WO2018173842A1 - ガス化装置 - Google Patents

ガス化装置 Download PDF

Info

Publication number
WO2018173842A1
WO2018173842A1 PCT/JP2018/009599 JP2018009599W WO2018173842A1 WO 2018173842 A1 WO2018173842 A1 WO 2018173842A1 JP 2018009599 W JP2018009599 W JP 2018009599W WO 2018173842 A1 WO2018173842 A1 WO 2018173842A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
furnace
height direction
gasification furnace
deposition layer
Prior art date
Application number
PCT/JP2018/009599
Other languages
English (en)
French (fr)
Inventor
林 健太郎
章博 原
裕昭 脇坂
松本 健
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201880010534.9A priority Critical patent/CN110446774B/zh
Publication of WO2018173842A1 publication Critical patent/WO2018173842A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a gasifier including a gasification furnace that generates gas by pyrolyzing a raw material.
  • gasifiers that gasify raw materials (typically biomass) are known.
  • a gasifier for example, there is a fixed-bed downdraft type gasifier which has a simple furnace structure and is generally said to generate less tar.
  • biomass as a raw material charged into a gasifier reacts in the order of pyrolysis, oxidation, and reduction, and gas is generated in the process.
  • Carbide (char) generated in the course of these reactions is deposited in the lower part of the gasification furnace, but after a certain amount of time has elapsed, the deposited char is discharged out of the gasification furnace by the discharge device.
  • the furnace height direction of the gasification furnace It is conceivable to provide a plurality of temperature sensors.
  • the absolute temperature of the upper surface of the char deposition layer varies greatly depending on the operating state of the gasifier (for example, whether it is in a steady operating state or in a starting operating state), it is merely a patent document 1 and a patent. It is difficult to ascertain the position of the upper surface of the char deposition layer in the gasification furnace only by providing a plurality of temperature sensors for the gasification furnace as described in Document 2.
  • a level sensor as another means for ascertaining whether or not the upper surface of the char deposition layer in the gasification furnace is at a predetermined height.
  • this level sensor detects the level (position in the furnace height direction) by dropping a weight on the upper surface of the detection object. For this reason, when the inside of the gasification furnace becomes very high temperature (for example, 1000 ° C. or higher), the weight may be dissolved, and there is room for improvement.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to make it possible to obtain the position of the upper surface of the carbide deposition layer with a simple configuration.
  • a gasifier having the following configuration. That is, this gasifier includes a gasifier, a first temperature sensor, a second temperature sensor, and a control device.
  • the gasification furnace pyrolyzes the raw material to generate gas, and carbides generated in the process are deposited.
  • the second temperature sensor is disposed below the first temperature sensor in the furnace height direction of the gasification furnace.
  • the control device is configured so that the upper surface of the carbide deposition layer has the furnace height of the gasification furnace. It is determined that it is located between the first temperature sensor and the second temperature sensor in the direction.
  • the gasification device includes at least one temperature sensor disposed at least above the first temperature sensor or below the second temperature sensor in the furnace height direction of the gasification furnace. Is further provided.
  • the control device determines as follows. That is, if the difference between the detection values acquired immediately before the top two temperature sensors in the furnace height direction is equal to or greater than a threshold value, the control device causes the upper surface of the carbide deposition layer to be in the gasification furnace. It is determined that the position is higher than the uppermost temperature sensor in the furnace height direction.
  • the control device may cause the upper surface of the carbide deposition layer to be in the gasification furnace. It is determined that the position is lower than the lowest temperature sensor in the furnace height direction.
  • the first temperature sensor and the second temperature sensor are a part of three or more temperature sensors arranged side by side in the furnace height direction of the gasification furnace.
  • the control device determines the position of the upper surface of the carbide deposition layer by comparing each difference between detection values of two temperature sensors adjacent to each other in the furnace height direction of the gasification furnace.
  • the control device is based on a detection value detected immediately before by at least one of the first temperature sensor and the second temperature sensor. It is preferable to determine whether the upper surface of the carbide deposition layer is at a position above the first temperature sensor or at a position below the second temperature sensor.
  • the upper surface of the carbide deposition layer in the furnace height direction is out of the range from the first temperature sensor to the second temperature sensor arranged side by side in the furnace height direction, the upper surface of the carbide deposition layer. Can be discriminated whether it is above the first temperature sensor or below the second temperature sensor.
  • the control device includes at least one of a detection value of the first temperature sensor acquired in the past, a detection value of the second temperature sensor acquired in the past, and a difference between these detection values. It is preferable to obtain a change in the vertical direction of the upper surface of the carbide deposition layer based on any of the above.
  • a gasifier having the following configuration. That is, this gasifier includes a gasification furnace, an oxidant supply port, a first temperature sensor, and a second temperature sensor.
  • the gasification furnace pyrolyzes the raw material to generate gas, and carbides generated in the process are deposited.
  • the oxidant supply port is provided at a position corresponding to a region where partial combustion of the raw material is performed in the height direction of the gasification furnace in order to supply the oxidant into the region.
  • the first temperature sensor is disposed in the vicinity of the oxidant supply port in the furnace height direction of the gasification furnace.
  • the second temperature sensor is disposed below the first temperature sensor in the furnace height direction of the gasification furnace.
  • the position corresponding to the first temperature sensor in the furnace height direction of the gasification furnace is the supply of a nearby oxidant
  • the first temperature sensor should detect a high temperature (a high temperature in the vicinity of the partial combustion) because it corresponds to a region in which the oxidant is taken in from the mouth and the partial combustion is performed directly.
  • the second temperature sensor is buried in the deposited carbide at the position corresponding to the second temperature sensor in the furnace height direction of the gasification furnace, the temperature is considerably lower than the detection value of the first temperature sensor. Should be detected.
  • the reduction reaction by the carbide is mainly performed, and this reduction reaction proceeds at a temperature lower than the temperature of the partial combustion.
  • the upper surface of the carbide deposition layer is in the furnace height direction and the second temperature sensor and the second temperature sensor. It can be estimated that the position is between the temperature sensors. Therefore, whether or not the upper surface of the carbide deposition layer is within a predetermined range can be obtained with a simple configuration using a temperature sensor.
  • the schematic diagram which shows the whole structure of the gasification apparatus which concerns on one Embodiment of this invention.
  • the schematic diagram explaining the gasification furnace with which a gasification apparatus is equipped, and the structure relevant to it.
  • the flowchart which shows the process performed by the control apparatus in order to confirm whether the upper surface of a char deposition layer exists in a predetermined height range.
  • the flowchart which shows the process performed by the control apparatus in order to estimate whether the upper surface of a char deposition layer is higher or lower than usual.
  • FIG. 1 is a schematic diagram showing an overall configuration of a gasifier 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a gasification furnace 2 provided in the gasification apparatus 1 and a configuration related thereto.
  • the gasification apparatus 1 of the present embodiment is an organic resource derived from a living organism such as rice husk or wood waste (strictly, it is an organic resource excluding fossil resources, and may be referred to as “biomass”). .) Is a part of a so-called biomass power plant that generates gas using fuel (raw material, gasification target) and generates electric power using the gas.
  • the gasifier 1 of this embodiment includes a gasification furnace 2, a fuel supply device 3, a char discharge device 4, a bag filter 5, a gas cooling device 6, a cleaning device 7, an induction blower 8, and a control.
  • a device 9, a cogeneration system 10, a surplus gas combustion device 11 and the like are provided.
  • the gasification furnace 2 shown in FIG. 2 is a furnace in which the main reaction of raw material gasification is performed.
  • the gasification furnace 2 of the present embodiment is a so-called fixed bed furnace.
  • an oxidant supply port 13 for supplying air or oxygen as an oxidant to the inside of the gasification furnace 2 is provided in the middle of the gasification furnace 2 in the vertical direction.
  • a region in which the raw material is thermally decomposed and oxidized (partial combustion) is formed inside the gasification furnace 2. Further, a char deposition region in which char remaining after pyrolysis and partial combustion is deposited is formed below the region where partial combustion is performed inside the gasification furnace 2.
  • the oxidant supply port 13 is provided in a hole shape at a position corresponding to the region where the partial combustion in the furnace height direction of the gasification furnace 2 is performed so as to communicate the inside and the outside of the gasification furnace 2.
  • the fuel supply device 3 supplies the raw material from the upper end of the gasification furnace 2 to the inside.
  • the fuel supply device 3 of the present embodiment includes a hopper 31, a screw 32, a motor, and the like.
  • the hopper 31 is a container into which raw materials are charged.
  • the screw 32 is rotatably attached to the bottom of the hopper 31.
  • the motor rotationally drives the screw 32.
  • the screw 32 is rotationally driven at a constant speed, so that the raw material is introduced into the gasification furnace 2 in an amount corresponding to the rotational speed of the screw 32.
  • the char discharging device 4 discharges (extracts) char remaining after gasification (reduction) from the bottom of the char deposition region in the gasification furnace 2.
  • the char discharge device 4 includes, for example, a rotary valve 41 and a screw conveyor 42.
  • the rotary valve 41 rotates to supply the char extracted from the extraction hole provided at the bottom of the gasification furnace 2 to the screw conveyor 42 below.
  • the screw conveyor 42 conveys the extracted char to a predetermined location outside the gasification furnace 2. By adjusting the drive speed of the rotary valve 41 and the screw conveyor 42, the amount of char extraction can be increased or decreased.
  • the raw material supplied from the fuel supply device 3 is dried.
  • the dried raw material is then pyrolyzed in an oxygen-deficient state.
  • about 50 to 90% of the raw material is gas (CO, H 2 , CH 4 , CO 2 , H 2 O) and gaseous substances such as tar, and the remaining about 10 to 50% is fixed carbon called char.
  • Converted to The rate of conversion varies depending on the heating rate in the furnace, the type of raw material, the particle size, and the like.
  • the pyrolysis product generated by pyrolysis is oxidized (partial combustion) by air or oxygen supplied from the oxidant supply port 13. The heat generated by this partial combustion is used as a heat source in the above pyrolysis.
  • the char remaining after the partial combustion is deposited in the char deposition region below the region where the partial combustion is performed.
  • the reduction reaction by the char is performed at a temperature substantially lower than that in the partial combustion, whereby the char is steamed and gasified.
  • the gasification (reduction) by char in the char deposition region mainly CO and H 2 are generated.
