WO2018173855A1 - センサモジュール、センサシステム、およびセンサシステムの車両への搭載方法 - Google Patents

センサモジュール、センサシステム、およびセンサシステムの車両への搭載方法 Download PDF

Info

Publication number
WO2018173855A1
WO2018173855A1 PCT/JP2018/009718 JP2018009718W WO2018173855A1 WO 2018173855 A1 WO2018173855 A1 WO 2018173855A1 JP 2018009718 W JP2018009718 W JP 2018009718W WO 2018173855 A1 WO2018173855 A1 WO 2018173855A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
vehicle
sensor system
processor
output value
Prior art date
Application number
PCT/JP2018/009718
Other languages
English (en)
French (fr)
Inventor
美昭 伏見
祐介 笠羽
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to EP18770971.2A priority Critical patent/EP3605136A4/en
Priority to US16/496,081 priority patent/US20200039531A1/en
Priority to CN201880019683.1A priority patent/CN110446941A/zh
Priority to JP2019507575A priority patent/JPWO2018173855A1/ja
Publication of WO2018173855A1 publication Critical patent/WO2018173855A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/068Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle by mechanical means
    • B60Q1/0683Adjustable by rotation of a screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/085Registering performance data using electronic data carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93277Sensor installation details in the lights
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4091Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation

Definitions

  • the present disclosure relates to a sensor module mounted on a vehicle, a sensor system mounted on the vehicle, and a method of mounting the sensor system on the vehicle.
  • a sensor for acquiring information outside the vehicle In order to realize driving support of a vehicle, it is necessary to mount a sensor for acquiring information outside the vehicle on the vehicle body. In order to acquire external information more accurately, different types of sensors may be used. Examples of such sensors include a camera and a LiDAR (Light Detection and Ranging) sensor (see, for example, Patent Document 1).
  • LiDAR Light Detection and Ranging
  • This disclosure aims to reduce the burden of the work of adjusting the detection reference position of a sensor after being mounted on a vehicle.
  • One aspect for achieving the above object is a sensor module mounted on a vehicle, A sensor for detecting information outside the vehicle; A support member supporting the sensor; An acceleration sensor supported by the support member; It has.
  • One aspect for achieving the above object is a sensor system mounted on a vehicle, A sensor for detecting information outside the vehicle; A support member supporting the sensor; An acceleration sensor supported by the support member; A memory for storing a first output value of the acceleration sensor at a first time point; A processor for obtaining a difference between the second output value of the acceleration sensor and the first output value at a second time point; It has.
  • the deviation amount can be grasped through the signal output of the acceleration sensor.
  • the signal output it becomes easy to automate the posture adjustment of the sensor in consideration of the deviation amount and the correction of the detection result by the sensor. Therefore, it is possible to reduce the burden of work for adjusting the detection reference position of the sensor after being mounted on the vehicle.
  • An example of the first time point is before the sensor system is mounted on a vehicle.
  • An example of the second time point is after the sensor system is mounted on a vehicle.
  • one aspect for achieving the above object is a method of mounting the above sensor system on a vehicle, A first step of storing, in the memory, a first output value of the acceleration sensor at the first time point before the sensor system is mounted on the vehicle; A second step of causing the processor to acquire a difference between the second output value of the acceleration sensor and the first output value at the second time point after the sensor system is mounted on the vehicle; Is included.
  • the first step may be performed by a first entity
  • the second step may be performed by a second entity different from the first entity
  • An example of the first entity is a manufacturer of the sensor system.
  • An example of the second entity is a manufacturer that assembles a vehicle using the sensor system as one component. In this case, the work burden of adjusting the detection reference position of the sensor by the second entity can be reduced.
  • the sensor system can be configured as follows. An adjustment mechanism for adjusting at least one of the position and orientation of the sensor; The processor causes the adjustment mechanism to perform the adjustment based on the difference.
  • the adjustment work for eliminating the deviation can be automated. Therefore, even if the number of sensors increases, it is possible to reduce the burden of work for adjusting the detection reference position of the sensor after the sensor system is mounted on the vehicle.
  • the sensor system can be configured as follows.
  • the processor causes the correction unit to perform the correction based on the difference.
  • a mechanism for adjusting at least one of the position and orientation of the sensor can be omitted. Therefore, not only can the burden of adjusting the detection reference position of the sensor after the sensor system is mounted on the vehicle be reduced, but also an increase in size and weight of the sensor system can be suppressed.
  • the above sensor system can be configured as follows.
  • a common housing for housing the sensor, the support member, and the acceleration sensor;
  • the processor is supported by the housing.
  • the function of the processor may be realized by a control device mounted on the vehicle. However, according to the above configuration, the processing load on the control device can be reduced.
  • the sensor system can be configured as follows.
  • the memory and the processor are supported by the support member.
  • the senor, the acceleration sensor, the memory, and the processor are easily modularized.
  • the above sensor system can be configured as follows.
  • a light source A light source adjustment mechanism for adjusting at least one of the position and posture of the light source;
  • a common housing that houses at least a part of the sensor, the support member, the acceleration sensor, the light source, and the light source adjustment mechanism; It has.
  • the lamp device and the sensor system can be easily integrated, and the above demand can be met.
  • Examples of the sensor include at least one of a LiDAR sensor, a millimeter wave radar, an ultrasonic sensor, and a camera.
  • the position in the vehicle of a sensor system is shown.
  • the structure of the sensor system which concerns on 1st embodiment is shown. It is a figure which shows the structure of the sensor system which concerns on 2nd embodiment. It is a figure which shows the structure of the sensor system which concerns on 3rd embodiment. It is a figure which shows the structure of the sensor system which concerns on 4th embodiment. It is a figure which shows the structure of each sensor module in the sensor system of FIG. It is a figure which shows the structure of the sensor system which concerns on 5th embodiment. It is a figure which shows the structure of each sensor module in the sensor system of FIG.
  • an arrow F indicates the forward direction of the illustrated structure.
  • Arrow B indicates the backward direction of the illustrated structure.
  • Arrow L indicates the left direction of the illustrated structure.
  • Arrow R indicates the right direction of the illustrated structure.
  • “Left” and “right” used in the following description indicate the left and right directions viewed from the driver's seat.
  • the “vertical direction” corresponds to a direction perpendicular to the paper surface.
  • the left front sensor system 1LF As shown in FIG. 1, the left front sensor system 1LF according to the first embodiment is mounted on the left front corner of the vehicle 100.
  • FIG. 2 schematically shows the configuration of the left front sensor system 1LF.
  • the front left sensor system 1LF is accommodated in a lamp chamber 13 defined by a housing 11 and a translucent member 12.
  • the left front sensor system 1LF includes a first sensor module 14.
  • the first sensor module 14 includes a first LiDAR sensor 41, a first acceleration sensor 42, a first support member 43, a first screw mechanism 44, and a first actuator 45.
  • the first LiDAR sensor 41 has a configuration for emitting non-visible light and a configuration for detecting return light as a result of reflection of the non-visible light on an object existing at least in front of the vehicle 100.
  • the front of the vehicle 100 is an example of the outside of the vehicle.
  • the first LiDAR sensor 41 may include a scanning mechanism that sweeps the invisible light by changing the emission direction (that is, the detection direction) as necessary.
  • infrared light having a wavelength of 905 nm is used as invisible light.
  • the first LiDAR sensor 41 can acquire the distance to the object associated with the return light based on, for example, the time from when the invisible light is emitted in a certain direction until the return light is detected. Further, by accumulating such distance data in association with the detection position, information related to the shape of the object associated with the return light can be acquired. In addition to or instead of this, it is possible to acquire information relating to attributes such as the material of the object associated with the return light based on the difference in wavelength between the outgoing light and the return light. In addition to or instead of this, for example, information on the color of the object (such as a white line on the road surface) can be acquired based on the difference in reflectance of the return light from the road surface.
  • the first LiDAR sensor 41 is a sensor that detects at least information ahead of the vehicle 100.
  • the first LiDAR sensor 41 is configured to output a signal corresponding to the attribute (intensity, wavelength, etc.) of the detected return light.
  • the above information is acquired by appropriately processing the signal output from the first LiDAR sensor 41 by an information processing unit (not shown).
  • the information processing unit may be included in the left front sensor system 1LF or may be mounted on the vehicle 100.
  • the first acceleration sensor 42 is supported by the first support member 43 together with the first LiDAR sensor 41.
  • the first acceleration sensor 42 is configured to output a signal A1 corresponding to the attitude of the first support member 43, that is, the attitude of the first LiDAR sensor 41.
  • the first screw mechanism 44 is a mechanism for adjusting the attitude of the first LiDAR sensor 41 with respect to the housing 11 by adjusting the attitude of the first support member 43.
  • the first screw mechanism 44 includes a first horizontal adjustment screw 441 and a first vertical adjustment screw 442.
  • the first leveling screw 441 extends through the housing 11.
  • the first leveling screw 441 is connected to the first support member 43 via a joint (not shown).
  • the head portion of the first horizontal adjustment screw 441 is disposed outside the housing 11.
  • the rotation of the first horizontal adjustment screw 441 causes the posture of the first support member 43 to be within a horizontal plane (within the plane including the front-rear direction and the left-right direction in FIG. ) Is converted into a movement that changes.
  • the “horizontal plane” used here does not have to coincide with a strict horizontal plane. Since the structure of the joint itself is well known, detailed description is omitted.
  • the first vertical adjustment screw 442 extends through the housing 11.
  • the first vertical adjustment screw 442 is connected to the first support member 43 via a joint (not shown).
  • the head portion of the first vertical adjustment screw 442 is disposed outside the housing 11.
  • the rotation of the first vertical adjustment screw 442 causes the posture of the first support member 43 to be in the vertical plane (including the front-rear direction and the up-down direction in FIG. It is converted into motion that changes in the plane).
  • the “vertical plane” used here does not have to coincide with a strict vertical plane. Since the structure of the joint itself is well known, detailed description is omitted.
  • the first actuator 45 is a device for adjusting the detection reference position of the first LiDAR sensor 41.
  • the first actuator 45 is disposed in the lamp chamber 13 and is coupled to the first LiDAR sensor 41.
  • the left front sensor system 1LF includes a second sensor module 15.
  • the second sensor module 15 includes a second LiDAR sensor 51, a second acceleration sensor 52, a second support member 53, a second screw mechanism 54, and a second actuator 55.
  • the second LiDAR sensor 51 has a configuration for emitting non-visible light and a configuration for detecting return light as a result of reflection of the non-visible light at least on an object existing on the left side of the vehicle 100.
  • the left side of the vehicle 100 is an example of the outside of the vehicle.
  • the second LiDAR sensor 51 can include a scanning mechanism that sweeps the invisible light by changing the emission direction (that is, the detection direction) as necessary. Since the configuration of the second LiDAR sensor 51 is substantially the same as that of the first LiDAR sensor 41, repeated description is omitted.
  • the second LiDAR sensor 51 is a sensor that detects at least information on the left side of the vehicle 100.
  • the second LiDAR sensor 51 is configured to output a signal corresponding to the attribute (intensity, wavelength, etc.) of the detected return light.
  • the above information is acquired by appropriately processing the signal output by the second LiDAR sensor 51 by an information processing unit (not shown).
  • the information processing unit may be included in the left front sensor system 1LF or may be mounted on the vehicle 100.
  • the second acceleration sensor 52 is supported by the second support member 53 together with the second LiDAR sensor 51.
  • the second acceleration sensor 52 is configured to output a signal A2 corresponding to the attitude of the second support member 53, that is, the attitude of the second LiDAR sensor 51.
  • the second screw mechanism 54 is a mechanism for adjusting the attitude of the second LiDAR sensor 51 relative to the housing 11 by adjusting the attitude of the second support member 53.
  • the second screw mechanism 54 includes a second horizontal adjustment screw 541 and a second vertical adjustment screw 542.
  • the second leveling screw 541 extends through the housing 11.
  • the second leveling screw 541 is connected to the second support member 53 via a joint (not shown).
  • the head portion of the second horizontal adjustment screw 541 is disposed outside the housing 11.
  • the rotation of the second horizontal adjustment screw 541 causes the posture of the second support member 53 to be within a horizontal plane (within the plane including the front-rear direction and the left-right direction in FIG. ) Is converted into a movement that changes.
  • the “horizontal plane” used here does not have to coincide with a strict horizontal plane. Since the structure of the joint itself is well known, detailed description is omitted.
  • the second vertical adjustment screw 542 extends through the housing 11.
  • the second vertical adjustment screw 542 is connected to the second support member 53 via a joint (not shown).
  • the head portion of the second vertical adjustment screw 542 is disposed outside the housing 11.
  • the rotation of the second vertical adjustment screw 542 causes the posture of the second support member 53 to be in the vertical plane (including the front-rear direction and the vertical direction in the figure) by the joint. It is converted into motion that changes in the plane).
  • the “vertical plane” used here does not have to coincide with a strict vertical plane. Since the structure of the joint itself is well known, detailed description is omitted.
  • the second actuator 55 is a device for adjusting the detection reference position of the second LiDAR sensor 51.
  • the second actuator 55 is disposed in the lamp chamber 13 and is coupled to the second LiDAR sensor 51.
  • the front left sensor system 1LF includes a processor 16 and a memory 17.
  • the processor 16 may include a CPU, MPU, GPU and the like.
  • the processor 16 can include a plurality of processor cores.
  • Examples of the memory 17 include ROM and RAM.
  • the ROM can store a program for executing the above processing.
  • the program can include an artificial intelligence program.
  • An example of an artificial intelligence program is a learned neural network by deep learning.
  • the processor 16 can specify at least a part of a program stored in the ROM, expand it on the RAM, and execute the above-described processing in cooperation with the RAM.
  • At least a part of the functions of the processor 16 may be realized by at least one hardware resource different from the processor 16 and the memory 17. Examples of such hardware resources may include integrated circuits such as ASIC and FPGA.
  • the memory 17 is supported by the housing 11.
  • the memory 17 may be supported on the outer surface of the housing 11 or may be disposed in the lamp chamber 13.
  • the postures of the first sensor module 14 and the second sensor module 15 with respect to the housing 11 are adjusted. Specifically, the detection reference position of the first LiDAR sensor 41 is adjusted by changing the posture of the first support member 43 with respect to the housing 11 using the first screw mechanism 44. Similarly, the detection reference position of the second LiDAR sensor 51 is adjusted by changing the posture of the second support member 53 with respect to the housing 11 using the second screw mechanism 54.
  • One time point before the left front sensor system 1LF is mounted on the vehicle 100 is an example of a first time point.
  • the first acceleration sensor 42 outputs a signal A1 (t1) corresponding to the attitude of the first support member 43 corresponding to the adjustment result of the detection reference position of the first LiDAR sensor 41. That is, the signal A1 (t1) corresponds to the output value V11 of the first acceleration sensor 42 before the left front sensor system 1LF is mounted on the vehicle 100.
  • the signal A1 (t1) is input to the memory 17.
  • the memory 17 stores the output value V11 of the first acceleration sensor 42 corresponding to the signal A1 (t1).
  • the output value V11 is an example of a first output value.
  • the second acceleration sensor 52 outputs a signal A2 (t1) corresponding to the attitude of the second support member 53 corresponding to the adjustment result of the detection reference position of the second LiDAR sensor 51. That is, the signal A2 (t1) corresponds to the output value V21 of the second acceleration sensor 52 before the left front sensor system 1LF is mounted on the vehicle 100.
  • the signal A2 (t1) is input to the memory 17.
  • the memory 17 stores the output value V21 of the second acceleration sensor 52 corresponding to the signal A2 (t1).
  • the output value V21 is an example of a first output value.
  • the left front sensor system 1LF is mounted on the vehicle 100.
  • the detection reference position of each LiDAR sensor may deviate from a desired position due to the tolerance of the body parts or the positional deviation of the left front sensor system 1LF with respect to the vehicle body. Therefore, after the left front sensor system 1LF is mounted on the vehicle 100, the detection reference position of the first LiDAR sensor 41 and the detection reference position of the second LiDAR sensor 51 are readjusted. In other words, at least one of the position and posture of the left front sensor system 1LF with respect to the vehicle body of the vehicle 100 is adjusted.
  • One time point after the left front sensor system 1LF is mounted on the vehicle 100 is an example of a second time point.
  • the first acceleration sensor 42 outputs a signal A1 (t2) corresponding to the posture of the first support member 43 corresponding to the mounting posture of the left front sensor system 1LF with respect to the vehicle body. That is, the signal A1 (t2) corresponds to the output value V12 of the first acceleration sensor 42 after the front left sensor system 1LF is mounted on the vehicle 100.
  • the output value V12 is an example of a second output value.
  • the processor 16 acquires the output value V12 of the first acceleration sensor 42.
  • the signal A1 (t2) output from the first acceleration sensor 42 may be input to the processor 16 or may be input to the memory 17. In the former case, the processor 16 directly acquires the output value V12. In the latter case, the processor 16 acquires the output value V12 via the memory 17.
  • the processor 16 acquires the difference D1 between the output value V12 and the output value V12.
  • the difference D1 reflects a shift in the detection reference position of the first LiDAR sensor 41 caused by mounting the left front sensor system 1LF on the vehicle 100.
  • the processor 16 calculates a correction amount of at least one of the position and orientation of the first LiDAR sensor 41 necessary for eliminating the deviation of the detection reference position of the first LiDAR sensor 41 based on the acquired difference D1.
  • the processor 16 outputs a signal P1.
  • the signal P1 is input to the first actuator 45.
  • the signal P1 causes the first actuator 45 to perform an operation necessary to adjust at least one of the position and orientation of the first LiDAR sensor 41 by the calculated correction amount. Thereby, the readjustment of the detection reference position of the first LiDAR sensor 41 changed by mounting the left front sensor system 1LF on the vehicle 100 is completed.
  • the first actuator 45 is an example of an adjustment mechanism.
  • the second acceleration sensor 52 outputs a signal A2 (t2) corresponding to the posture of the second support member 53 corresponding to the mounting posture of the left front sensor system 1LF with respect to the vehicle body. That is, the signal A2 (t2) corresponds to the output value V22 of the second acceleration sensor 52 after the front left sensor system 1LF is mounted on the vehicle 100.
  • the output value V22 is an example of a second output value.
  • the processor 16 acquires the output value V22 of the second acceleration sensor 52.
  • the signal A2 (t2) output from the second acceleration sensor 52 may be input to the processor 16 or may be input to the memory 17. In the former case, the processor 16 directly acquires the output value V22. In the latter case, the processor 16 acquires the output value V22 via the memory 17.
  • the processor 16 acquires the difference D2 between the output value V21 and the output value V22.
  • the difference D2 reflects a shift in the detection reference position of the second LiDAR sensor 51 caused by mounting the left front sensor system 1LF on the vehicle 100.
  • the processor 16 calculates a correction amount of at least one of the position and orientation of the second LiDAR sensor 51 necessary for eliminating the deviation of the detection reference position of the second LiDAR sensor 51 based on the acquired difference D2.
  • the processor 16 outputs a signal P2.
  • the signal P2 is input to the second actuator 55.
  • the signal P2 causes the second actuator 55 to perform an operation necessary to adjust at least one of the position and orientation of the second LiDAR sensor 51 by the calculated correction amount. Thereby, the readjustment of the detection reference position of the second LiDAR sensor 51 changed by mounting the left front sensor system 1LF on the vehicle 100 is completed.
  • the second actuator 55 is an example of an adjustment mechanism.
  • the adjustment of the detection reference position of each LiDAR sensor before the front left sensor system 1LF is mounted on the vehicle 100 can be performed by the manufacturer of the front left sensor system 1LF.
  • the adjustment of the detection reference position of each LiDAR sensor after the left front sensor system 1LF is mounted on the vehicle 100 can be performed, for example, by a manufacturer that assembles the vehicle 100 using the left front sensor system 1LF as one component. In this case, the work of adjusting the detection reference position of each sensor by the latter can be reduced.
  • the manufacturer of the left front sensor system 1LF is an example of a first entity.
  • the manufacturer that assembles the vehicle 100 is an example of a second entity.
  • the function of the processor 16 may be realized by a control device mounted on the vehicle 100 or may be realized by a processor supported by the housing 11. In the latter case, the processor 16 may be supported on the outer surface of the housing 11 or may be disposed in the lamp chamber 13. In this case, the processing load of the control device mounted on the vehicle 100 can be reduced.
  • the front left sensor system 1LF includes a lamp unit 18.
  • the lamp unit 18 is accommodated in the housing 11.
  • the lamp unit 18 includes a light source and an optical system.
  • the optical system includes at least one of a lens and a reflector.
  • Examples of light sources include lamp light sources and semiconductor light emitting elements.
  • Examples of lamp light sources include incandescent lamps, halogen lamps, discharge lamps, neon lamps, and the like.
  • Examples of the semiconductor light emitting element include a light emitting diode, a laser diode, and an organic EL element. The light emitted from the light source passes through the optical system and is emitted from the lamp unit 18. The light emitted from the lamp unit 18 passes through the translucent member 12 and illuminates a predetermined area outside the vehicle 100.
  • the left front sensor system 1LF includes a third screw mechanism 19.
  • the third screw mechanism 19 is a mechanism for adjusting the posture of the lamp unit 18.
  • the third screw mechanism 19 includes a third horizontal adjustment screw 191 and a third vertical adjustment screw 192.
  • the third screw mechanism 19 is an example of a light source adjustment mechanism.
  • the third horizontal adjustment screw 191 extends through the housing 11.
  • the third leveling screw 191 is connected to the lamp unit 18 through a joint (not shown).
  • the head portion of the third horizontal adjustment screw 191 is disposed outside the housing 11.
  • the rotation of the third horizontal adjustment screw 191 causes the posture of the lamp unit 18 to be within the horizontal plane (within the plane including the front-rear direction and the left-right direction in the figure) by the joint. It is converted into a moving motion.
  • the “horizontal plane” used here does not have to coincide with a strict horizontal plane. Since the structure of the joint itself is well known, detailed description is omitted.
  • the third vertical adjustment screw 192 extends through the housing 11.
  • the third vertical adjustment screw 192 is connected to the lamp unit 18 via a joint (not shown).
  • the head portion of the third vertical adjustment screw 192 is disposed outside the housing 11.
  • the rotation of the third vertical adjusting screw 192 causes the posture of the lamp unit 18 to be in the vertical plane (in the plane including the front-rear direction and the vertical direction in FIG. ) Is converted into a movement that changes.
  • the “vertical plane” used here does not have to coincide with a strict vertical plane. Since the structure of the joint itself is well known, detailed description is omitted.
  • the lamp device and the sensor system can be easily integrated, and the above demand can be met.
  • the left front sensor system 1LF is given as an example of the sensor system.
  • the right front sensor system 1RF arranged at the right front corner of the vehicle 100 shown in FIG. 1 the left rear sensor system 1LB arranged at the left rear corner, and the right rear sensor system 1RB arranged at the right rear corner of the vehicle 100 are shown.
  • the configuration described with reference to the left front sensor system 1LF is also applicable.
  • the right front sensor system 1RF may have a configuration that is symmetrical to the left front sensor system 1LF.
  • the left rear sensor system 1LB may have a symmetric configuration with the left front sensor system 1LF.
  • the right rear sensor system 1RB may have a bilaterally symmetric configuration with the left rear sensor system 1LB. This description is similarly applied to the following embodiments.
  • FIG. 3 schematically shows the configuration of the left front sensor system 2LF according to the second embodiment. Constituent elements that are the same as or equivalent to those of the left front sensor system 1LF according to the first embodiment are given the same reference numerals, and repeated descriptions are omitted.
  • the front left sensor system 2LF includes a first sensor module 24.
  • the first sensor module 24 includes a first LiDAR sensor 41, a first acceleration sensor 42, a first support member 43, and a first screw mechanism 44.
  • the left front sensor system 2LF includes a second sensor module 25.
