向くように、光源装置20と液晶パネル30との間に配置されている。これによって、フレネルレンズ面411を液晶パネル30の表示面31から遠ざけることができる。そのため、モアレの発生を抑制でき、また、フレネルレンズ面411の溝4111の写り込みも抑制できる。このように、画像表示装置110によれば、薄型化を図りながらも光源装置20からの光を発散させることができ、しかも、画質を向上できる。つまり、画像表示装置110によれば、小型でありながら高品質の画像を表示することができる。
 また、画像表示装置110は、さらに、フレネルレンズ41と液晶パネル30との間に拡散部材50を備えており、この拡散部材50がフレネルレンズ41からの光を拡散させる。そのため、画像でのモアレの発生を抑制でき、また、フレネルレンズ面411の溝4111の影の画像への写り込みも抑制できる。よって、表示面31に形成される画像の画質を向上できる。
 ここで、拡散部材50のヘイズが大きいほど、画像でのモアレの発生を抑制でき、また、フレネルレンズ面411の溝4111の影の画像への写り込みも抑制できる。一方で、拡散部材50のヘイズが大きすぎると、画像表示装置110の液晶パネル30と透過する光の指向性が悪化し、虚像の表示に影響がでる場合がある。したがって、拡散部材50のヘイズは、可能な限り小さいほうが好ましい。
 また、フレネルレンズ41の厚みが大きいほど、フレネルレンズ面411が液晶パネル30から遠ざかる。そのため、画像へのモアレの発生を抑制でき、また、フレネルレンズ面411の溝4111の影の画像への写り込みも抑制できる。一方で、フレネルレンズ41の厚みが大きくなりすぎると、フレネルレンズ41と透過する光の量が減るため、光の利用効率が低下する場合があり、画像表示装置110の大型化にもつながる。
 また、フレネルレンズ41の溝4111の間隔(ピッチ)が小さいほど、画像へのモアレの発生を抑制でき、また、フレネルレンズ面411の溝4111の影の画像への写り込みも抑制できる。一方で、フレネルレンズ41の溝4111間の間隔(ピッチ)が小さくなると、フレネルレンズ41の作製の難易度が上がるため、フレネルレンズ41の溝4111間の間隔(ピッチ)を小さくするにも、限界がある。
 これらの点を考慮すれば、拡散部材50のヘイズをH、フレネルレンズ41の厚みをd(図4参照)、フレネルレンズ41の溝4111のピッチをp(図4参照)とすると、画像表示装置110は、H・d/p>0.1という関係式を満たすことが好ましい。以下に、H、d、pの組み合わせの一例を表1に示す。下記表1の判定において、「good」は画像へのモアレの発生を確認できず、フレネルレンズ面411の溝4111の影の画像への写り込みも確認できなかったことを示す。「average」は、画像へのモアレの発生や、フレネルレンズ面411の溝4111の影の画像への写り込みがあるものの、画質に影響がない程度であることを示す。
Figure JPOXMLDOC01-appb-T000001
 さらに、Hd/p>0.1という関係式を満たした上で、Hは、0.7以下であることが好ましい。Hの値が0.7を上回ると、透過光量が減少し、画像表示装置110の輝度が低下する。pは0.1~1.0の範囲内であることが好ましい。pの値が0.1未満の場合、フレネルレンズの溝による回折の影響が大きくなり、画質が低下する。他方、pの値が1.0を上回るとフレネルレンズの溝の影が表示画像により視認されてしまう。dは0.1~10.0の範囲内であることが好ましい。dの値が0.1未満の場合、十分なレンズ効果を奏することができなくる。他方、dの値が10.0を上回ると、画像表示装置110が大型化してしまう。
 また、画像表示装置110では、光源装置20は、導光板22を有する。導光板22は、光源部21からの光が入射する受光面221と、受光面221と交差し受光面221からの光を液晶パネル30に向けて出射させる発光面222と、を有する。この場合には、光源装置20を薄型化でき、画像表示装置110全体として、薄型化を図ることができる。
 また、虚像表示装置10は、図3に示すように、画像表示装置110と、画像表示装置110の液晶パネル30を透過した光により対象空間400に画像に対応する虚像300を投影する投影部120と、を備える。ここで、画像表示装置110によれば、小型でありながら高品質の画像を表示することができる。よって、虚像表示装置10全体としても小型化を図ることができる。
 また、自動車(移動体)100は、図1に示すように、虚像表示装置10と、虚像表示装置10の投影部120からの光を反射する反射部材101と、を備える。ここで、画像表示装置110によれば、小型でありながら高品質の画像を表示することができる。これによって、虚像表示装置10全体としても小型化を図ることができるから、虚像表示装置10を配置するためのスペースを確保しやすくなる。
 2.変形例
 本開示の実施形態は、上記実施形態に限定されない。上記実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施形態の変形例を列挙する。
 図6は、変形例の画像表示装置110Aを示す。画像表示装置110Aは、光源装置20Aと、液晶パネル30と、光学系40と、拡散部材50と、を備える。光源装置20Aは、光源部21Aと、レンズ24と、を備える。光源部21Aは、マトリクス状に並ぶ複数の光源210を有する面光源である。光源210としては、発光ダイオードやレーザダイオード等の固体発光素子が用いられる。レンズ24は、光源部21Aの光軸上に配置され、光源部21Aからの光を液晶パネル30に集光するために用いられる。このような画像表示装置110Aにおいても、画像表示装置110と同様に、小型でありながら高品質の画像を表示することができる。