  • the gas generated in the gasification furnace 2 is supplied to the cogeneration system 10 and the surplus gas combustion device 11 through a gas path constituted by piping and the like.
  • a gas path constituted by piping and the like.
  • the attraction blower 8 are arranged in this order.
  • the bag filter 5 removes carbon fine particles such as soot and dust contained in the gas flowing from the gasification furnace 2.
  • the bag filter 5 passes gas through the filter of the bag filter 5 by using, for example, a method such as capture and adsorption, and removes soot and dust with this filter.
  • the gas cooling device 6 cools the gas that has flowed after passing through the bag filter 5 and increases the density of the gas.
  • the gas cooling device 6 cools the gas by using a technique such as heat exchange.
  • the gas cooling device 6 includes, for example, a heat exchanger to which cooling water is supplied and a gas path that is piped between the heat exchangers.
  • the heat exchanger is supplied with water from a water storage tank as cooling water, and heat is exchanged between the cooling water and the gas.
  • the cleaning device 7 cleans the gas that has flowed after being cooled by the gas cooling device 6 to remove tar and the like.
  • the cleaning device 7 removes the tar by performing a physical process including, for example, a step of condensing the gaseous tar, a step of separating the gas / liquid mixture, and a step of performing droplet filtration.
  • the induction blower 8 induces the gas from the gasification furnace 2 to the cogeneration system 10 side by generating a negative pressure.
  • the induction blower 8 is configured by, for example, an induction draft fan. Due to the action of the induction blower 8, a negative pressure is generated in the gas path upstream of the induction blower 8 and in the gasification furnace 2.
  • the cogeneration system 10 includes a gas engine and a generator.
  • the gas generated in the gasification furnace 2 is supplied to the gas engine after soot and tar are removed and the density is increased, and the thermal energy of the gas is converted into rotational motion by the gas engine. This rotational motion is transmitted to the generator to generate electricity. A part of the heat energy of the gas is used for hot water supply or the like.
  • the surplus gas that has not been supplied to the cogeneration system 10 among the gas that has passed through the induction blower 8 is supplied to the surplus gas combustion device 11.
  • the surplus gas combustion device 11 incinerates surplus gas, converts carbon monoxide into carbon dioxide, and renders it harmless.
  • the control device 9 includes a gasification furnace 2, a fuel supply device 3, a char discharge device 4, a bag filter 5, a gas cooling device 6, a cleaning device 7, an induction blower 8, a cogeneration system 10, a surplus gas combustion device 11, and the like. It is a controller to control.
  • the control device 9 is configured as a computer including a CPU, a ROM, a RAM, and the like, and the CPU can read various programs from the ROM and execute them.
  • the ROM stores an appropriate program for causing the gasifier 1 to appropriately gasify the raw material.
  • the gasification apparatus 1 performs gasification of a raw material suitably, the removal of the soot and tar in gas, the concentration of gas, the cogeneration system 10, and the surplus gas combustion apparatus 11 can be supplied with gas.
  • gas is generated in the gasification furnace 2 using a raw material that is typically biomass as fuel, and soot and tar contained in the gas are removed in the middle of the gas path. After being concentrated, the gas is supplied to the cogeneration system 10. Electric power can be obtained by the thermal energy of the gas. That is, typically, energy using raw materials, which are biomass, is converted into electric power and extracted. Thereby, the raw material as a renewable energy source can be used effectively.
  • the gasification apparatus 1 of the present embodiment has a configuration for acquiring whether or not the upper surface of the char deposition layer is in a predetermined height range in the furnace height direction.
  • the char deposition layer is a layer that is deposited in the gasification furnace 2, and is a layer in which most of the material constituting the layer is occupied by char.
  • the layer may be simply referred to as “char deposition layer”.
  • the gasifier 1 of the present embodiment includes a first temperature sensor T1, a second temperature sensor T2, a third temperature sensor T3, a fourth temperature sensor T4, and a fifth temperature sensor T5. All of these temperature sensors are electrically connected to the control device 9.
  • 1st temperature sensor T1 is a temperature sensor arrange
  • the first temperature sensor T1 is the uppermost sensor
  • the fifth temperature sensor T5 is the lowermost sensor.
  • the five temperature sensors T1 to T5 may be arranged side by side at equal intervals in the furnace height direction, or may be arranged at unequal intervals.
  • Each of the temperature sensors T2, T3, T4, and T5 can detect the temperature in the gasification furnace 2 at the height at which the temperature sensor is provided.
  • the first to fifth temperature sensors T1, T2,... Each of the plurality of temperature sensors T1, T2,... Is arranged along the circumferential direction of the gasification furnace 2.
  • the average value of the detection values of the plurality of temperature sensors arranged in the circumferential direction is adopted as the detection value of each of the first to fifth temperature sensors T1, T2,... Used for.
  • the value adopted as the detection value in the control described later is not limited to the average value, and for example, the median values of the first to fifth temperature sensors T1, T2,. It can also be adopted.
  • the control flow shown in FIG. 3 is performed to determine whether or not the upper surface of the char deposition layer is in a predetermined range. Is monitored.
  • FIG. 3 is a flowchart showing a process performed by the control device 9 to confirm whether or not the upper surface of the char deposition layer is in a predetermined height range.
  • the process shown in the flowchart of FIG. 3 is repeatedly executed while the gasification furnace 2 is in operation. That is, the process is performed constantly or periodically while the gasification furnace 2 is operating.
  • control device 9 acquires a temperature detection value obtained from the first temperature sensor T1 (step S101). Moreover, the control apparatus 9 acquires the detected value of the temperature obtained from 2nd temperature sensor T2 (step S102). Note that the order of processing in steps S101 and S102 is not particularly limited.
  • control device 9 determines whether or not the difference between the detection value of the first temperature sensor T1 acquired in step S101 and the detection value of the second temperature sensor T2 acquired in step S102 is equal to or greater than a threshold value. (Step S103).
  • step S103 When the difference between the detection value of the first temperature sensor T1 and the detection value of the second temperature sensor T2 is equal to or greater than the threshold value as a result of the determination in step S103 (step S103, Yes), the control device 9 It is determined that the upper surface of the layer is located between the first temperature sensor T1 and the second temperature sensor T2 in the furnace height direction of the gasification furnace 2 (step S104). Thereby, it is confirmed that the upper surface of the char deposition layer is in a predetermined range (in this embodiment, the height between the first temperature sensor T1 and the second temperature sensor T2).
  • the threshold used in step S103 can be determined in consideration of the difference between the expected temperature of the char deposition layer and the expected temperature of the gas layer above the char deposition layer or the region where partial combustion is performed. Each predicted temperature may be acquired by, for example, a test operation or analysis of the gasification furnace 2.
  • the threshold value can be selected and set, for example, in the range of 100 ° C. to 600 ° C., more preferably 200 ° C. to 300 ° C.
  • step S103 when the difference between the detection value of the first temperature sensor T1 and the detection value of the second temperature sensor T2 is less than the threshold (No in step S103), the control device 9 It is determined that the upper surface of the char deposition layer is not positioned between the first temperature sensor T1 and the second temperature sensor T2 in the furnace height direction of the gasification furnace 2 (step S105). As a result, it is confirmed that the upper surface of the char deposition layer is out of a predetermined range (in this control flow, the height between the first temperature sensor T1 and the second temperature sensor T2).
  • step S106 the tendency of the rise / fall of the height of the upper surface of the char deposition surface is determined.
  • the temperature distribution above the upper surface of the char deposition layer and the temperature distribution below (within the char deposition layer) are obtained in advance by analysis or the like, and the detection value of the temperature sensor or the change in the detection value difference It is possible to determine whether the height of the upper surface of the char deposition layer is rising or falling and to estimate the rising / lowering speed. However, this step can be omitted.
  • the control device 9 can also check whether the temperature is between the fourth temperature sensor T4 and the fifth temperature sensor T5. Accordingly, it is possible to monitor whether or not the upper surface of the char deposition layer is within a predetermined range with a simple configuration using the temperature sensors T1, T2,.
  • FIG. 4 is a flowchart showing a process performed by the control device 9 in order to estimate whether the upper surface of the char deposition layer is higher or lower than normal.
  • control device 9 acquires temperature detection values obtained from the first to fifth temperature sensors T1, T2,..., And calculates the difference between detection values of adjacent temperature sensors in the furnace height direction. calculate. And the control apparatus 9 judges whether all the difference of the detected value of the temperature sensor adjacent in a furnace height direction is less than a threshold value (step S201).
  • step S201 when there is a difference between the detected values of the temperature sensors adjacent in the furnace height direction that is equal to or greater than the threshold (No in step S201), the control device 9 is the same as the process in FIG. Based on this idea, it is determined that the upper surface of the char deposition layer is located between two temperature sensors whose detected value difference is equal to or greater than a threshold value (step S202).
  • step S201 when the difference between the detection values of the temperature sensors adjacent in the furnace height direction is less than the threshold value (step S201, Yes), the control device 9 subsequently detects the detection value of the first temperature sensor T1 acquired immediately before. And whether or not the difference between the detected value of the second temperature sensor T2 is equal to or greater than a threshold value (step S203).
  • step S203 Yes
  • the control device 9 currently estimates that the upper surface of the char deposition layer has reached a position above the first temperature sensor T1 in the furnace height direction of the gasification furnace 2 (step S204).
  • control device 9 notifies the user that the upper surface of the char deposition layer is higher than the normal height (abnormally higher) by a method such as turning on a notification lamp. Accordingly, the user can take appropriate measures such as increasing the amount of char extracted or reducing the amount of oxidant supplied from the oxidant supply port 13 into the gasification furnace 2.
  • step S203 if the difference between the detected value of the first temperature sensor T1 and the detected value of the second temperature sensor T2 acquired immediately before is less than the threshold value (step S203, No), then Then, the control device 9 determines whether or not the difference between the detection value of the fourth temperature sensor T4 and the detection value of the fifth temperature sensor T5 acquired immediately before obtaining the determination result of step S201 is greater than or equal to the threshold (step). S205).
  • step S205 if the difference between the detected value of the fourth temperature sensor T4 and the detected value of the fifth temperature sensor T5 acquired immediately before is greater than or equal to the threshold value (step S205, Yes), the char deposition layer There is a high possibility that the upper surface of the char deposition layer was between the fourth temperature sensor T4 and the fifth temperature sensor T5 immediately before the upper surface of the first temperature sensor deviates from the height range from the first temperature sensor T1 to the fifth temperature sensor T5. Therefore, the control device 9 currently estimates that the upper surface of the char deposition layer has reached a position below the fifth temperature sensor T5 in the furnace height direction of the gasification furnace 2 (step S206).
