WO2018173720A1 - 電磁波検出装置、プログラム、および電磁波検出システム - Google Patents

電磁波検出装置、プログラム、および電磁波検出システム Download PDF

Info

Publication number
WO2018173720A1
WO2018173720A1 PCT/JP2018/008335 JP2018008335W WO2018173720A1 WO 2018173720 A1 WO2018173720 A1 WO 2018173720A1 JP 2018008335 W JP2018008335 W JP 2018008335W WO 2018173720 A1 WO2018173720 A1 WO 2018173720A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
unit
radiation direction
detection
traveling
Prior art date
Application number
PCT/JP2018/008335
Other languages
English (en)
French (fr)
Inventor
浩希 岡田
絵梨 内田
皆川 博幸
喜央 ▲高▼山
光夫 小野
篤史 長谷部
河合 克敏
幸年 金山
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US16/495,470 priority Critical patent/US11408982B2/en
Priority to EP18770202.2A priority patent/EP3605138A4/en
Priority to KR1020197027505A priority patent/KR102287270B1/ko
Priority to CN201880020356.8A priority patent/CN110476076B/zh
Publication of WO2018173720A1 publication Critical patent/WO2018173720A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present invention relates to an electromagnetic wave detection device, a program, and an electromagnetic wave detection system.
  • the electromagnetic wave detection device is: An irradiator that emits electromagnetic waves; A first detection unit for detecting a reflected wave of the electromagnetic wave applied to the object; A traveling unit having a plurality of traveling elements for switching the propriety of the reflected wave to the first detection unit according to the irradiation position of the electromagnetic wave irradiated to the object; A storage unit for storing information on the radiation direction of the electromagnetic wave; A controller that updates information on the radiation direction based on a position of a traveling element that causes the reflected wave to travel to the first detector when the first detector detects the reflected wave; Is provided.
  • the electromagnetic wave detection system is An irradiator that emits electromagnetic waves; A first detection unit for detecting a reflected wave of the electromagnetic wave applied to the object; A traveling unit having a plurality of traveling elements for switching the propriety of the reflected wave to the first detection unit according to the irradiation position of the electromagnetic wave irradiated to the object; A storage unit for storing information on the radiation direction of the electromagnetic wave; A controller that updates information on the radiation direction based on a position of a traveling element that causes the reflected wave to travel to the first detector when the first detector detects the reflected wave; Is provided.
  • the program according to the third aspect of the present disclosure is Radiating electromagnetic waves; Detecting a reflected wave of the electromagnetic wave applied to the object by a first detection unit; Depending on the irradiation position of the electromagnetic wave irradiated to the object, a part of a plurality of traveling elements capable of switching the propriety of the reflected wave to the first detection unit is advanced to the first detection unit. Steps, Storing information on the radiation direction of the electromagnetic wave; Updating the information on the radiation direction based on the position of a traveling element that causes the reflected wave to travel to the first detector when the first detector detects the reflected wave; Let the device run.
  • FIG. 3 is a timing chart showing the electromagnetic wave emission timing and detection timing for explaining the principle of distance measurement by a distance measuring sensor constituted by the irradiation unit, the second detection unit, and the control unit of FIG. 1. It is a timing chart for demonstrating control of each part for the control part of FIG. 1 to acquire image information and distance information repeatedly. It is a block diagram of the electromagnetic wave detection apparatus for demonstrating the advancing state of electromagnetic waves when the arbitrary pixels of the advancing part of FIG. 1 are a 2nd state. It is a block diagram of the electromagnetic wave detection apparatus for demonstrating the advancing state of electromagnetic waves when only the arbitrary pixels of FIG. 8 are a 1st state.
  • the electromagnetic wave detection apparatus of 1st Embodiment it is a schematic diagram of the advancing part which shows the locus
  • the difference between the estimated elapsed time and the actual elapsed time when the first detection unit detects the reflected wave with respect to a predetermined pixel when the first related information is updated.
  • 6 is a flowchart for explaining first related information update processing executed by the control unit of FIG. 1 in the first embodiment.
  • 9 is a flowchart for explaining a first related information update process executed by the control unit of FIG. 1 in the second embodiment.
  • the electromagnetic wave detection device to which the present invention is applied is configured to reduce a difference between an actual electromagnetic wave radiation direction and an estimated electromagnetic wave radiation direction.
  • the electromagnetic wave detection device 10 includes an irradiation unit 11, an electromagnetic wave detection unit 12, a storage unit 13, and a control unit 14.
  • the broken lines connecting the functional blocks indicate the flow of control signals or information to be communicated.
  • the communication indicated by the broken line may be wired communication or wireless communication.
  • a solid line protruding from each functional block indicates a beam-like electromagnetic wave.
  • the irradiation unit 11 has an irradiation source 15 that emits at least electromagnetic waves.
  • the irradiation source 15 emits electromagnetic waves of at least one of infrared rays, visible rays, ultraviolet rays, and radio waves, for example. In the first embodiment, the irradiation source 15 emits infrared rays.
  • the irradiation source 15 emits a beam-like electromagnetic wave having a predetermined width. In the first embodiment, the irradiation source 15 emits a narrow, for example, 0.5 ° beam-shaped electromagnetic wave.
  • the irradiation source 15 can radiate electromagnetic waves as pulses or continuous waves. In the first embodiment, the irradiation source 15 emits pulsed electromagnetic waves.
  • the irradiation source 15 includes an LED (Light Emitting Diode), an LD (Laser Diode), and the like. The irradiation source 15 switches between emission and stop of electromagnetic waves based on the control of the control unit 14 described later.
  • the radiation direction of the electromagnetic wave may be fixed or may be changed based on a drive signal output from the control unit 14.
  • the radiation direction of electromagnetic waves can be changed.
  • the radiation direction of the electromagnetic wave may be changed by reflecting the electromagnetic wave radiated from the single irradiation source 15 on a reflecting surface whose tilt angle can be changed. Further, the radiation direction of the electromagnetic wave may be changed by radiating with a slight phase shift from a plurality of irradiation sources 15 arrayed in a plane like a phased array radar, for example. In the first embodiment, as will be described below, the radiation direction of electromagnetic waves is changed by reflection using a reflecting surface.
  • the irradiation unit 11 further includes the traveling direction changing unit 16.
  • the traveling direction changing unit 16 has a reflecting surface whose direction can be changed.
  • the traveling direction changing unit 16 changes the direction of the reflecting surface based on a drive signal output from the control unit 14 described later.
  • the reflecting surface irradiates the object ob while changing the irradiation position by changing the traveling direction of the electromagnetic wave radiated from the irradiation source 15 according to the drive signal. That is, the traveling direction changing unit 16 scans the object ob with the electromagnetic waves radiated from the irradiation source 15. The traveling direction changing unit 16 scans the object ob in a one-dimensional direction or a two-dimensional direction. In the first embodiment, the traveling direction changing unit 16 scans the object ob in the two-dimensional direction.
  • the traveling direction changing unit 16 is configured such that at least a part of the irradiation region of the electromagnetic wave radiated and reflected from the irradiation source 15 is included in the electromagnetic wave detection range in the electromagnetic wave detection device 10. Therefore, at least a part of the electromagnetic wave irradiated to the object ob via the traveling direction changing unit 16 can be detected by the electromagnetic wave detection device 10.
  • the traveling direction changing unit 16 is configured such that at least a part of the irradiation region of the electromagnetic wave radiated from the irradiation source 15 and reflected by the traveling direction changing unit 16 is the second detection unit 18 and the first detection unit. It is comprised so that it may be included in the detection range in the detection part 17. Therefore, at least a part of the electromagnetic wave irradiated to the object ob via the traveling direction changing unit 16 can be detected by the second detection unit 18 and the first detection unit 17.
  • the traveling direction changing unit 16 includes, for example, a MEMS (Micro Electro Mechanical Systems) mirror, a polygon mirror, and a galvanometer mirror.
  • the traveling direction changing unit 16 includes a MEMS mirror.
  • the electromagnetic wave detection unit 12 includes a front optical system 19, a traveling unit 20, a first rear optical system 21, a second rear optical system 22, a second detection unit 18, and a first detection unit 17. .
  • the pre-stage optical system 19 includes, for example, at least one of a lens and a mirror, and forms an image of a target ob that is a subject existing in an electromagnetic wave irradiation region.
  • the advancing unit 20 is provided in the primary imaging position, which is the imaging position by the previous optical system 19, of the image of the object ob away from the previous optical system 19 at a predetermined position, or in the vicinity of the primary imaging position. It only has to be. In the first embodiment, the advancing unit 20 is provided at the primary imaging position.
  • the traveling unit 20 has an action surface as on which the electromagnetic wave that has passed through the front optical system 19 enters.
  • the action surface as is configured by a plurality of pixels (traveling elements) px arranged in a two-dimensional shape.
  • the action surface as is a surface that causes an action such as reflection and transmission on the electromagnetic wave in at least one of a first state and a second state to be described later.
  • the pixel px can switch whether the reflected wave of the electromagnetic wave travels to the second detection unit 18 for each irradiation position of the electromagnetic wave irradiated to the object ob. Furthermore, the advancing unit 20 performs, for each pixel px, the first state in which the electromagnetic wave incident on the working surface as is advanced in the first direction d1 and the second state in which the electromagnetic wave is advanced in the second direction d2. Switching is possible.
  • the first state is a first reflection state in which an electromagnetic wave incident on the working surface as is reflected in the first direction d1.
  • the second state is a second reflection state in which the electromagnetic wave incident on the working surface as is reflected in the second direction d2.
  • the advancing unit 20 includes a reflective surface that reflects electromagnetic waves for each pixel px.
  • the advancing unit 20 switches the first state and the second state for each pixel px by changing the direction of the reflecting surface for each pixel px.
  • the progression unit 20 includes, for example, a DMD (Digital Micro mirror Device).
  • the DMD can switch the reflection surface to any one of + 12 ° and ⁇ 12 ° with respect to the action surface as for each pixel px by driving a minute reflection surface constituting the action surface as. .
  • the working surface as is parallel to the plate surface of the substrate on which the minute reflecting surface of the DMD is placed.
  • the progression unit 20 switches the first state and the second state for each pixel px based on the control of the control unit 14 described later. For example, as illustrated in FIG. 2, the traveling unit 20 can simultaneously advance an electromagnetic wave incident on the pixel px1 in the first direction d1 by switching some of the pixels px1 to the first state. By switching some of the pixels px2 to the second state, the electromagnetic waves incident on the pixels px2 can be advanced in the second direction d2. Further, the advancing unit 20 switches the same pixel px from the first state to the second state, thereby causing the electromagnetic wave incident on the pixel px to be directed in the second direction d2 next to the first direction d1. Can proceed.