 また、液晶パネル30において、必ずしも、第1方向の成分は、表示面31に直交し第3方向に平行する入射面においてs成分でなくてもよい。また、液晶パネル30は、第1方向の寸法が第2方向の寸法よりも大きい長方形であってよく、正方形であってもよい。
 また、光学系40は、光源装置20からフレネルレンズ41への光の入射量が許容範囲であれば、プリズムシート42を備えている必要はない。また、光学系40は、フレネルレンズ41と光源装置20との間に別の1以上のフレネルレンズを備えていてもよい。
 上記実施形態において、フレネルレンズ41の非フレネルレンズ面412は、平面である。非フレネルレンズ面412は、凸面又は凹面であってもよい。非フレネルレンズ面412の形状により、フレネルレンズ41全体として光の発散の度合いを調整できる。
 また、投影部120及び制御部130の構成は、特に限定されず、従来周知の構成を採用できる。
 また、虚像表示装置10は、自動車100の進行方向の前方に設定された対象空間400に虚像300を投影する構成に限らず、例えば、自動車100の進行方向の側方、後方、又は上方等に虚像300を投影してもよい。また、投影部120は、中間像を形成するためのリレー光学系を含んでいてもよいし、リレー光学系を含んでいなくてもよい。
 また、虚像表示装置10は、自動車100に用いられるヘッドアップディスプレイに限らず、例えば、二輪車、電車、航空機、建設機械、及び船舶等、自動車100以外の移動体にも適用可能である。さらに、虚像表示装置10は、移動体に限らず、例えば、アミューズメント施設で用いられてもよい。また、虚像表示装置10は、ヘッドマウントディスプレイ(HMD:Head Mounted Display)等のウェアラブル端末、医療設備、据置型の装置、又は、カメラの電子ファインダとして用いられてもよい。
 3.態様
 上記実施形態及び変形例から明らかなように、第1の態様の画像表示装置(110;110A)は、光を放射する光源装置(20;20A)と、液晶パネル(30)と、フレネルレンズ(41)と、を備える。前記液晶パネル(30)は、表示面(31)を有し、前記光源装置(20;20A)からの光を透過させて前記表示面(31)に画像を形成するように構成される。前記フレネルレンズ(41)は、前記光源装置(20;20A)と前記液晶パネル(30)との間にあり、前記液晶パネル(30)の中央から端に向かうにつれて、前記液晶パネル(30)への光の入射角が大きくなるように、前記光源装置(20;20A)からの光を発散させる。前記フレネルレンズ(41)は、フレネルレンズ面(411)と、前記フレネルレンズ面(411)とは反対側にある非フレネルレンズ面(412)と、を有する。前記フレネルレンズ面(411)は、複数の溝(4111)を有し凹レンズとして作用するフレネルレンズを構成する。前記非フレネルレンズ面(412)は、フレネルレンズとして作用する条件を満たしてない面である。前記フレネルレンズ面(411)は、前記光源装置(20;20A)に向けられ、前記非フレネルレンズ面(412)は、前記液晶パネル(30)に向けられる。第1の態様によれば、小型でありながら高品質の画像を表示することができる。
 第2の態様の画像表示装置(110;110A)は、第1の態様との組み合わせにより実現され得る。第2の態様では、前記画像表示装置(110;110A)は、前記フレネルレンズ(41)と前記液晶パネル(30)との間にあり、前記フレネルレンズ(41)からの光を拡散させる拡散部材(50)をさらに備える。第2の態様によれば、小型でありながら高品質の画像を表示することができる。
 第3の態様の画像表示装置(110;110A)は、第2の態様との組み合わせにより実現され得る。第3の態様では、前記拡散部材(50)のヘイズをH、前記フレネルレンズ(41)の厚みをd、前記フレネルレンズ(41)の複数の溝(4111)の間隔をpとすると、Hd/p>0.1を満たす。第3の態様によれば、小型でありながら高品質の画像を表示することができる。
 第4の態様の画像表示装置(110)は、第1~第3の態様のいずれか一つとの組み合わせにより実現され得る。第4の態様では、前記光源装置(20)は、導光板(22)を有する。前記導光板(22)は、光源部(21)からの光が入射する受光面(221)と、前記受光面(221)と交差し前記受光面(221)からの光を前記液晶パネル(30)に向けて出射させる発光面(222)と、を有する。第4の態様によれば、画像表示装置(110)全体の薄型化を図ることができる。
 第5の態様の虚像表示装置(10)は、第1~第4の態様のいずれか一つの画像表示装置(110;110A)と、投影部(120)と、を備える。前記投影部(120)は、前記画像表示装置(110;110A)の前記液晶パネル(30)を透過した光により対象空間(400)に前記画像に対応する虚像(300)を投影するように構成される。第5の態様によれば、小型でありながら高品質の画像を表示することができる。
 第6の態様の移動体(100)は、第5の態様の虚像表示装置(10)と、前記虚像表示装置(10)の前記投影部(120)からの光を反射する反射部材(101)と、を備える。第6の態様によれば、小型でありながら高品質の画像を表示することができる。
100 移動体(自動車)
101 ウインドシールド(反射部材)
10 虚像表示装置
110,110A 画像表示装置
120 投影部
102 ダッシュボード
121,122 ミラー
130 制御部
20,20A 光源装置
21,21A 光源部
22 導光板
221 受光面
222 発光面
200 ユーザ
210 光源
223 傾斜面
23 反射板
24 レンズ
30 液晶パネル
31 表示面
41 フレネルレンズ
411 フレネルレンズ面
4111 溝
412 非フレネルレンズ面
42 プリズムシート
50 拡散部材
300 虚像
400 対象空間
421 第1面
422 第2面
500,P41 光軸
501 仮想面
600 路面
700 アイボックス