  • control device 9 notifies the user that the upper surface of the char deposition layer is lower than the normal height (abnormally lower) by a method such as turning on a notification lamp.
  • the user can take appropriate measures such as reducing the amount of char extracted or increasing the amount of oxidant supplied from the oxidant supply port 13 into the gasification furnace 2.
  • step S205 if the difference between the detected value of the fourth temperature sensor T4 and the detected value of the fifth temperature sensor T5 acquired immediately before is less than the threshold value (step S205, No), the past The current position of the upper surface of the char deposition layer cannot be estimated even by referring to the difference between the detected values of the adjacent temperature sensors calculated in (1). Therefore, the control device 9 determines that the position of the upper surface of the char deposition layer cannot be detected (step S207), and notifies the user by an appropriate method such as turning on the notification lamp. Thereby, the user can take appropriate measures such as an emergency stop of the operation of the gasification furnace 2, for example.
  • the gasifier 1 of the present embodiment includes the gasifier 2, the first temperature sensor T1, the second temperature sensor T2, and the control device 9.
  • the gasifier 2 In the gasification furnace 2, a raw material is pyrolyzed to generate gas, and char generated in the process is deposited.
  • the second temperature sensor T2 is disposed below the first temperature sensor T1 in the furnace height direction of the gasification furnace 2.
  • the control device 9 causes the upper surface of the char deposition layer to be the first in the furnace height direction of the gasification furnace 2. It determines with being located between 1 temperature sensor T1 and 2nd temperature sensor T2 (refer step S104 of FIG. 3).
  • the position of the upper surface of the char deposition layer is acquired using the temperature sensors T1 and T2 instead of using the level sensor using a weight (weight) or the like. Measurement can be realized.
  • the gasification apparatus 1 of the present embodiment includes a third temperature sensor T3, a fourth temperature sensor T4, and a fifth temperature sensor that are disposed below the second temperature sensor T2 in the furnace height direction of the gasification furnace 2.
  • T5 is further provided.
  • the third temperature sensor T3, the fourth temperature sensor T4, and the fifth temperature sensor T5 are arranged in this order from the top in the furnace height direction of the gasification furnace 2.
  • the control device 9 determines that the upper surface of the char deposition layer is at a position above the first temperature sensor T1 in the furnace height direction of the gasification furnace 2 (FIG. 4). Step S204). On the other hand, when the difference between the detection values of the temperature sensors adjacent to each other in the furnace height direction of the gasification furnace 2 is less than the threshold value, the detection value of the fourth temperature sensor T4 acquired immediately before and the fifth temperature sensor T5. If the difference from the detected value is equal to or greater than the threshold value, the control device 9 determines that the upper surface of the char deposition layer is at a position below the fifth temperature sensor T5 in the furnace height direction of the gasification furnace 2 ( (See step S206 in FIG. 4).
  • the position of the upper surface of the char deposition layer in the furnace height direction deviates from the range (assumed region) where the first temperature sensor T1 to the fifth temperature sensor T5 are arranged, at least the char deposition layer It can be estimated whether the upper surface is higher or lower than normal.
  • the position of the upper surface of the char deposition layer is adjusted, such as increasing or decreasing the amount (extraction amount) of discharging the deposited char to the outside of the gasification furnace 2 or increasing or decreasing the amount of oxidant input. It is possible to take appropriate measures for this.
  • the detection value of the 1st temperature sensor T1 acquired in the past, the detection value of the 2nd temperature sensor T2 acquired in the past, the difference of these past detection values, etc. are considered.
  • the vertical change in the upper surface of the char deposition layer is acquired (see step S106 in FIG. 3).
  • the gasification apparatus 1 of the present embodiment includes a gasification furnace 2, an oxidant supply port 13, a first temperature sensor T1, and a second temperature sensor T2.
  • a raw material is pyrolyzed to generate gas, and carbides generated in the process are deposited.
  • the oxidant supply port 13 is provided at a position corresponding to a region where the partial combustion of the raw material is performed in the furnace height direction of the gasification furnace 2 in order to supply the oxidant into the region.
  • the first temperature sensor T ⁇ b> 1 is disposed in the vicinity of the oxidant supply port 13 in the furnace height direction of the gasification furnace 2.
  • the second temperature sensor T2 is disposed below the first temperature sensor T1 in the furnace height direction of the gasification furnace 2.
  • the position corresponding to the first temperature sensor T1 in the furnace height direction of the gasification furnace 2 corresponds to a region where the oxidant is taken in from the nearby oxidant supply port 13 and partial combustion is performed directly. Therefore, the first temperature sensor T1 should detect a high temperature (a high temperature in the vicinity where partial combustion is performed). In contrast, if the position corresponding to the second temperature sensor T2 in the furnace height direction of the gasification furnace 2 is buried with the accumulated char, the second temperature sensor T2 is more than the detection value of the first temperature sensor T1. A fairly low temperature should be detected. This is because, in the region buried with char, the reduction reaction by char is mainly performed, and this reduction reaction proceeds at a temperature lower than the temperature of the partial combustion.
  • the upper surface of the char deposition layer is different from the first temperature sensor T1 in the furnace height direction. It can be estimated that the position is between the second temperature sensors T2. Therefore, whether or not the upper surface of the char deposition layer is within a predetermined range can be acquired with a simple configuration using the temperature sensors T1 and T2.
  • the char deposition is determined by determining whether the difference between the detected values is equal to or greater than the threshold value for each of the temperature sensors adjacent in the furnace height direction of the gasification furnace 2 (see step S103 in FIG. 3). We decided to estimate the position of the upper surface of the layer. Instead, in this modification, the difference in detection value is calculated for each of the temperature sensors adjacent to each other in the furnace height direction of the gasification furnace 2, and these are compared to determine the position of the upper surface of the char deposition layer. presume.
  • the control device 9 determines the difference between the detection value of the first temperature sensor T1 and the detection value of the second temperature sensor T2, the difference between the detection value of the second temperature sensor T2 and the detection value of the third temperature sensor T3, The difference between the detection value of the third temperature sensor T3 and the detection value of the fourth temperature sensor T4 and the difference between the detection value of the fourth temperature sensor T4 and the detection value of the fifth temperature sensor T5 are compared, and the largest difference The two temperature sensors in which are detected are specified. Then, when the maximum difference is equal to or greater than a predetermined threshold, the control device 9 determines that the upper surface of the char deposition layer is located between two adjacent temperature sensors in which the largest difference is detected.
  • the first temperature sensor T1 and the second temperature sensor T2 are five temperature sensors arranged side by side in the furnace height direction of the gasification furnace 2. It is a part.
  • the control device 9 determines the position of the upper surface of the char deposition layer by comparing each difference between two temperature sensors adjacent to each other in the furnace height direction of the gasification furnace 2.
  • the position of the upper surface of the char deposition layer can be accurately determined in a plurality of stages.
  • the upper surface of the char deposition layer is the same as described above. Is determined to be located between the first temperature sensor T1 and the second temperature sensor T2 in the furnace height direction of the gasification furnace 2.
  • the control device 9 examines changes in the detected values of the temperature sensors T1 and T2 from the state in which the difference between the detected values was equal to or greater than the threshold value immediately before.
  • the position of the upper surface of the char deposition layer can be obtained also by a change in the detected value of only one of the first temperature sensor T1 and the second temperature sensor T2.
  • the case where the first temperature sensor T1 is used as a representative will be described. For example, when the detection value of the first temperature sensor T1 has decreased from immediately before, the upper surface of the char deposition layer is above the first temperature sensor T1. If it is determined that the upper surface of the char deposition layer is not located, the upper surface of the char deposition layer may be determined to be located below the second temperature sensor T2.
  • the difference between the detected value of the first temperature sensor T1 and the detected value of the second temperature sensor T2 is less than the threshold value, and was acquired immediately before.
  • the control device 9 detects the detection detected immediately before by the first temperature sensor T1 and the second temperature sensor T2. Based on the value, it is determined whether the upper surface of the char deposition layer is at a position above the first temperature sensor T1 or at a position below the second temperature sensor T2.
  • the upper surface of the char deposition layer in the furnace height direction deviates from the range from the first temperature sensor T1 to the second temperature sensor T2 arranged side by side in the furnace height direction, the upper surface of the char deposition layer. Is higher than the first temperature sensor T1 or lower than the second temperature sensor T2.
  • five temperature sensors T1, T2,... are arranged side by side in the furnace height direction of the gasification furnace 2, but the present invention is not limited to this and is arranged in the furnace height direction.
  • the number of temperature sensors may be more or less.
  • the raw material is supplied to the gasification furnace 2 by a fixed amount by the fuel supply device 3, but the present invention is not limited to this, and the input amount of the raw material may be variable. In that case, the input amount of the raw material may be increased or decreased according to the position of the upper surface of the char deposition layer obtained by performing the control flow described above.
  • the user manually performs some measures such as increasing / decreasing the amount of extracted char according to the position of the upper surface of the char deposition layer obtained by performing the control flow described above.
  • the present invention is not limited to this.
  • the control device 9 controls the char discharging device 4
  • the gas generated in the gasification furnace 2 is supplied to the cogeneration system 10.
  • the present invention is not limited to this.
  • an energy conversion device such as a gas turbine is used. It may be supplied.
  • the raw material is dried in the gasification furnace 2.
  • the present invention is not necessarily limited to this.
  • the raw material is previously dried before being supplied to the fuel supply device 3. It is good also as what is done.
  • the present invention provides a gasification furnace 2 in which char is deposited below a region where partial combustion is performed, and reduction by the char is performed at a temperature lower than that during partial combustion. It can be widely applied to the gasifier 1 provided. That is, the type of the gasification furnace 2 is not particularly limited to the fixed bed type.