  • each pixel px of the advancing unit 20 causes the reflected wave of the electromagnetic wave irradiated to the object ob to advance to a plurality of different detection elements of the second detection unit 18 described later for each irradiation position.
  • the first second-stage optical system 21 is provided in the first direction d1 from the traveling unit 20.
  • the first post-stage optical system 21 includes, for example, at least one of a lens and a mirror.
  • the first post-stage optical system 21 forms an image of the object ob as an electromagnetic wave whose traveling direction is switched in the traveling unit 20.
  • the second post-stage optical system 22 is provided in the second direction d2 from the traveling unit 20.
  • the second rear optical system 22 includes, for example, at least one of a lens and a mirror.
  • the second post-stage optical system 22 forms an image of the object ob as an electromagnetic wave whose traveling direction is switched in the traveling unit 20.
  • the first detection unit 17 is provided on the path of the electromagnetic wave that travels through the first rear optical system 21 after traveling in the first direction d1 by the traveling unit 20.
  • the first detection unit 17 detects an electromagnetic wave that has passed through the first post-stage optical system 21, that is, an electromagnetic wave that has traveled in the first direction d1.
  • the first detection unit 17 is an active sensor that detects a reflected wave from the target ob of the electromagnetic wave irradiated from the irradiation unit 11 toward the target ob. In the first embodiment, the first detection unit 17 emits the electromagnetic wave emitted from the irradiation unit 11 and reflected toward the target ob by being reflected by the traveling direction changing unit 16 from the target ob. Detect reflected waves.
  • the first detection unit 17 includes elements constituting a distance measuring sensor.
  • the first detection unit 17 includes a single element such as an APD (Avalanche PhotoDiode), a PD (PhotoDiode), and a ranging image sensor.
  • the first detection unit 17 may include an element array such as an APD array, a PD array, a ranging imaging array, and a ranging image sensor.
  • the first detection unit 17 detects a reflected wave from the subject.
  • the first detection unit 17 detects an electromagnetic wave in an infrared band. Therefore, in the first embodiment, the first detection unit 17 constitutes a scanning type distance measuring sensor in cooperation with the traveling direction changing unit 16.
  • the 1st detection part 17 transmits the detection information which shows having detected the reflected wave to the control part 14 as a signal.
  • the 1st detection part 17 should just be able to detect electromagnetic waves in the structure which is a single element which comprises the distance sensor mentioned above, and does not need to image on a detection surface. Therefore, the first detection unit 17 may not be provided at the secondary imaging position that is the imaging position by the first second-stage optical system 21. That is, in this configuration, the first detection unit 17 has the first direction after traveling in the first direction d1 by the traveling unit 20 if the electromagnetic wave from all angles of view can enter the detection surface. It may be disposed anywhere on the path of the electromagnetic wave traveling through the post-stage optical system 21.
  • the second detection unit 18 is provided on the path of the electromagnetic wave that travels in the second direction d2 by the travel unit 20 and travels through the second post-stage optical system 22.
  • the second detector 18 detects an electromagnetic wave that has passed through the second post-stage optical system 22, that is, an electromagnetic wave that has traveled in the second direction d2.
  • the second detection unit 18 is a passive sensor having a plurality of detection elements.
  • the plurality of detection elements are arranged on a plane perpendicular to the optical axis of the first post-stage optical system 21.
  • the second detection unit 18 more specifically includes an element array.
  • the second detection unit 18 includes an image sensor such as an image sensor or an imaging array, captures an image of an electromagnetic wave formed on the detection surface, and generates image information corresponding to the captured object ob.
  • the second detection unit 18 captures a visible light image more specifically.
  • the second detection unit 18 transmits the generated image information as a signal to the control unit 14.
  • the second detection unit 18 detects a reflected wave of the electromagnetic wave irradiated to the object ob from the irradiation source 15 via the traveling direction changing unit 16, captures an image of the detected electromagnetic wave, and sets the captured object ob. Corresponding image information is generated.
  • the plurality of detection elements detect the electromagnetic wave for each irradiation position on the object ob.
  • the second detection unit 18 may capture an image other than visible light.
  • the second detection unit 18 may include a thermosensor. In this configuration, the electromagnetic wave detection device 10 can acquire temperature information by the second detection unit 18.
  • the second detection unit 18 includes an element array. Therefore, when the incident electromagnetic wave forms an image on the detection surface, the second detection unit 18 forms an imaged electromagnetic wave. Is incident on each detection element, so that the resolution can be improved. Therefore, the second detection unit 18 may be provided at a secondary imaging position that is an imaging position by the second post-stage optical system 22.
  • the storage unit 13 can be composed of a semiconductor memory, a magnetic memory, or the like, and stores various information, various data, a program for operating the electromagnetic wave detection device 10, and the like.
  • the storage unit 13 also functions as a work memory.
  • the storage unit 13 stores information on the radiation direction of electromagnetic waves.
  • the radiation direction of electromagnetic waves is various elements that define the radiation direction.
  • the first related information may be an inclination angle of the reflecting surface with respect to the reference surface.
  • the inclination angle may be an inclination angle with respect to one axis or an inclination angle with respect to two axes.
  • the position of the irradiation source 15 that is radiating among the plurality of irradiation sources 15 is specified. And so on.
  • a direction vector in a space serving as a reference in the irradiation unit 11 may be used.
  • storage part 13 memorize
  • the first related information is information that associates the drive signal with the radiation direction of the electromagnetic wave corresponding to the drive signal.
  • the first related information is, for example, a function indicating the relationship of the radiation direction to the drive signal, in other words, the relationship of the radiation direction to the drive signal.
  • the first related information is a function indicating the relevance of the drive signal to the radiation direction, in other words, the correlation of the drive signal to the radiation direction.
  • the first related information is, for example, a radiation direction ( ⁇ , ⁇ ) associated with each of a plurality of signal values of the drive signal as shown in FIG.
  • the first related information may be a plurality of signal values of drive signals that are associated separately for each radiation direction.
  • the second related information is information in which the radiation direction of the electromagnetic wave is associated with the position of the pixel px (traveling element) on which the reflected wave of the electromagnetic wave radiated in the radiation direction is incident.
  • the second related information is, for example, a function of the position of the pixel px with respect to the radiation direction or a function of the radiation direction with respect to the position of the pixel px.
  • the second related information is, for example, the position (x ′, y ′) of the pixel px that is associated with each radiation direction ( ⁇ , ⁇ ) separately as shown in FIG. 4.
  • the second related information may be a radiation direction associated separately for each position of the pixel px.
  • 3rd relevant information is the information which linked
  • the third related information is, for example, a function of the irradiation position with respect to the radiation direction or a function of the radiation direction with respect to the irradiation position.
  • the third related information is, for example, irradiation positions (x ′′, y ′′) separately associated with each radiation direction ( ⁇ , ⁇ ) as illustrated in FIG. 5.
  • the second related information may be a radiation direction associated with each irradiation position separately.
  • the control unit 14 includes one or more processors and a memory.
  • the processor may include at least one of a general-purpose processor that reads a specific program and executes a specific function, and a dedicated processor specialized for a specific process.
  • the dedicated processor may include an application specific integrated circuit (ASIC) (ASIC; Application Specific Integrated Circuit).
  • the processor may include a programmable logic device (PLD; Programmable Logic Device).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the control unit 14 may include at least one of SoC (System-on-a-Chip) in which one or more processors cooperate, and SiP (System In a Package).
  • the control unit 14 acquires information about the surroundings of the electromagnetic wave detection device 10 based on the electromagnetic waves detected by the second detection unit 18 and the first detection unit 17 respectively.
  • the information about the surroundings is, for example, image information, distance information, temperature information, and the like.
  • the control unit 14 acquires the electromagnetic wave detected as an image by the second detection unit 18 as image information. Further, in the first embodiment, the control unit 14 uses the ToF (Time-of-Flight) method based on the detection information detected by the first detection unit 17 to perform the irradiation unit 11 as described below. The distance information of the irradiation position irradiated on is acquired.
  • ToF Time-of-Flight
  • the control unit 14 causes the irradiation source 15 to emit a pulsed electromagnetic wave by inputting the electromagnetic wave emission signal to the irradiation source 15 (see the “electromagnetic wave emission signal” column).
  • the irradiation source 15 irradiates an electromagnetic wave based on the input electromagnetic wave radiation signal (refer to the “irradiation part radiation amount” column).
  • An electromagnetic wave emitted from the irradiation source 15 and reflected by the traveling direction changing unit 16 and irradiated to an arbitrary irradiation region is reflected in the irradiation region.
  • the control unit 14 has, for example, a time measurement LSI (Large Scale Integrated circuit), and acquires detection information (refer to the “detection information acquisition” column) from the time T1 when the irradiation source 15 emits electromagnetic waves. The time ⁇ T until T2 is measured. The control unit 14 calculates the distance to the irradiation position by multiplying the time ⁇ T by the speed of light and dividing by 2.
  • LSI Large Scale Integrated circuit
  • the control unit 14 outputs a drive signal to the traveling direction changing unit 16. Further, the control unit 14 reads the first related information and the third related information from the storage unit 13. The control unit 14 calculates the irradiation position based on the drive signal to be output, the first related information, and the third related information. The control unit 14 creates distance information in the image information acquired from the second detection unit 18 by calculating the distance to each irradiation position while changing the irradiation position using the drive signal.
  • the electromagnetic wave detection device 10 is configured to create distance information by Direct ToF that directly measures the time until the laser beam is irradiated and returned.
  • the electromagnetic wave detection device 10 is not limited to such a configuration.
  • the electromagnetic wave detection device 10 irradiates the electromagnetic wave at a constant cycle, and obtains distance information by Flash ToF that indirectly measures the time until it returns from the phase difference between the irradiated electromagnetic wave and the returned electromagnetic wave. You may create it.
  • the electromagnetic wave detection apparatus 10 may create distance information by another ToF method, for example, Phased ToF.
  • control unit 14 controls the irradiation source 15, the traveling direction changing unit 16, the traveling unit 20, the first detection unit 17, and the second detection unit 18 to repeatedly acquire image information and distance information. Control of each part for repeatedly acquiring image information and distance information will be described below with reference to the timing chart of FIG.
  • the control unit 14 causes the second detection unit 18 to start detecting an electromagnetic wave for generating image information of the first frame.
  • all the pixels px of the progression unit 20 are in the second state, and the electromagnetic wave incident on the front optical system 19 reaches the second detection unit 18 (see FIG. 8).
  • the control unit 14 starts switching the first pixel px in the progression unit 20 from the second state to the first state (“progress unit first Refer to the “pixel drive signal” column).
  • all the other pixels px remain in the second state (see “Progression unit second pixel state” and “Progression unit Nth pixel state” columns).
  • the control unit 14 controls the irradiation source 15. Radiate electromagnetic waves (see “Electromagnetic wave radiation time” column).