  • the second sensor module 25 includes a second LiDAR sensor 51, a second acceleration sensor 52, a second support member 53, and a second screw mechanism 54.
  • the left front sensor system 2LF includes a processor 26.
  • the processor 26 include a CPU, MPU, GPU and the like. At least a part of the functions of the processor 26 may be realized by at least one hardware resource different from the processor 26 and the memory 17. Examples of such hardware resources may include integrated circuits such as ASIC and FPGA.
  • the postures of the first sensor module 24 and the second sensor module 25 with respect to the housing 11 are adjusted. Specifically, the detection reference position of the first LiDAR sensor 41 is adjusted by changing the posture of the first support member 43 with respect to the housing 11 using the first screw mechanism 44. Similarly, the detection reference position of the second LiDAR sensor 51 is adjusted by changing the posture of the second support member 53 with respect to the housing 11 using the second screw mechanism 54.
  • One time point before the left front sensor system 2LF is mounted on the vehicle 100 is an example of a first time point.
  • the first acceleration sensor 42 outputs a signal A1 (t1) corresponding to the attitude of the first support member 43 corresponding to the adjustment result of the detection reference position of the first LiDAR sensor 41. That is, the signal A1 (t1) corresponds to the output value V11 of the first acceleration sensor 42 before the left front sensor system 2LF is mounted on the vehicle 100.
  • the signal A1 (t1) is input to the memory 17.
  • the memory 17 stores the output value V11 of the first acceleration sensor 42 corresponding to the signal A1 (t1).
  • the output value V11 is an example of a first output value.
  • the second acceleration sensor 52 outputs a signal A2 (t1) corresponding to the attitude of the second support member 53 corresponding to the adjustment result of the detection reference position of the second LiDAR sensor 51. That is, the signal A2 (t1) corresponds to the output value V21 of the second acceleration sensor 52 before the left front sensor system 2LF is mounted on the vehicle 100.
  • the signal A2 (t1) is input to the memory 17.
  • the memory 17 stores the output value V21 of the second acceleration sensor 52 corresponding to the signal A2 (t1).
  • the output value V21 is an example of a first output value.
  • the left front sensor system 2LF is mounted on the vehicle 100.
  • the detection reference position of each LiDAR sensor may deviate from a desired position due to the tolerance of the vehicle body parts or the positional deviation of the left front sensor system 2LF with respect to the vehicle body. Therefore, after the left front sensor system 2LF is mounted on the vehicle 100, the detection reference position of the first LiDAR sensor 41 and the detection reference position of the second LiDAR sensor 51 are readjusted. In other words, at least one of the position and posture of the left front sensor system 2LF with respect to the vehicle body of the vehicle 100 is adjusted.
  • One point in time after the left front sensor system 2LF is mounted on the vehicle 100 is an example of a second point in time.
  • the first acceleration sensor 42 outputs a signal A1 (t2) corresponding to the posture of the first support member 43 corresponding to the mounting posture of the left front sensor system 2LF with respect to the vehicle body. That is, the signal A1 (t2) corresponds to the output value V12 of the first acceleration sensor 42 after the front left sensor system 2LF is mounted on the vehicle 100.
  • the output value V12 is an example of a second output value.
  • the processor 26 acquires the output value V12 of the first acceleration sensor 42.
  • the signal A1 (t2) output from the first acceleration sensor 42 may be input to the processor 26 or may be input to the memory 17. In the former case, the processor 26 directly acquires the output value V12. In the latter case, the processor 26 acquires the output value V12 via the memory 17.
  • the processor 26 acquires the difference D1 between the output value V12 and the output value V12.
  • the difference D1 reflects a shift in the detection reference position of the first LiDAR sensor 41 caused by mounting the left front sensor system 2LF on the vehicle 100.
  • a mechanism for adjusting the attitude of the first LiDAR sensor 41 is not provided. Therefore, when a shift in the detection reference position of the first LiDAR sensor 41 is detected, the information acquired by the first LiDAR sensor 41 is not changed, but the posture of the first LiDAR sensor 41 is not changed so as to eliminate the shift. Correct the side.
  • the first LiDAR sensor 41 is configured to output a signal L1 corresponding to the attribute (intensity, wavelength, etc.) of the detected return light.
  • the signal L1 is input to the processor 26. Based on the acquired difference D1, the processor 26 corrects the signal L1 so as to be a signal that would have been obtained when there was no deviation in the detection reference position of the first LiDAR sensor 41.
  • the processor 26 indirectly re-adjusts the detection reference position of the first LiDAR sensor 41 that has been changed by mounting the left front sensor system 2LF on the vehicle 100.
  • the second acceleration sensor 52 outputs a signal A2 (t2) corresponding to the posture of the second support member 53 corresponding to the mounting posture of the left front sensor system 2LF with respect to the vehicle body. That is, the signal A2 (t2) corresponds to the output value V22 of the second acceleration sensor 52 after the left front sensor system 2LF is mounted on the vehicle 100.
  • the output value V22 is an example of a second output value.
  • the processor 26 acquires the output value V22 of the second acceleration sensor 52.
  • the signal A2 (t2) output from the second acceleration sensor 52 may be input to the processor 26 or may be input to the memory 17. In the former case, the processor 26 directly acquires the output value V22. In the latter case, the processor 26 acquires the output value V22 via the memory 17.
  • the processor 26 acquires the difference D2 between the output value V21 and the output value V22.
  • the difference D2 reflects a shift in the detection reference position of the second LiDAR sensor 51 caused by mounting the left front sensor system 2LF on the vehicle 100.
  • a mechanism for adjusting the attitude of the second LiDAR sensor 51 is not provided. Therefore, when a deviation of the detection reference position of the second LiDAR sensor 51 is detected, the information acquired by the second LiDAR sensor 51 is not changed, but the posture of the second LiDAR sensor 51 is not changed so as to eliminate the deviation. Correct the side.
  • the second LiDAR sensor 51 is configured to output a signal L2 corresponding to the attribute (intensity, wavelength, etc.) of the detected return light.
  • the signal L2 is input to the processor 26. Based on the acquired difference D2, the processor 26 corrects the signal L2 so as to be a signal that would have been obtained when there was no deviation in the detection reference position of the second LiDAR sensor 51.
  • the adjustment of the detection reference position of each LiDAR sensor before the left front sensor system 2LF is mounted on the vehicle 100 can be performed by the manufacturer of the left front sensor system 2LF.
  • the adjustment of the detection reference position of each LiDAR sensor after the left front sensor system 2LF is mounted on the vehicle 100 can be performed, for example, by a manufacturer that assembles the vehicle 100 using the left front sensor system 2LF as one component. In this case, the work of adjusting the detection reference position of each sensor by the latter can be reduced.
  • the manufacturer of the left front sensor system 2LF is an example of a first entity.
  • the manufacturer that assembles the vehicle 100 is an example of a second entity.
  • a mechanism for adjusting at least one of the position and orientation of each LiDAR sensor can be omitted. Therefore, an increase in size and weight of the left front sensor system 2LF can be suppressed.
  • the function of the processor 26 may be realized by a control device mounted on the vehicle 100 or may be realized by a processor supported by the housing 11. In the latter case, the processor 26 may be supported on the outer surface of the housing 11 or may be disposed in the lamp chamber 13. In this case, the processing load of the control device mounted on the vehicle 100 can be reduced.
  • FIG. 4 schematically shows the configuration of the left front sensor system 3LF according to the third embodiment. Constituent elements that are the same as or equivalent to those of the left front sensor system 1LF according to the first embodiment are given the same reference numerals, and repeated descriptions are omitted.
  • the left front sensor system 3LF includes a first sensor module 34.
  • the first sensor module 34 includes a first camera 46, a millimeter wave radar 47, and an actuator 48 in addition to the first LiDAR sensor 41, the first acceleration sensor 42, the first support member 43, and the first screw mechanism 44. ing.
  • the first acceleration sensor 42 is supported by the first support member 43 together with the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47.
  • the first acceleration sensor 42 is disposed between the first LiDAR sensor 41 and the first camera 46.
  • the first camera 46 is a device that photographs at least the front of the vehicle 100. That is, the first camera 46 is a sensor that detects at least information ahead of the vehicle 100.
  • the front of the vehicle 100 is an example of the outside of the vehicle.
  • the first camera 46 may be a visible light camera or an infrared light camera.
  • the first camera 46 is configured to output a video signal C1 corresponding to the captured video.
  • Information at least in front of the vehicle 100 detected by the first camera 46 is acquired by appropriately processing the video signal C1 by an information processing unit (not shown).
  • the information processing unit may be included in the left front sensor system 3LF, or may be mounted on the vehicle 100.
  • the millimeter wave radar 47 has a configuration for transmitting a millimeter wave and a configuration for receiving a reflected wave resulting from the reflection of the millimeter wave by an object existing at least in front of the vehicle 100.
  • the front of the vehicle 100 is an example of the outside of the vehicle.
  • the millimeter wave radar 47 may include a scanning mechanism that changes the transmission direction (that is, the detection direction) as necessary and sweeps the millimeter wave.
  • a millimeter wave having a frequency of 76 GHz is used. Examples of other frequencies include 24 GHz, 26 GHz, and 79 GHz.
  • the millimeter wave radar 47 can acquire the distance to the object associated with the reflected wave based on the time from when the millimeter wave is transmitted in a certain direction until the reflected wave is received, for example. Further, by accumulating such distance data in association with the detection position, it is possible to acquire information related to the motion of the object associated with the reflected wave.
  • the millimeter wave radar 47 is a sensor that detects at least information ahead of the vehicle 100.
  • the millimeter wave radar 47 outputs a signal corresponding to the attribute (intensity, etc.) of the received reflected wave.
  • the above information is acquired by appropriately processing the signal output from the millimeter wave radar 47 by an information processing unit (not shown).
  • the information processing unit may be included in the left front sensor system 3LF, or may be mounted on the vehicle 100.
  • the actuator 48 is a device for adjusting the detection reference position of the millimeter wave radar 47.
  • the actuator 48 is disposed in the lamp chamber 13 and is coupled to the millimeter wave radar 47.
  • the front left sensor system 3LF includes a second sensor module 35.
  • the second sensor module 35 includes a second camera 56 in addition to the second LiDAR sensor 51, the second acceleration sensor 52, the second support member 53, and the second screw mechanism 54.
  • the second acceleration sensor 52 is supported by the second support member 53 together with the second LiDAR sensor 51 and the second camera 56.
  • the second acceleration sensor 52 is disposed between the second LiDAR sensor 51 and the second camera 56.
  • the second camera 56 is a device that photographs at least the left side of the vehicle 100. That is, the second camera 56 is a sensor that detects at least information on the left side of the vehicle 100.
  • the left side of the vehicle 100 is an example of the outside of the vehicle.
  • the second camera 56 may be a visible light camera or an infrared light camera.
  • the second camera 56 is configured to output a video signal C2 corresponding to the captured video.
  • Information at least in front of the vehicle 100 detected by the second camera 56 is acquired by appropriately processing the video signal C2 by an information processing unit (not shown).
  • the information processing unit may be included in the left front sensor system 3LF, or may be mounted on the vehicle 100.
  • the front left sensor system 3LF includes a processor 36.
  • the processor 36 include a CPU, MPU, GPU and the like. At least a part of the functions of the processor 36 may be realized by at least one hardware resource different from the processor 36 and the memory 17. Examples of such hardware resources may include integrated circuits such as ASIC and FPGA.
  • the postures of the first sensor module 34 and the second sensor module 35 with respect to the housing 11 are adjusted. Specifically, by changing the attitude of the first support member 43 with respect to the housing 11 using the first screw mechanism 44, the detection reference positions of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 are changed. Adjustments are made. Similarly, the detection reference positions of the second LiDAR sensor 51 and the second camera 56 are adjusted by changing the posture of the second support member 53 with respect to the housing 11 using the second screw mechanism 54.
  • One point in time before the left front sensor system 3LF is mounted on the vehicle 100 is an example of a first point in time.
  • the first acceleration sensor 42 outputs a signal A1 (t1) corresponding to the attitude of the first support member 43 corresponding to the adjustment result of the detection reference position of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47.
  • the signal A1 (t1) corresponds to the output value V11 of the first acceleration sensor 42 before the left front sensor system 3LF is mounted on the vehicle 100.
  • the signal A1 (t1) is input to the memory 17.
  • the memory 17 stores the output value V11 of the first acceleration sensor 42 corresponding to the signal A1 (t1).
  • the output value V11 is an example of a first output value.
  • the second acceleration sensor 52 outputs a signal A2 (t1) corresponding to the attitude of the second support member 53 corresponding to the adjustment result of the detection reference position of the second LiDAR sensor 51 and the second camera 56. That is, the signal A2 (t1) corresponds to the output value V21 of the second acceleration sensor 52 before the left front sensor system 3LF is mounted on the vehicle 100.
  • the signal A2 (t1) is input to the memory 17.
  • the memory 17 stores the output value V21 of the second acceleration sensor 52 corresponding to the signal A2 (t1).
  • the output value V21 is an example of a first output value.
  • the left front sensor system 3LF is mounted on the vehicle 100.
  • the detection reference position of each sensor may deviate from a desired position due to the tolerance of the vehicle body parts or the positional deviation of the left front sensor system 3LF with respect to the vehicle body. Therefore, after the left front sensor system 3LF is mounted on the vehicle 100, the detection reference position of each sensor is readjusted. In other words, at least one of the position and posture of the left front sensor system 3LF with respect to the vehicle body of the vehicle 100 is adjusted.
  • One time point after the left front sensor system 3LF is mounted on the vehicle 100 is an example of a second time point.
  • the first acceleration sensor 42 outputs a signal A1 (t2) corresponding to the posture of the first support member 43 corresponding to the mounting posture of the left front sensor system 3LF with respect to the vehicle body. That is, the signal A1 (t2) corresponds to the output value V12 of the first acceleration sensor 42 after the front left sensor system 3LF is mounted on the vehicle 100.
  • the output value V12 is an example of a second output value.
  • the processor 36 acquires the output value V12 of the first acceleration sensor 42.
  • the signal A1 (t2) output from the first acceleration sensor 42 may be input to the processor 36 or may be input to the memory 17. In the former case, the processor 36 directly acquires the output value V12. In the latter case, the processor 36 acquires the output value V12 via the memory 17.
  • the processor 36 acquires the difference D1 between the output value V12 and the output value V12.
  • the difference D1 reflects a shift in the detection reference position of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 caused by mounting the left front sensor system 3LF on the vehicle 100.
  • a mechanism for adjusting the postures of the first LiDAR sensor 41 and the first camera 46 is not provided. Therefore, when the deviation of the detection reference position between the first LiDAR sensor 41 and the first camera 46 is detected, the posture of the first LiDAR sensor 41 and the first camera 46 is not changed so as to eliminate the deviation. The side of information acquired by the first LiDAR sensor 41 and the first camera 46 is corrected.
  • the processor 36 uses the first LiDAR sensor so as to obtain a signal that would have been obtained if there was no deviation in the detection reference position of the first LiDAR sensor 41 based on the acquired difference D1.
  • the signal L1 output from 41 is corrected.
  • the processor 36 is output from the first camera 46 based on the acquired difference D1 so as to be a signal that would have been obtained if there was no deviation in the detection reference position of the first camera 46.
  • the corrected video signal C1 is corrected.
  • substantially the same information is obtained as when at least one of the position and orientation of the first LiDAR sensor 41 and the first camera 46 is changed so as to eliminate the deviation of the detection reference position. That is, it can be said that the processor 36 indirectly re-adjusts the detection reference positions of the first LiDAR sensor 41 and the first camera 46 that have been changed by mounting the front left sensor system 3LF on the vehicle 100.
  • the second acceleration sensor 52 outputs a signal A2 (t2) corresponding to the posture of the second support member 53 corresponding to the mounting posture of the left front sensor system 3LF with respect to the vehicle body. That is, the signal A2 (t2) corresponds to the output value V22 of the second acceleration sensor 52 after the front left sensor system 3LF is mounted on the vehicle 100.
  • the output value V22 is an example of a second output value.
  • the processor 36 acquires the output value V22 of the second acceleration sensor 52.
  • the signal A ⁇ b> 2 (t ⁇ b> 2) output from the second acceleration sensor 52 may be input to the processor 36 or may be input to the memory 17. In the former case, the processor 36 directly acquires the output value V22. In the latter case, the processor 36 acquires the output value V22 via the memory 17.
  • the processor 36 acquires the difference D2 between the output value V21 and the output value V22.
  • the difference D2 reflects a shift in the detection reference position between the second LiDAR sensor 51 and the second camera 56 caused by mounting the left front sensor system 3LF on the vehicle 100.
  • a mechanism for adjusting the postures of the second LiDAR sensor 51 and the second camera 56 is not provided. Therefore, when the deviation of the detection reference position between the second LiDAR sensor 51 and the second camera 56 is detected, the posture of the second LiDAR sensor 51 and the second camera 56 is not changed so as to eliminate the deviation. The side of information acquired by the second LiDAR sensor 51 and the second camera 56 is corrected.
  • the processor 36 uses the second LiDAR sensor so as to obtain a signal that would have been obtained when there was no deviation in the detection reference position of the second LiDAR sensor 51.
  • the signal L2 output from 51 is corrected.
  • the processor 36 is output from the second camera 56 so as to obtain a signal that would have been obtained when there was no deviation in the detection reference position of the second camera 56 based on the acquired difference D2.
  • the corrected video signal C2 is corrected.
  • substantially the same information is obtained as when at least one of the position and orientation of the second LiDAR sensor 51 and the second camera 56 is changed so as to eliminate the deviation of the detection reference position. That is, it can be said that the processor 36 indirectly re-adjusts the detection reference positions of the second LiDAR sensor 51 and the second camera 56 that have been changed by mounting the front left sensor system 3LF on the vehicle 100.
  • the difference D1 between the output value V12 and the output value V12 of the first acceleration sensor 42 also reflects a shift in the detection reference position of the millimeter wave radar 47 caused by mounting the left front sensor system 3LF on the vehicle 100.
  • the processor 36 calculates a correction amount of at least one of the position and orientation of the millimeter wave radar 47 necessary for eliminating the deviation of the detection reference position of the millimeter wave radar 47 based on the acquired difference D1.
  • the processor 36 outputs a signal P.
  • the signal P is input to the actuator 48.
  • the signal P causes the actuator 48 to perform an operation necessary to adjust at least one of the position and orientation of the millimeter wave radar 47 by the calculated correction amount. Thereby, the readjustment of the detection reference position of the millimeter wave radar 47 changed by mounting the left front sensor system 3LF on the vehicle 100 is completed.
  • the actuator 48 is an example of an adjustment mechanism.
  • Adjustment work to eliminate can be automated. Therefore, it is possible to reduce the burden of the work of adjusting the detection reference position of each sensor after the left front sensor system 3LF is mounted on the vehicle 100.
  • the adjustment of the detection reference position of each sensor before the left front sensor system 3LF is mounted on the vehicle 100 can be performed by the manufacturer of the left front sensor system 3LF.
  • the adjustment of the detection reference position of each sensor after the left front sensor system 3LF is mounted on the vehicle 100 can be performed, for example, by a manufacturer that assembles the vehicle 100 using the left front sensor system 3LF as one component. In this case, the work of adjusting the detection reference position of each sensor by the latter can be reduced.
  • the manufacturer of the left front sensor system 3LF is an example of a first entity.
  • the manufacturer that assembles the vehicle 100 is an example of a second entity.
  • a mechanism for adjusting at least one of the position and orientation of each LiDAR sensor and each camera can be omitted. Therefore, an increase in size and weight of the left front sensor system 3LF can be suppressed.
  • the function of the processor 36 may be realized by a control device mounted on the vehicle 100 or may be realized by a processor supported by the housing 11. In the latter case, the processor 36 may be supported on the outer surface of the housing 11 or may be disposed in the lamp chamber 13. In this case, the processing load of the control device mounted on the vehicle 100 can be reduced.
  • FIG. 5 schematically shows the configuration of the left front sensor system 4LF according to the fourth embodiment. Constituent elements that are the same as or equivalent to those of the left front sensor system 3LF according to the third embodiment are given the same reference numerals, and repeated descriptions are omitted.
  • the left front sensor system 3LF includes a first sensor module 64.
  • the first sensor module 64 includes a first LiDAR sensor 41, a first acceleration sensor 42, a first support member 43, a first screw mechanism 44, a first camera 46, a millimeter wave radar 47, and an actuator 48, An information processing device 49 is provided.
  • FIG. 6A shows a functional configuration of the first sensor module 64.
  • the first information processing device 49 includes a first processor 491 and a first memory 492.
  • the first processor 491 may include a CPU, MPU, GPU, and the like.
  • the first processor 491 can include a plurality of processor cores.
  • Examples of the first memory 492 may include a ROM and a RAM.
  • the ROM can store a program for executing the above processing.
  • the program can include an artificial intelligence program.
  • An example of an artificial intelligence program is a learned neural network by deep learning.
  • the first processor 491 can specify at least a part of a program stored in the ROM, develop it on the RAM, and execute the above-described processing in cooperation with the RAM.
  • At least a part of the functions of the first processor 491 may be realized by at least one hardware resource different from the first processor 491 and the first memory 492. Examples of such hardware resources may include integrated circuits such as ASIC and FPGA.
  • the first information processing device 49 has a single casing or substrate.
  • the first information processing device 49 is supported by the first support member 43 together with the first LiDAR sensor 41, the first acceleration sensor 42, the first camera 46, and the millimeter wave radar 47.
  • the first acceleration sensor 42 is provided in the housing of the first information processing device 49 or on the substrate.
  • the first information processing device 49 is supported by the first support member 43 so that the first acceleration sensor 42 is disposed between the first LiDAR sensor 41 and the first camera 46.
  • the first acceleration sensor 42 may be provided outside the housing or the substrate of the first information processing device 49.
  • the front left sensor system 4LF includes a second sensor module 65.
  • the second sensor module 65 includes a second information processing device 59 in addition to the second LiDAR sensor 51, the second acceleration sensor 52, the second support member 53, the second screw mechanism 54, and the second camera 56. .
  • FIG. 6B shows the functional configuration of the second sensor module 65.
  • the second information processing device 59 includes a second processor 591 and a second memory 592.
  • Examples of the second processor 591 include a CPU, MPU, GPU, and the like.
  • the second processor 591 can include a plurality of processor cores.
  • Examples of the second memory 592 include a ROM and a RAM.
  • the ROM can store a program for executing the above processing.
  • the program can include an artificial intelligence program.
  • An example of an artificial intelligence program is a learned neural network by deep learning.
  • the second processor 591 can specify at least a part of a program stored in the ROM, expand it on the RAM, and execute the above-described processing in cooperation with the RAM.
  • At least a part of the functions of the second processor 591 may be realized by at least one hardware resource different from the second processor 591 and the second memory 592. Examples of such hardware resources may include integrated circuits such as ASIC and FPGA.