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

ガス化装置は、ガス化炉(2)と、第1温度センサ(T1)と、第2温度センサ(T2)と、制御装置(9)とを備える。ガス化炉(2)は、原料を熱分解してガスを発生させ、その過程で生成される炭化物が堆積する。第2温度センサ(T2)は、ガス化炉(2)の炉高方向において第1温度センサ(T1)よりも下方に配置される。制御装置(9)は、第1温度センサ(T1)及び第2温度センサ(T2)の検出値の差が閾値以上である場合に、炭化物の堆積層の上面が、ガス化炉(2)の炉高方向において第1温度センサ(T1)と第2温度センサ(T2)との間に位置すると判定する。

Description

ガス化装置
 本発明は、原料を熱分解してガスを発生させるガス化炉を備えるガス化装置に関する。
 従来から、原料(典型的には、バイオマス)をガス化するガス化装置が知られている。このようなガス化装置としては、例えば、炉構造が簡単で、一般的にタールの発生が少ないと言われている固定床ダウンドラフト式ガス化装置がある。
 一般的な固定床ダウンドラフト式ガス化装置において、ガス化炉に投入された原料としてのバイオマスは、熱分解、酸化、還元の順に反応し、その過程でガスが発生する。これらの反応の過程で生成される炭化物(チャー)はガス化炉の下部に堆積するが、ある程度の時間が経過すると、堆積しているチャーは排出装置によってガス化炉の外部に排出される。
 上記のようなガス化装置において、近年、チャーがガス化炉に滞留する時間が長過ぎると不要な物質が生成されてしまうおそれがあることが問題視されている。その反面、ガスの発生にチャーも寄与していることから、チャーがガス化炉のチャー堆積領域に滞留する時間が短過ぎると、ガス化効率が低下してしまうことが懸念される。従って、チャーがガス化炉のチャー堆積領域に滞留する時間は適正な長さに調整されることが望ましく、そのためには、ガス化炉内のチャー堆積領域の上面(即ち、チャーの堆積層の上面)の位置を所定の範囲に保つことが必要と考えられる。
 しかしながら、ガス化炉内のチャーの堆積層の上面の高さを取得することは、従来は容易ではなかった。
 ガス化炉内のチャーの堆積層の上面が所定の高さにあるか否かを確かめるための手段として、例えば、特許文献1及び特許文献2に記載のように、ガス化炉の炉高方向に複数の温度センサを設けることが考えられる。しかしながら、チャーの堆積層の上面の絶対温度は、ガス化装置の運転状態(例えば、定常運転状態にあるか、或いは始動運転状態にあるか)等によって大きく変動するため、単に特許文献1及び特許文献2に記載のように複数の温度センサをガス化炉に対して設けただけでは、ガス化炉内のチャーの堆積層の上面の位置を確かめることは困難であった。
 ガス化炉内のチャーの堆積層の上面が所定の高さにあるか否かを確かめるための別の手段として、レベルセンサを設けることも考え得る。しかしながら、例えば特許文献3に記載のようなレベルセンサを適用することを考えた場合、このレベルセンサは検出対象物の上面に錘を降ろすことによりレベル(炉高方向の位置)を検出するものであるため、ガス化炉内が非常に高温(例えば、1000℃以上)になる場合には、錘が溶解するおそれがあり、改善の余地があった。
特開2005-188877号公報 特開2007-254604号公報 特開2012-241031号公報
 本発明は以上の事情に鑑みてされたものであり、その目的は、炭化物の堆積層の上面の位置を、簡単な構成で取得できるようにすることにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
 本発明の第1の観点によれば、以下の構成のガス化装置が提供される。即ち、このガス化装置は、ガス化炉と、第1温度センサと、第2温度センサと、制御装置と、を備える。前記ガス化炉は、原料を熱分解してガスを発生させ、その過程で生成される炭化物が堆積する。前記第2温度センサは、前記ガス化炉の炉高方向において前記第1温度センサよりも下方に配置される。前記制御装置は、前記第1温度センサの検出値と前記第2温度センサの検出値との差が閾値以上である場合に、前記炭化物の堆積層の上面が、前記ガス化炉の前記炉高方向において前記第1温度センサと前記第2温度センサとの間に位置すると判定する。
 この構成で、ガス化炉に原料を投入して、熱分解、酸化、還元によってガスを発生させるとき、ガス化炉の炉高方向の温度センサに対応する位置が堆積した炭化物で埋もれている場合は、炭化物で埋もれていない場合よりも、相当に低い温度が検出されるはずである。このため、第1温度センサの検出値と第2温度センサの検出値との差が閾値以上である場合、炭化物の堆積層の上面が炉高方向において第1温度センサと第2温度センサの間の位置にあることが推定される。これにより、炭化物の堆積層の上面が所定の範囲にあるか否かを、温度センサを用いた簡単な構成で取得することができる。
 前記のガス化装置においては、以下の構成とすることが好ましい。即ち、このガス化装置は、前記ガス化炉の前記炉高方向において、前記第1温度センサよりも上方、又は前記第2温度センサよりも下方の少なくとも何れかに1つ以上配置される温度センサを更に備える。前記制御装置は、前記ガス化炉の前記炉高方向において隣り合う2つの温度センサの検出値の差が何れも閾値未満である場合に、以下のように判定する。即ち、前記炉高方向で最も上から2つの温度センサにおいて直前に取得された検出値の差が閾値以上であれば、前記制御装置は、前記炭化物の堆積層の上面が、前記ガス化炉の前記炉高方向における最も上の温度センサよりも上方の位置にあると判定する。一方、前記炉高方向で最も下から2つの温度センサにおいて直前に取得された検出値の差が閾値以上であれば、前記制御装置は、前記炭化物の堆積層の上面が、前記ガス化炉の前記炉高方向における最も下の温度センサよりも下方の位置にあると判定する。
 これにより、炭化物の堆積層の上面の炉高方向の位置が、当該炉高方向に並べて配置される最も上の温度センサから最も下の温度センサまでの範囲から外れた場合にも、少なくとも、炭化物の堆積層の上面が通常よりも高くなっているのか低くなっているのかを推定することができる。これにより、炭化物の堆積層の上面の位置を調整するための適切な対応を行うことが可能となる。
 前記のガス化装置においては、以下の構成とすることが好ましい。即ち、前記第1温度センサ及び前記第2温度センサは、前記ガス化炉の前記炉高方向に3つ以上並べて配置される温度センサの一部である。前記制御装置は、前記ガス化炉の前記炉高方向において隣り合う2つの前記温度センサの検出値の差のそれぞれを比較することにより、前記炭化物の堆積層の上面の位置を判定する。
 これにより、炭化物の堆積層の上面の位置を、複数段階で精度よく判定することができる。
 前記のガス化装置においては、前記第1温度センサの検出値と前記第2温度センサの検出値との差が前記閾値未満であり、直前に取得された前記第1温度センサの検出値と前記第2温度センサの検出値との差が前記閾値以上である場合に、前記制御装置は、前記第1温度センサ及び前記第2温度センサのうち少なくとも何れかが直前に検出した検出値に基づいて、前記炭化物の堆積層の上面が前記第1温度センサよりも上方の位置にあるか、前記第2温度センサよりも下方の位置にあるか、を判定することが好ましい。
 これにより、炭化物の堆積層の上面の炉高方向の位置が、当該炉高方向に並べて配置される第1温度センサから第2温度センサまでの範囲から外れた場合に、炭化物の堆積層の上面が第1温度センサよりも上方なのか、第2温度センサよりも下方なのかを判別することができる。
 前記のガス化装置においては、前記制御装置は、過去に取得した前記第1温度センサの検出値、過去に取得した前記第2温度センサの検出値、及び、これらの検出値の差のうち少なくとも何れかに基づいて、前記炭化物の堆積層の上面の上下方向の変化を取得することが好ましい。
 これにより、炭化物の堆積層の上面の現在の位置だけでなく、その上下方向の変化を考慮して、炭化物の堆積層の上面の位置を調整するためのきめ細かい対応を行うことが可能となる。
 本発明の第2の観点によれば、以下の構成のガス化装置が提供される。即ち、このガス化装置は、ガス化炉と、酸化剤供給口と、第1温度センサと、第2温度センサと、を備える。前記ガス化炉は、原料を熱分解してガスを発生させ、その過程で生成される炭化物が堆積する。前記酸化剤供給口は、前記ガス化炉の炉高方向において前記原料の部分燃焼が行われる領域に対応する位置に、当該領域内に酸化剤を供給するために設けられる。前記第1温度センサは、前記ガス化炉の前記炉高方向において前記酸化剤供給口の近傍に配置される。前記第2温度センサは、前記ガス化炉の前記炉高方向において前記第1温度センサよりも下方に配置される。
 この構成で、ガス化炉に原料を投入して、熱分解、酸化、還元によってガスを発生させるとき、ガス化炉の炉高方向の第1温度センサに対応する位置は、近傍の酸化剤供給口から酸化剤が取り込まれて直接的に部分燃焼が行われる領域に対応しているため、当該第1温度センサは高い温度(部分燃焼が行われる付近の高い温度)を検出するはずである。これに対し、第2温度センサは、仮にガス化炉の炉高方向の第2温度センサに対応する位置が堆積した炭化物で埋もれていたとしたら、第1温度センサの検出値よりも相当に低い温度を検出するはずである。炭化物で埋もれている領域では、炭化物による還元反応が主として行われており、この還元反応は上記の部分燃焼の温度よりも低い温度で進行するからである。これにより、第1温度センサの検出値と第2温度センサの検出値との間に所定以上の差がある場合には、炭化物の堆積層の上面が炉高方向において第1温度センサと第2温度センサの間の位置にあると推定することができる。よって、炭化物の堆積層の上面が所定の範囲にあるか否かを、温度センサを用いた簡単な構成で取得することができる。
本発明の一実施形態に係るガス化装置の全体的な構成を示す模式図。 ガス化装置に備えられるガス化炉及びそれに関連する構成を説明する模式図。 チャー堆積層の上面が所定の高さ範囲にあるか否かを確かめるために制御装置により行われる処理を示すフローチャート。 チャー堆積層の上面が通常よりも高くなっているのか低くなっているのかを推定するために制御装置により行われる処理を示すフローチャート。