  • the first pixel px of the traveling unit 20 is switched from the second state (see FIG. 8) to the first state, enters the front optical system 19, and the first pixel of the traveling unit 20 An electromagnetic wave that forms an image in the pixel px travels in the first direction d1 next to the second direction d2 (see FIG. 9).
  • the control unit 14 causes the first detection unit 17 to detect an electromagnetic wave (refer to the “second detection unit detection time” column).
  • the time taken for the irradiation source 15 to reach the electromagnetic wave detection device 10 after irradiating the electromagnetic wave is extremely shorter than the detection time for generating image information, and is on the order of nanoseconds, for example. Therefore, the detection of the electromagnetic wave by the first detection unit 17 is completed in a minute time that can be regarded as the timing t2.
  • the control unit 14 acquires the distance information at the irradiation position corresponding to the first pixel px of the traveling unit 20 based on the drive signal transmitted to the traveling direction changing unit 16 at the timing t2.
  • the control unit 14 starts switching the first pixel px in the progression unit 20 from the first state to the second state (see “Progression unit first pixel drive signal” column). .
  • the control unit 14 switches the first pixel px in the progression unit 20 from the first state to the second state, and therefore again in the second detection unit 18 corresponding to the first pixel px.
  • the detection element can detect electromagnetic waves (visible light).
  • the control unit 14 performs the progression unit 20.
  • the switching of the second pixel px in the second state from the second state to the first state is started (see “Progression unit second pixel drive signal” column).
  • all the other pixels px remain in the second state (see “Progression unit first pixel state” and “Progression unit Nth pixel state” columns).
  • the control unit 14 controls the irradiation source 15. Radiate electromagnetic waves (see “Electromagnetic wave radiation time” column). Note that at the timing t4, the second pixel px of the progression unit 20 is switched from the second state to the first state, enters the preceding optical system 19, and forms an image at the second pixel px of the progression unit 20. The electromagnetic wave to travel proceeds in the first direction d1 next to the second direction d2. Further, at the timing t4, the control unit 14 causes the first detection unit 17 to detect the electromagnetic wave (see “second detection unit detection time” column). The control unit 14 acquires the distance information at the irradiation position corresponding to the second pixel px of the traveling unit 20 based on the drive signal transmitted to the traveling direction changing unit 16 at the timing t4.
  • the control unit 14 starts switching the second pixel px in the progression unit 20 from the first state to the second state (see “Progression unit second pixel drive signal” column). .
  • the control unit 14 switches the second pixel px in the progression unit 20 from the first state to the second state, and therefore again in the second detection unit 18 corresponding to the second pixel px.
  • the detection element can detect electromagnetic waves (visible light).
  • control unit 14 sequentially switches the third pixel px to the Nth pixel px in the progression unit 20 from the second state to the first state in the same manner as the first pixel px.
  • the image information of the first frame is acquired and the distance information at the irradiation position corresponding to each pixel px is acquired.
  • the control unit 14 completes the switching of the (M ⁇ 1) th pixel px from the first state to the second state
  • the second state of the Mth pixel px is completed.
  • the progression unit 20 sets the number of pixels px of T img / T dis It is possible to switch from the state 2 to the first state.
  • the control unit 14 can generate distance information for the number of pixels px corresponding to the number T img / T dis at time T img .
  • M is an integer satisfying 2 ⁇ M ⁇ N.
  • T dis is the total time of the time taken to switch the pixel px of the advancing unit 20 from the second state to the first state and the time taken to return from the first state to the second state. It is. That is, T dis is a time required for an arbitrary pixel px to switch in the order of the second state, the first state, and the second state. In the first embodiment, for example, T img is 1/60 seconds and T dis is 1/3000 seconds.
  • the control unit 14 cannot switch all of the pixels px in the progression unit 20 during the time T img . Therefore, the control unit 14 cannot generate distance information corresponding to the image information for one frame while generating the image information for one frame. That is, the control unit 14 can generate only distance information corresponding to a frame (for example, 0.5 frame) that is less than the image information for one frame during the generation of the image information for one frame.
  • the control unit 14 switches among the pixels px in the progression unit 20 that are equal to or less than the number of T img / T dis. Choose as. Further, the control unit 14 advances the drive signal so that the electromagnetic wave is irradiated to the region in the irradiation region corresponding to each pixel px at the time of switching to the first state of each pixel px selected as the switching target. It transmits to the direction change part 16.
  • the control unit 14 in a configuration in which the value of T img / T dis is smaller than the number of pixels of the progression unit 20, the control unit 14 generates image information for a plurality of frames (P frame: P is a positive number satisfying P> 1). Control may be performed so that all the switching of the pixels px in the proceeding unit 20 is completed during the time P ⁇ T img . Further, the control unit 14 transmits a drive signal to the traveling direction changing unit 16 so that the electromagnetic wave is irradiated to the region in the irradiation region corresponding to each pixel px at the switching time of each pixel px of the traveling unit 20. .
  • the control unit 14 divides all pixels px in the progression unit 20 into groups equal to or less than the number of T img / T dis The pixels px are switched together. Further, the control unit 14 drives so that the electromagnetic wave is irradiated to the region in the irradiation region corresponding to the pixel px at the switching timing of the pixel px at the position representing each group (for example, the center position of each group). A signal may be transmitted to the traveling direction changing unit 16.
  • the control unit 14 divides all pixels px in the progression unit 20 into groups equal to or less than the number of T img / T dis Only one of the pixels px is switched. Further, the control unit 14 may transmit a drive signal to the traveling direction changing unit 16 so that the electromagnetic wave is irradiated to the region in the irradiation region corresponding to the pixel px at the switching time of the pixel px to be switched.
  • the detection element in the second detection unit 18 corresponding to the pixel px of the progression unit 20 that has been switched to the first state during the imaging time of an image for one frame switches the pixel px to the first state. While it is being received, it cannot receive light. Therefore, the signal intensity by the detection element in the second detection unit 18 decreases. Therefore, the control unit 14 may compensate for the reduced signal strength by multiplying the signal value of the detection element in the second detection unit 18 by a gain.
  • the image capturing time for one frame corresponds to the time for which the second detection unit 18 detects electromagnetic waves in order to generate image information for one frame.
  • the control unit 14 sets the (M ⁇ 1) th pixel px. Prior to the time when the switching from the second state to the first state is completed, the switching of the Mth pixel px from the second state to the first state may be started.
  • T scn is the time required for the irradiation position of the electromagnetic wave radiated from the irradiation source 15 and reflected by the traveling direction changing unit 16 to change from one irradiation position to the next irradiation position, or adjacent from one irradiation position. This is the time required to change to the irradiation position. In such a configuration, more control can be performed in a shorter time than control in which switching of the other pixel px to the first state is completed after completion of switching of the arbitrary pixel px from the first state to the second state. Distance information at pixel px may be generated.
  • the control unit 14 determines the image information of the second frame. Start detection of electromagnetic waves for generation of. Further, after the detection of the electromagnetic wave by the second detection unit 18 from the timing t1 to t5 is completed, the control unit 14 acquires the image information of the first frame based on the electromagnetic wave detected during that time. Thereafter, the control unit 14, like the control performed between the timings t 1 and t 5, the irradiation source 15 for acquiring image information and distance information, the traveling direction changing unit 16, and the first detection unit 17. The second detector 18 and the advancing unit 20 are controlled.
  • control unit 14 emits radiation based on the position of the traveling element that causes the reflected wave to travel to the first detection unit 17 in the traveling unit 20 when the first detection unit 17 detects the reflected wave.
  • Update direction information In the first embodiment, the control unit 14 updates the first related information as the update of the information related to the radiation direction. As described above, in a configuration in which the radiation direction is fixed, the control unit 14 may update the radiation direction. Below, the update of the 1st relevant information in 1st Embodiment is demonstrated in detail.
  • the control unit 14 switches the pixel px at a predetermined position in the traveling unit 20 to the first state (see reference sign “s1”) in order to update the information on the radiation direction, and changes the other position.
  • the pixel px is switched to the second state (see reference numeral “s2”).
  • the progression unit 20 is configured with 30 pixels px of 5 rows and 6 columns for simplification of illustration, but the number of pixels px is not limited to 30.
  • the pixel px at the predetermined position may be at least one in the configuration in which the first related information is a function of the radiation direction with respect to the drive signal or a function of the drive signal with respect to the radiation direction.
  • the pixel px at a predetermined position has a radiation direction in which the first related information is separately associated with each of a plurality of signal values of the drive signal, or a plurality of signals of the drive signal in which each pixel is associated with each radiation direction separately. There may be a plurality of values in the configuration. The update accuracy improves as the number of pixels px at a predetermined position increases.
  • the plurality of pixels px may be separated from each other.
  • the plurality of pixels px are separated by an interval equal to or greater than a predetermined pixel interval.
  • control unit 14 transmits a drive signal whose signal value is a function of the elapsed time from the reference time to the traveling direction changing unit 16.
  • the control unit 14 transmits a continuous electromagnetic wave radiation signal to the irradiation source 15.
  • the traveling direction changing unit 16 inclines the reflecting surface according to the drive signal whose signal value is a function of the elapsed time, so that the radiation direction changes according to the elapsed time.
  • the pixel px of the advancing unit 20 is scanned with a reflected wave of electromagnetic waves in a predetermined locus lo corresponding to the elapsed time. While the reflected wave of the electromagnetic wave is incident on the pixel px in the second state, the first detection unit 17 does not detect the electromagnetic wave. On the other hand, when the reflected wave of the electromagnetic wave enters the pixel px in the first state, the first detection unit 17 detects the electromagnetic wave.
  • the control unit 14 calculates the signal value of the drive signal corresponding to the pixel px at the predetermined position in the first state based on the first related information and the second related information. Furthermore, the control unit 14 converts the estimated elapsed time from the reference time, which matches the signal value of the drive signal corresponding to the pixel px at the predetermined position in the first state, into a drive signal that is a function of the elapsed time. Based on the calculation.
  • the control unit 14 observes the actual elapsed time from the reference time when the first detection unit 17 detects the reflected wave.
  • the estimated elapsed time and the actual elapsed time that the reflected wave enters the pixel px at the predetermined position in the first state match.
  • the control unit 14 combines the actual elapsed time recently with the estimated elapsed time for each pixel px at the predetermined position.
  • the control unit 14 specifies the pixel px having the first state and the reflected light is incident at the actual elapsed time based on the estimated elapsed time combined with the actual elapsed time. Further, the control unit 14 calculates the radiation direction based on the second related information using the predetermined position of the identified pixel px. Further, the control unit 14 calculates the signal value of the drive signal based on the function of the drive signal using the actual elapsed time. The control unit 14 updates the first related information based on the calculated signal value and radiation direction.
  • the control unit 14 updates the function based on the combination.