  • the second information processing apparatus 59 has a single casing or substrate.
  • the second information processing device 59 is supported by the second support member 53 together with the second LiDAR sensor 51, the second acceleration sensor 52, and the second camera 56.
  • the second acceleration sensor 52 is provided in the housing of the second information processing device 59 or on the substrate.
  • the second information processing device 59 is supported by the second support member 53 so that the second acceleration sensor 52 is disposed between the second LiDAR sensor 51 and the second camera 56.
  • the second acceleration sensor 52 may be provided outside the housing or the substrate of the second information processing device 59.
  • the postures of the first sensor module 64 and the second sensor module 65 with respect to the housing 11 are adjusted. Specifically, by changing the attitude of the first support member 43 with respect to the housing 11 using the first screw mechanism 44, the detection reference positions of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 are changed. Adjustments are made. Similarly, the detection reference positions of the second LiDAR sensor 51 and the second camera 56 are adjusted by changing the posture of the second support member 53 with respect to the housing 11 using the second screw mechanism 54.
  • One time point before the left front sensor system 4LF is mounted on the vehicle 100 is an example of a first time point.
  • the first acceleration sensor 42 outputs a signal A1 (t1) corresponding to the attitude of the first support member 43 corresponding to the adjustment result of the detection reference position of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47.
  • the signal A1 (t1) corresponds to the output value V11 of the first acceleration sensor 42 before the left front sensor system 4LF is mounted on the vehicle 100.
  • the signal A1 (t1) is input to the first memory 492.
  • the first memory 492 stores the output value V11 of the first acceleration sensor 42 corresponding to the signal A1 (t1).
  • the output value V11 is an example of a first output value.
  • the second acceleration sensor 52 outputs a signal A2 (t1) corresponding to the attitude of the second support member 53 corresponding to the adjustment result of the detection reference position of the second LiDAR sensor 51 and the second camera 56. That is, the signal A2 (t1) corresponds to the output value V21 of the second acceleration sensor 52 before the left front sensor system 4LF is mounted on the vehicle 100.
  • the signal A2 (t1) is input to the second memory 592.
  • the second memory 592 stores the output value V21 of the second acceleration sensor 52 corresponding to the signal A2 (t1).
  • the output value V21 is an example of a first output value.
  • the left front sensor system 4LF is mounted on the vehicle 100.
  • the detection reference position of each sensor may deviate from a desired position due to the tolerance of the body parts or the positional deviation of the left front sensor system 4LF with respect to the vehicle body. Therefore, after the left front sensor system 4LF is mounted on the vehicle 100, the detection reference position of each sensor is readjusted. In other words, at least one of the position and posture of the left front sensor system 4LF with respect to the vehicle body of the vehicle 100 is adjusted.
  • One time point after the left front sensor system 4LF is mounted on the vehicle 100 is an example of a second time point.
  • the first acceleration sensor 42 outputs a signal A1 (t2) corresponding to the posture of the first support member 43 corresponding to the mounting posture of the left front sensor system 4LF with respect to the vehicle body. That is, the signal A1 (t2) corresponds to the output value V12 of the first acceleration sensor 42 after the front left sensor system 4LF is mounted on the vehicle 100.
  • the output value V12 is an example of a second output value.
  • the first processor 491 acquires the output value V12 of the first acceleration sensor 42.
  • the signal A1 (t2) output from the first acceleration sensor 42 may be input to the first processor 491 or may be input to the first memory 492. In the former case, the first processor 491 directly acquires the output value V12. In the latter case, the first processor 491 acquires the output value V12 via the first memory 492.
  • the first processor 491 acquires the difference D1 between the output value V12 and the output value V12.
  • the difference D1 reflects a shift in the detection reference position of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 caused by mounting the left front sensor system 4LF on the vehicle 100.
  • a mechanism for adjusting the postures of the first LiDAR sensor 41 and the first camera 46 is not provided. Therefore, when the deviation of the detection reference position between the first LiDAR sensor 41 and the first camera 46 is detected, the posture of the first LiDAR sensor 41 and the first camera 46 is not changed so as to eliminate the deviation. The side of information acquired by the first LiDAR sensor 41 and the first camera 46 is corrected.
  • the first processor 491 sets the first processor 491 so as to obtain a signal that would have been obtained when there was no deviation in the detection reference position of the first LiDAR sensor 41.
  • the signal L1 output from the LiDAR sensor 41 is corrected.
  • the first processor 491 determines from the first camera 46 a signal that would have been obtained if there was no deviation in the detection reference position of the first camera 46 based on the acquired difference D1.
  • the output video signal C1 is corrected.
  • the first processor 491 indirectly re-adjusts the detection reference positions of the first LiDAR sensor 41 and the first camera 46 that have been changed by mounting the left front sensor system 4LF on the vehicle 100.
  • the second acceleration sensor 52 outputs a signal A2 (t2) corresponding to the posture of the second support member 53 corresponding to the mounting posture of the left front sensor system 4LF with respect to the vehicle body. That is, the signal A2 (t2) corresponds to the output value V22 of the second acceleration sensor 52 after the left front sensor system 4LF is mounted on the vehicle 100.
  • the output value V22 is an example of a second output value.
  • the second processor 591 acquires the output value V22 of the second acceleration sensor 52.
  • the signal A2 (t2) output from the second acceleration sensor 52 may be input to the second processor 591 or may be input to the second memory 592. In the former case, the second processor 591 directly acquires the output value V22. In the latter case, the second processor 591 acquires the output value V22 via the second memory 592.
  • the second processor 591 acquires the difference D2 between the output value V21 and the output value V22.
  • the difference D2 reflects a shift in the detection reference position between the second LiDAR sensor 51 and the second camera 56 caused by mounting the left front sensor system 4LF on the vehicle 100.
  • a mechanism for adjusting the postures of the second LiDAR sensor 51 and the second camera 56 is not provided. Therefore, when the deviation of the detection reference position between the second LiDAR sensor 51 and the second camera 56 is detected, the posture of the second LiDAR sensor 51 and the second camera 56 is not changed so as to eliminate the deviation. The side of information acquired by the second LiDAR sensor 51 and the second camera 56 is corrected.
  • the second processor 591 sets the second processor 591 so as to obtain a signal that would have been obtained when there was no deviation in the detection reference position of the second LiDAR sensor 51.
  • the signal L2 output from the LiDAR sensor 51 is corrected.
  • the second processor 591 determines from the second camera 56 a signal that would have been obtained if there was no deviation in the detection reference position of the second camera 56 based on the acquired difference D2.
  • the output video signal C2 is corrected.
  • the second processor 591 indirectly re-adjusts the detection reference positions of the second LiDAR sensor 51 and the second camera 56 that have been changed by mounting the left front sensor system 4LF on the vehicle 100.
  • the difference D1 between the output value V12 and the output value V12 of the first acceleration sensor 42 also reflects a shift in the detection reference position of the millimeter wave radar 47 caused by mounting the left front sensor system 4LF on the vehicle 100.
  • the first processor 491 calculates a correction amount of at least one of the position and orientation of the millimeter wave radar 47 necessary for eliminating the deviation of the detection reference position of the millimeter wave radar 47 based on the acquired difference D1.
  • the first processor 491 outputs a signal P.
  • the signal P is input to the actuator 48.
  • the signal P causes the actuator 48 to perform an operation necessary to adjust at least one of the position and orientation of the millimeter wave radar 47 by the calculated correction amount. Thereby, the readjustment of the detection reference position of the millimeter wave radar 47 changed by mounting the left front sensor system 4LF on the vehicle 100 is completed.
  • the actuator 48 is an example of an adjustment mechanism.
  • Adjustment work to eliminate can be automated. Therefore, it is possible to reduce the burden of the work of adjusting the detection reference position of each sensor after the left front sensor system 4LF is mounted on the vehicle 100.
  • the adjustment of the detection reference position of each sensor before the left front sensor system 4LF is mounted on the vehicle 100 can be performed by the manufacturer of the left front sensor system 4LF.
  • the adjustment of the detection reference position of each sensor after the left front sensor system 4LF is mounted on the vehicle 100 can be performed by, for example, a manufacturer that assembles the vehicle 100 using the left front sensor system 4LF as one component. In this case, the work of adjusting the detection reference position of each sensor by the latter can be reduced.
  • the manufacturer of the left front sensor system 4LF is an example of a first entity.
  • the manufacturer that assembles the vehicle 100 is an example of a second entity.
  • a mechanism for adjusting at least one of the position and orientation of each LiDAR sensor and each camera can be omitted. Therefore, an increase in size and weight of the left front sensor system 4LF can be suppressed.
  • the first processor 491 and the first memory 492 are supported by the first support member 43, and the second processor 591 and the second memory 592 are supported by the second support member 53. ing. Therefore, regarding the processing performed by the first processor 491 and the first memory 492 and the processing performed by the second processor 591 and the second memory 592, the load on the control device mounted on the vehicle 100 can be reduced.
  • FIG. 7 schematically shows the configuration of the left front sensor system 5LF according to the fifth embodiment. Constituent elements that are the same as or equivalent to those of the left front sensor system 3LF according to the third embodiment are given the same reference numerals, and repeated descriptions are omitted.
  • the left front sensor system 3LF includes a first sensor module 74.
  • the first sensor module 74 includes a first LiDAR sensor 41, a first acceleration sensor 42, a first screw mechanism 44, a first camera 46, and a millimeter wave radar 47.
  • the first sensor module 74 includes a first support member 740.
  • the first support member 740 is a single casing or substrate.
  • the first LiDAR sensor 41, the first acceleration sensor 42, the first camera 46, and the millimeter wave radar 47 are provided in the casing or on the substrate.
  • the first acceleration sensor 42 is disposed between the first LiDAR sensor 41 and the first camera 46.
  • the first screw mechanism 44 is directly or indirectly coupled to the casing or the substrate.
  • FIG. 8A shows a functional configuration of the first sensor module 74.
  • the first sensor module 74 further includes a first processor 741, a first memory 742, a first communication unit 743, and a first power feeding unit 744.
  • the first processor 741, the first memory 742, the first communication unit 743, and the first power feeding unit 744 are provided in the casing or the substrate as the first support member 740.
  • the first processor 741 can include a plurality of processor cores.
  • Examples of the first memory 742 include a ROM and a RAM.
  • the ROM can store a program for executing the above processing.
  • the program can include an artificial intelligence program.
  • An example of an artificial intelligence program is a learned neural network by deep learning.
  • the first processor 741 can specify at least a part of a program stored in the ROM, expand it on the RAM, and execute the above-described processing in cooperation with the RAM.
  • At least a part of the functions of the first processor 741 may be realized by at least one hardware resource different from the first processor 741 and the first memory 742. Examples of such hardware resources may include integrated circuits such as ASIC and FPGA.
  • the first processor 741 is communicably connected to a control device (not shown) mounted on the vehicle 100 via the first communication unit 743.
  • the first processor 741 receives a control signal from the control device via the first communication unit 743, and performs operations of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 based on the control signal. Configured to control.
  • the first power supply unit 744 is supplied with power from a power source (not shown) mounted on the vehicle 100, and receives the power from the first LiDAR sensor 41, the first acceleration sensor 42, the first camera 46, and the millimeter wave radar 47.
  • the first processor 741 and the first memory 742 are configured to be supplied.
  • the front left sensor system 3LF includes a second sensor module 75.
  • the second sensor module 75 includes a second LiDAR sensor 51, a second acceleration sensor 52, a second screw mechanism 54, and a second camera 56.
  • the second sensor module 75 includes a second support member 750.
  • the second support member 750 is a single casing or substrate.
  • the second LiDAR sensor 51, the second acceleration sensor 52, and the second camera 56 are provided in the casing or on the substrate.
  • the second acceleration sensor 52 is disposed between the second LiDAR sensor 51 and the second camera 56.
  • the second screw mechanism 54 is directly or indirectly coupled to the casing or the substrate.
  • FIG. 8B shows a functional configuration of the second sensor module 75.
  • the second sensor module 75 further includes a second processor 751, a second memory 752, a second communication unit 753, and a second power feeding unit 754.
  • the second processor 751, the second memory 752, the second communication unit 753, and the second power supply unit 754 are provided in the casing as the second support member 750 or on the substrate.
  • the second processor 751 a CPU, MPU, GPU or the like can be exemplified.
  • the second processor 751 can include a plurality of processor cores.
  • Examples of the second memory 752 include a ROM and a RAM.
  • the ROM can store a program for executing the above processing.
  • the program can include an artificial intelligence program.
  • An example of an artificial intelligence program is a learned neural network by deep learning.
  • the second processor 751 can specify at least a part of a program stored in the ROM, expand it on the RAM, and execute the above-described processing in cooperation with the RAM.
  • At least a part of the functions of the second processor 751 may be realized by at least one hardware resource different from the second processor 751 and the second memory 752. Examples of such hardware resources may include integrated circuits such as ASIC and FPGA.
  • the second processor 751 is communicably connected to a control device (not shown) mounted on the vehicle 100 via the second communication unit 753.
  • the second processor 751 is configured to receive a control signal from the control device via the second communication unit 753 and control the operations of the second LiDAR sensor 51 and the second camera 56 based on the control signal. ing.
  • the second power feeding unit 754 receives power from a power source (not shown) mounted on the vehicle 100 and also supplies the power to the second LiDAR sensor 51, the second acceleration sensor 52, the second camera 56, and the second processor 751. And it is comprised so that it may supply to the 2nd memory 752.
  • the postures of the first sensor module 74 and the second sensor module 75 with respect to the housing 11 are adjusted. Specifically, by changing the posture of the first support member 740 with respect to the housing 11 using the first screw mechanism 44, the detection reference positions of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 are changed. Adjustments are made. Similarly, the detection reference positions of the second LiDAR sensor 51 and the second camera 56 are adjusted by changing the posture of the second support member 750 with respect to the housing 11 using the second screw mechanism 54.
  • One time point before the left front sensor system 5LF is mounted on the vehicle 100 is an example of a first time point.
  • the first acceleration sensor 42 outputs a signal A1 (t1) corresponding to the attitude of the first support member 740 corresponding to the adjustment result of the detection reference position of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47.
  • the signal A1 (t1) corresponds to the output value V11 of the first acceleration sensor 42 before the left front sensor system 5LF is mounted on the vehicle 100.
  • the signal A1 (t1) is input to the first memory 742.
  • the first memory 742 stores the output value V11 of the first acceleration sensor 42 corresponding to the signal A1 (t1).
  • the output value V11 is an example of a first output value.
  • the second acceleration sensor 52 outputs a signal A2 (t1) corresponding to the attitude of the second support member 750 corresponding to the adjustment result of the detection reference position of the second LiDAR sensor 51 and the second camera 56. That is, the signal A2 (t1) corresponds to the output value V21 of the second acceleration sensor 52 before the left front sensor system 5LF is mounted on the vehicle 100.
  • the signal A2 (t1) is input to the second memory 752.
  • the second memory 752 stores the output value V21 of the second acceleration sensor 52 corresponding to the signal A2 (t1).
  • the output value V21 is an example of a first output value.
  • the left front sensor system 5LF is mounted on the vehicle 100.
  • the detection reference position of each sensor may deviate from a desired position due to the tolerance of the vehicle body parts or the positional deviation of the left front sensor system 5LF with respect to the vehicle body. Therefore, after the left front sensor system 5LF is mounted on the vehicle 100, the detection reference position of each sensor is readjusted. In other words, at least one of the position and posture of the left front sensor system 5LF with respect to the vehicle body of the vehicle 100 is adjusted.
  • One point in time after the left front sensor system 5LF is mounted on the vehicle 100 is an example of a second point in time.
  • the first acceleration sensor 42 outputs a signal A1 (t2) corresponding to the posture of the first support member 43 corresponding to the mounting posture of the left front sensor system 5LF with respect to the vehicle body. That is, the signal A1 (t2) corresponds to the output value V12 of the first acceleration sensor 42 after the front left sensor system 5LF is mounted on the vehicle 100.
  • the output value V12 is an example of a second output value.
  • the first processor 741 acquires the output value V12 of the first acceleration sensor 42.
  • the signal A1 (t2) output from the first acceleration sensor 42 may be input to the first processor 741 or may be input to the first memory 742. In the former case, the first processor 741 directly acquires the output value V12. In the latter case, the first processor 741 acquires the output value V12 via the first memory 742.
  • the first processor 741 acquires the difference D1 between the output value V12 and the output value V12.
  • the difference D1 reflects a shift in the detection reference position of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 caused by mounting the left front sensor system 4LF on the vehicle 100.
  • a mechanism for adjusting the postures of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 is not provided. Accordingly, when a deviation in the detection reference position of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 is detected, the first LiDAR sensor 41, the first camera 46, and the millimeter are set so as to eliminate the deviation. Instead of changing the attitude of the wave radar 47, the information side acquired by the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 is corrected.
  • the first processor 741 sets the first processor 741 so as to obtain a signal that would have been obtained when there was no deviation in the detection reference position of the first LiDAR sensor 41.
  • the signal L1 output from the LiDAR sensor 41 is corrected.
  • the first processor 741 determines from the first camera 46 that the signal that would have been obtained if there was no deviation in the detection reference position of the first camera 46 based on the acquired difference D1.
  • the output video signal C1 is corrected.
  • the first processor 741 determines that the signal that would have been obtained if there was no deviation in the detection reference position of the millimeter wave radar 47 based on the acquired difference D1 from the millimeter wave radar 47.
  • the output signal M is corrected.
  • the first processor 741 indirectly re-adjusts the detection reference positions of the first LiDAR sensor 41, the first camera 46, and the millimeter wave radar 47 that have been changed by mounting the left front sensor system 4LF on the vehicle 100. It can be said that.
  • the second acceleration sensor 52 outputs a signal A2 (t2) corresponding to the posture of the second support member 53 corresponding to the mounting posture of the left front sensor system 5LF with respect to the vehicle body. That is, the signal A2 (t2) corresponds to the output value V22 of the second acceleration sensor 52 after the left front sensor system 5LF is mounted on the vehicle 100.
  • the output value V22 is an example of a second output value.
  • the second processor 751 acquires the output value V22 of the second acceleration sensor 52.
  • the signal A2 (t2) output from the second acceleration sensor 52 may be input to the second processor 751 or may be input to the second memory 752. In the former case, the second processor 751 directly acquires the output value V22. In the latter case, the second processor 751 acquires the output value V22 via the second memory 752.
  • the second processor 751 acquires the difference D2 between the output value V21 and the output value V22.
  • the difference D2 reflects a shift in the detection reference position between the second LiDAR sensor 51 and the second camera 56 caused by mounting the left front sensor system 4LF on the vehicle 100.
  • a mechanism for adjusting the postures of the second LiDAR sensor 51 and the second camera 56 is not provided. Therefore, when the deviation of the detection reference position between the second LiDAR sensor 51 and the second camera 56 is detected, the posture of the second LiDAR sensor 51 and the second camera 56 is not changed so as to eliminate the deviation. The side of information acquired by the second LiDAR sensor 51 and the second camera 56 is corrected.
  • the second processor 751 sets the second processor 751 so as to obtain a signal that would have been obtained when there was no deviation in the detection reference position of the second LiDAR sensor 51.
  • the signal L2 output from the LiDAR sensor 51 is corrected.
  • the second processor 751 determines from the second camera 56 that the signal that would have been obtained if there was no deviation in the detection reference position of the second camera 56 based on the acquired difference D2.
  • the output video signal C2 is corrected.
  • the second processor 751 indirectly re-adjusts the detection reference positions of the second LiDAR sensor 51 and the second camera 56 that have been changed by mounting the left front sensor system 5LF on the vehicle 100.
  • the adjustment of the detection reference position of each sensor before the front left sensor system 5LF is mounted on the vehicle 100 can be performed by the manufacturer of the front left sensor system 5LF.
  • the adjustment of the detection reference position of each sensor after the left front sensor system 5LF is mounted on the vehicle 100 can be performed, for example, by a manufacturer that assembles the vehicle 100 using the left front sensor system 5LF as one component. In this case, the work of adjusting the detection reference position of each sensor by the latter can be reduced.
  • the manufacturer of the left front sensor system 5LF is an example of a first entity.
  • the manufacturer that assembles the vehicle 100 is an example of a second entity.
  • a mechanism for adjusting at least one of the position and orientation of each sensor can be omitted. Therefore, an increase in size and weight of the left front sensor system 5LF can be suppressed.
  • the first processor 741 and the first memory 742 are supported by the first support member 740, and the second processor 751 and the second memory 752 are supported by the second support member 750. ing. Therefore, regarding the processing performed by the first processor 741 and the first memory 742 and the processing performed by the second processor 751 and the second memory 752, the load on the control device mounted on the vehicle 100 can be reduced.
  • sensors provided in the sensor system include LiDAR sensors, cameras, and millimeter wave radars.
  • an ultrasonic sensor can also be employed as the sensor.
  • the ultrasonic sensor has a configuration for transmitting an ultrasonic wave (several tens of kHz to several GHz) and a configuration for receiving a reflected wave obtained by reflecting the ultrasonic wave on an object existing outside the vehicle 100.
  • the ultrasonic sensor may include a scanning mechanism that sweeps ultrasonic waves by changing a transmission direction (that is, a detection direction) as necessary.
  • the ultrasonic sensor can acquire the distance to the object associated with the reflected wave based on, for example, the time from when the ultrasonic wave is transmitted in a certain direction until the reflected wave is received. Further, by accumulating such distance data in association with the detection position, it is possible to acquire information related to the motion of the object associated with the reflected wave.
  • the ultrasonic sensor is a sensor that detects information outside the vehicle 100.
  • the ultrasonic sensor outputs a signal corresponding to the attribute (intensity, etc.) of the received reflected wave.
  • the above information is acquired by appropriately processing the signal output from the ultrasonic sensor by the information processing unit.
  • the information processing unit may be included in the sensor system or may be mounted on the vehicle 100.
  • the posture of the lamp unit 18 is adjusted by the third screw mechanism 19.
  • the third screw mechanism 19 can be replaced by an appropriate actuator mechanism at least partially housed in the housing 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