Claims (6)

  1.  光を放射する光源装置と、
     表示面を有し、前記光源装置からの光を透過させて前記表示面に画像を形成する液晶パネルと、
     前記光源装置と前記液晶パネルとの間にあり、前記液晶パネルの中央から端に向かうにつれて、前記液晶パネルへの光の入射角が大きくなるように、前記光源装置からの光を発散させるフレネルレンズと、
     を備え、
     前記フレネルレンズは、
      複数の溝を有し凹レンズとして作用するフレネルレンズを構成するフレネルレンズ面と、
      前記フレネルレンズ面とは反対側にある、フレネルレンズとして作用する条件を満たしてない面である非フレネルレンズ面と、
     を有し、
     前記フレネルレンズ面は、前記光源装置に向けられ、
     前記非フレネルレンズ面は、前記液晶パネルに向けられる、
     画像表示装置。
  2.  前記フレネルレンズと前記液晶パネルとの間にあり、前記フレネルレンズからの光を拡散させる拡散部材をさらに備える、
     請求項1の画像表示装置。
  3.  前記拡散部材のヘイズをH、前記フレネルレンズの厚みをd、前記フレネルレンズの複数の溝の間隔をpとすると、
     H・d/p>0.1
     を満たす、
     請求項2の画像表示装置。
  4.  前記光源装置は、導光板を有し、
     前記導光板は、光源部からの光が入射する受光面と、前記受光面と交差し前記受光面からの光を前記液晶パネルに向けて出射させる発光面と、を有する、
     請求項1~3のいずれか一つの画像表示装置。
  5.  請求項1~4のいずれか一つの画像表示装置と、
     前記画像表示装置の前記液晶パネルを透過した光により対象空間に前記画像に対応する虚像を投影する投影部と、
     を備える、
     虚像表示装置。
  6.  請求項5の虚像表示装置と、
     前記虚像表示装置の前記投影部からの光を反射する反射部材と、
     を備える、
     移動体。
PCT/JP2018/010495 2017-03-24 2018-03-16 画像表示装置、虚像表示装置、移動体 WO2018173955A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017060113A JP2018163259A (ja) 2017-03-24 2017-03-24 画像表示装置、虚像表示装置、移動体
JP2017-060113 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173955A1 true WO2018173955A1 (ja) 2018-09-27