  • the control unit 14 stores the updated function in the storage unit 13 as the latest relationship between the drive signal and the radiation direction of the electromagnetic wave, that is, the latest first related information.
  • the control unit 14 determines the radiation direction in each combination stored in the storage unit 13, The storage unit 13 stores the radiation direction associated with each signal value associated with the radiation direction, that is, the latest first related information.
  • the control unit 14 determines the signal value in each combination stored in the storage unit 13. The latest signal value associated with each radiation direction combined with each signal value, that is, the latest first related information is stored in the storage unit 13.
  • the control unit 14 starts the update process of the first related information.
  • step S100 the control unit 14 switches the pixel px at a predetermined position of the progression unit 20 to the first state.
  • the process proceeds to step S101.
  • step S101 the control unit 14 reads the first related information and the second related information from the storage unit 13.
  • step S102 the process proceeds to step S102.
  • step S102 the control unit 14 sets the estimated elapsed time from the reference time when the reflected wave reaches the predetermined pixel px switched to the first state in step S100, as a signal value with respect to the elapsed time read in step S101. And the first related information and the second related information.
  • the process proceeds to step S103.
  • step S103 the control unit 14 transmits a drive signal that is a function corresponding to the elapsed time to the traveling direction changing unit 16. Further, the control unit 14 transmits a continuous electromagnetic wave radiation signal to the irradiation source 15. When the control unit 14 transmits the drive signal and the electromagnetic wave radiation signal, the process proceeds to step S104.
  • step S104 the control unit 14 drives the first detection unit 17.
  • the control unit 14 acquires the actual elapsed time from the reference time when detecting the reflected wave by driving the first detection unit 17.
  • the process proceeds to step S105.
  • step S105 the control unit 14 combines the latest actual elapsed time with the elapsed time estimated in step S102 for each pixel px switched to the first state.
  • the process proceeds to step S106.
  • step S106 the control unit 14 calculates the signal values of the radiation direction and the driving signal corresponding to the estimated elapsed time and the actual elapsed time combined in step S105.
  • the process proceeds to step S107.
  • step S107 the control unit 14 updates the first related information stored in the storage unit 13 by using the combination of the signal value and the radiation direction calculated in step S106.
  • the control part 14 complete finishes the update process of 1st related information after the update of 1st related information.
  • the electromagnetic wave detection device 10 configured as described above has a predetermined pixel px that causes the reflected wave to travel to the first detector 17 when the first detector 17 detects the reflected wave. Information on the radiation direction is updated based on the position.
  • the electromagnetic wave detection device 10 of the first exemplary embodiment can reduce the difference between the direction of the reflective surface estimated from each signal value of the drive signal and the actual direction of the reflective surface. Therefore, the electromagnetic wave detection device 10 of the first embodiment can reduce the difference between the actual radiation direction of the electromagnetic wave and the radiation direction of the electromagnetic wave estimated from each signal value of the drive signal.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus 10 of 2nd Embodiment mentioned later.
  • the first detection unit 17 reflects the combination of the estimated elapsed time for each pixel px at a predetermined position and the latest actual elapsed time.
  • a predetermined position of the pixel px that causes the reflected wave to travel to the first detection unit 17 is specified.
  • a plurality of pixels px can be used for updating information regarding the radiation direction in one scan of the traveling unit 20 by reflected waves. Therefore, the electromagnetic wave detection device 10 according to the first embodiment can reduce the detection time of the reflected wave regarding all the pixels px used for updating in the configuration using the plurality of pixels px for updating the information regarding the radiation direction.
  • the electromagnetic wave detection device 10 of the first embodiment can switch between the first state and the second state for each pixel px arranged on the action surface as of the traveling unit 20.
  • the electromagnetic wave detection device 10 according to the first embodiment uses the optical axis of the front optical system 19 of the first rear optical system 21 in the first direction d1 in which the electromagnetic wave travels in the first state. It becomes possible to match the optical axis and the optical axis of the second rear optical system 22 in the second direction d2 in which the electromagnetic wave travels in the second state. Therefore, the electromagnetic wave detection device 10 of the first embodiment switches the pixel px of the advancing unit 20 to either the first state or the second state, and thereby the first detection unit 17 and the second detection unit.
  • the deviation of the 18 optical axes can be reduced.
  • the electromagnetic wave detection apparatus 10 of 1st Embodiment can reduce the shift
  • the electromagnetic wave detection device 10 according to the first embodiment can reduce the shift of the coordinate system in the detection results by the first detection unit 17 and the second detection unit 18.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus 10 of 2nd Embodiment mentioned later.
  • the electromagnetic wave detection device 10 of the first embodiment can switch some pixels px in the traveling unit 20 to the first state and can switch another part pixels px to the second state. Therefore, the electromagnetic wave detection device 10 according to the first embodiment causes the first detection unit 17 to detect an electromagnetic wave in some pixels px and simultaneously causes the second detection unit 18 to detect electromagnetic waves in another partial pixel px. Can be detected. Thereby, the electromagnetic wave detection apparatus 10 of 1st Embodiment can acquire the information regarding a different area
  • the electromagnetic wave detection device 10 of the first embodiment can switch the same pixel px in the traveling unit 20 to the second state after the first state.
  • an electromagnetic wave can be detected by the first detection unit 17 in the first state of the pixel px in the progression unit 20, and immediately thereafter, the second detection unit 18 in the second state of the pixel px. Electromagnetic waves can be detected. Therefore, the electromagnetic wave detection device 10 of the first embodiment can reduce the shift in the detection timing of the electromagnetic waves in the first detection unit 17 and the second detection unit 18 by the same pixel px in the traveling unit 20.
  • the electromagnetic wave detection apparatus 10 of 1st Embodiment can reduce the gap
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus 10 of 2nd Embodiment mentioned later.
  • the electromagnetic wave detection device 10 switches a part of the pixels px in the traveling unit 20 to the first state and sets another part of the pixels px to the second state.
  • the area where the active sensor acquires information and the area where the passive sensor acquires information can be separated.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus 10 of 2nd Embodiment mentioned later.
  • the electromagnetic wave detection device 10 of the first embodiment has a traveling direction changing unit 16.
  • the electromagnetic wave detection device 10 of the first exemplary embodiment can scan the object ob using the electromagnetic wave emitted from the irradiation source 15. That is, the electromagnetic wave detection device 10 according to the first embodiment can cause the first detection unit 17 to function as a scanning active sensor in cooperation with the traveling direction changing unit 16. Therefore, the electromagnetic wave detection device 10 of the first embodiment can acquire information by the first detection unit 17 according to the position in the one-dimensional direction or the two-dimensional direction.
  • such a structure and effect are the same also about the electromagnetic wave detection apparatus 10 of 2nd Embodiment mentioned later.
  • an electromagnetic wave detection device according to the second embodiment of the present disclosure will be described.
  • a method for updating information on the radiation direction is different from that in the first embodiment.
  • the second embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the electromagnetic wave detection device 10 is configured to include an irradiation unit 11, an electromagnetic wave detection unit 12, a storage unit 13, and a control unit 14, similarly to the electromagnetic wave detection device 10 of the first embodiment. .
  • the configurations and functions of the irradiation unit 11, the electromagnetic wave detection unit 12, and the storage unit 13 in the second embodiment are the same as those in the first embodiment.
  • the configuration of the control unit 14 in the second embodiment is the same as that in the first embodiment.
  • the functions other than the update of the information regarding the radiation direction of the control unit 14 in the second embodiment are the same as those in the first embodiment. Details of the function for updating information regarding the radiation direction executed by the control unit 14 of the second embodiment will be described below.
  • control unit 14 updates the information on the radiation direction based on the position of the traveling element that causes the reflected wave to travel to the first detection unit 17 in the traveling unit 20.
  • control unit 14 updates the first related information as the update of the information on the radiation direction. Similar to the first embodiment, in the configuration in which the radiation direction is fixed, the control unit 14 may update the radiation direction.
  • control unit 14 sets a single pixel px at a predetermined position in the advancing unit 20 in the first state in order to update information on the radiation direction. To switch the pixel px at the other position to the second state.
  • control unit 14 transmits a drive signal whose signal value is a function of the elapsed time from the reference time to the traveling direction changing unit 16 as in the first embodiment.
  • the control unit 14 transmits a continuous electromagnetic wave radiation signal to the irradiation source 15.
  • the control unit 14 observes the actual elapsed time from the reference time when the first detection unit 17 detects the reflected wave. In the second embodiment, the control unit 14 calculates the signal value of the drive signal based on the function of the drive signal, using the actual elapsed time, as in the first embodiment. In the second embodiment, similarly to the first embodiment, the control unit 14 uses the predetermined position of the pixel px switched to the first state and based on the second related information, the radiation direction Is calculated.
  • the control unit 14 combines the calculated signal value and the radiation direction of the drive signal, and stores them in the storage unit 13.
  • the control unit 14 differs from the first embodiment in that a single pixel px at another position is further added. Switch to the first state, switch the other pixel px to the second state, and calculate the signal value and the radiation direction of the drive signal for the single pixel px at the other position.
  • the control unit 14 combines the signal value and the radiation direction of the drive signal, and stores them in the storage unit 13. Thereafter, the control unit 14 performs the same control at the same number of times as the number of pixels px used for updating the first related information, and stores the signal value and the radiation direction of the drive signal in the storage unit 13. .
  • the control unit 14 updates the first related information based on the drive signal and the radiation direction stored in combination in the storage unit 13.
  • the first related information update method is the same as that in the first embodiment.
  • the control unit 14 starts the update process of the first related information.
  • step S200 the control unit 14 switches the single pixel px at a predetermined position of the progression unit 20 to the first state.
  • the process proceeds to step S201.
  • step S201 the control unit 14 reads the second related information from the storage unit 13.
  • step S202 the process proceeds to step S202.
  • step S202 the control unit 14 uses the predetermined position of the single pixel px switched to the first state in step S200, and sets the radiation direction based on the second related information read in step S201. calculate.
  • the control unit 14 calculates the radiation direction, the process proceeds to step S203.
  • step S203 the control unit 14 transmits a drive signal that is a function corresponding to the elapsed time to the traveling direction changing unit 16. Further, the control unit 14 transmits a continuous electromagnetic wave radiation signal to the irradiation source 15. If control part 14 transmits a drive signal and an electromagnetic wave radiation signal, a process will progress to Step S204.
  • step S204 the control unit 14 drives the first detection unit 17.
  • the control unit 14 acquires the actual elapsed time from the reference time when detecting the reflected wave by driving the first detection unit 17.
  • the process proceeds to step S205.
  • step S205 the control unit 14 calculates the signal value of the drive signal based on the function of the drive signal using the actual elapsed time acquired in step S204.
  • the process proceeds to step S206.
  • step S206 the control unit 14 causes the storage unit 13 to store the radiation direction calculated in step S202 and the signal value of the drive signal calculated in step S205 in combination.