 次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態に係るガス化装置1の全体的な構成を示す模式図である。図2は、ガス化装置1に備えられるガス化炉2及びそれに関連する構成を説明する模式図である。
 初めに、本実施形態に係るガス化装置1の全体的な構成について、図1を参照して説明する。
 本実施形態のガス化装置1は、例えば籾殻や木質系廃材等の生物由来の有機性資源(厳密には、化石資源を除いた有機性資源であり、「バイオマス」と称される場合もある。)を燃料(原料、ガス化対象物)としてガスを発生させて、当該ガスを用いて発電する、いわゆるバイオマス発電プラントの一部である。図1に示すように、本実施形態のガス化装置1は、ガス化炉2、燃料供給装置3、チャー排出装置4、バグフィルタ5、ガス冷却装置6、洗浄装置7、誘引ブロワ8、制御装置9、コージェネレーションシステム10、及び余剰ガス燃焼装置11等を備える。
 図2に示すガス化炉2は、原料のガス化の主要な反応が行われる炉である。本実施形態のガス化炉2は、いわゆる固定床式炉である。図2に示すように、ガス化炉2の上下方向中途部には、ガス化炉2の内部に酸化剤としての空気又は酸素を供給するための酸化剤供給口13が設けられる。
 図2に模式的に示すように、ガス化炉2の内部には、原料の熱分解及び酸化(部分燃焼)が行われる領域が形成されている。また、ガス化炉2の内部の、部分燃焼が行われる領域よりも下方には、熱分解及び部分燃焼の後に残ったチャーが堆積するチャー堆積領域が形成される。酸化剤供給口13は、ガス化炉2の炉高方向の上記部分燃焼が行われる領域に対応する位置に、当該ガス化炉2の内部と外部とを連通するように孔状に設けられる。
 燃料供給装置3は、ガス化炉2の上端部から内部に原料を供給するものである。本実施形態の燃料供給装置3は、ホッパ31、スクリュー32、及びモータ等を備えている。ホッパ31は、原料を投入する容器である。スクリュー32は、このホッパ31の底部に回転可能に取り付けられる。モータは、スクリュー32を回転駆動する。本実施形態では、スクリュー32が一定の速度で回転駆動されることにより、原料がスクリュー32の回転数に応じた量でガス化炉2内に投入されるようになっている。
 チャー排出装置4は、ガス化炉2内のチャー堆積領域の底部から、ガス化(還元)後に残ったチャーを排出する(抜き出す)ものである。具体的には、チャー排出装置4は、例えばロータリバルブ41及びスクリューコンベア42等により構成される。ロータリバルブ41は、回転することにより、ガス化炉2の底部に設けられた抜出孔から抜き出されたチャーを下方のスクリューコンベア42へと供給する。スクリューコンベア42は、抜き出されたチャーをガス化炉2の外部の所定の場所へと搬送する。ロータリバルブ41及びスクリューコンベア42の駆動速度を調整することにより、チャーの抜出し量を増減できるようになっている。
 ガス化炉2内のチャー堆積領域よりも上方の領域では、燃料供給装置3から供給された原料が乾燥される。乾燥された原料は、その後、酸素素欠乏状態において熱分解される。これにより、原料の約50~90%がガス(CO、H2、CH4、CO2、H2O)及びタール等のガス状物質に、残りの約10~50%がチャーと呼ばれる固定炭素に転換される。なお、転換の割合は、炉内での加熱速度、原料の種類・粒径等の影響を受けて変動する。熱分解で生成した熱分解生成物質は、酸化剤供給口13から供給された空気又は酸素によって、酸化(部分燃焼)される。この部分燃焼により発生する熱は、上記の熱分解での熱源として利用される。部分燃焼の後に残ったチャーは、部分燃焼が行われる領域よりも下方のチャー堆積領域に堆積される。
 ガス化炉2内のチャー堆積領域では、部分燃焼のときよりも概ね低い温度においてチャーによる還元反応が行われ、これによりチャーが蒸し焼き状態とされてガス化が行われる。このチャー堆積領域でのチャーによるガス化(還元)では、主としてCOとH2が生成する。
 ガス化炉2で生成されたガスは、図1に示すように、配管等により構成されるガス経路を通ってコージェネレーションシステム10及び余剰ガス燃焼装置11に供給される。このガス経路のガス化炉2とコージェネレーションシステム10(余剰ガス燃焼装置11)との間の中途部には、上流側から下流側に向かって、バグフィルタ5、ガス冷却装置6、洗浄装置7、及び誘引ブロワ8がこの順に配置されている。
 バグフィルタ5は、ガス化炉2から流れて来たガスに含まれる煤等の炭素の微粒子や、塵等を除去するものである。バグフィルタ5は、例えば捕捉・吸着等の手法を用いて、ガスをバグフィルタ5のフィルタに通し、煤や塵等をこのフィルタで取り除く。
 ガス冷却装置6は、バグフィルタ5を通過した後に流れてきたガスを冷却し、当該ガスの密度を高めるものである。ガス冷却装置6は、例えば熱交換等の手法を用いて、ガスを冷却する。具体的には、ガス冷却装置6は、例えば冷却水が供給される熱交換器と、当該熱交換器の間に配管されるガス経路と、を備えている。熱交換器には冷却水として貯水槽からの水が供給され、冷却水とガスとの間で熱交換が行われる。
 洗浄装置7は、ガス冷却装置6で冷却された後に流れてきたガスを洗浄してタール等を除去するものである。洗浄装置7は、例えば、ガス状のタールを凝縮する工程と、ガス・液体混合物を分離する工程と、液滴濾過を行う工程と、を含む物理的プロセスを行うことにより、タールを除去する。
 誘引ブロワ8は、負圧を発生させることにより、ガス化炉2からのガスをコージェネレーションシステム10側に誘引するものである。誘引ブロワ8は、例えば誘引通風式の送風機により構成される。誘引ブロワ8の作用により、誘引ブロワ8よりも上流側のガス経路及びガス化炉2内では、負圧が生じている。
 コージェネレーションシステム10は、ガスエンジン及び発電機等により構成されるものである。ガス化炉2で生成されたガスが、煤やタール等が除去されて密度が高められた後にガスエンジンに供給されて、当該ガスの熱エネルギーがガスエンジンにより回転運動に変換される。この回転運動が発電機に伝達されて、電気が発生する。またガスの熱エネルギーのうちの一部は、給湯等に用いられる。
 誘引ブロワ8を通過した後のガスのうち、コージェネレーションシステム10に供給されなかった余剰のガスは、余剰ガス燃焼装置11に供給される。余剰ガス燃焼装置11は、余剰のガスを焼却処理し、一酸化炭素を二酸化炭素に変換して無害化する。
 制御装置9は、ガス化炉2、燃料供給装置3、チャー排出装置4、バグフィルタ5、ガス冷却装置6、洗浄装置7、誘引ブロワ8、コージェネレーションシステム10、及び余剰ガス燃焼装置11等を制御するコントローラである。制御装置9は、CPU、ROM、RAM等を備えたコンピュータとして構成されており、CPUは各種プログラム等をROMから読み出して実行することができる。また、前記ROMには、ガス化装置1に適切に原料のガス化を行わせるための適宜のプログラムが記憶されている。そして、上記したソフトウェアとハードウェアの協働により、ガス化装置1に適宜に原料のガス化を行わせ、ガス中の煤やタールの除去、ガスの濃縮、コージェネレーションシステム10及び余剰ガス燃焼装置11へのガスの供給等を行わせることができる。
 上記のような構成のガス化装置1では、典型的にはバイオマスである原料を燃料としてガス化炉2でガスが生成され、このガスに含まれる煤やタールがガス経路の途中で取り除かれて、濃縮された後に、当該ガスがコージェネレーションシステム10に供給される。このガスの熱エネルギーにより電力を得ることができる。即ち、典型的にはバイオマスである原料を資源としたエネルギーが電力に変換されて取り出される。これにより、再生可能なエネルギー源としての原料を有効に利用することができる。
 ところで、チャーがチャー堆積領域に滞留する時間が長過ぎると不要な物質が生成されてしまうことが、近年問題視されている。その反面、チャーがチャー堆積領域に滞留する時間が短過ぎると、チャーの充分なガス化(酸化)が行われず、ガス化効率が低下してしまうことも懸念される。従って、チャーがチャー堆積領域に適切な時間だけ滞留してから排出されることが望まれており、そのためには、ガス化炉2内のチャーの堆積領域の上面の位置(即ち、チャーの堆積レベル)を所定の範囲に保つことが必要と考えられる。
 そこで、本実施形態のガス化装置1は、チャーの堆積層の上面が炉高方向において所定の高さ範囲にあるか否かを取得するための構成を備えている。チャー堆積層は、ガス化炉2内に堆積している層であって、当該層を構成する物質の大部分がチャーで占められている層である。以下、当該層を、単に「チャー堆積層」と称する場合がある。具体的には、本実施形態のガス化装置1は、第1温度センサT1、第2温度センサT2、第3温度センサT3、第4温度センサT4、及び第5温度センサT5を備える。これらの温度センサは何れも、制御装置9に電気的に接続されている。
 第1温度センサT1は、ガス化炉2の炉高方向において酸化剤供給口13の近傍に配置される温度センサである。本実施形態では、第1温度センサT1は、酸化剤供給口13の下方に配置されている。第1温度センサT1は、当該第1温度センサT1が設けられた高さにおけるガス化炉2内の温度を検出可能である。
 第1温度センサT1よりも下方には、第2温度センサT2、第3温度センサT3、第4温度センサT4、及び第5温度センサT5が、ガス化炉2の炉高方向において上からこの順で配置されている。従って、第1温度センサT1が最も上のセンサであり、第5温度センサT5が最も下のセンサである。5つの温度センサT1~T5は、炉高方向に等しい間隔で並べて配置されてもよいし、不等の間隔で配置されてもよい。それぞれの温度センサT2,T3,T4,T5は、当該温度センサが設けられた高さにおけるガス化炉2内の温度を検出可能である。
 なお、図示はしていないが、第1から第5までの温度センサT1,T2,・・・は、例えば複数ずつ設けられている。複数ずつの温度センサT1,T2,・・・は、何れも、ガス化炉2の周方向に沿って配置される。これらの周方向に配置される複数の温度センサの検出値の平均値が、第1から第5までの温度センサT1,T2,・・・のそれぞれの検出値として採用され、以降で説明する制御に用いられる。ただし、後述の制御において検出値として採用する値は平均値に限定されるものではなく、例えば、第1から第5までの温度センサT1,T2,・・・の各中央値等を検出値として採用することもできる。