第一LiDARセンサ(41)は、車両の外部の情報を検出する。第一支持部材(43)は、第一LiDARセンサ(41)と第一加速度センサ(42)を支持している。メモリ(17)は、第一時点における第一加速度センサ(42)の第一出力値を記憶する。プロセッサ(16)は、第二時点における第一加速度センサ(42)の第二出力値と前記第一出力値との差分を取得する。

Description

センサモジュール、センサシステム、およびセンサシステムの車両への搭載方法
 本開示は、車両に搭載されるセンサモジュール、車両に搭載されるセンサシステム、およびセンサシステムの車両への搭載方法に関する。
 車両の運転支援を実現するためには、当該車両の外部の情報を取得するためのセンサを車体に搭載する必要がある。外部の情報をより正確に取得するために種別の異なるセンサが使用される場合がある。そのようなセンサの例としては、カメラやLiDAR(Light Detection and Ranging)センサが挙げられる(例えば、特許文献1を参照)。
日本国特許出願公開2010-185769号公報
 上記のようなセンサが車体に搭載された後、当該車体に対する当該センサの検出基準位置を調節する必要がある。運転支援技術の高度化に伴い、センサの数は増加傾向にある。センサの数が増えると、調節作業の負担が増す。
 本開示は、車両に搭載された後のセンサの検出基準位置を調節する作業の負担を軽減することを目的とする。
 上記の目的を達成するための一態様は、車両に搭載されるセンサモジュールであって、
 前記車両の外部の情報を検出するセンサと、
 前記センサを支持している支持部材と、
 前記支持部材に支持されている加速度センサと、
を備えている。
 このような構成によれば、センサモジュールが車両に搭載された後におけるセンサの車両に対する姿勢に係る情報を、加速度センサの信号出力を通じて取得できる。信号出力を利用することによって、センサの姿勢調節やセンサによる検出結果の補正を自動化しやすくなる。したがって、車両に搭載された後のセンサの検出基準位置を調節する作業の負担を軽減できる。
 上記の目的を達成するための一態様は、車両に搭載されるセンサシステムであって、
 前記車両の外部の情報を検出するセンサと、
 前記センサを支持している支持部材と、
 前記支持部材に支持されている加速度センサと、
 第一時点における前記加速度センサの第一出力値を記憶するメモリと、
 第二時点における前記加速度センサの第二出力値と前記第一出力値との差分を取得するプロセッサと、
を備えている。
 このような構成によれば、第一時点と第二時点の間でセンサの姿勢にずれが生じた場合に、加速度センサの信号出力を通じて当該ずれ量を把握できる。信号出力を利用することによって、当該ずれ量に鑑みたセンサの姿勢調節やセンサによる検出結果の補正を自動化しやすくなる。したがって、車両に搭載された後のセンサの検出基準位置を調節する作業の負担を軽減できる。
 上記第一時点の例としては、上記センサシステムが車両に搭載される前が挙げられる。上記第二時点の例としては、上記センサシステムが車両に搭載された後が挙げられる。
 したがって、上記の目的を達成するための一態様は、上記のセンサシステムを車両に搭載する方法であって、
 前記センサシステムが前記車両に搭載される前の前記第一時点における前記加速度センサの第一出力値を、前記メモリに記憶させる第一工程と、
 前記センサシステムが前記車両に搭載された後の前記第二時点における前記加速度センサの第二出力値と前記第一出力値との差分を、前記プロセッサに取得させる第二工程と、
を含んでいる。
 上記の方法において、前記第一工程は、第一エンティティによって行なわれ、前記第二工程は、前記第一エンティティとは異なる第二エンティティによって行なわれうる。
 上記第一エンティティの例としては、上記センサシステムの製造業者が挙げられる。上記第二エンティティの例としては、上記センサシステムを一部品として車両を組み立てる製造業者が挙げられる。この場合、第二エンティティによるセンサの検出基準位置を調節する作業の負担を軽減できる。
 上記センサシステムは、以下のように構成されうる。
 前記センサの位置と姿勢の少なくとも一方の調節を行なう調節機構を備えており、
 前記プロセッサは、前記差分に基づいて前記調節機構に前記調節を行なわせる。
 このような構成によれば、第一時点と第二時点の間でセンサの姿勢にずれが生じた場合に、当該ずれを解消するための調節作業を自動化できる。したがって、センサの数が増えたとしても、センサシステムが車両に搭載された後にセンサの検出基準位置を調節する作業の負担を軽減できる。
 あるいは、上記センサシステムは、以下のように構成されうる。
 前記センサによって検出された情報の補正を行なう補正部を備えており、
 前記プロセッサは、前記差分に基づいて前記補正部に前記補正を行なわせる。
 このような構成によれば、センサの位置と姿勢の少なくとも一方の調節を行なう機構を省略できる。したがって、センサシステムが車両に搭載された後にセンサの検出基準位置を調節する作業の負担を軽減できるだけでなく、センサシステムの大型化や重量増を抑制できる。
 上記のセンサシステムは、以下のように構成されうる。
 前記センサ、前記支持部材、および前記加速度センサを収容する共通のハウジングを備えており、
 前記プロセッサは、前記ハウジングに支持されている。
 前記プロセッサの機能は、車両に搭載されている制御装置によって実現されてもよい。しかしながら、上記のような構成によれば、当該制御装置の処理負荷を軽減できる。
 この場合、上記センサシステムは、以下のように構成されうる。
 前記メモリと前記プロセッサは、前記支持部材に支持されている。
 このような構成によれば、センサ、加速度センサ、メモリ、およびプロセッサをモジュール化しやすい。
 上記のセンサシステムは、以下のように構成されうる。
 光源と、
 前記光源の位置と姿勢の少なくとも一方を調節する光源調節機構と、
 前記センサ、前記支持部材、前記加速度センサ、前記光源、および前記光源調節機構の少なくとも一部を収容する共通のハウジングと、
を備えている。
 車両の周囲の情報を効率的に取得する観点、および意匠上の観点から、車両の四隅に配置されるランプ装置の近傍に車両の外部の情報を取得するためのセンサを配置することが望まれている。上記のような構成によれば、ランプ装置とセンサシステムの統合が容易であり、上記の要望に応えうる。
 前記センサの例としては、LiDARセンサ、ミリ波レーダ、超音波センサ、およびカメラの少なくとも一つが挙げられる。
センサシステムの車両における位置を示している。 第一実施形態に係るセンサシステムの構成を示している。 第二実施形態に係るセンサシステムの構成を示す図である。 第三実施形態に係るセンサシステムの構成を示す図である。 第四実施形態に係るセンサシステムの構成を示す図である。 図5のセンサシステムにおける各センサモジュールの構成を示す図である。 第五実施形態に係るセンサシステムの構成を示す図である。 図7のセンサシステムにおける各センサモジュールの構成を示す図である。
 添付の図面を参照しつつ、実施形態の例について以下詳細に説明する。以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。
 添付の図面において、矢印Fは、図示された構造の前方向を示している。矢印Bは、図示された構造の後方向を示している。矢印Lは、図示された構造の左方向を示している。矢印Rは、図示された構造の右方向を示している。以降の説明に用いる「左」および「右」は、運転席から見た左右の方向を示している。添付の図面において「上下方向」は、紙面に垂直な方向に対応している。
 図1に示されるように、第一実施形態に係る左前センサシステム1LFは、車両100の左前隅部に搭載される。図2は、左前センサシステム1LFの構成を模式的に示している。
 左前センサシステム1LFは、ハウジング11と透光部材12によって区画される灯室13内に収容されている。
 左前センサシステム1LFは、第一センサモジュール14を備えている。第一センサモジュール14は、第一LiDARセンサ41、第一加速度センサ42、第一支持部材43、第一スクリュー機構44、および第一アクチュエータ45を備えている。
 第一LiDARセンサ41は、非可視光を出射する構成、および当該非可視光が少なくとも車両100の前方に存在する物体に反射した結果の戻り光を検出する構成を備えている。車両100の前方は、車両の外部の一例である。第一LiDARセンサ41は、必要に応じて出射方向(すなわち検出方向)を変更して当該非可視光を掃引する走査機構を備えうる。本実施形態においては、非可視光として波長905nmの赤外光が使用されている。
 第一LiDARセンサ41は、例えば、ある方向へ非可視光を出射したタイミングから戻り光を検出するまでの時間に基づいて、当該戻り光に関連付けられた物体までの距離を取得できる。また、そのような距離データを検出位置と関連付けて集積することにより、戻り光に関連付けられた物体の形状に係る情報を取得できる。これに加えてあるいは代えて、出射光と戻り光の波長の相違に基づいて、戻り光に関連付けられた物体の材質などの属性に係る情報を取得できる。これに加えてあるいは代えて、例えば路面から戻り光の反射率の相違に基づいて、対象物の色(路面における白線など)に係る情報を取得できる。
 すなわち、第一LiDARセンサ41は、少なくとも車両100の前方の情報を検出するセンサである。第一LiDARセンサ41は、検出された戻り光の属性(強度や波長など)に対応する信号を出力するように構成されている。上記の情報は、第一LiDARセンサ41により出力された信号が図示しない情報処理部によって適宜に処理されることによって取得される。情報処理部は、左前センサシステム1LFが備えていてもよいし、車両100に搭載されていてもよい。
 第一加速度センサ42は、第一LiDARセンサ41とともに第一支持部材43によって支持されている。第一加速度センサ42は、第一支持部材43の姿勢、すなわち第一LiDARセンサ41の姿勢に対応する信号A1を出力するように構成されている。
 第一スクリュー機構44は、第一支持部材43の姿勢を調節することにより、第一LiDARセンサ41のハウジング11に対する姿勢を調節するための機構である。第一スクリュー機構44は、第一水平調節スクリュー441と第一垂直調節スクリュー442を含んでいる。
 第一水平調節スクリュー441は、ハウジング11を貫通して延びている。第一水平調節スクリュー441は、不図示のジョイントを介して第一支持部材43と連結されている。第一水平調節スクリュー441のヘッド部は、ハウジング11の外側に配置されている。所定の工具によりヘッド部が回転されると、第一水平調節スクリュー441の回転が、上記のジョイントによって、第一支持部材43の姿勢を水平面内(同図における前後方向と左右方向を含む面内)で変化させる動きに変換される。なお、ここで用いられている「水平面」が厳密な水平面と一致している必要はない。ジョイントの構成自体は周知であるため、詳細な説明は省略する。
 第一垂直調節スクリュー442は、ハウジング11を貫通して延びている。第一垂直調節スクリュー442は、不図示のジョイントを介して第一支持部材43と連結されている。第一垂直調節スクリュー442のヘッド部は、ハウジング11の外側に配置されている。所定の工具によりヘッド部が回転操作されると、第一垂直調節スクリュー442の回転が、上記のジョイントによって、第一支持部材43の姿勢を垂直面内(同図における前後方向と上下方向を含む面内)で変化させる動きに変換される。なお、ここで用いられている「垂直面」が厳密な鉛直面と一致している必要はない。ジョイントの構成自体は周知であるため、詳細な説明は省略する。
 第一アクチュエータ45は、第一LiDARセンサ41の検出基準位置を調節するための装置である。第一アクチュエータ45は、灯室13内に配置されて第一LiDARセンサ41と結合されている。
 左前センサシステム1LFは、第二センサモジュール15を備えている。第二センサモジュール15は、第二LiDARセンサ51、第二加速度センサ52、第二支持部材53、第二スクリュー機構54、および第二アクチュエータ55を備えている。
 第二LiDARセンサ51は、非可視光を出射する構成、および当該非可視光が少なくとも車両100の左方に存在する物体に反射した結果の戻り光を検出する構成を備えている。車両100の左方は、車両の外部の一例である。第二LiDARセンサ51は、必要に応じて出射方向(すなわち検出方向)を変更して当該非可視光を掃引する走査機構を備えうる。第二LiDARセンサ51の構成は第一LiDARセンサ41と実質的に同じであるため、繰り返しとなる説明は省略する。
 すなわち、第二LiDARセンサ51は、少なくとも車両100の左方の情報を検出するセンサである。第二LiDARセンサ51は、検出された戻り光の属性(強度や波長など)に対応する信号を出力するように構成されている。上記の情報は、第二LiDARセンサ51により出力された信号が図示しない情報処理部によって適宜に処理されることによって取得される。情報処理部は、左前センサシステム1LFが備えていてもよいし、車両100に搭載されていてもよい。
 第二加速度センサ52は、第二LiDARセンサ51とともに第二支持部材53によって支持されている。第二加速度センサ52は、第二支持部材53の姿勢、すなわち第二LiDARセンサ51の姿勢に対応する信号A2を出力するように構成されている。
 第二スクリュー機構54は、第二支持部材53の姿勢を調節することにより、第二LiDARセンサ51のハウジング11に対する姿勢を調節するための機構である。第二スクリュー機構54は、第二水平調節スクリュー541と第二垂直調節スクリュー542を含んでいる。
 第二水平調節スクリュー541は、ハウジング11を貫通して延びている。第二水平調節スクリュー541は、不図示のジョイントを介して第二支持部材53と連結されている。第二水平調節スクリュー541のヘッド部は、ハウジング11の外側に配置されている。所定の工具によりヘッド部が回転されると、第二水平調節スクリュー541の回転が、上記のジョイントによって、第二支持部材53の姿勢を水平面内(同図における前後方向と左右方向を含む面内)で変化させる動きに変換される。なお、ここで用いられている「水平面」が厳密な水平面と一致している必要はない。ジョイントの構成自体は周知であるため、詳細な説明は省略する。
 第二垂直調節スクリュー542は、ハウジング11を貫通して延びている。第二垂直調節スクリュー542は、不図示のジョイントを介して第二支持部材53と連結されている。第二垂直調節スクリュー542のヘッド部は、ハウジング11の外側に配置されている。所定の工具によりヘッド部が回転操作されると、第二垂直調節スクリュー542の回転が、上記のジョイントによって、第二支持部材53の姿勢を垂直面内(同図における前後方向と上下方向を含む面内)で変化させる動きに変換される。なお、ここで用いられている「垂直面」が厳密な鉛直面と一致している必要はない。ジョイントの構成自体は周知であるため、詳細な説明は省略する。
 第二アクチュエータ55は、第二LiDARセンサ51の検出基準位置を調節するための装置である。第二アクチュエータ55は、灯室13内に配置されて第二LiDARセンサ51と結合されている。
 左前センサシステム1LFは、プロセッサ16とメモリ17を備えている。プロセッサ16としては、CPU、MPU、GPUなどが例示されうる。プロセッサ16は、複数のプロセッサコアを含みうる。メモリ17としては、ROMやRAMなどが例示されうる。ROMには、上記の処理を実行するプログラムが記憶されうる。当該プログラムは、人工知能プログラムを含みうる。人工知能プログラムの例としては、ディープラーニングによる学習済みニューラルネットワークが挙げられる。例えば、プロセッサ16は、ROMに記憶されたプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上記の処理を実行しうる。プロセッサ16の機能の少なくとも一部は、プロセッサ16およびメモリ17とは異なる少なくとも一つのハードウェア資源によって実現されてもよい。そのようなハードウェア資源としては、ASICやFPGAなどの集積回路が例示されうる。
 メモリ17は、ハウジング11に支持されている。メモリ17は、ハウジング11の外面に支持されてもよいし、灯室13内に配置されてもよい。
 上記のように構成された左前センサシステム1LFを車両100に搭載する方法について説明する。
 まず、左前センサシステム1LFが車両100に搭載される前に、ハウジング11に対する第一センサモジュール14と第二センサモジュール15の姿勢の調節がなされる。具体的には、第一スクリュー機構44を用いて第一支持部材43のハウジング11に対する姿勢を変更することにより、第一LiDARセンサ41の検出基準位置の調節がなされる。同様に、第二スクリュー機構54を用いて第二支持部材53のハウジング11に対する姿勢を変更することにより、第二LiDARセンサ51の検出基準位置の調節がなされる。左前センサシステム1LFが車両100に搭載される前の一時点は、第一時点の一例である。
 第一加速度センサ42は、第一LiDARセンサ41の検出基準位置の調節結果に対応する第一支持部材43の姿勢に対応する信号A1(t1)を出力する。すなわち、信号A1(t1)は、左前センサシステム1LFが車両100に搭載される前における第一加速度センサ42の出力値V11に対応している。信号A1(t1)は、メモリ17に入力される。メモリ17は、信号A1(t1)に対応する第一加速度センサ42の出力値V11を記憶する。出力値V11は、第一出力値の一例である。
 第二加速度センサ52は、第二LiDARセンサ51の検出基準位置の調節結果に対応する第二支持部材53の姿勢に対応する信号A2(t1)を出力する。すなわち、信号A2(t1)は、左前センサシステム1LFが車両100に搭載される前における第二加速度センサ52の出力値V21に対応している。信号A2(t1)は、メモリ17に入力される。メモリ17は、信号A2(t1)に対応する第二加速度センサ52の出力値V21を記憶する。出力値V21は、第一出力値の一例である。
 次に、左前センサシステム1LFが車両100に搭載される。その際、車体部品の公差や車体に対する左前センサシステム1LFの位置ずれに起因して、各LiDARセンサの検出基準位置が所望の位置からずれる場合がある。したがって、左前センサシステム1LFが車両100に搭載された後、第一LiDARセンサ41の検出基準位置と第二LiDARセンサ51の検出基準位置の再調整が行なわれる。換言すると、車両100の車体に対する左前センサシステム1LFの位置と姿勢の少なくとも一方の調節が行なわれる。左前センサシステム1LFが車両100に搭載された後の一時点は、第二時点の一例である。
 具体的には、第一加速度センサ42は、左前センサシステム1LFの車体に対する搭載姿勢に対応する第一支持部材43の姿勢に対応する信号A1(t2)を出力する。すなわち、信号A1(t2)は、左前センサシステム1LFが車両100に搭載された後における第一加速度センサ42の出力値V12に対応している。出力値V12は、第二出力値の一例である。
 プロセッサ16は、第一加速度センサ42の出力値V12を取得する。第一加速度センサ42から出力された信号A1(t2)は、プロセッサ16に入力されてもよいし、メモリ17に入力されてもよい。前者の場合、プロセッサ16は、出力値V12を直接に取得する。後者の場合、プロセッサ16は、メモリ17を介して出力値V12を取得する。
 プロセッサ16は、出力値V12と出力値V12の差分D1を取得する。差分D1は、左前センサシステム1LFが車両100に搭載されることによって生じた第一LiDARセンサ41の検出基準位置のずれを反映している。
 プロセッサ16は、取得された差分D1に基づいて、第一LiDARセンサ41の検出基準位置のずれを解消するために必要な第一LiDARセンサ41の位置と姿勢の少なくとも一方の補正量を算出する。プロセッサ16は、信号P1を出力する。信号P1は、第一アクチュエータ45に入力される。信号P1は、算出された補正量だけ第一LiDARセンサ41の位置と姿勢の少なくとも一方を調節するのに必要な動作を第一アクチュエータ45に行なわせる。これにより、左前センサシステム1LFを車両100に搭載することによって変化した第一LiDARセンサ41の検出基準位置の再調整が完了する。第一アクチュエータ45は、調節機構の一例である。
 同様に、第二加速度センサ52は、左前センサシステム1LFの車体に対する搭載姿勢に対応する第二支持部材53の姿勢に対応する信号A2(t2)を出力する。すなわち、信号A2(t2)は、左前センサシステム1LFが車両100に搭載された後における第二加速度センサ52の出力値V22に対応している。出力値V22は、第二出力値の一例である。
 プロセッサ16は、第二加速度センサ52の出力値V22を取得する。第二加速度センサ52から出力された信号A2(t2)は、プロセッサ16に入力されてもよいし、メモリ17に入力されてもよい。前者の場合、プロセッサ16は、出力値V22を直接に取得する。後者の場合、プロセッサ16は、メモリ17を介して出力値V22を取得する。
 プロセッサ16は、出力値V21と出力値V22の差分D2を取得する。差分D2は、左前センサシステム1LFが車両100に搭載されることによって生じた第二LiDARセンサ51の検出基準位置のずれを反映している。
 プロセッサ16は、取得された差分D2に基づいて、第二LiDARセンサ51の検出基準位置のずれを解消するために必要な第二LiDARセンサ51の位置と姿勢の少なくとも一方の補正量を算出する。プロセッサ16は、信号P2を出力する。信号P2は、第二アクチュエータ55に入力される。信号P2は、算出された補正量だけ第二LiDARセンサ51の位置と姿勢の少なくとも一方を調節するのに必要な動作を第二アクチュエータ55に行なわせる。これにより、左前センサシステム1LFを車両100に搭載することによって変化した第二LiDARセンサ51の検出基準位置の再調整が完了する。第二アクチュエータ55は、調節機構の一例である。
 本実施形態の構成によれば、左前センサシステム1LFが車両100に搭載される前の時点と搭載された後の時点との間で各LiDARセンサの検出基準位置にずれが生じても、当該ずれを解消するための調節作業を自動化できる。したがって、左前センサシステム1LFが車両100に搭載された後に各LiDARセンサの検出基準位置を調節する作業の負担を軽減できる。
 例えば、左前センサシステム1LFが車両100に搭載される前の各LiDARセンサの検出基準位置の調節は、左前センサシステム1LFの製造業者によって行なわれうる。他方、左前センサシステム1LFが車両100に搭載された後の各LiDARセンサの検出基準位置の調節は、例えば左前センサシステム1LFを一部品として車両100を組み立てる製造業者によって行なわれうる。この場合、後者による各センサの検出基準位置を調節する作業の負担を軽減できる。左前センサシステム1LFの製造業者は、第一エンティティの一例である。車両100を組み立てる製造業者は、第二エンティティの一例である。
 プロセッサ16の機能は、車両100に搭載されている制御装置によって実現されてもよいし、ハウジング11によって支持されるプロセッサによって実現されてもよい。後者の場合、プロセッサ16は、ハウジング11の外面に支持されてもよいし、灯室13内に配置されてもよい。この場合、車両100に搭載されている制御装置の処理負荷を軽減できる。
 左前センサシステム1LFは、ランプユニット18を備えている。ランプユニット18は、ハウジング11に収容されている。ランプユニット18は、光源と光学系を含んでいる。当該光学系は、レンズとリフレクタの少なくとも一方を含んでいる。
 光源の例としては、ランプ光源や半導体発光素子が挙げられる。ランプ光源の例としては、白熱ランプ、ハロゲンランプ、放電ランプ、ネオンランプなどが挙げられる。半導体発光素子の例としては、発光ダイオード、レーザダイオード、有機EL素子などが挙げられる。光源から出射された光は、光学系を通過してランプユニット18から出射される。ランプユニット18から出射された光は、透光部材12を通過し、車両100の外部における所定の領域を照明する。
 左前センサシステム1LFは、第三スクリュー機構19を備えている。第三スクリュー機構19は、ランプユニット18の姿勢を調節するための機構である。第三スクリュー機構19は、第三水平調節スクリュー191と第三垂直調節スクリュー192を含んでいる。第三スクリュー機構19は、光源調節機構の一例である。
 第三水平調節スクリュー191は、ハウジング11を貫通して延びている。第三水平調節スクリュー191は、不図示のジョイントを介してランプユニット18と連結されている。第三水平調節スクリュー191のヘッド部は、ハウジング11の外側に配置されている。所定の工具によりヘッド部が回転されると、第三水平調節スクリュー191の回転が、上記のジョイントによって、ランプユニット18の姿勢を水平面内(同図における前後方向と左右方向を含む面内)で変化させる動きに変換される。なお、ここで用いられている「水平面」が厳密な水平面と一致している必要はない。ジョイントの構成自体は周知であるため、詳細な説明は省略する。
 第三垂直調節スクリュー192は、ハウジング11を貫通して延びている。第三垂直調節スクリュー192は、不図示のジョイントを介してランプユニット18と連結されている。第三垂直調節スクリュー192のヘッド部は、ハウジング11の外側に配置されている。所定の工具によりヘッド部が回転操作されると、第三垂直調節スクリュー192の回転が、上記のジョイントによって、ランプユニット18の姿勢を垂直面内(同図における前後方向と上下方向を含む面内)で変化させる動きに変換される。なお、ここで用いられている「垂直面」が厳密な鉛直面と一致している必要はない。ジョイントの構成自体は周知であるため、詳細な説明は省略する。
 車両100の周囲の情報を効率的に取得する観点、および意匠上の観点から、車両100の四隅に配置されるランプ装置の近傍に車両の外部の情報を取得するためのセンサを配置することが望まれている。上記のような構成によれば、ランプ装置とセンサシステムの統合が容易であり、上記の要望に応えうる。
 本実施形態においては、センサシステムの例として、左前センサシステム1LFを挙げた。しかしながら、図1に示される車両100の右前隅に配置される右前センサシステム1RF、左後隅に配置される左後センサシステム1LB、および車両100の右後隅に配置される右後センサシステム1RBに対しても、左前センサシステム1LFを参照して説明した構成を適用可能である。例えば、右前センサシステム1RFは、左前センサシステム1LFと左右対称の構成を有しうる。左後センサシステム1LBは、左前センサシステム1LFと前後対称の構成を有しうる。右後センサシステム1RBは、左後センサシステム1LBと左右対称の構成を有しうる。この説明は、以下の実施形態例についても同様に適用される。
 図3は、第二実施形態に係る左前センサシステム2LFの構成を模式的に示している。第一実施形態に係る左前センサシステム1LFと同一または同等の構成要素については、同一の参照符号を付与し、繰り返しとなる説明は省略する。
 左前センサシステム2LFは、第一センサモジュール24を備えている。第一センサモジュール24は、第一LiDARセンサ41、第一加速度センサ42、第一支持部材43、および第一スクリュー機構44を備えている。