  • the process proceeds to step S207.
  • step S207 the control unit 14 determines whether or not the combination stored in step S206 is a predetermined number or more. If the number of combinations is not greater than the predetermined number, the process proceeds to step S208. When the number of combinations is greater than or equal to the predetermined number, the process proceeds to step S209.
  • step S208 the control unit 14 changes the predetermined position of the pixel px to be switched to the first state to a position that has not been switched yet.
  • the process returns to step S200.
  • step S209 the control unit 14 updates the first related information stored in the storage unit 13 by using the combination of the signal value and the radiation direction calculated in step S206.
  • the electromagnetic wave detection device 10 according to the second embodiment configured as described above switches the single pixel px in the first direction d1 in one scan of the traveling portion 20 by the reflected wave.
  • the electromagnetic wave detection device 10 of the second embodiment uses the first reflected wave when detecting the reflected wave as the first.
  • the position of the pixel px to be advanced to the detection unit 17 and the drive signal can be accurately combined. Therefore, the electromagnetic wave detection device 10 according to the second embodiment can accurately detect the difference between the estimated radiation direction and the actual radiation direction even when the difference between the estimated radiation direction and the actual radiation direction is relatively large. Can be reduced.
  • the information on the radiation direction is updated by the following modified configuration. Good.
  • the control unit 14 sequentially switches the pixels px of the traveling unit 20 to the first state while continuously radiating electromagnetic waves.
  • the control unit 14 calculates the radiation direction based on the second related information using the position of the pixel px that has been switched to the first state when the first detection unit 17 detects the reflected wave.
  • the control unit 14 updates the information on the radiation direction stored in the storage unit 13 using the calculated radiation direction.
  • the traveling unit 20 can switch the traveling direction of the electromagnetic wave incident on the working surface as to two directions, the first direction d1 and the second direction d2. However, it may be possible to switch to three or more directions instead of switching to one of the two directions.
  • the first state and the second state of the advancing unit 20 are those in which the electromagnetic wave incident on the working surface as is reflected in the first direction d1. 1 is a reflection state and the second reflection state is reflected in the second direction d2, but other modes may be used.
  • the second state may be a transmission state in which an electromagnetic wave incident on the working surface as is transmitted and proceeds in the second direction d2.
  • the advancing unit 20 may include a shutter having a reflection surface that reflects electromagnetic waves for each pixel px.
  • the first reflection state and the transmission state as the second state can be switched for each pixel px by opening and closing the shutter for each pixel px.
  • An example of the progression unit 20 having such a configuration is a progression unit including a MEMS shutter in which a plurality of shutters that can be opened and closed are arranged in an array.
  • the traveling unit 20 includes a traveling unit including a liquid crystal shutter that can switch between a reflection state that reflects electromagnetic waves and a transmission state that transmits electromagnetic waves in accordance with liquid crystal alignment.
  • the reflective state as the first state and the transmissive state as the second state can be switched for each pixel px by switching the liquid crystal alignment for each pixel px.
  • the electromagnetic wave detection device 10 has a configuration in which the first detection unit 17 functions as a part of the active sensor and the second detection unit 18 is a passive sensor. Have.
  • the electromagnetic wave detection device 10 is not limited to such a configuration.
  • the electromagnetic wave detection device 10 has an effect similar to that of the first embodiment regardless of whether the first detection unit 17 and the second detection unit 18 are both passive sensors or a configuration that functions as part of an active sensor. can get.
  • the electromagnetic wave detection apparatus 10 is comprised including the irradiation source 15, the advancing direction change part 16, the memory
  • the electromagnetic wave detection device 10 causes the traveling direction changing unit 16 to scan the beam-shaped electromagnetic wave radiated from the irradiation source 15, thereby causing the first detection unit 17.
  • the electromagnetic wave detection device 10 is not limited to such a configuration.
  • the electromagnetic wave detection device 10 does not include the traveling direction changing unit 16 and radiates a radial electromagnetic wave from the irradiation source 15 to obtain information without scanning, even in the configuration of the first embodiment and the second embodiment. Similar effects are obtained.
  • the machine-readable non-transitory storage medium can be further configured as a computer-readable tangible carrier (medium) comprised of solid state memory, magnetic disk and optical disk categories, including: An appropriate set of computer instructions such as a program module for causing a processor to execute the technology disclosed herein, and a data structure are stored.
  • Computer readable media include electrical connections with one or more wires, magnetic disk storage media, magnetic cassettes, magnetic tape, and other magnetic and optical storage devices (eg CD (Compact Disk), laser disks ( (Registered Trademark), DVD (Digital Versatile Disc), floppy disk and Blu-ray Disc), portable computer disk, RAM (Random Access Memory), ROM (Read-Only Memory), EPROM, EEPROM, flash memory, etc.