 ここで、ガス化炉2の炉高方向の温度センサに対応する位置が堆積したチャーで埋もれている場合は、チャーで埋もれていない場合(とりわけ、部分燃焼が行われる領域に対応している場合)よりも、相当に低い温度が検出されるはずである。これは、ガス化炉2内のチャー堆積層よりも上方では、熱分解生成物の部分燃焼が行われて、例えば1000℃以上に達するところ、チャー堆積層ではそれよりも低い温度(例えば、700~1000℃)でチャーによる還元反応が行われるためである。本実施形態では、このガス化炉2内の炉高方向の温度分布の特徴に着目して、チャー堆積層の上面が所定の範囲にあるか否かを、図3に示す制御フローを行うことにより監視している。
 以下では、図3に示した制御フローについて、具体的に説明する。図3は、チャー堆積層の上面が所定の高さ範囲にあるか否かを確かめるために制御装置9により行われる処理を示すフローチャートである。図3のフローチャートで示される処理は、ガス化炉2の稼動中、繰返し実行される。即ち、当該処理は、ガス化炉2が稼動している間、常時又は定期的に実行される。
 初めに、制御装置9は、第1温度センサT1から得られる温度の検出値を取得する(ステップS101)。また、制御装置9は、第2温度センサT2から得られる温度の検出値を取得する(ステップS102)。なお、ステップS101,S102の処理の順序は、特に限定されるものではない。
 続いて、制御装置9は、ステップS101で取得した第1温度センサT1の検出値と、ステップS102で取得した第2温度センサT2の検出値と、の差が閾値以上であるか否かを判断する(ステップS103)。
 ステップS103での判断の結果、第1温度センサT1の検出値と、第2温度センサT2の検出値と、の差が閾値以上である場合(ステップS103、Yes)、制御装置9は、チャー堆積層の上面が、ガス化炉2の炉高方向において第1温度センサT1と第2温度センサT2との間に位置すると判断する(ステップS104)。これにより、チャー堆積層の上面が所定の範囲(本実施形態では、第1温度センサT1と第2温度センサT2との間の高さ)にあることが確かめられる。
 ステップS103で使用される閾値は、チャー堆積層の予想温度と、チャー堆積層の上方にあるガス層又は部分燃焼が行われる領域の予想温度と、の差を考慮して決定することができる。各予想温度は、例えば、ガス化炉2の試験運転又は解析等で取得してもよい。閾値は、例えば、100℃~600℃、より好ましくは200℃~300℃の範囲から選択して設定することができる。
 一方、ステップS103での判断の結果、第1温度センサT1の検出値と、第2温度センサT2の検出値と、の差が閾値未満である場合(ステップS103、No)、制御装置9は、チャー堆積層の上面が、ガス化炉2の炉高方向において第1温度センサT1と第2温度センサT2との間には位置していないと判断する(ステップS105)。これにより、チャー堆積層の上面が所定の範囲(本制御フローでは、第1温度センサT1と第2温度センサT2との間の高さ)から外れていることが確かめられる。
 その後、本実施形態では、第1温度センサT1の検出値の過去からの変化、第2温度センサT2の検出値の過去からの変化、及び、2つの検出値の差の過去からの変化のうち少なくとも何れかに基づいて、チャー堆積面の上面の高さの上昇/下降の傾向を判断する(ステップS106)。例えば、チャー堆積層の上面より上側の温度分布と、下側(チャー堆積層内)の温度分布と、を予め分析等により取得しておき、温度センサの検出値又は検出値の差の変化から、チャー堆積層の上面の高さが上昇しつつあるのか又は下降しつつあるのかを判断するとともに、その上昇/下降の速度を推定することができる。ただし、このステップは省略することも可能である。
 図3と同様の制御処理が、炉高方向で隣り合う他の温度センサについても、その検出結果に基づいて行われる。即ち、チャー堆積層の上面が炉高方向において第2温度センサT2と第3温度センサT3との間にあるか否か、第3温度センサT3と第4温度センサT4との間にあるか否か、或いは第4温度センサT4と第5温度センサT5の間にあるか否かも、制御装置9によって確かめられる。これにより、チャー堆積層の上面が所定の範囲にあるか否かを、温度センサT1,T2,・・・を用いた簡単な構成で監視することができる。
 加えて、本実施形態の制御装置9では、チャー堆積層の上面の炉高方向の位置が第1温度センサT1から第5温度センサT5までが配置される範囲から外れた場合にも、少なくとも、チャー堆積層の上面が通常(第1から第5までの温度センサT1,T2,・・・が配置される想定領域)よりも高くなっているか低くなっているかを推定できるように、図4に示す処理を行っている。
 以下では、図4に示した制御フローについて、具体的に説明する。図4は、チャー堆積層の上面が通常よりも高くなっているのか低くなっているのかを推定するために制御装置9により行われる処理を示すフローチャートである。
 初めに、制御装置9は、第1から第5までの温度センサT1,T2,・・・から得られる温度の検出値を取得し、炉高方向で隣り合う温度センサの検出値の差をそれぞれ算出する。そして、制御装置9は、炉高方向で隣り合う温度センサの検出値の差が何れも閾値未満であるか否かを判断する(ステップS201)。
 ステップS201での判断の結果、炉高方向で隣り合う温度センサの検出値の差の中に閾値以上であるものがある場合(ステップS201、No)、制御装置9は、図3の処理と同様の考え方で、その検出値の差が閾値以上となっている2つの温度センサの間に、チャー堆積層の上面が位置していると判断する(ステップS202)。
 一方、炉高方向で隣り合う温度センサの検出値の差が何れも閾値未満である場合(ステップS201、Yes)、続いて制御装置9は、直前に取得された第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値以上であったか否かを判断する(ステップS203)。
 ステップS203での判断の結果、直前に取得された第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値以上であった場合(ステップS203、Yes)、チャー堆積層の上面が第1温度センサT1から第5温度センサT5までの高さ範囲から外れる直前には、チャー堆積層の上面が第1温度センサT1と第2温度センサT2との間にあった可能性が高いため、制御装置9は、現在はチャー堆積層の上面はガス化炉2の炉高方向において第1温度センサT1よりも上方の位置に至ったものと推定する(ステップS204)。その場合、制御装置9は、チャー堆積層の上面が正常な高さよりも高くなっている(異常に高くなっている)旨を、報知ランプを点灯する等の方法によりユーザに報知する。これにより、ユーザは、例えば、チャーの抜出し量を増やしたり、酸化剤供給口13からガス化炉2内への酸化剤の供給量を減らしたり、といった適宜の対応を行うことが可能となる。
 一方、ステップS203での判断の結果、直前に取得された第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値未満であった場合(ステップS203、No)、続いて制御装置9は、ステップS201の判断結果を得る直前に取得された第4温度センサT4の検出値と第5温度センサT5の検出値との差が閾値以上であったか否かを判断する(ステップS205)。
 ステップS205での判断の結果、直前に取得された第4温度センサT4の検出値と第5温度センサT5の検出値との差が閾値以上であった場合(ステップS205、Yes)、チャー堆積層の上面が第1温度センサT1から第5温度センサT5までの高さ範囲から外れる直前には、チャー堆積層の上面が第4温度センサT4と第5温度センサT5との間にあった可能性が高いため、制御装置9は、現在はチャー堆積層の上面はガス化炉2の炉高方向において第5温度センサT5よりも下方の位置に至ったものと推定する(ステップS206)。その場合、制御装置9は、チャー堆積層の上面が正常な高さよりも低くなっている(異常に低くなっている)旨を、報知ランプを点灯する等の方法によりユーザに報知する。これにより、ユーザは、例えば、チャーの抜出し量を減らしたり、酸化剤供給口13からガス化炉2内への酸化剤の供給量を増やしたり、といった適宜の対応を行うことが可能となる。
 一方、ステップS205での判断の結果、直前に取得された第4温度センサT4の検出値と第5温度センサT5の検出値との差が閾値未満であった場合(ステップS205、No)、過去に算出した隣り合う温度センサの検出値の差を参照しても、現在のチャー堆積層の上面の位置を推定できない。このため、制御装置9は、チャー堆積層の上面の位置が検出不能であると判断し(ステップS207)、その旨を、報知ランプを点灯する等の適宜の方法によりユーザに報知する。これにより、ユーザは、例えば、ガス化炉2の運転を緊急停止する等の適宜の対応を行うことが可能となる。
 以上のような処理が行われることにより、チャー堆積層の上面の位置が第1温度センサT1から第5温度センサT5までが配置されている高さ範囲から外れた場合にも、少なくとも、チャー堆積層の上面が当該範囲から上側に外れているのか、或いは下側に外れているのかを推定することができる。
 以上に説明したように、本実施形態のガス化装置1は、ガス化炉2と、第1温度センサT1と、第2温度センサT2と、制御装置9と、を備える。ガス化炉2は、原料を熱分解してガスを発生させ、その過程で生成されるチャーが堆積する。第2温度センサT2は、ガス化炉2の炉高方向において第1温度センサT1よりも下方に配置される。制御装置9は、第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値以上である場合に、チャー堆積層の上面が、ガス化炉2の炉高方向において第1温度センサT1と第2温度センサT2との間に位置すると判定する(図3のステップS104を参照)。
 この構成で、ガス化炉2において原料の熱分解、酸化及び還元によってガスを発生させるとき、ガス化炉2の炉高方向の温度センサに対応する位置が堆積したチャーで埋もれている場合は、チャーで埋もれていない場合よりも、相当に低い温度が検出されるはずである。このため、第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値以上である場合、チャー堆積層の上面が炉高方向において第1温度センサT1と第2温度センサT2の間の位置にあることが推定される。これにより、チャー堆積層の上面が所定の範囲にあるか否かを、温度センサT1,T2を用いた簡単な構成で取得することができる。このように、本実施形態では、錘(分銅)等を利用したレベルセンサを用いるのではなく、温度センサT1,T2を用いてチャー堆積層の上面の位置を取得するので、高温環境下での計測が実現できる。