 左前センサシステム2LFは、第二センサモジュール25を備えている。第二センサモジュール25は、第二LiDARセンサ51、第二加速度センサ52、第二支持部材53、および第二スクリュー機構54を備えている。
 左前センサシステム2LFは、プロセッサ26を備えている。プロセッサ26の例としては、CPU、MPU、GPUなどが挙げられる。プロセッサ26の機能の少なくとも一部は、プロセッサ26およびメモリ17とは異なる少なくとも一つのハードウェア資源によって実現されてもよい。そのようなハードウェア資源としては、ASICやFPGAなどの集積回路が例示されうる。
 上記のように構成された左前センサシステム2LFを車両100に搭載する方法について説明する。
 まず、左前センサシステム2LFが車両100に搭載される前に、ハウジング11に対する第一センサモジュール24と第二センサモジュール25の姿勢の調節がなされる。具体的には、第一スクリュー機構44を用いて第一支持部材43のハウジング11に対する姿勢を変更することにより、第一LiDARセンサ41の検出基準位置の調節がなされる。同様に、第二スクリュー機構54を用いて第二支持部材53のハウジング11に対する姿勢を変更することにより、第二LiDARセンサ51の検出基準位置の調節がなされる。左前センサシステム2LFが車両100に搭載される前の一時点は、第一時点の一例である。
 第一加速度センサ42は、第一LiDARセンサ41の検出基準位置の調節結果に対応する第一支持部材43の姿勢に対応する信号A1(t1)を出力する。すなわち、信号A1(t1)は、左前センサシステム2LFが車両100に搭載される前における第一加速度センサ42の出力値V11に対応している。信号A1(t1)は、メモリ17に入力される。メモリ17は、信号A1(t1)に対応する第一加速度センサ42の出力値V11を記憶する。出力値V11は、第一出力値の一例である。
 第二加速度センサ52は、第二LiDARセンサ51の検出基準位置の調節結果に対応する第二支持部材53の姿勢に対応する信号A2(t1)を出力する。すなわち、信号A2(t1)は、左前センサシステム2LFが車両100に搭載される前における第二加速度センサ52の出力値V21に対応している。信号A2(t1)は、メモリ17に入力される。メモリ17は、信号A2(t1)に対応する第二加速度センサ52の出力値V21を記憶する。出力値V21は、第一出力値の一例である。
 次に、左前センサシステム2LFが車両100に搭載される。その際、車体部品の公差や車体に対する左前センサシステム2LFの位置ずれに起因して、各LiDARセンサの検出基準位置が所望の位置からずれる場合がある。したがって、左前センサシステム2LFが車両100に搭載された後、第一LiDARセンサ41の検出基準位置と第二LiDARセンサ51の検出基準位置の再調整が行なわれる。換言すると、車両100の車体に対する左前センサシステム2LFの位置と姿勢の少なくとも一方の調節が行なわれる。左前センサシステム2LFが車両100に搭載された後の一時点は、第二時点の一例である。
 具体的には、第一加速度センサ42は、左前センサシステム2LFの車体に対する搭載姿勢に対応する第一支持部材43の姿勢に対応する信号A1(t2)を出力する。すなわち、信号A1(t2)は、左前センサシステム2LFが車両100に搭載された後における第一加速度センサ42の出力値V12に対応している。出力値V12は、第二出力値の一例である。
 プロセッサ26は、第一加速度センサ42の出力値V12を取得する。第一加速度センサ42から出力された信号A1(t2)は、プロセッサ26に入力されてもよいし、メモリ17に入力されてもよい。前者の場合、プロセッサ26は、出力値V12を直接に取得する。後者の場合、プロセッサ26は、メモリ17を介して出力値V12を取得する。
 プロセッサ26は、出力値V12と出力値V12の差分D1を取得する。差分D1は、左前センサシステム2LFが車両100に搭載されることによって生じた第一LiDARセンサ41の検出基準位置のずれを反映している。
 本実施形態においては、第一LiDARセンサ41の姿勢を調節する機構が設けられていない。したがって、第一LiDARセンサ41の検出基準位置のずれが検出された場合、当該ずれを解消するように第一LiDARセンサ41の姿勢を変更するのではなく、第一LiDARセンサ41により取得された情報の側を補正する。
 具体的には、第一LiDARセンサ41は、検出された戻り光の属性(強度や波長など)に対応する信号L1を出力するように構成されている。信号L1は、プロセッサ26に入力される。プロセッサ26は、取得された差分D1に基づいて、第一LiDARセンサ41の検出基準位置にずれがなかった場合に得られたであろう信号になるように、信号L1を補正する。
 これにより、検出基準位置のずれを解消するように第一LiDARセンサ41の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、プロセッサ26は、左前センサシステム2LFを車両100に搭載することによって変化した第一LiDARセンサ41の検出基準位置を、間接的に再調整していると言える。
 同様に、第二加速度センサ52は、左前センサシステム2LFの車体に対する搭載姿勢に対応する第二支持部材53の姿勢に対応する信号A2(t2)を出力する。すなわち、信号A2(t2)は、左前センサシステム2LFが車両100に搭載された後における第二加速度センサ52の出力値V22に対応している。出力値V22は、第二出力値の一例である。
 プロセッサ26は、第二加速度センサ52の出力値V22を取得する。第二加速度センサ52から出力された信号A2(t2)は、プロセッサ26に入力されてもよいし、メモリ17に入力されてもよい。前者の場合、プロセッサ26は、出力値V22を直接に取得する。後者の場合、プロセッサ26は、メモリ17を介して出力値V22を取得する。
 プロセッサ26は、出力値V21と出力値V22の差分D2を取得する。差分D2は、左前センサシステム2LFが車両100に搭載されることによって生じた第二LiDARセンサ51の検出基準位置のずれを反映している。
 本実施形態においては、第二LiDARセンサ51の姿勢を調節する機構が設けられていない。したがって、第二LiDARセンサ51の検出基準位置のずれが検出された場合、当該ずれを解消するように第二LiDARセンサ51の姿勢を変更するのではなく、第二LiDARセンサ51により取得された情報の側を補正する。
 具体的には、第二LiDARセンサ51は、検出された戻り光の属性(強度や波長など)に対応する信号L2を出力するように構成されている。信号L2は、プロセッサ26に入力される。プロセッサ26は、取得された差分D2に基づいて、第二LiDARセンサ51の検出基準位置にずれがなかった場合に得られたであろう信号になるように、信号L2を補正する。
 これにより、検出基準位置のずれを解消するように第二LiDARセンサ51の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、プロセッサ26は、左前センサシステム2LFを車両100に搭載することによって変化した第二LiDARセンサ51の検出基準位置を、間接的に再調整していると言える。
 本実施形態の構成によれば、左前センサシステム2LFが車両100に搭載される前の時点と搭載された後の時点との間で各LiDARセンサの検出基準位置にずれが生じても、当該ずれを解消するための調節作業を自動化できる。したがって、左前センサシステム2LFが車両100に搭載された後に各LiDARセンサの検出基準位置を調節する作業の負担を軽減できる。
 例えば、左前センサシステム2LFが車両100に搭載される前の各LiDARセンサの検出基準位置の調節は、左前センサシステム2LFの製造業者によって行なわれうる。他方、左前センサシステム2LFが車両100に搭載された後の各LiDARセンサの検出基準位置の調節は、例えば左前センサシステム2LFを一部品として車両100を組み立てる製造業者によって行なわれうる。この場合、後者による各センサの検出基準位置を調節する作業の負担を軽減できる。左前センサシステム2LFの製造業者は、第一エンティティの一例である。車両100を組み立てる製造業者は、第二エンティティの一例である。
 さらに、本実施形態の構成によれば、各LiDARセンサの位置と姿勢の少なくとも一方を調節する機構を省略できる。したがって、左前センサシステム2LFの大型化と重量増を抑制できる。
 プロセッサ26の機能は、車両100に搭載されている制御装置によって実現されてもよいし、ハウジング11によって支持されるプロセッサによって実現されてもよい。後者の場合、プロセッサ26は、ハウジング11の外面に支持されてもよいし、灯室13内に配置されてもよい。この場合、車両100に搭載されている制御装置の処理負荷を軽減できる。
 図4は、第三実施形態に係る左前センサシステム3LFの構成を模式的に示している。第一実施形態に係る左前センサシステム1LFと同一または同等の構成要素については、同一の参照符号を付与し、繰り返しとなる説明は省略する。
 左前センサシステム3LFは、第一センサモジュール34を備えている。第一センサモジュール34は、第一LiDARセンサ41、第一加速度センサ42、第一支持部材43、および第一スクリュー機構44に加えて、第一カメラ46、ミリ波レーダ47、およびアクチュエータ48を備えている。
 第一加速度センサ42は、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47とともに第一支持部材43によって支持されている。第一加速度センサ42は、第一LiDARセンサ41と第一カメラ46の間に配置されている。
 第一カメラ46は、少なくとも車両100の前方を撮影する装置である。すなわち、第一カメラ46は、少なくとも車両100の前方の情報を検出するセンサである。車両100の前方は、車両の外部の一例である。第一カメラ46は、可視光カメラでもよいし、赤外光カメラでもよい。第一カメラ46は、撮影された映像に対応する映像信号C1を出力するように構成されている。第一カメラ46によって検出された少なくとも車両100の前方の情報は、映像信号C1が図示しない情報処理部によって適宜に処理されることにより取得される。情報処理部は、左前センサシステム3LFが備えていてもよいし、車両100に搭載されていてもよい。
 ミリ波レーダ47は、ミリ波を発信する構成、および当該ミリ波が少なくとも車両100の前方に存在する物体に反射した結果の反射波を受信する構成を備えている。車両100の前方は、車両の外部の一例である。ミリ波レーダ47は、必要に応じて発信方向(すなわち検出方向)を変更してミリ波を掃引する走査機構を備えうる。本実施形態においては、周波数が76GHzのミリ波が使用されている。他の周波数の例としては、24GHz、26GHz、79GHzなどが挙げられる。
 ミリ波レーダ47は、例えば、ある方向へミリ波を発信したタイミングから反射波を受信するまでの時間に基づいて、当該反射波に関連付けられた物体までの距離を取得できる。また、そのような距離データを検出位置と関連付けて集積することにより、反射波に関連付けられた物体の動きに係る情報を取得できる。
 すなわち、ミリ波レーダ47は、少なくとも車両100の前方の情報を検出するセンサである。ミリ波レーダ47は、受信した反射波の属性(強度など)に対応する信号を出力する。上記の情報は、ミリ波レーダ47より出力された信号が図示しない情報処理部によって適宜に処理されることにより取得される。情報処理部は、左前センサシステム3LFが備えていてもよいし、車両100に搭載されていてもよい。
 アクチュエータ48は、ミリ波レーダ47の検出基準位置を調節するための装置である。アクチュエータ48は、灯室13内に配置されてミリ波レーダ47と結合されている。
 左前センサシステム3LFは、第二センサモジュール35を備えている。第二センサモジュール35は、第二LiDARセンサ51、第二加速度センサ52、第二支持部材53、および第二スクリュー機構54に加えて、第二カメラ56を備えている。
 第二加速度センサ52は、第二LiDARセンサ51および第二カメラ56とともに第二支持部材53によって支持されている。第二加速度センサ52は、第二LiDARセンサ51と第二カメラ56の間に配置されている。
 第二カメラ56は、少なくとも車両100の左方を撮影する装置である。すなわち、第二カメラ56は、少なくとも車両100の左方の情報を検出するセンサである。車両100の左方は、車両の外部の一例である。第二カメラ56は、可視光カメラでもよいし、赤外光カメラでもよい。第二カメラ56は、撮影された映像に対応する映像信号C2を出力するように構成されている。第二カメラ56によって検出された少なくとも車両100の前方の情報は、映像信号C2が図示しない情報処理部によって適宜に処理されることにより取得される。情報処理部は、左前センサシステム3LFが備えていてもよいし、車両100に搭載されていてもよい。
 左前センサシステム3LFは、プロセッサ36を備えている。プロセッサ36の例としては、CPU、MPU、GPUなどが挙げられる。プロセッサ36の機能の少なくとも一部は、プロセッサ36およびメモリ17とは異なる少なくとも一つのハードウェア資源によって実現されてもよい。そのようなハードウェア資源としては、ASICやFPGAなどの集積回路が例示されうる。
 上記のように構成された左前センサシステム3LFを車両100に搭載する方法について説明する。
 まず、左前センサシステム3LFが車両100に搭載される前に、ハウジング11に対する第一センサモジュール34と第二センサモジュール35の姿勢の調節がなされる。具体的には、第一スクリュー機構44を用いて第一支持部材43のハウジング11に対する姿勢を変更することにより、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置の調節がなされる。同様に、第二スクリュー機構54を用いて第二支持部材53のハウジング11に対する姿勢を変更することにより、第二LiDARセンサ51と第二カメラ56の検出基準位置の調節がなされる。左前センサシステム3LFが車両100に搭載される前の一時点は、第一時点の一例である。
 第一加速度センサ42は、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置の調節結果に対応する第一支持部材43の姿勢に対応する信号A1(t1)を出力する。すなわち、信号A1(t1)は、左前センサシステム3LFが車両100に搭載される前における第一加速度センサ42の出力値V11に対応している。信号A1(t1)は、メモリ17に入力される。メモリ17は、信号A1(t1)に対応する第一加速度センサ42の出力値V11を記憶する。出力値V11は、第一出力値の一例である。
 第二加速度センサ52は、第二LiDARセンサ51と第二カメラ56の検出基準位置の調節結果に対応する第二支持部材53の姿勢に対応する信号A2(t1)を出力する。すなわち、信号A2(t1)は、左前センサシステム3LFが車両100に搭載される前における第二加速度センサ52の出力値V21に対応している。信号A2(t1)は、メモリ17に入力される。メモリ17は、信号A2(t1)に対応する第二加速度センサ52の出力値V21を記憶する。出力値V21は、第一出力値の一例である。
 次に、左前センサシステム3LFが車両100に搭載される。その際、車体部品の公差や車体に対する左前センサシステム3LFの位置ずれに起因して、各センサの検出基準位置が所望の位置からずれる場合がある。したがって、左前センサシステム3LFが車両100に搭載された後、各センサの検出基準位置の再調整が行なわれる。換言すると、車両100の車体に対する左前センサシステム3LFの位置と姿勢の少なくとも一方の調節が行なわれる。左前センサシステム3LFが車両100に搭載された後の一時点は、第二時点の一例である。
 具体的には、第一加速度センサ42は、左前センサシステム3LFの車体に対する搭載姿勢に対応する第一支持部材43の姿勢に対応する信号A1(t2)を出力する。すなわち、信号A1(t2)は、左前センサシステム3LFが車両100に搭載された後における第一加速度センサ42の出力値V12に対応している。出力値V12は、第二出力値の一例である。
 プロセッサ36は、第一加速度センサ42の出力値V12を取得する。第一加速度センサ42から出力された信号A1(t2)は、プロセッサ36に入力されてもよいし、メモリ17に入力されてもよい。前者の場合、プロセッサ36は、出力値V12を直接に取得する。後者の場合、プロセッサ36は、メモリ17を介して出力値V12を取得する。
 プロセッサ36は、出力値V12と出力値V12の差分D1を取得する。差分D1は、左前センサシステム3LFが車両100に搭載されることによって生じた第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置のずれを反映している。
 本実施形態においては、第一LiDARセンサ41と第一カメラ46の姿勢を調節する機構が設けられていない。したがって、第一LiDARセンサ41と第一カメラ46の検出基準位置のずれが検出された場合、当該ずれを解消するように第一LiDARセンサ41と第一カメラ46の姿勢を変更するのではなく、第一LiDARセンサ41と第一カメラ46により取得された情報の側を補正する。
 具体的には、プロセッサ36は、取得された差分D1に基づいて、第一LiDARセンサ41の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第一LiDARセンサ41から出力された信号L1を補正する。
 同様に、プロセッサ36は、取得された差分D1に基づいて、第一カメラ46の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第一カメラ46から出力された映像信号C1を補正する。
 これにより、検出基準位置のずれを解消するように第一LiDARセンサ41および第一カメラ46の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、プロセッサ36は、左前センサシステム3LFを車両100に搭載することによって変化した第一LiDARセンサ41と第一カメラ46の検出基準位置を、間接的に再調整していると言える。
 同様に、第二加速度センサ52は、左前センサシステム3LFの車体に対する搭載姿勢に対応する第二支持部材53の姿勢に対応する信号A2(t2)を出力する。すなわち、信号A2(t2)は、左前センサシステム3LFが車両100に搭載された後における第二加速度センサ52の出力値V22に対応している。出力値V22は、第二出力値の一例である。
 プロセッサ36は、第二加速度センサ52の出力値V22を取得する。第二加速度センサ52から出力された信号A2(t2)は、プロセッサ36に入力されてもよいし、メモリ17に入力されてもよい。前者の場合、プロセッサ36は、出力値V22を直接に取得する。後者の場合、プロセッサ36は、メモリ17を介して出力値V22を取得する。
 プロセッサ36は、出力値V21と出力値V22の差分D2を取得する。差分D2は、左前センサシステム3LFが車両100に搭載されることによって生じた第二LiDARセンサ51と第二カメラ56の検出基準位置のずれを反映している。
 本実施形態においては、第二LiDARセンサ51と第二カメラ56の姿勢を調節する機構が設けられていない。したがって、第二LiDARセンサ51と第二カメラ56の検出基準位置のずれが検出された場合、当該ずれを解消するように第二LiDARセンサ51と第二カメラ56の姿勢を変更するのではなく、第二LiDARセンサ51と第二カメラ56により取得された情報の側を補正する。
 具体的には、プロセッサ36は、取得された差分D2に基づいて、第二LiDARセンサ51の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第二LiDARセンサ51から出力された信号L2を補正する。
 同様に、プロセッサ36は、取得された差分D2に基づいて、第二カメラ56の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第二カメラ56から出力された映像信号C2を補正する。
 これにより、検出基準位置のずれを解消するように第二LiDARセンサ51および第二カメラ56の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、プロセッサ36は、左前センサシステム3LFを車両100に搭載することによって変化した第二LiDARセンサ51と第二カメラ56の検出基準位置を、間接的に再調整していると言える。
 第一加速度センサ42の出力値V12と出力値V12の差分D1は、左前センサシステム3LFが車両100に搭載されることによって生じたミリ波レーダ47の検出基準位置のずれも反映している。
 プロセッサ36は、取得された差分D1に基づいて、ミリ波レーダ47の検出基準位置のずれを解消するために必要なミリ波レーダ47の位置と姿勢の少なくとも一方の補正量を算出する。プロセッサ36は、信号Pを出力する。信号Pは、アクチュエータ48に入力される。信号Pは、算出された補正量だけミリ波レーダ47の位置と姿勢の少なくとも一方を調節するのに必要な動作をアクチュエータ48に行なわせる。これにより、左前センサシステム3LFを車両100に搭載することによって変化したミリ波レーダ47の検出基準位置の再調整が完了する。アクチュエータ48は、調節機構の一例である。
 本実施形態の構成によれば、左前センサシステム3LFが車両100に搭載される前の時点と搭載された後の時点との間で各センサの検出基準位置にずれが生じても、当該ずれを解消するための調節作業を自動化できる。したがって、左前センサシステム3LFが車両100に搭載された後に各センサの検出基準位置を調節する作業の負担を軽減できる。
 例えば、左前センサシステム3LFが車両100に搭載される前の各センサの検出基準位置の調節は、左前センサシステム3LFの製造業者によって行なわれうる。他方、左前センサシステム3LFが車両100に搭載された後の各センサの検出基準位置の調節は、例えば左前センサシステム3LFを一部品として車両100を組み立てる製造業者によって行なわれうる。この場合、後者による各センサの検出基準位置を調節する作業の負担を軽減できる。左前センサシステム3LFの製造業者は、第一エンティティの一例である。車両100を組み立てる製造業者は、第二エンティティの一例である。
 さらに、本実施形態の構成によれば、各LiDARセンサと各カメラの位置と姿勢の少なくとも一方を調節する機構を省略できる。したがって、左前センサシステム3LFの大型化と重量増を抑制できる。
 プロセッサ36の機能は、車両100に搭載されている制御装置によって実現されてもよいし、ハウジング11によって支持されるプロセッサによって実現されてもよい。後者の場合、プロセッサ36は、ハウジング11の外面に支持されてもよいし、灯室13内に配置されてもよい。この場合、車両100に搭載されている制御装置の処理負荷を軽減できる。
 図5は、第四実施形態に係る左前センサシステム4LFの構成を模式的に示している。第三実施形態に係る左前センサシステム3LFと同一または同等の構成要素については、同一の参照符号を付与し、繰り返しとなる説明は省略する。
 左前センサシステム3LFは、第一センサモジュール64を備えている。第一センサモジュール64は、第一LiDARセンサ41、第一加速度センサ42、第一支持部材43、第一スクリュー機構44、第一カメラ46、ミリ波レーダ47、およびアクチュエータ48に加えて、第一情報処理装置49を備えている。
 図6の(A)は、第一センサモジュール64の機能構成を示している。第一情報処理装置49は、第一プロセッサ491と第一メモリ492を備えている。第一プロセッサ491としては、CPU、MPU、GPUなどが例示されうる。第一プロセッサ491は、複数のプロセッサコアを含みうる。第一メモリ492としては、ROMやRAMなどが例示されうる。ROMには、上記の処理を実行するプログラムが記憶されうる。当該プログラムは、人工知能プログラムを含みうる。人工知能プログラムの例としては、ディープラーニングによる学習済みニューラルネットワークが挙げられる。例えば、第一プロセッサ491は、ROMに記憶されたプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上記の処理を実行しうる。第一プロセッサ491の機能の少なくとも一部は、第一プロセッサ491および第一メモリ492とは異なる少なくとも一つのハードウェア資源によって実現されてもよい。そのようなハードウェア資源としては、ASICやFPGAなどの集積回路が例示されうる。
 図5に示されるように、第一情報処理装置49は、単一の筐体または基板を有している。第一情報処理装置49は、第一LiDARセンサ41、第一加速度センサ42、第一カメラ46、およびミリ波レーダ47とともに第一支持部材43によって支持されている。
 図6の(A)に示されるように、本実施形態においては、第一加速度センサ42は、第一情報処理装置49の筐体内あるいは基板上に設けられている。第一情報処理装置49は、第一加速度センサ42が第一LiDARセンサ41と第一カメラ46の間に配置されるように、第一支持部材43に支持されている。しかしながら、第一加速度センサ42は、第一LiDARセンサ41と第一カメラ46の間に配置されていれば、第一情報処理装置49の筐体外または基板外に設けられていてもよい。
 左前センサシステム4LFは、第二センサモジュール65を備えている。第二センサモジュール65は、第二LiDARセンサ51、第二加速度センサ52、第二支持部材53、第二スクリュー機構54、および第二カメラ56に加えて、第二情報処理装置59を備えている。
 図6の(B)は、第二センサモジュール65の機能構成を示している。第二情報処理装置59は、第二プロセッサ591と第二メモリ592を備えている。第二プロセッサ591としては、CPU、MPU、GPUなどが例示されうる。第二プロセッサ591は、複数のプロセッサコアを含みうる。第二メモリ592としては、ROMやRAMなどが例示されうる。ROMには、上記の処理を実行するプログラムが記憶されうる。当該プログラムは、人工知能プログラムを含みうる。人工知能プログラムの例としては、ディープラーニングによる学習済みニューラルネットワークが挙げられる。例えば、第二プロセッサ591は、ROMに記憶されたプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上記の処理を実行しうる。第二プロセッサ591の機能の少なくとも一部は、第二プロセッサ591および第二メモリ592とは異なる少なくとも一つのハードウェア資源によって実現されてもよい。そのようなハードウェア資源としては、ASICやFPGAなどの集積回路が例示されうる。
 図5に示されるように、第二情報処理装置59は、単一の筐体または基板を有している。第二情報処理装置59は、第二LiDARセンサ51、第二加速度センサ52、および第二カメラ56とともに第二支持部材53によって支持されている。