  • ROMs or other tangible storage media capable of storing information or any combination thereof are included.
  • the memory can be provided inside and / or outside the processor / processing unit.
  • the term “memory” means any type of long-term storage, short-term storage, volatile, non-volatile, or other memory in which a particular type or number of memories or storage is stored. The type of medium is not limited.
  • Electromagnetic wave detection apparatus 11 Irradiation part 12 Electromagnetic wave detection part 13 Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

電磁波検出装置10は照射部11と第1の検出部17と進行部20と記憶部13と制御部14とを有する。照射部11は電磁波を照射する。第1の検出部17は対象obに照射された電磁波の反射波を検出する。進行部20は複数の進行素子pxを有する。複数の進行素子pxは対象obに照射された電磁波の照射位置別に当前記反射波の第1の検出部17への進行の可否を切替える。記憶部13は電磁波の放射方向に関する情報を記憶する。制御部14は第1の検出部17が反射波を検出するときに反射波を第1の検出部17に進行させている進行素子pxの位置に基づいて放射方向に関する情報を更新する。

Description

電磁波検出装置、プログラム、および電磁波検出システム 関連出願の相互参照
 本出願は、2017年3月24日に日本国に特許出願された特願2017-059893の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、電磁波検出装置、プログラム、および電磁波検出システムに関するものである。
 近年、放射された電磁波の反射波の検出結果から周囲に関する情報を得る装置が開発されている。例えば、物体の位置を、レーザレーダを用いて測定する装置が知られている。(特許文献1参照)。
特開2011-220732号公報
 第1の観点による電磁波検出装置は、
 電磁波を放射する照射部と、
 対象に照射された前記電磁波の反射波を検出する第1の検出部と、
 前記対象に照射された前記電磁波の照射位置別に、前記反射波の前記第1の検出部への進行の可否を切替える複数の進行素子を有する進行部と、
 前記電磁波の放射方向に関する情報を記憶する記憶部と、
 前記第1の検出部が前記反射波を検出するときに前記反射波を前記第1の検出部に進行させている進行素子の位置に基づいて、前記放射方向に関する情報を更新する制御部と、を備える。
 また、第2の観点による電磁波検出システムは、
 電磁波を放射する照射部と、
 対象に照射された前記電磁波の反射波を検出する第1の検出部と、
 前記対象に照射された前記電磁波の照射位置別に、前記反射波の前記第1の検出部への進行の可否を切替える複数の進行素子を有する進行部と、
 前記電磁波の放射方向に関する情報を記憶する記憶部と、
 前記第1の検出部が前記反射波を検出するときに前記反射波を前記第1の検出部に進行させている進行素子の位置に基づいて、前記放射方向に関する情報を更新する制御部と、を備える。
 また、本開示の第3の観点によるプログラムは、
 電磁波を放射するステップと、
 対象に照射された前記電磁波の反射波を第1の検出部によりに検出するステップと、
 前記対象に照射された前記電磁波の照射位置別に、前記反射波の前記第1の検出部への進行の可否を切替え可能な複数の進行素子の一部を、前記第1の検出部に進行させるステップと、
 前記電磁波の放射方向に関する情報を記憶するステップと、
 前記第1の検出部が前記反射波を検出するときに前記反射波を前記第1の検出部に進行させている進行素子の位置に基づいて、前記放射方向に関する情報を更新するステップと、を装置に実行させる。
第1の実施形態に係る電磁波検出装置の概略構成を示す構成図である。 図1の電磁波検出装置の進行部における画素の第1の状態と第2の状態における電磁波の進行方向を説明するための、電磁波検出装置の構成図である。 図1の記憶部に記憶される第1の関連情報の一例を示す図である。 図1の記憶部に記憶される第2の関連情報の一例を示す図である。 図1の記憶部に記憶される第3の関連情報の一例を示す図である。 図1の照射部、第2の検出部、および制御部が構成する測距センサによる測距の原理を説明するための電磁波の放射の時期と検出の時期を示すタイミングチャートである。 図1の制御部が画像情報および距離情報を繰返し取得するための各部位の制御を説明するためのタイミングチャートである。 図1の進行部の任意の画素が第2の状態であるときの電磁波の進行状態を説明するための、電磁波検出装置の構成図である。 図8の任意の画素のみが第1の状態であるときの電磁波の進行状態を説明するための、電磁波検出装置の構成図である。 第1の実施形態の電磁波検出装置において、第1の関連情報の更新を行うときの進行部における画素の状態および反射波による走査の軌跡を示す進行部の模式図である。 図1の電磁波検出装置において、第1の関連情報の更新を行うときの所定の画素に対して第1の検出部が反射波を検出する、推定される経過時間と実際の経過時間との差異を示すための、経過時間に対する第1の検出部が反射波を検出するときのグラフである。 第1の実施形態において、図1の制御部が実行する第1の関連情報の更新処理を説明するためのフローチャートである。 第2の実施形態において、図1の制御部が実行する第1の関連情報の更新処理を説明するためのフローチャートである。
 以下、本発明を適用した電磁波検出装置の実施形態について、図面を参照して説明する。放射された電磁波の放射方向を、既に得られている情報から推定する場合、実際の放射方向と推定される放射方向とが異なることがある。そこで、本発明を適用した電磁波検出装置は、実際の電磁波の放射方向と推定される電磁波の放射方向との差異を低減し得るように構成されている。
 図1に示すように、本開示の第1の実施形態に係る電磁波検出装置10は、照射部11、電磁波検出部12、記憶部13、および制御部14を含んで構成されている。
 以後の図において、各機能ブロックを結ぶ破線は、制御信号または通信される情報の流れを示す。破線が示す通信は有線通信であってもよいし、無線通信であってもよい。また、各機能ブロックから突出する実線は、ビーム状の電磁波を示す。
 照射部11は、少なくとも電磁波を放射する照射源15を有する。照射源15は、例えば、赤外線、可視光線、紫外線、および電波の少なくともいずれかの電磁波を放射する。第1の実施形態において、照射源15は、赤外線を放射する。
 照射源15は、所定の幅のビーム状の電磁波を放射する。第1の実施形態では、照射源15は、幅の細い、例えば0.5°のビーム状の電磁波を放射する。また、照射源15は電磁波をパルス状または連続波として放射可能である。第1の実施形態においては、照射源15はパルス状の電磁波を放射する。例えば、照射源15は、LED(Light Emitting Diode)およびLD(Laser Diode)などを含む。照射源15は、後述する制御部14の制御に基づいて、電磁波の放射および停止を切替える。
 照射部11において、電磁波の放射方向は固定であっても、制御部14から出力される駆動信号に基づいて変更可能であってもよい。第1の実施形態においては、電磁波の放射方向は変更可能である。
 電磁波の放射方向は、単一の照射源15から放射される電磁波を傾斜角度が変更可能な反射面に反射させることによって変更させてもよい。また、電磁波の放射方向は、例えばフェーズドアレイレーダーのように、平面状にアレイ配列させた複数の照射源15から位相を少しずつずらして放射させることによって変更させもてよい。第1の実施形態においては、以下に説明するように、反射面を用いて反射させることにより電磁波の放射方向を変更する。
 上述のように、第1の実施形態において、照射部11は、さらに進行方向変更部16を有する。進行方向変更部16は、向きを変更可能な反射面を有する。進行方向変更部16は、後述する制御部14から出力される駆動信号に基づいて、反射面の向きを変える。
 反射面は、照射源15から放射された電磁波の進行方向を、駆動信号に応じて変更することにより、照射位置を変えながら対象obに照射する。すなわち、進行方向変更部16は、照射源15から放射される電磁波により、対象obを走査する。なお、進行方向変更部16は、一次元方向または二次元方向に対象obを走査する。第1の実施形態においては、進行方向変更部16は、二次元方向に対象obを走査する。
 進行方向変更部16は、照射源15から放射されて反射した電磁波の照射領域の少なくとも一部が、電磁波検出装置10における電磁波の検出範囲に含まれるように、構成されている。したがって、進行方向変更部16を介して対象obに照射される電磁波の少なくとも一部は、電磁波検出装置10において検出され得る。
 なお、第1の実施形態において、進行方向変更部16は、照射源15から放射され且つ進行方向変更部16に反射した電磁波の照射領域の少なくとも一部が、第2の検出部18および第1の検出部17における検出範囲に含まれるように、構成されている。したがって、進行方向変更部16を介して対象obに照射される電磁波の少なくとも一部は、第2の検出部18および第1の検出部17により検出され得る。
 進行方向変更部16は、例えば、MEMS(Micro Electro Mechanical Systems)ミラー、ポリゴンミラー、およびガルバノミラーなどを含む。第1の実施形態においては、進行方向変更部16は、MEMSミラーを含む。
 電磁波検出部12は、前段光学系19、進行部20、第1の後段光学系21、第2の後段光学系22、第2の検出部18、および第1の検出部17を有している。
 前段光学系19は、例えば、レンズおよびミラーの少なくとも一方を含み、電磁波の照射領域に存在する被写体となる対象obの像を結像させる。
 進行部20は、前段光学系19から所定の位置をおいて離れた対象obの像の、前段光学系19による結像位置である一次結像位置、又は当該一次結像位置近傍に、設けられていればよい。第1の実施形態においては、進行部20は、当該一次結像位置に、設けられている。
 進行部20は、前段光学系19を通過した電磁波が入射する作用面asを有している。作用面asは、2次元状に沿って並ぶ複数の画素(進行素子)pxによって構成されている。作用面asは、後述する第1の状態および第2の状態の少なくともいずれかにおいて、電磁波に、例えば、反射および透過などの作用を生じさせる面である。
 画素pxは、対象obに照射される電磁波の照射位置別に、当該電磁波の反射波の第2の検出部18への進行の可否を切替え可能である。さらには、進行部20は、作用面asに入射する電磁波を、第1の方向d1に進行させる第1の状態と、第2の方向d2に進行させる第2の状態とに、画素px毎に切替可能である。第1の実施形態において、第1の状態は、作用面asに入射する電磁波を、第1の方向d1に反射する第1の反射状態である。また、第2の状態は、作用面asに入射する電磁波を、第2の方向d2に反射する第2の反射状態である。
 第1の実施形態において、進行部20は、さらに具体的には、画素px毎に電磁波を反射する反射面を含んでいる。進行部20は、画素px毎の反射面の向きを変更することにより、第1の状態および第2の状態を画素px毎に切替える。
 第1の実施形態において、進行部20は、例えばDMD(Digital Micro mirror Device:デジタルマイクロミラーデバイス)を含む。DMDは、作用面asを構成する微小な反射面を駆動することにより、画素px毎に当該反射面を作用面asに対して+12°および-12°のいずれかの傾斜状態に切替可能である。なお、作用面asは、DMDにおける微小な反射面を載置する基板の板面に平行である。
 進行部20は、後述する制御部14の制御に基づいて、第1の状態および第2の状態を、画素px毎に切替える。例えば、図2に示すように、進行部20は、同時に、一部の画素px1を第1の状態に切替えることにより当該画素px1に入射する電磁波を第1の方向d1に進行させ得、別の一部の画素px2を第2の状態に切替えることにより当該画素px2に入射する電磁波を第2の方向d2に進行させ得る。また、進行部20は、同一の画素pxを第1の状態から第2の状態に切替えることにより、当該画素pxに入射する電磁波を第1の方向d1の次に第2の方向d2に向けて進行させ得る。
 進行部20の各画素pxは、第2の状態において、対象obに照射された電磁波の反射波を、照射位置別に、後述する第2の検出部18の異なる複数の検出素子に進行させる。
 図1に示すように、第1の後段光学系21は、進行部20から第1の方向d1に設けられている。第1の後段光学系21は、例えば、レンズおよびミラーの少なくとも一方を含む。第1の後段光学系21は、進行部20において進行方向を切替えられた電磁波としての対象obの像を結像させる。
 第2の後段光学系22は、進行部20から第2の方向d2に設けられている。第2の後段光学系22は、例えば、レンズおよびミラーの少なくとも一方を含む。第2の後段光学系22は、進行部20において進行方向を切替えられた電磁波としての対象obの像を結像させる。