 また、本実施形態のガス化装置1は、ガス化炉2の炉高方向において第2温度センサT2よりも下方に配置される第3温度センサT3、第4温度センサT4、及び第5温度センサT5を更に備える。第3温度センサT3、第4温度センサT4、及び第5温度センサT5は、ガス化炉2の炉高方向において上から順にこの順で配置される。ガス化炉2の炉高方向で隣り合う温度センサ同士の検出値の差が何れも閾値未満である場合に、直前に取得された第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値以上であれば、制御装置9は、チャー堆積層の上面が、ガス化炉2の炉高方向において第1温度センサT1よりも上方の位置にあると判定する(図4のステップS204を参照)。一方、ガス化炉2の炉高方向で隣り合う温度センサ同士の検出値の差が何れも閾値未満である場合に、直前に取得された第4温度センサT4の検出値と第5温度センサT5の検出値との差が閾値以上であれば、制御装置9は、チャー堆積層の上面が、ガス化炉2の炉高方向において第5温度センサT5よりも下方の位置にあると判定する(図4のステップS206を参照)。
 これにより、チャー堆積層の上面の炉高方向の位置が、第1温度センサT1から第5温度センサT5までが配置される範囲(想定領域)から外れた場合にも、少なくとも、チャー堆積層の上面が通常よりも高くなっているのか低くなっているのかを推定することができる。これにより、例えば、堆積したチャーをガス化炉2の外部に排出する量(抜出し量)を増減したり、酸化剤の投入量を増減したり、といった、チャー堆積層の上面の位置を調整するための適切な対応を行うことが可能となる。
 また、本実施形態のガス化装置において、過去に取得した第1温度センサT1の検出値、過去に取得した第2温度センサT2の検出値、これらの過去の検出値の差等を考慮することにより、チャー堆積層の上面の上下方向の変化を取得する(図3のステップS106を参照)。
 これにより、チャー堆積層の上面の現在の位置だけでなく、その上下方向の変化を考慮して、チャー堆積層の上面の位置を調整するためのきめ細かい対応を行うことが可能となる。
 また、本実施形態のガス化装置1は、ガス化炉2と、酸化剤供給口13と、第1温度センサT1と、第2温度センサT2と、を備える。ガス化炉2は、原料を熱分解してガスを発生させ、その過程で生成される炭化物が堆積する。酸化剤供給口13は、ガス化炉2の炉高方向において原料の部分燃焼が行われる領域に対応する位置に、当該領域内に酸化剤を供給するために設けられる。第1温度センサT1は、ガス化炉2の炉高方向において酸化剤供給口13の近傍に配置される。第2温度センサT2は、ガス化炉2の炉高方向において第1温度センサT1よりも下方に配置される。
 ここで、ガス化炉2の炉高方向の第1温度センサT1に対応する位置は、近傍の酸化剤供給口13から酸化剤が取り込まれて直接的に部分燃焼が行われる領域に対応しているため、第1温度センサT1は高い温度(部分燃焼が行われる付近の高い温度)を検出するはずである。これに対し、第2温度センサT2は、仮にガス化炉2の炉高方向の第2温度センサT2に対応する位置が堆積したチャーで埋もれていたとしたら、第1温度センサT1の検出値よりも相当に低い温度を検出するはずである。チャーで埋もれている領域では、チャーによる還元反応が主として行われており、この還元反応は上記の部分燃焼の温度よりも低い温度で進行するからである。これにより、第1温度センサT1の検出値と第2温度センサT2の検出値との間に所定以上の差がある場合には、チャー堆積層の上面が炉高方向において第1温度センサT1と第2温度センサT2の間の位置にあると推定することができる。よって、チャー堆積層の上面が所定の範囲にあるか否かを、温度センサT1,T2を用いた簡単な構成で取得することができる。
 <第1変形例>
 次に、上記の実施形態の変形例を説明する。なお、本変形例の説明においては、前述の実施形態と同一又は類似の部材には同一の符号を付し、説明を省略する場合がある。
 上記の実施形態ではガス化炉2の炉高方向で隣り合う温度センサのそれぞれについて、検出値の差が閾値以上になっているかを判断することにより(図3のステップS103を参照)、チャー堆積層の上面の位置を推定することとした。これに代えて、本変形例では、ガス化炉2の炉高方向で隣り合う温度センサのそれぞれについて、検出値の差を算出し、これらを比較することにより、チャー堆積層の上面の位置を推定する。
 具体的には、制御装置9は、第1温度センサT1の検出値と第2温度センサT2の検出値の差、第2温度センサT2の検出値と第3温度センサT3の検出値の差、第3温度センサT3の検出値と第4温度センサT4の検出値の差、及び、第4温度センサT4の検出値と第5温度センサT5の検出値の差、を比較して、最も大きい差が検出された2つの温度センサを特定する。そして、制御装置9は、差の最大値が所定の閾値以上である場合に、この最も大きい差が検出された隣り合う2つの温度センサの間に、チャー堆積層の上面が位置すると判断する。
 以上に説明したように、本変形例に係るガス化装置1においては、第1温度センサT1及び第2温度センサT2は、ガス化炉2の炉高方向に5つ並べて配置される温度センサの一部である。制御装置9は、ガス化炉2の炉高方向において隣り合う2つの温度センサの差のそれぞれを比較することにより、チャー堆積層の上面の位置を判定する。
 これにより、チャー堆積層の上面の位置を、複数段階で精度よく判定することができる。
 <第2変形例>
 次に、別の変形例を説明する。本変形例は、第3温度センサT3、第4温度センサT4、及び第5温度センサT5を省略し、第1温度センサT1及び第2温度センサT2の検出値を用いて、チャー堆積層の上面の位置を3段階で求めるものである。
 具体的には、本変形例では、第1温度センサT1の検出値と、第2温度センサT2の検出値と、の差が閾値以上である場合は、上記と同様に、チャー堆積層の上面が、ガス化炉2の炉高方向において第1温度センサT1と第2温度センサT2との間に位置すると判断する。
 一方、第1温度センサT1の検出値と、第2温度センサT2の検出値と、の差が閾値以下となっているときは、チャー堆積層の上面が第1温度センサT1よりも上方の位置にある場合、第2温度センサT2よりも下方の位置にある場合、のうち何れかであると考えられる。これを判別するために、制御装置9は、直前に検出値の差が閾値以上であった状態から、それぞれの温度センサT1,T2の検出値の変化を調べる。そして、第1温度センサT1の検出値が直前から低下している場合は、チャー堆積層の上面が第1温度センサT1よりも上方の位置にあると判定し、第2温度センサT2の検出値が直前から上昇している場合は、チャー堆積層の上面が第2温度センサT2よりも下方の位置にあると判定する。これにより、温度センサの数が少ない場合でも、チャー堆積層の上面の位置を適切に取得することができる。
 ただし、第1温度センサT1及び第2温度センサT2のうち一方だけの検出値の変化によっても、チャー堆積層の上面の位置を得ることができる。代表して第1温度センサT1を用いる場合について説明すると、例えば、第1温度センサT1の検出値が直前から低下している場合は、チャー堆積層の上面が第1温度センサT1よりも上方の位置にあると判定し、そうでない場合は、チャー堆積層の上面が第2温度センサT2よりも下方の位置にあると判定するように構成することができる。
 以上に説明したように、本変形例に係るガス化装置1においては、第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値未満であり、直前に取得された第1温度センサT1の検出値と第2温度センサT2の検出値との差が閾値以上である場合に、制御装置9は、第1温度センサT1及び第2温度センサT2が直前に検出した検出値に基づいて、チャー堆積層の上面が第1温度センサT1よりも上方の位置にあるか、第2温度センサT2よりも下方の位置にあるか、を判定する。
 これにより、チャー堆積層の上面の炉高方向の位置が、当該炉高方向に並べて配置される第1温度センサT1から第2温度センサT2までの範囲から外れた場合に、チャー堆積層の上面が第1温度センサT1よりも上方なのか、第2温度センサT2よりも下方なのかを判別することができる。
 以上に本発明の好適な実施の形態及び変形例を説明したが、上記の構成は例えば以下のように変更することができる。
 上記の実施形態では、温度センサT1,T2,・・・はガス化炉2の炉高方向に5つ並べて配置されるものとしたが、これに限るものではなく、炉高方向に配置される温度センサの数はこれよりも多くても少なくてもよい。
 上記の実施形態では、原料は、燃料供給装置3によって一定量ずつガス化炉2に投入されるものとしたが、これに限るものではなく、原料の投入量を可変としてもよい。その場合、上述した制御フローが行われることにより知得されたチャー堆積層の上面の位置に応じて、原料の投入量を増減することとしてもよい。
 上記の実施形態では、上述した制御フローが行われることにより知得されたチャー堆積層の上面の位置に応じて、ユーザが手動で、例えばチャーの抜出し量を増減する等の何らかの対応を行うものとしたが、これに限るものではなく、例えば制御装置9がチャー排出装置4を制御することにより、自動でチャー堆積層の上面の位置を適正な状態に保つための何らかの処理が行われるものとしてもよい。
 上記の実施形態では、ガス化炉2で発生されたガスはコージェネレーションシステム10に供給されるものとしたが、これに限るものではなく、例えばこれに代えて、ガスタービン等のエネルギー変換装置に供給されるものとしてもよい。
 上記の実施形態では、ガス化炉2内で原料が乾燥されるものとしたが、必ずしもこれに限るものではなく、例えばこれに代えて、燃料供給装置3に供給される前に予め原料が乾燥されるものとしてもよい。
 本発明は、部分燃焼が行われる領域よりも下方にチャーが堆積されて、このチャーが堆積される領域で、部分燃焼のときよりも低い温度で当該チャーによる還元が行われるガス化炉2を備えるガス化装置1に広く適用可能である。即ち、ガス化炉2の形式は特に固定床式に限るものではない。
 1 ガス化装置
 2 ガス化炉
 9 制御装置
 T1 第1温度センサ
 T2 第2温度センサ
 T3 第3温度センサ