 図6の(B)に示されるように、本実施形態においては、第二加速度センサ52は、第二情報処理装置59の筐体内または基板上に設けられている。第二情報処理装置59は、第二加速度センサ52が第二LiDARセンサ51と第二カメラ56の間に配置されるように、第二支持部材53に支持されている。しかしながら、第二加速度センサ52は、第二LiDARセンサ51と第二カメラ56の間に配置されていれば、第二情報処理装置59の筐体外または基板外に設けられていてもよい。
 上記のように構成された左前センサシステム4LFを車両100に搭載する方法について説明する。
 まず、左前センサシステム4LFが車両100に搭載される前に、ハウジング11に対する第一センサモジュール64と第二センサモジュール65の姿勢の調節がなされる。具体的には、第一スクリュー機構44を用いて第一支持部材43のハウジング11に対する姿勢を変更することにより、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置の調節がなされる。同様に、第二スクリュー機構54を用いて第二支持部材53のハウジング11に対する姿勢を変更することにより、第二LiDARセンサ51と第二カメラ56の検出基準位置の調節がなされる。左前センサシステム4LFが車両100に搭載される前の一時点は、第一時点の一例である。
 第一加速度センサ42は、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置の調節結果に対応する第一支持部材43の姿勢に対応する信号A1(t1)を出力する。すなわち、信号A1(t1)は、左前センサシステム4LFが車両100に搭載される前における第一加速度センサ42の出力値V11に対応している。信号A1(t1)は、第一メモリ492に入力される。第一メモリ492は、信号A1(t1)に対応する第一加速度センサ42の出力値V11を記憶する。出力値V11は、第一出力値の一例である。
 第二加速度センサ52は、第二LiDARセンサ51と第二カメラ56の検出基準位置の調節結果に対応する第二支持部材53の姿勢に対応する信号A2(t1)を出力する。すなわち、信号A2(t1)は、左前センサシステム4LFが車両100に搭載される前における第二加速度センサ52の出力値V21に対応している。信号A2(t1)は、第二メモリ592に入力される。第二メモリ592は、信号A2(t1)に対応する第二加速度センサ52の出力値V21を記憶する。出力値V21は、第一出力値の一例である。
 次に、左前センサシステム4LFが車両100に搭載される。その際、車体部品の公差や車体に対する左前センサシステム4LFの位置ずれに起因して、各センサの検出基準位置が所望の位置からずれる場合がある。したがって、左前センサシステム4LFが車両100に搭載された後、各センサの検出基準位置の再調整が行なわれる。換言すると、車両100の車体に対する左前センサシステム4LFの位置と姿勢の少なくとも一方の調節が行なわれる。左前センサシステム4LFが車両100に搭載された後の一時点は、第二時点の一例である。
 具体的には、第一加速度センサ42は、左前センサシステム4LFの車体に対する搭載姿勢に対応する第一支持部材43の姿勢に対応する信号A1(t2)を出力する。すなわち、信号A1(t2)は、左前センサシステム4LFが車両100に搭載された後における第一加速度センサ42の出力値V12に対応している。出力値V12は、第二出力値の一例である。
 第一プロセッサ491は、第一加速度センサ42の出力値V12を取得する。第一加速度センサ42から出力された信号A1(t2)は、第一プロセッサ491に入力されてもよいし、第一メモリ492に入力されてもよい。前者の場合、第一プロセッサ491は、出力値V12を直接に取得する。後者の場合、第一プロセッサ491は、第一メモリ492を介して出力値V12を取得する。
 第一プロセッサ491は、出力値V12と出力値V12の差分D1を取得する。差分D1は、左前センサシステム4LFが車両100に搭載されることによって生じた第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置のずれを反映している。
 本実施形態においては、第一LiDARセンサ41と第一カメラ46の姿勢を調節する機構が設けられていない。したがって、第一LiDARセンサ41と第一カメラ46の検出基準位置のずれが検出された場合、当該ずれを解消するように第一LiDARセンサ41と第一カメラ46の姿勢を変更するのではなく、第一LiDARセンサ41と第一カメラ46により取得された情報の側を補正する。
 具体的には、第一プロセッサ491は、取得された差分D1に基づいて、第一LiDARセンサ41の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第一LiDARセンサ41から出力された信号L1を補正する。
 同様に、第一プロセッサ491は、取得された差分D1に基づいて、第一カメラ46の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第一カメラ46から出力された映像信号C1を補正する。
 これにより、検出基準位置のずれを解消するように第一LiDARセンサ41および第一カメラ46の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、第一プロセッサ491は、左前センサシステム4LFを車両100に搭載することによって変化した第一LiDARセンサ41と第一カメラ46の検出基準位置を、間接的に再調整していると言える。
 同様に、第二加速度センサ52は、左前センサシステム4LFの車体に対する搭載姿勢に対応する第二支持部材53の姿勢に対応する信号A2(t2)を出力する。すなわち、信号A2(t2)は、左前センサシステム4LFが車両100に搭載された後における第二加速度センサ52の出力値V22に対応している。出力値V22は、第二出力値の一例である。
 第二プロセッサ591は、第二加速度センサ52の出力値V22を取得する。第二加速度センサ52から出力された信号A2(t2)は、第二プロセッサ591に入力されてもよいし、第二メモリ592に入力されてもよい。前者の場合、第二プロセッサ591は、出力値V22を直接に取得する。後者の場合、第二プロセッサ591は、第二メモリ592を介して出力値V22を取得する。
 第二プロセッサ591は、出力値V21と出力値V22の差分D2を取得する。差分D2は、左前センサシステム4LFが車両100に搭載されることによって生じた第二LiDARセンサ51と第二カメラ56の検出基準位置のずれを反映している。
 本実施形態においては、第二LiDARセンサ51と第二カメラ56の姿勢を調節する機構が設けられていない。したがって、第二LiDARセンサ51と第二カメラ56の検出基準位置のずれが検出された場合、当該ずれを解消するように第二LiDARセンサ51と第二カメラ56の姿勢を変更するのではなく、第二LiDARセンサ51と第二カメラ56により取得された情報の側を補正する。
 具体的には、第二プロセッサ591は、取得された差分D2に基づいて、第二LiDARセンサ51の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第二LiDARセンサ51から出力された信号L2を補正する。
 同様に、第二プロセッサ591は、取得された差分D2に基づいて、第二カメラ56の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第二カメラ56から出力された映像信号C2を補正する。
 これにより、検出基準位置のずれを解消するように第二LiDARセンサ51および第二カメラ56の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、第二プロセッサ591は、左前センサシステム4LFを車両100に搭載することによって変化した第二LiDARセンサ51と第二カメラ56の検出基準位置を、間接的に再調整していると言える。
 第一加速度センサ42の出力値V12と出力値V12の差分D1は、左前センサシステム4LFが車両100に搭載されることによって生じたミリ波レーダ47の検出基準位置のずれも反映している。
 第一プロセッサ491は、取得された差分D1に基づいて、ミリ波レーダ47の検出基準位置のずれを解消するために必要なミリ波レーダ47の位置と姿勢の少なくとも一方の補正量を算出する。第一プロセッサ491は、信号Pを出力する。信号Pは、アクチュエータ48に入力される。信号Pは、算出された補正量だけミリ波レーダ47の位置と姿勢の少なくとも一方を調節するのに必要な動作をアクチュエータ48に行なわせる。これにより、左前センサシステム4LFを車両100に搭載することによって変化したミリ波レーダ47の検出基準位置の再調整が完了する。アクチュエータ48は、調節機構の一例である。
 本実施形態の構成によれば、左前センサシステム4LFが車両100に搭載される前の時点と搭載された後の時点との間で各センサの検出基準位置にずれが生じても、当該ずれを解消するための調節作業を自動化できる。したがって、左前センサシステム4LFが車両100に搭載された後に各センサの検出基準位置を調節する作業の負担を軽減できる。
 例えば、左前センサシステム4LFが車両100に搭載される前の各センサの検出基準位置の調節は、左前センサシステム4LFの製造業者によって行なわれうる。他方、左前センサシステム4LFが車両100に搭載された後の各センサの検出基準位置の調節は、例えば左前センサシステム4LFを一部品として車両100を組み立てる製造業者によって行なわれうる。この場合、後者による各センサの検出基準位置を調節する作業の負担を軽減できる。左前センサシステム4LFの製造業者は、第一エンティティの一例である。車両100を組み立てる製造業者は、第二エンティティの一例である。
 さらに、本実施形態の構成によれば、各LiDARセンサと各カメラの位置と姿勢の少なくとも一方を調節する機構を省略できる。したがって、左前センサシステム4LFの大型化と重量増を抑制できる。
 また、本実施形態の構成によれば、第一プロセッサ491と第一メモリ492が第一支持部材43に支持されており、第二プロセッサ591と第二メモリ592が第二支持部材53に支持されている。よって、第一プロセッサ491と第一メモリ492によって行なわれる処理、および第二プロセッサ591と第二メモリ592によって行なわれる処理に関し、車両100に搭載されている制御装置の負荷を軽減できる。
 図7は、第五実施形態に係る左前センサシステム5LFの構成を模式的に示している。第三実施形態に係る左前センサシステム3LFと同一または同等の構成要素については、同一の参照符号を付与し、繰り返しとなる説明は省略する。
 左前センサシステム3LFは、第一センサモジュール74を備えている。第一センサモジュール74は、第一LiDARセンサ41、第一加速度センサ42、第一スクリュー機構44、第一カメラ46、およびミリ波レーダ47を備えている。第一センサモジュール74は、第一支持部材740を備えている。
 第一支持部材740は、単一の筐体または基板である。第一LiDARセンサ41、第一加速度センサ42、第一カメラ46、およびミリ波レーダ47は、当該筐体内または当該基板上に設けられている。第一加速度センサ42は、第一LiDARセンサ41と第一カメラ46の間に配置されている。第一スクリュー機構44は、当該筐体または基板と直接的あるいは間接的に結合されている。
 図8の(A)は、第一センサモジュール74の機能構成を示している。第一センサモジュール74は、第一プロセッサ741、第一メモリ742、第一通信部743、および第一給電部744をさらに備えている。第一センサモジュール74は、第一プロセッサ741、第一メモリ742、第一通信部743、および第一給電部744は、第一支持部材740としての筐体内あるいは基板上に設けられている。
 第一プロセッサ741としては、CPU、MPU、GPUなどが例示されうる。第一プロセッサ741は、複数のプロセッサコアを含みうる。第一メモリ742としては、ROMやRAMなどが例示されうる。ROMには、上記の処理を実行するプログラムが記憶されうる。当該プログラムは、人工知能プログラムを含みうる。人工知能プログラムの例としては、ディープラーニングによる学習済みニューラルネットワークが挙げられる。例えば、第一プロセッサ741は、ROMに記憶されたプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上記の処理を実行しうる。第一プロセッサ741の機能の少なくとも一部は、第一プロセッサ741および第一メモリ742とは異なる少なくとも一つのハードウェア資源によって実現されてもよい。そのようなハードウェア資源としては、ASICやFPGAなどの集積回路が例示されうる。
 第一プロセッサ741は、第一通信部743を介して車両100に搭載されている不図示の制御装置と通信可能に接続される。第一プロセッサ741は、第一通信部743を介して当該制御装置からの制御信号を受信し、当該制御信号に基づいて第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の動作を制御するように構成されている。
 第一給電部744は、車両100に搭載されている不図示の電源から電力の供給を受けるとともに、当該電力を第一LiDARセンサ41、第一加速度センサ42、第一カメラ46、ミリ波レーダ47、第一プロセッサ741、および第一メモリ742に供給するように構成されている。
 左前センサシステム3LFは、第二センサモジュール75を備えている。第二センサモジュール75は、第二LiDARセンサ51、第二加速度センサ52、第二スクリュー機構54、および第二カメラ56を備えている。第二センサモジュール75は、第二支持部材750を備えている。
 第二支持部材750は、単一の筐体または基板である。第二LiDARセンサ51、第二加速度センサ52、および第二カメラ56は、当該筐体内または当該基板上に設けられている。第二加速度センサ52は、第二LiDARセンサ51と第二カメラ56の間に配置されている。第二スクリュー機構54は、当該筐体または基板と直接的あるいは間接的に結合されている。
 図8の(B)は、第二センサモジュール75の機能構成を示している。第二センサモジュール75は、第二プロセッサ751、第二メモリ752、第二通信部753、および第二給電部754をさらに備えている。第二センサモジュール75は、第二プロセッサ751、第二メモリ752、第二通信部753、および第二給電部754は、第二支持部材750としての筐体内あるいは基板上に設けられている。
 第二プロセッサ751としては、CPU、MPU、GPUなどが例示されうる。第二プロセッサ751は、複数のプロセッサコアを含みうる。第二メモリ752としては、ROMやRAMなどが例示されうる。ROMには、上記の処理を実行するプログラムが記憶されうる。当該プログラムは、人工知能プログラムを含みうる。人工知能プログラムの例としては、ディープラーニングによる学習済みニューラルネットワークが挙げられる。例えば、第二プロセッサ751は、ROMに記憶されたプログラムの少なくとも一部を指定してRAM上に展開し、RAMと協働して上記の処理を実行しうる。第二プロセッサ751の機能の少なくとも一部は、第二プロセッサ751および第二メモリ752とは異なる少なくとも一つのハードウェア資源によって実現されてもよい。そのようなハードウェア資源としては、ASICやFPGAなどの集積回路が例示されうる。
 第二プロセッサ751は、第二通信部753を介して車両100に搭載されている不図示の制御装置と通信可能に接続される。第二プロセッサ751は、第二通信部753を介して当該制御装置からの制御信号を受信し、当該制御信号に基づいて第二LiDARセンサ51と第二カメラ56の動作を制御するように構成されている。
 第二給電部754は、車両100に搭載されている不図示の電源から電力の供給を受けるとともに、当該電力を第二LiDARセンサ51、第二加速度センサ52、第二カメラ56、第二プロセッサ751および第二メモリ752に供給するように構成されている。
 上記のように構成された左前センサシステム5LFを車両100に搭載する方法について説明する。
 まず、左前センサシステム5LFが車両100に搭載される前に、ハウジング11に対する第一センサモジュール74と第二センサモジュール75の姿勢の調節がなされる。具体的には、第一スクリュー機構44を用いて第一支持部材740のハウジング11に対する姿勢を変更することにより、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置の調節がなされる。同様に、第二スクリュー機構54を用いて第二支持部材750のハウジング11に対する姿勢を変更することにより、第二LiDARセンサ51と第二カメラ56の検出基準位置の調節がなされる。左前センサシステム5LFが車両100に搭載される前の一時点は、第一時点の一例である。
 第一加速度センサ42は、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置の調節結果に対応する第一支持部材740の姿勢に対応する信号A1(t1)を出力する。すなわち、信号A1(t1)は、左前センサシステム5LFが車両100に搭載される前における第一加速度センサ42の出力値V11に対応している。信号A1(t1)は、第一メモリ742に入力される。第一メモリ742は、信号A1(t1)に対応する第一加速度センサ42の出力値V11を記憶する。出力値V11は、第一出力値の一例である。
 第二加速度センサ52は、第二LiDARセンサ51と第二カメラ56の検出基準位置の調節結果に対応する第二支持部材750の姿勢に対応する信号A2(t1)を出力する。すなわち、信号A2(t1)は、左前センサシステム5LFが車両100に搭載される前における第二加速度センサ52の出力値V21に対応している。信号A2(t1)は、第二メモリ752に入力される。第二メモリ752は、信号A2(t1)に対応する第二加速度センサ52の出力値V21を記憶する。出力値V21は、第一出力値の一例である。
 次に、左前センサシステム5LFが車両100に搭載される。その際、車体部品の公差や車体に対する左前センサシステム5LFの位置ずれに起因して、各センサの検出基準位置が所望の位置からずれる場合がある。したがって、左前センサシステム5LFが車両100に搭載された後、各センサの検出基準位置の再調整が行なわれる。換言すると、車両100の車体に対する左前センサシステム5LFの位置と姿勢の少なくとも一方の調節が行なわれる。左前センサシステム5LFが車両100に搭載された後の一時点は、第二時点の一例である。
 具体的には、第一加速度センサ42は、左前センサシステム5LFの車体に対する搭載姿勢に対応する第一支持部材43の姿勢に対応する信号A1(t2)を出力する。すなわち、信号A1(t2)は、左前センサシステム5LFが車両100に搭載された後における第一加速度センサ42の出力値V12に対応している。出力値V12は、第二出力値の一例である。
 第一プロセッサ741は、第一加速度センサ42の出力値V12を取得する。第一加速度センサ42から出力された信号A1(t2)は、第一プロセッサ741に入力されてもよいし、第一メモリ742に入力されてもよい。前者の場合、第一プロセッサ741は、出力値V12を直接に取得する。後者の場合、第一プロセッサ741は、第一メモリ742を介して出力値V12を取得する。
 第一プロセッサ741は、出力値V12と出力値V12の差分D1を取得する。差分D1は、左前センサシステム4LFが車両100に搭載されることによって生じた第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置のずれを反映している。
 本実施形態においては、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の姿勢を調節する機構が設けられていない。したがって、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置のずれが検出された場合、当該ずれを解消するように第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の姿勢を変更するのではなく、第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47により取得された情報の側を補正する。
 具体的には、第一プロセッサ741は、取得された差分D1に基づいて、第一LiDARセンサ41の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第一LiDARセンサ41から出力された信号L1を補正する。
 同様に、第一プロセッサ741は、取得された差分D1に基づいて、第一カメラ46の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第一カメラ46から出力された映像信号C1を補正する。
 同様に、第一プロセッサ741は、取得された差分D1に基づいて、ミリ波レーダ47の検出基準位置にずれがなかった場合に得られたであろう信号になるように、ミリ波レーダ47から出力された信号Mを補正する。
 これにより、検出基準位置のずれを解消するように第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、第一プロセッサ741は、左前センサシステム4LFを車両100に搭載することによって変化した第一LiDARセンサ41、第一カメラ46、およびミリ波レーダ47の検出基準位置を、間接的に再調整していると言える。
 同様に、第二加速度センサ52は、左前センサシステム5LFの車体に対する搭載姿勢に対応する第二支持部材53の姿勢に対応する信号A2(t2)を出力する。すなわち、信号A2(t2)は、左前センサシステム5LFが車両100に搭載された後における第二加速度センサ52の出力値V22に対応している。出力値V22は、第二出力値の一例である。
 第二プロセッサ751は、第二加速度センサ52の出力値V22を取得する。第二加速度センサ52から出力された信号A2(t2)は、第二プロセッサ751に入力されてもよいし、第二メモリ752に入力されてもよい。前者の場合、第二プロセッサ751は、出力値V22を直接に取得する。後者の場合、第二プロセッサ751は、第二メモリ752を介して出力値V22を取得する。
 第二プロセッサ751は、出力値V21と出力値V22の差分D2を取得する。差分D2は、左前センサシステム4LFが車両100に搭載されることによって生じた第二LiDARセンサ51と第二カメラ56の検出基準位置のずれを反映している。
 本実施形態においては、第二LiDARセンサ51と第二カメラ56の姿勢を調節する機構が設けられていない。したがって、第二LiDARセンサ51と第二カメラ56の検出基準位置のずれが検出された場合、当該ずれを解消するように第二LiDARセンサ51と第二カメラ56の姿勢を変更するのではなく、第二LiDARセンサ51と第二カメラ56により取得された情報の側を補正する。
 具体的には、第二プロセッサ751は、取得された差分D2に基づいて、第二LiDARセンサ51の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第二LiDARセンサ51から出力された信号L2を補正する。
 同様に、第二プロセッサ751は、取得された差分D2に基づいて、第二カメラ56の検出基準位置にずれがなかった場合に得られたであろう信号になるように、第二カメラ56から出力された映像信号C2を補正する。
 これにより、検出基準位置のずれを解消するように第二LiDARセンサ51および第二カメラ56の位置と姿勢の少なくとも一方が変更された場合と実質的に同じ情報が得られる。すなわち、第二プロセッサ751は、左前センサシステム5LFを車両100に搭載することによって変化した第二LiDARセンサ51と第二カメラ56の検出基準位置を、間接的に再調整していると言える。
 本実施形態の構成によれば、左前センサシステム5LFが車両100に搭載される前の時点と搭載された後の時点との間で各センサの検出基準位置にずれが生じても、当該ずれを解消するための調節作業を自動化できる。したがって、左前センサシステム5LFが車両100に搭載された後に各センサの検出基準位置を調節する作業の負担を軽減できる。
 例えば、左前センサシステム5LFが車両100に搭載される前の各センサの検出基準位置の調節は、左前センサシステム5LFの製造業者によって行なわれうる。他方、左前センサシステム5LFが車両100に搭載された後の各センサの検出基準位置の調節は、例えば左前センサシステム5LFを一部品として車両100を組み立てる製造業者によって行なわれうる。この場合、後者による各センサの検出基準位置を調節する作業の負担を軽減できる。左前センサシステム5LFの製造業者は、第一エンティティの一例である。車両100を組み立てる製造業者は、第二エンティティの一例である。
 さらに、本実施形態の構成によれば、各センサの位置と姿勢の少なくとも一方を調節する機構を省略できる。したがって、左前センサシステム5LFの大型化と重量増を抑制できる。
 また、本実施形態の構成によれば、第一プロセッサ741と第一メモリ742が第一支持部材740に支持されており、第二プロセッサ751と第二メモリ752が第二支持部材750に支持されている。よって、第一プロセッサ741と第一メモリ742によって行なわれる処理、および第二プロセッサ751と第二メモリ752によって行なわれる処理に関し、車両100に搭載されている制御装置の負荷を軽減できる。
 上記の各実施形態は、本開示の理解を容易にするための例示にすぎない。上記の各実施形態に係る構成は、本開示の趣旨を逸脱しなければ、適宜に変更・改良されうる。
 センサシステムが備えているセンサとして、LiDARセンサ、カメラ、およびミリ波レーダを例示した。しかしながら、当該センサとして超音波センサも採用されうる。超音波センサは、超音波(数十kHz~数GHz)を発信する構成、および当該超音波が車両100の外部に存在する物体に反射されて得られる反射波を受信する構成を備えている。超音波センサは、必要に応じて発信方向(すなわち検出方向)を変更して超音波を掃引する走査機構を備えうる。
 超音波センサは、例えば、ある方向へ超音波を発信したタイミングから反射波を受信するまでの時間に基づいて、当該反射波に関連付けられた物体までの距離を取得できる。また、そのような距離データを検出位置と関連付けて集積することにより、反射波に関連付けられた物体の動きに係る情報を取得できる。
 すなわち、超音波センサは、車両100の外部の情報を検出するセンサである。超音波センサは、受信した反射波の属性(強度など)に対応する信号を出力する。上記の情報は、超音波センサより出力された信号が情報処理部によって適宜に処理されることにより取得される。情報処理部は、センサシステムが備えていてもよいし、車両100に搭載されていてもよい。
 上記の各実施形態において、ランプユニット18の姿勢は、第三スクリュー機構19によって調整される。しかしながら、第三スクリュー機構19は、少なくとも一部がハウジング11に収容された適宜のアクチュエータ機構により置き換えられうる。
 本出願の記載の一部を構成するものとして、2017年3月21日に提出された日本国特許出願2017-054102号の内容が援用される。