 第1の検出部17は、進行部20による第1の方向d1に進行した後に第1の後段光学系21を経由して進行する電磁波の経路上に設けられている。第1の検出部17は、第1の後段光学系21を経由した電磁波、すなわち第1の方向d1に進行した電磁波を検出する。
 第1の実施形態において、第1の検出部17は、照射部11から対象obに向けて照射された電磁波の当該対象obからの反射波を検出するアクティブセンサである。なお、第1の実施形態において、第1の検出部17は、照射部11から照射され且つ進行方向変更部16により反射されることにより対象obに向けて照射された電磁波の当該対象obからの反射波を検出する。
 第1の実施形態において、第1の検出部17は、さらに具体的には、測距センサを構成する素子を含む。例えば、第1の検出部17は、APD(Avalanche PhotoDiode)、PD(PhotoDiode)および測距イメージセンサなどの単一の素子を含む。また、第1の検出部17は、APDアレイ、PDアレイ、測距イメージングアレイ、および測距イメージセンサなどの素子アレイを含むものであってもよい。
 第1の検出部17は、被写体からの反射波を検出する。第1の実施形態において、第1の検出部17は、さらに具体的には、赤外線の帯域の電磁波を検出する。したがって、第1の実施形態において、第1の検出部17は、進行方向変更部16と協同して、走査型の測距センサを構成する。第1の検出部17は、反射波を検出したことを示す検出情報を信号として制御部14に送信する。
 なお、第1の検出部17は、上述した測距センサを構成する単一の素子である構成において、電磁波を検出できればよく、検出面において結像される必要はない。それゆえ、第1の検出部17は、第1の後段光学系21による結像位置である二次結像位置に設けられなくてもよい。すなわち、この構成において、第1の検出部17は、すべての画角からの電磁波が検出面上に入射可能な位置であれば、進行部20により第1の方向d1に進行した後に第1の後段光学系21を経由して進行する電磁波の経路上のどこに配置されてもよい。
 第2の検出部18は、進行部20による第2の方向d2に進行した後に第2の後段光学系22を経由して進行する電磁波の経路上に、設けられている。第2の検出部18は、第2の後段光学系22を経由した電磁波、すなわち第2の方向d2に進行した電磁波を検出する。
 第2の検出部18は、複数の検出素子を有するパッシブセンサである。複数の検出素子は、第1の後段光学系21の光軸に垂直な平面に配置されている。第1の実施形態において、第2の検出部18は、さらに具体的には、素子アレイを含む。例えば、第2の検出部18は、イメージセンサまたはイメージングアレイなどの撮像素子を含み、検出面において結像した電磁波による像を撮像して、撮像した対象obに相当する画像情報を生成する。さらに、第1の実施形態において、第2の検出部18は、さらに具体的には可視光の像を撮像する。第2の検出部18は、生成した画像情報を信号として制御部14に送信する。
 また、第2の検出部18は、照射源15から進行方向変更部16を介して対象obに照射した電磁波の反射波を検出し、検出した電磁波による像を撮像して、撮像した対象obに相当する画像情報を生成する。複数の検出素子は、対象ob上の照射位置別の当該電磁波を検出する。
 なお、第2の検出部18は、可視光以外の像を撮像してもよい。また、第2の検出部18はサーモセンサを含んでいてもよい。この構成において、電磁波検出装置10は、第2の検出部18により温度情報を取得し得る。
 このように、第1の実施形態において、第2の検出部18は、素子アレイを含む、そのため、第2の検出部18は、入射された電磁波が検出面において結像すると、結像した電磁波は各検出素子に入射するため、解像度を向上させ得る。そこで、第2の検出部18は、第2の後段光学系22による結像位置である二次結像位置に設けられるとよい。
 記憶部13は、半導体メモリ又は磁気メモリ等で構成することができ、各種情報、各種データ、および電磁波検出装置10を動作させるためのプログラム等を記憶する。また、記憶部13は、ワークメモリとしても機能する。
 例えば、記憶部13は、電磁波の放射方向に関する情報を記憶する。なお、電磁波の放射方向とは、放射方向を規定する多様な要素である。第1の実施形態のように、進行方向変更部16を適用する構成においては、第1の関連情報は、基準面に対する反射面の傾斜角度であってよい。傾斜角度は、1軸に対する傾斜角度でも、2軸に対する傾斜角度であってもよい。また、前述のように、平面状にアレイ配列させた複数の照射源15から位相を少しずつずらして放射する構成においては、複数の照射源15の中で放射中の照射源15を特定する位置などであってよい。また、前述のように、放射方向が固定である構成においては、照射部11において基準となる空間における方向ベクトルなどであってよい。
 さらに、第1の実施形態において、記憶部13は、第1の関連情報から第3の関連情報を記憶する。
 第1の関連情報は、駆動信号と、当該駆動信号に対応した電磁波の放射方向とを関連付けた情報である。第1の関連情報は、例えば、駆動信号に対する放射方向の関連性、言換えると駆動信号に対する放射方向の相関性を示す関数である。または、第1の関連情報は、放射方向に対する駆動信号の関連性、言換えると放射方向に対する駆動信号の相関性を示す関数である。または、第1の関連情報は、例えば、図3に示すように、駆動信号の複数の信号値毎に別々に対応付けられる放射方向(θ、φ)である。または、第1の関連情報は、放射方向毎に別々に対応付けられる駆動信号の複数の信号値であってもよい。
 第2の関連情報は、電磁波の放射方向と、当該放射方向に放射される電磁波の反射波が入射する画素px(進行素子)の位置とを関連付けた情報である。第2の関連情報は、例えば、放射方向に対する画素pxの位置の関数、または、画素pxの位置に対する放射方向の関数である。または、第2の関連情報は、例えば、図4に示すように、放射方向(θ、φ)毎に別々に対応付けられる画素pxの位置(x’、y’)である。または、第2の関連情報は、画素pxの位置毎に別々に対応付けられる放射方向であってもよい。
 第3の関連情報は、電磁波の放射方向と、当該放射方向に放射される電磁波の照射領域内の照射位置とを関連付けた情報である。第3の関連情報は、例えば、放射方向に対する照射位置の関数、または、照射位置に対する放射方向の関数である。または、第3の関連情報は、例えば、図5に示すように、放射方向(θ、φ)毎に別々に対応付けられる照射位置(x’’、y’’)である。または、第2の関連情報は、照射位置毎に別々に対応付けられる放射方向であってもよい。
 制御部14は、1以上のプロセッサおよびメモリを含む。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、および特定の処理に特化した専用のプロセッサの少なくともいずれかを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。制御部14は、1つまたは複数のプロセッサが協働するSoC(System-on-a-Chip)、およびSiP(System In a Package)の少なくともいずれかを含んでもよい。
 制御部14は、第2の検出部18および第1の検出部17がそれぞれ検出した電磁波に基づいて、電磁波検出装置10の周囲に関する情報を取得する。周囲に関する情報は、例えば画像情報、距離情報、および温度情報などである。
 第1の実施形態において、制御部14は、前述のように、第2の検出部18が画像として検出した電磁波を画像情報として取得する。また、第1の実施形態において、制御部14は、第1の検出部17が検出する検出情報に基づいて、以下に説明するように、ToF(Time-of-Flight)方式により、照射部11に照射される照射位置の距離情報を取得する。
 図6に示すように、制御部14は、照射源15に電磁波放射信号を入力することにより、照射源15にパルス状の電磁波を放射させる(“電磁波放射信号”欄参照)。照射源15は、入力された当該電磁波放射信号に基づいて電磁波を照射する(“照射部放射量”欄参照)。照射源15が放射し且つ進行方向変更部16が反射して任意の照射領域に照射された電磁波は、当該照射領域において反射する。
 制御部14は、例えば、時間計測LSI(Large Scale Integrated circuit)を有しており、照射源15に電磁波を放射させた時期T1から、検出情報を取得(“検出情報取得”欄参照)した時期T2までの時間ΔTを計測する。制御部14は、当該時間ΔTに、光速を乗算し、且つ2で除算することにより、照射位置までの距離を算出する。
 なお、制御部14は、進行方向変更部16に駆動信号を出力する。また、制御部14は、記憶部13から第1の関連情報および第3の関連情報を読出す。制御部14は、出力する駆動信号、第1の関連情報、および第3の関連情報に基づいて、照射位置を算出する。制御部14は、駆動信号を用いて照射位置を変えながら、各照射位置までの距離を算出することにより、第2の検出部18から取得した画像情報における距離情報を作成する。
 なお、第1の実施形態において、電磁波検出装置10は、レーザ光を照射して、返ってくるまでの時間を直接測定するDirect ToFにより距離情報を作成する構成である。しかし、電磁波検出装置10は、このような構成に限られない。例えば、電磁波検出装置10は、電磁波を一定の周期で照射し、照射された電磁波と返ってきた電磁波との位相差から、返ってくるまでの時間を間接的に測定するFlash ToFにより距離情報を作成しても良い。また、電磁波検出装置10は、他のToF方式、例えば、Phased ToFにより距離情報を作成してもよい。
 また、制御部14は、照射源15、進行方向変更部16、進行部20、第1の検出部17、および第2の検出部18を制御して、画像情報および距離情報を繰返し取得する。画像情報および距離情報を繰返し取得するための各部位の制御について、図7のタイミングチャートを用いて以下に説明する。
 タイミングt1において、制御部14は、第2の検出部18に第1のフレームの画像情報の生成のための電磁波の検出を開始させる。なお、タイミングt1においては、進行部20の全画素pxは第2の状態であり、前段光学系19に入射する電磁波は第2の検出部18に到達する(図8参照)。また、図7に示すように、タイミングt1において、制御部14は、進行部20における第1の画素pxの第2の状態から第1の状態への切替えを開始させる(“進行部第1の画素駆動信号”欄参照)。なお、タイミングt1において、他の全画素pxは第2の状態のままである(“進行部第2の画素状態”、“進行部第Nの画素状態”欄参照)。
 進行部20の第1の画素pxの第2の状態から第1の状態への切替えが完了するタイミングt2において(“進行部第1の画素状態”欄参照)、制御部14は照射源15に電磁波を放射させる(“電磁波放射時期”欄参照)。なお、タイミングt2においては、進行部20の第1の画素pxが第2の状態(図8参照)から第1の状態に切替わり、前段光学系19に入射し、進行部20の第1の画素pxにおいて結像する電磁波が第2の方向d2の次に第1の方向d1向けて進行する(図9参照)。
 図7に示すように、また、タイミングt2において、制御部14は、第1の検出部17に電磁波を検出させる(“第2の検出部検出時期”欄参照)。なお、照射源15が電磁波を照射してから電磁波検出装置10に到達するまでにかかる時間は、画像情報の生成のための検出時間に比べて極めて短く、例えばナノ秒のオーダーである。それゆえ、タイミングt2とみなせる微小な時間に第1の検出部17による電磁波の検出が完了する。制御部14は、タイミングt2において進行方向変更部16に送信する駆動信号に基づいて、進行部20の第1の画素pxに対応する照射位置における距離情報を算出することにより取得する。
 さらに、タイミングt2において、制御部14は、進行部20における第1の画素pxの第1の状態から第2の状態への切替えを開始させる(“進行部第1の画素駆動信号”欄参照)。このように、制御部14は、進行部20における第1の画素pxを第1の状態から第2の状態へと切替えるため、再度、第1の画素pxに対応する第2の検出部18における検出素子に電磁波(可視光)を検出させ得る。
 進行部20の第1の画素pxの第1の状態から第2の状態への切替えが完了するタイミングt3において(“進行部第1の画素状態”欄参照)、制御部14は、進行部20における第2の画素pxの第2の状態から第1の状態への切替えを開始させる(“進行部第2の画素駆動信号”欄参照)。なお、タイミングt3において、他の全画素pxは第2の状態のままである(“進行部第1の画素状態”、“進行部第Nの画素状態”欄参照)。
 進行部20の第2の画素pxの第2の状態から第1の状態への切替えが完了するタイミングt4において(“進行部第2の画素状態”欄参照)、制御部14は照射源15に電磁波を放射させる(“電磁波放射時期”欄参照)。なお、タイミングt4においては、進行部20の第2の画素pxが第2の状態から第1の状態に切替わり、前段光学系19に入射し、進行部20の第2の画素pxにおいて結像する電磁波が第2の方向d2の次に第1の方向d1向けて進行する。また、タイミングt4において、制御部14は、第1の検出部17に電磁波を検出させる(“第2の検出部検出時期”欄参照)。制御部14は、タイミングt4において進行方向変更部16に送信する駆動信号に基づいて、進行部20の第2の画素pxに対応する照射位置における距離情報を算出することにより取得する。
 さらに、タイミングt4において、制御部14は、進行部20における第2の画素pxの第1の状態から第2の状態への切替えを開始させる(“進行部第2の画素駆動信号”欄参照)。このように、制御部14は、進行部20における第2の画素pxを第1の状態から第2の状態へと切替えるため、再度、第2の画素pxに対応する第2の検出部18における検出素子に電磁波(可視光)を検出させ得る。