Claims (5)

  1.  原料を熱分解してガスを発生させ、その過程で生成される炭化物が堆積するガス化炉と、
     第1温度センサと、
     前記ガス化炉の炉高方向において前記第1温度センサよりも下方に配置される第2温度センサと、
     前記第1温度センサの検出値と前記第2温度センサの検出値との差が閾値以上である場合に、前記炭化物の堆積層の上面が、前記ガス化炉の前記炉高方向において前記第1温度センサと前記第2温度センサとの間に位置すると判定する制御装置と、
    を備えることを特徴とするガス化装置。
  2.  請求項1に記載のガス化装置であって、
     前記ガス化炉の前記炉高方向において、前記第1温度センサよりも上方、又は前記第2温度センサよりも下方の少なくとも何れかに1つ以上配置される温度センサを更に備え、
     前記制御装置は、
     前記ガス化炉の前記炉高方向において隣り合う2つの温度センサの検出値の差が何れも閾値未満である場合に、
     前記炉高方向で最も上から2つの温度センサにおいて直前に取得された検出値の差が閾値以上であれば、前記炭化物の堆積層の上面が、前記ガス化炉の前記炉高方向における最も上の温度センサよりも上方の位置にあると判定する一方、
     前記炉高方向で最も下から2つの温度センサにおいて直前に取得された検出値の差が閾値以上であれば、前記炭化物の堆積層の上面が、前記ガス化炉の前記炉高方向における最も下の温度センサよりも下方の位置にあると判定することを特徴とするガス化装置。
  3.  請求項1又は2に記載のガス化装置であって、
     前記第1温度センサ及び前記第2温度センサは、前記ガス化炉の前記炉高方向に3つ以上並べて配置される温度センサの一部であり、
     前記制御装置は、前記ガス化炉の前記炉高方向において隣り合う2つの前記温度センサの検出値の差のそれぞれを比較することにより、前記炭化物の堆積層の上面の位置を判定することを特徴とするガス化装置。
  4.  請求項1に記載のガス化装置であって、
     前記第1温度センサの検出値と前記第2温度センサの検出値との差が前記閾値未満であり、直前に取得された前記第1温度センサの検出値と前記第2温度センサの検出値との差が前記閾値以上である場合に、前記制御装置は、前記第1温度センサ及び前記第2温度センサのうち少なくとも何れかが直前に検出した検出値に基づいて、前記炭化物の堆積層の上面が前記第1温度センサよりも上方の位置にあるか、前記第2温度センサよりも下方の位置にあるか、を判定することを特徴とするガス化装置。
  5.  請求項1から4までの何れか一項に記載のガス化装置であって、
     前記制御装置は、過去に取得した前記第1温度センサの検出値、過去に取得した前記第2温度センサの検出値、及び、これらの検出値の差のうち少なくとも何れかに基づいて、前記炭化物の堆積層の上面の上下方向の変化を取得することを特徴とするガス化装置。
PCT/JP2018/009599 2017-03-24 2018-03-13 ガス化装置 WO2018173842A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880010534.9A CN110446774B (zh) 2017-03-24 2018-03-13 气化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-059323 2017-03-24
JP2017059323A JP6633563B2 (ja) 2017-03-24 2017-03-24 ガス化装置

Publications (1)

Publication Number Publication Date
WO2018173842A1 true WO2018173842A1 (ja) 2018-09-27

Family

ID=63585261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009599 WO2018173842A1 (ja) 2017-03-24 2018-03-13 ガス化装置

Country Status (3)

Country Link
JP (1) JP6633563B2 (ja)
CN (1) CN110446774B (ja)
WO (1) WO2018173842A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199175A (ja) * 1995-01-27 1996-08-06 Mitsubishi Heavy Ind Ltd 固定床ガス化炉及び有機系廃棄物ガス化方法
JP2006143983A (ja) * 2004-10-20 2006-06-08 Mitsui Eng & Shipbuild Co Ltd ガス化装置の運転方法及びガス化装置
JP2008196805A (ja) * 2007-02-14 2008-08-28 Mitsui Eng & Shipbuild Co Ltd 温度計測装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69534579T2 (de) * 1994-12-01 2006-08-10 Mitsubishi Jukogyo K.K. Festbettvergaser und Verfahren zur Vergasung von organischen Abfällen
CN201955691U (zh) * 2010-12-30 2011-08-31 李照明 造气炉气化层温度测量装置及其优化控制系统
JP2013245327A (ja) * 2012-05-29 2013-12-09 Babcock Hitachi Kk 石炭ガス化装置のクエンチ水位検出方法及び該方法を用いた石炭ガス化装置
SG11201505847QA (en) * 2013-01-28 2015-08-28 Phg Energy Llc Method and device for gasifying feedstock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199175A (ja) * 1995-01-27 1996-08-06 Mitsubishi Heavy Ind Ltd 固定床ガス化炉及び有機系廃棄物ガス化方法
JP2006143983A (ja) * 2004-10-20 2006-06-08 Mitsui Eng & Shipbuild Co Ltd ガス化装置の運転方法及びガス化装置
JP2008196805A (ja) * 2007-02-14 2008-08-28 Mitsui Eng & Shipbuild Co Ltd 温度計測装置

Also Published As

Publication number Publication date
CN110446774A (zh) 2019-11-12
CN110446774B (zh) 2022-08-19
JP6633563B2 (ja) 2020-01-22
JP2018162357A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6179041B2 (ja) 供給原料をガス化するためのデバイス
CN104487550B (zh) 废物处理中的改进
US20150240172A1 (en) Apparatus and method for generating fuel gas from a solid combustible
WO2018173842A1 (ja) ガス化装置
JP4696969B2 (ja) ガス化装置
JP2005139338A (ja) 移動床式ガス化炉の燃焼帯の温度計測方法および廃棄物ガス化装置
WO2018173841A1 (ja) ガス化装置
CN113512439B (zh) 一种低温热解方法及系统
JP6640771B2 (ja) ガス化装置
JP6552857B2 (ja) ガス化炉
JP6650746B2 (ja) ガス化装置、ガス化装置の制御装置及び方法、ガス化複合発電設備
JP6517704B2 (ja) ガス化炉
JP6454583B2 (ja) ガス化炉、及びガス化炉の運転方法
JP6454582B2 (ja) ガス化炉、ガス化炉の運転方法、及びバイオマスガス化処理方法
JP6815475B2 (ja) ガス化装置
JP6696929B2 (ja) ガス改質炉
JP6359624B2 (ja) 廃棄物処理システム及び廃棄物処理方法
JP4164447B2 (ja) 廃棄物ガス化方法およびガス化装置
JP6487347B2 (ja) ガス化炉の運転方法
Kumararaja OPERATION OF PACKED BED DOWNDRAFT BIOMASS GASIFIER WITH DIFFERENT AIR SUPPLY ARRANGEMENTS
JP2008195853A (ja) 廃棄物ガス化方法およびガス化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772235

Country of ref document: EP

Kind code of ref document: A1