Family

ID=63586442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010495 WO2018173955A1 (ja) 2017-03-24 2018-03-16 画像表示装置、虚像表示装置、移動体

Country Status (2)

Country Link
JP (1) JP2018163259A (ja)
WO (1) WO2018173955A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190074A (ja) * 1994-09-30 1996-07-23 Hughes Aircraft Co ヘッドアップディスプレイ用の高強度画像投影ソース
US20020080495A1 (en) * 2000-12-21 2002-06-27 Raytheon Company Method and apparatus for reducing distortion in a displayed image
JP2008189021A (ja) * 2007-02-01 2008-08-21 Yazaki Corp 車両用表示ユニット
US7513668B1 (en) * 2005-08-04 2009-04-07 Rockwell Collins, Inc. Illumination system for a head up display
JP2016126314A (ja) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイ及びヘッドアップディスプレイを備えた移動体
JP2017215571A (ja) * 2016-05-25 2017-12-07 株式会社デンソー ヘッドアップディスプレイ装置及び画像投射ユニット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08286164A (ja) * 1995-02-16 1996-11-01 Mitsubishi Electric Corp 投写型表示装置
JP2007073469A (ja) * 2005-09-09 2007-03-22 Minebea Co Ltd 面状照明装置及びそれを用いた光源ユニット
JP4671117B2 (ja) * 2005-09-22 2011-04-13 ミネベア株式会社 照明装置及びそれを用いた光源ユニット
JP5711893B2 (ja) * 2010-03-08 2015-05-07 スタンレー電気株式会社 面光源装置
US9417449B2 (en) * 2014-04-06 2016-08-16 Che-Chang Hu Head-up display system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190074A (ja) * 1994-09-30 1996-07-23 Hughes Aircraft Co ヘッドアップディスプレイ用の高強度画像投影ソース
US20020080495A1 (en) * 2000-12-21 2002-06-27 Raytheon Company Method and apparatus for reducing distortion in a displayed image
US7513668B1 (en) * 2005-08-04 2009-04-07 Rockwell Collins, Inc. Illumination system for a head up display
JP2008189021A (ja) * 2007-02-01 2008-08-21 Yazaki Corp 車両用表示ユニット
JP2016126314A (ja) * 2014-12-26 2016-07-11 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイ及びヘッドアップディスプレイを備えた移動体
JP2017215571A (ja) * 2016-05-25 2017-12-07 株式会社デンソー ヘッドアップディスプレイ装置及び画像投射ユニット

Also Published As

Publication number Publication date
JP2018163259A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
CN109564349B (zh) 平视显示装置及其影像显示装置
JP6589146B2 (ja) ヘッドアップディスプレイ、およびヘッドアップディスプレイを搭載した移動体
CN109154721B (zh) 平视显示器装置以及图像投影单元
JP6831900B2 (ja) ヘッドアップディスプレイシステム
JP4720694B2 (ja) 車両用表示装置
JP7202191B2 (ja) 車両用情報表示システム
JP7117066B2 (ja) 車両情報表示装置および車両用情報表示システム
JPWO2017094209A1 (ja) 映像表示装置および映像表示装置を搭載したヘッドアップディスプレイ
JP7195454B2 (ja) 光源装置、それを利用した情報表示システムおよびヘッドアップディスプレイ装置
US20240103351A1 (en) Information display system having acute-angled diffusion characteristics and image light control film used for the same
JP6579180B2 (ja) 虚像表示装置
JP2016180922A (ja) ヘッドアップディスプレイ装置
JP6917571B2 (ja) 表示装置
JP6982816B2 (ja) 画像表示装置、虚像表示装置、移動体
WO2018173955A1 (ja) 画像表示装置、虚像表示装置、移動体
JP2018180291A (ja) 車両用表示装置
EP4120001A1 (en) Virtual image display device
JP2023057027A (ja) 画像生成ユニット及びヘッドアップディスプレイ装置
CN116583427A (zh) 空间悬浮影像显示装置以及光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772331

Country of ref document: EP

Kind code of ref document: A1