Claims (10)

  1.  車両に搭載されるセンサモジュールであって、
     前記車両の外部の情報を検出するセンサと、
     前記センサを支持している支持部材と、
     前記支持部材に支持されている加速度センサと、
    を備えている、
    センサモジュール。
  2.  車両に搭載されるセンサシステムであって、
     前記車両の外部の情報を検出するセンサと、
     前記センサを支持している支持部材と、
     前記支持部材に支持されている加速度センサと、
     第一時点における前記加速度センサの第一出力値を記憶するメモリと、
     第二時点における前記加速度センサの第二出力値と前記第一出力値との差分を取得するプロセッサと、
    を備えている、
    センサシステム。
  3.  前記センサの位置と姿勢の少なくとも一方の調節を行なう調節機構を備えており、
     前記プロセッサは、前記差分に基づいて前記調節機構に前記調節を行なわせる、
    請求項2に記載のセンサシステム。
  4.  前記センサによって検出された情報の補正を行なう補正部を備えており、
     前記プロセッサは、前記差分に基づいて前記補正部に前記補正を行なわせる、
    請求項2に記載のセンサシステム。
  5.  前記センサ、前記支持部材、および前記加速度センサを収容する共通のハウジングを備えており、
     前記プロセッサは、前記ハウジングに支持されている、
    請求項2から4のいずれか一項に記載のセンサシステム。
  6.  前記メモリと前記プロセッサは、前記支持部材に支持されている、
    請求項5に記載のセンサシステム。
  7.  光源と、
     前記光源の位置と姿勢の少なくとも一方を調節する光源調節機構と、
     前記センサ、前記支持部材、前記加速度センサ、前記光源、および前記光源調節機構の少なくとも一部を収容する共通のハウジングと、
    を備えている、
    請求項2から6のいずれか一項に記載のセンサシステム。
  8.  前記センサは、LiDARセンサ、ミリ波レーダ、超音波センサ、およびカメラの少なくとも一つを含んでいる、
    請求項2から7のいずれか一項に記載のセンサシステム。
  9.  請求項2から7のいずれか一項に記載のセンサシステムの車両への搭載方法であって、
     前記センサシステムが前記車両に搭載される前の前記第一時点における前記加速度センサの第一出力値を、前記メモリに記憶させる第一工程と、
     前記センサシステムが前記車両に搭載された後の前記第二時点における前記加速度センサの第二出力値と前記第一出力値との差分を、前記プロセッサに取得させる第二工程と、
    を含んでいる、
    搭載方法。
  10.  前記第一工程は、第一エンティティによって行なわれ、
     前記第二工程は、前記第一エンティティとは異なる第二エンティティによって行なわれる、
    請求項9に記載の搭載方法。
PCT/JP2018/009718 2017-03-21 2018-03-13 センサモジュール、センサシステム、およびセンサシステムの車両への搭載方法 WO2018173855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18770971.2A EP3605136A4 (en) 2017-03-21 2018-03-13 SENSOR MODULE, SENSOR SYSTEM AND METHOD FOR INSTALLING A SENSOR SYSTEM IN A VEHICLE
US16/496,081 US20200039531A1 (en) 2017-03-21 2018-03-13 Sensor module, sensor system, and method of installing sensor system in vehicle
CN201880019683.1A CN110446941A (zh) 2017-03-21 2018-03-13 传感器模块、传感器系统、及向车辆搭载传感器系统的搭载方法
JP2019507575A JPWO2018173855A1 (ja) 2017-03-21 2018-03-13 センサモジュール、センサシステム、およびセンサシステムの車両への搭載方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017054102 2017-03-21
JP2017-054102 2017-03-21

Publications (1)

Publication Number Publication Date
WO2018173855A1 true WO2018173855A1 (ja) 2018-09-27

Family

ID=63586462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009718 WO2018173855A1 (ja) 2017-03-21 2018-03-13 センサモジュール、センサシステム、およびセンサシステムの車両への搭載方法

Country Status (5)

Country Link
US (1) US20200039531A1 (ja)
EP (1) EP3605136A4 (ja)
JP (1) JPWO2018173855A1 (ja)
CN (1) CN110446941A (ja)
WO (1) WO2018173855A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111186377A (zh) * 2018-11-14 2020-05-22 株式会社小糸制作所 红外线相机系统、红外线相机模块以及车辆
WO2020116239A1 (ja) * 2018-12-04 2020-06-11 株式会社小糸製作所 赤外線カメラシステム及び車両
US11634064B1 (en) 2021-11-02 2023-04-25 Stanley Electric Co., Ltd. Vehicular lamp fitting and radar structure
RU2804063C2 (ru) * 2019-04-30 2023-09-26 Идак Холдингз, Инк. Способы, устройства и системы для усовершенствованной передачи данных по восходящей линии связи по сконфигурированным предоставлениям

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605031B1 (de) * 2018-08-02 2021-04-07 VEGA Grieshaber KG Radarsensor zur füllstand- oder grenzstandmessung
US11851088B2 (en) * 2020-03-11 2023-12-26 Baidu Usa Llc Method for determining capability boundary and associated risk of a safety redundancy autonomous system in real-time
US11702104B2 (en) * 2020-04-22 2023-07-18 Baidu Usa Llc Systems and methods to determine risk distribution based on sensor coverages of a sensor system for an autonomous driving vehicle
SE544537C2 (en) * 2020-11-10 2022-07-05 Scania Cv Ab Multi-modality corner vehicle sensor module
CN114639262B (zh) * 2020-12-15 2024-02-06 北京万集科技股份有限公司 感知设备的状态检测方法、装置、计算机设备和存储介质
JP7444045B2 (ja) * 2020-12-17 2024-03-06 トヨタ自動車株式会社 音源探査システムおよび音源探査方法
DE102021104596A1 (de) 2021-02-25 2022-08-25 Motherson Innovations Company Limited Außenverkleidungsbauteil eines Kraftfahrzeugs, Kraftfahrzeug mit einem solchen Außenverkleidungsbauteil sowie Computerprogrammprodukt zum Betreiben einer Positionsbestimmungseinrichtung eines derartigen Außenverkleidungsbauteils

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085258A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd レーダ装置
JP2010519545A (ja) * 2007-02-21 2010-06-03 オートリブ エー・エス・ピー・インク センサのミスアラインメント検知および測定システム
JP2010185769A (ja) 2009-02-12 2010-08-26 Toyota Motor Corp 物体検出装置
JP2010243219A (ja) * 2009-04-01 2010-10-28 Fujitsu Ten Ltd レーダ装置およびレーダ調整方法
JP2013019799A (ja) * 2011-07-12 2013-01-31 Denso Corp 車両用制御装置
US20140333473A1 (en) * 2013-05-13 2014-11-13 Robert Bosch Gmbh Method and device for ascertaining and compensating for a misalignment angle of a radar sensor of a vehicle
JP2017054102A (ja) 2015-09-07 2017-03-16 日亜化学工業株式会社 光学部品及び発光装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001260777A (ja) * 2000-03-21 2001-09-26 Denso Corp 車両用前照灯装置
US7197388B2 (en) * 2003-11-06 2007-03-27 Ford Global Technologies, Llc Roll stability control system for an automotive vehicle using an external environmental sensing system
JP2006242622A (ja) * 2005-03-01 2006-09-14 Matsushita Electric Ind Co Ltd 車載用レーダ装置および車両搭載方法
US20120173185A1 (en) * 2010-12-30 2012-07-05 Caterpillar Inc. Systems and methods for evaluating range sensor calibration data
DE102013222291A1 (de) * 2013-11-04 2015-05-07 Conti Temic Microelectronic Gmbh Verfahren und Vorrichtung zur Schätzung der Einbauwinkel eines in einem Fahrzeug montierten bildgebenden Sensors
CN104648228B (zh) * 2013-11-25 2017-08-11 株式会社小糸制作所 车用灯具的控制装置
EP2902802B1 (de) * 2014-01-31 2016-10-26 S.M.S. Smart Microwave Sensors GmbH Sensorvorrichtung
DE102015005570A1 (de) * 2015-04-29 2016-11-03 Audi Ag Verfahren zur Justage und/oder Kalibrierung eines Umgebungssensors, Umgebungssensor und Kraftfahrzeug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085258A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd レーダ装置
JP2010519545A (ja) * 2007-02-21 2010-06-03 オートリブ エー・エス・ピー・インク センサのミスアラインメント検知および測定システム
JP2010185769A (ja) 2009-02-12 2010-08-26 Toyota Motor Corp 物体検出装置
JP2010243219A (ja) * 2009-04-01 2010-10-28 Fujitsu Ten Ltd レーダ装置およびレーダ調整方法
JP2013019799A (ja) * 2011-07-12 2013-01-31 Denso Corp 車両用制御装置
US20140333473A1 (en) * 2013-05-13 2014-11-13 Robert Bosch Gmbh Method and device for ascertaining and compensating for a misalignment angle of a radar sensor of a vehicle
JP2017054102A (ja) 2015-09-07 2017-03-16 日亜化学工業株式会社 光学部品及び発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605136A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111186377A (zh) * 2018-11-14 2020-05-22 株式会社小糸制作所 红外线相机系统、红外线相机模块以及车辆
WO2020100656A1 (ja) * 2018-11-14 2020-05-22 株式会社小糸製作所 赤外線カメラシステム、赤外線カメラモジュール及び車両
JPWO2020100656A1 (ja) * 2018-11-14 2021-10-07 株式会社小糸製作所 赤外線カメラシステム、赤外線カメラモジュール及び車両
WO2020116239A1 (ja) * 2018-12-04 2020-06-11 株式会社小糸製作所 赤外線カメラシステム及び車両
JPWO2020116239A1 (ja) * 2018-12-04 2021-11-04 株式会社小糸製作所 赤外線カメラシステム及び車両
JP7382344B2 (ja) 2018-12-04 2023-11-16 株式会社小糸製作所 赤外線カメラシステム及び車両
RU2804063C2 (ru) * 2019-04-30 2023-09-26 Идак Холдингз, Инк. Способы, устройства и системы для усовершенствованной передачи данных по восходящей линии связи по сконфигурированным предоставлениям
US11634064B1 (en) 2021-11-02 2023-04-25 Stanley Electric Co., Ltd. Vehicular lamp fitting and radar structure

Also Published As

Publication number Publication date
US20200039531A1 (en) 2020-02-06
CN110446941A (zh) 2019-11-12
EP3605136A1 (en) 2020-02-05
EP3605136A4 (en) 2020-12-16
JPWO2018173855A1 (ja) 2020-01-23

Similar Documents

Publication Publication Date Title
WO2018173855A1 (ja) センサモジュール、センサシステム、およびセンサシステムの車両への搭載方法
JP7061071B2 (ja) センサシステム、センサモジュール、およびランプ装置
EP3514444A1 (en) Sensor system
US20200276930A1 (en) Lighting system and sensor system
US11623558B2 (en) Sensor system
TWI738939B (zh) 距離測量系統
US20180172984A1 (en) Image projection apparatus and compensation method
US11248767B2 (en) Sensor system, sensor module, and lamp device
US20190346538A1 (en) Lamp device
US20200236338A1 (en) Sensor system
JP7189682B2 (ja) センサシステムおよび検査方法
CN111725142A (zh) 用于3d感测应用的集成电子模块以及包括集成电子模块的3d扫描设备
KR102158025B1 (ko) 카메라 보정모듈, 카메라 시스템 및 카메라 시스템의 제어 방법
KR102664801B1 (ko) 자체 보정 이미저를 갖는 차량 비전 시스템
JP2021096225A (ja) 投光装置、物体検出装置及び移動体
JP2019200649A (ja) センサデータ生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507575

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018770971

Country of ref document: EP

Effective date: 20191021