 以後、制御部14は、進行部20における第3の画素pxから第Nの画素pxについて、第1の画素pxと同じ様に、順番に、第2の状態から第1の状態への切替えと、第1の状態から第2の状態への切替えとを行うことにより、第1のフレームの画像情報を取得すると共に、各画素pxに対応する照射位置における距離情報を取得する。
 なお、上述のように、制御部14が、第(M-1)の画素pxが第1の状態から第2の状態への切替えが完了する時期において、第Mの画素pxの第2の状態から第1の状態への切替えを開始させる制御を行う構成において、1フレーム分の画像情報の生成のための時間Timgに、進行部20は、Timg/Tdisの数の画素pxを第2の状態から第1の状態に切替可能である。
 すなわち、制御部14は、時間Timgに、Timg/Tdisの数の画素px分の距離情報の生成が可能である。なお、Mは、2≦M≦Nを満たす整数である。また、Tdisは、進行部20の画素pxの第2の状態から第1の状態への切替えにかかる時間と、第1の状態から第2の状態に戻すまでにかかる時間とを合計した時間である。すなわち、Tdisは、任意の画素pxが第2の状態、第1の状態、および第2の状態の順に切替わるために要する時間である。第1の実施形態においては、例えば、Timgは1/60秒であり、Tdisは1/3000秒である。
 Timg/Tdisの値が進行部20の画素数より少ない構成において、制御部14は、時間Timg中に、進行部20における画素pxのすべてを切替えることができない。そのため、制御部14は、1フレーム分の画像情報の生成中に、当該1フレーム分の画像情報に対応する距離情報を生成することができない。すなわち、制御部14は、1フレーム分の画像情報の生成中に、当該1フレーム分の画像情報に満たないフレーム(例えば、0.5フレーム)分に対応する距離情報しか生成することができない。
 そこで、Timg/Tdisの値が進行部20の画素数より少ない構成において、制御部14は、進行部20における全画素pxのうち、Timg/Tdisの数以下の画素pxを切替対象として選択する。さらに、制御部14は、切替対象として選択した各画素pxの第1の状態への切替時期に当該各画素pxに対応する照射領域内の領域に電磁波が照射されるように、駆動信号を進行方向変更部16に送信する。
 または、Timg/Tdisの値が進行部20の画素数より少ない構成において、制御部14は、複数のフレーム(Pフレーム:PはP>1を満たす正の数)分の画像情報の生成のための時間P×Timg中に、進行部20における画素pxの全ての切替えが完了するように制御してもよい。さらに、制御部14は、進行部20の各画素pxの切替時期に当該各画素pxに対応する照射領域内の領域に電磁波が照射されるように、駆動信号を進行方向変更部16に送信する。
 または、Timg/Tdisの値が進行部20の画素数より少ない構成において、制御部14は、進行部20における全画素pxを、Timg/Tdisの数以下のグループに分け、グループ毎に画素pxをまとめて切替える。さらに、制御部14は、各グループを代表する位置(例えば、各グループの中心位置)の画素pxの切替時期に当該画素pxに対応する照射領域内の領域に電磁波が照射されるように、駆動信号を進行方向変更部16に送信してもよい。
 または、Timg/Tdisの値が進行部20の画素数より少ない構成において、制御部14は、進行部20における全画素pxを、Timg/Tdisの数以下のグループに分け、グループ毎にいずれかの画素pxのみを切替える。さらに、制御部14は、切替える当該画素pxの切替時期に当該画素pxに対応する照射領域内の領域に電磁波が照射されるように、駆動信号を進行方向変更部16に送信してもよい。
 なお、1フレーム分の画像の撮像時間中に第1の状態に切替えられた進行部20の画素pxに対応する第2の検出部18における検出素子は、当該画素pxが第1の状態に切替えられている間、受光することができない。そのため、第2の検出部18における当該検出素子による信号強度は低下する。そこで、制御部14は、第2の検出部18における当該検出素子の信号値にゲインを乗じることにより、低下した信号強度を補償してもよい。なお、1フレーム分の画像の撮像時間は、1フレーム分の画像情報を生成するために第2の検出部18が電磁波を検出している時間に相当する。
 なお、進行方向変更部16による走査速度が画素pxの切替速度よりも高速である、すなわち、TscnがTdisより短い構成において、制御部14は、第(M-1)の画素pxの第2の状態から第1の状態への切替えが完了する時期よりも前に、第Mの画素pxの第2の状態から第1の状態への切替えを開始させてよい。
 なお、Tscnは、照射源15から放射されて進行方向変更部16により反射された電磁波の照射位置が、ある照射位置から次の照射位置へ変わるために要する時間、または、ある照射位置から隣の照射位置へ変わるために要する時間である。このような構成は、任意の画素pxの第1の状態から第2の状態への切替えの完了後に他の画素pxの第1の状態への切替えを行なう制御よりも、短時間でより多くの画素pxにおける距離情報を生成し得る。
 タイミングt1から第1フレームの画像情報の生成のための時間Timgの経過後のt5において(“第1の検出部検出時期”欄参照.)、制御部14は、第2のフレームの画像情報の生成のための電磁波の検出を開始させる。また、制御部14は、タイミングt1からt5における第2の検出部18による電磁波の検出が終了した後、その間に検出した電磁波に基づく第1のフレームの画像情報を取得する。以後、制御部14は、タイミングt1からt5の間に行った制御と同じ様に、画像情報の取得および距離情報の取得のための照射源15、進行方向変更部16、第1の検出部17、第2の検出部18、および進行部20の制御を行う。
 また、制御部14は、第1の検出部17が反射波を検出するときに進行部20の中で反射波を第1の検出部17に進行させている進行素子の位置に基づいて、放射方向に関する情報を更新する。第1の実施形態において、制御部14は放射方向に関する情報の更新として、第1の関連情報を更新する。なお、前述のように、放射方向が固定である構成においては、制御部14は放射方向を更新すればよい。以下に、第1の実施形態における、第1の関連情報の更新が詳細に、説明される。
 図10に示すように、制御部14は、放射方向に関する情報を更新するために、進行部20における所定の位置の画素pxを第1の状態(符号“s1”参照)に切替え、他の位置の画素pxを第2の状態(符号“s2”参照)に切替させる。なお、図10において、図示の簡易化のために、進行部20を5行6列の30個の画素pxで構成しているが、画素pxの数は30個に限定されない。
 なお、所定の位置の画素pxは、第1の関連情報が駆動信号に対する放射方向の関数、または、放射方向に対する駆動信号の関数である構成においては、少なくとも1つであればよい。また、所定の位置の画素pxは、第1の関連情報が駆動信号の複数の信号値毎に別々に対応付けられる放射方向、または、放射方向毎に別々に対応付けられる駆動信号の複数の信号値である構成においては、複数であればよい。なお、所定の位置の画素pxの数が多くなる程、更新精度が向上する。また、所定の位置の画素pxが複数である構成においては、複数の画素pxは互いに離れていてもよい。例えば、複数の画素pxは、所定の画素間隔以上の間隔で離される。
 また、制御部14は、信号値が基準時間からの経過時間の関数である駆動信号を進行方向変更部16に送信する。制御部14は、連続的な電磁波放射信号を照射源15に送信する。
 信号値が経過時間の関数である駆動信号に応じて進行方向変更部16が反射面を傾斜させることにより、放射方向は経過時間に応じて変化する。例えば、経過時間に応じた所定の軌跡loで、進行部20の画素pxが電磁波の反射波により走査される。電磁波の反射波が第2の状態である画素pxに入射している間、第1の検出部17は電磁波を検出しない。一方、電磁波の反射波が第1の状態である画素pxに入射するとき、第1の検出部17は電磁波を検出する。
 制御部14は、第1の状態である所定の位置の画素pxに対応する駆動信号の信号値を、第1の関連情報および第2の関連情報に基づいて、算出する。さらに、制御部14は、第1の状態である所定の位置の画素pxに対応する駆動信号の信号値に一致させる、基準時間からの推定の経過時間を、経過時間の関数である駆動信号に基づいて、算出する。
 制御部14は、第1の検出部17が反射波を検出する基準時間からの実際の経過時間を観察する。駆動信号に対する推定される電磁波の放射方向および実際の放射方向が一致するとき、第1の状態である所定の位置の画素pxに反射波が入射する推定の経過時間および実際の経過時間は一致する。一方、図11に示すように、推定される放射方向および実際の放射方向に差異があるとき、推定の経過時間(破線参照)および実際の経過時間(実線参照)の間にも差異が発生する。制御部14は、所定の位置の画素px毎の推定される経過時間に最近する実際の経過時間を組合せる。
 制御部14は、実際の経過時間に組合わされた推定される経過時間に基づいて、実際の経過時間において、第1の状態あり且つ反射光が入射する画素pxを特定する。また、制御部14は、特定した画素pxの所定の位置を用いて、第2の関連情報に基づいて、放射方向を算出する。また、制御部14は、実際の経過時間を用いて、駆動信号の関数に基づいて、駆動信号の信号値を算出する。制御部14は、算出された、信号値および放射方向に基づいて、第1の関連情報を更新する。
 例えば、第1の関連情報が、駆動信号に対する電磁波の放射方向の関数である構成においては、制御部14は、組合せに基づいて、当該関数を更新する。制御部14は更新した関数を駆動信号および電磁波の放射方向の最新の関連性、すなわち、最新の第1の関連情報として、記憶部13に記憶させる。
 また、例えば、第1の関連情報が、駆動信号の信号値毎に別々に対応付けられる放射方向である構成において、制御部14は、記憶部13に記憶されている各組合せにおける放射方向を、その放射方向に組合わされている各信号値それぞれに対応付けられている放射方向、即ち、最新の第1の関連情報として記憶部13に記憶させる。
 また、例えば、第1の関連情報が、放射方向毎に別々に対応付けられる駆動信号の信号値である構成において、制御部14は、記憶部13に記憶されている各組合せにおける各信号値を、その各信号値と組合されている放射方向それぞれに対応付けられる最新の信号値、即ち、最新の第1の関連情報として、記憶部13に記憶させる。
 次に、第1の実施形態において制御部14が実行する、第1の関連情報の更新処理について、図12のフローチャートを用いて説明する。制御部14は、例えば、電磁波検出装置10の入力デバイスが第1の関連情報の更新処理実行の操作を検出するとき、第1の関連情報の更新処理を開始する。
 ステップS100において、制御部14は、進行部20の所定の位置の画素pxを第1の状態に切替させる。制御部14が所定の画素pxを第1の状態に切替させると、プロセスはステップS101に進む。
 ステップS101では、制御部14は、記憶部13から第1の関連情報および第2の関連情報を読出す。制御部14が第1の関連情報および第2の関連情報を読出すと、プロセスはステップS102に進む。
 ステップS102では、制御部14は、ステップS100において第1の状態に切替えた所定の画素pxに反射波が到達する、基準時間からの推定の経過時間を、ステップS101において読出した経過時間に対する信号値の関数、ならびに第1の関連情報および第2の関連情報に基づいて算出する。制御部14が推定の経過時間を算出すると、プロセスはステップS103に進む。
 ステップS103では、制御部14は、経過時間に応じた関数である駆動信号を進行方向変更部16に送信する。また、制御部14は、連続的な電磁波放射信号を照射源15に送信する。制御部14が駆動信号および電磁波放射信号を送信すると、プロセスはステップS104に進む。
 ステップS104では、制御部14は、第1の検出部17を駆動する。制御部14は、第1の検出部17の駆動により、反射波を検出するときの基準時間からの実際の経過時間を取得する。制御部14が実際の経過時間を取得すると、プロセスはステップS105に進む。
 ステップS105では、制御部14は、第1の状態に切替えられた画素px毎に、ステップS102で推定された経過時間に対して最近の実際の経過時間を組合わせる。制御部14が経過時間を組合わせると、プロセスはステップS106に進む。
 ステップS106では、制御部14は、ステップS105において、組合わせた、推定された経過時間および実際の経過時間それぞれに対応する放射方向および駆動信号の信号値を算出する。制御部14が信号値および放射方向を算出すると、プロセスはステップS107に進む。
 ステップS107では、制御部14は、ステップS106において算出した信号値および放射方向の組合せを用いて、記憶部13に記憶した第1の関連情報を更新する。制御部14は、第1の関連情報の更新後、第1の関連情報の更新処理を終了する。
 以上のような構成の第1の実施形態の電磁波検出装置10は、第1の検出部17が前記反射波を検出するときに反射波を第1の検出部17に進行させる画素pxの所定の位置に基づいて、放射方向に関する情報を更新している。このような構成により、第1の実施形態の電磁波検出装置10は、駆動信号の各信号値により推定される反射面の向きと、実際の反射面の向きとの差異を低減させ得る。そのため、第1の実施形態の電磁波検出装置10は、実際の電磁波の放射方向と、駆動信号の各信号値により推定される電磁波の放射方向との差異を低減させ得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置10についても同じである。
 特に、第1の実施形態の電磁波検出装置10は、所定の位置の画素px毎の推定される経過時間と最近する実際の経過時間との組合わせに基づいて、第1の検出部17が反射波を検出するときに反射波を第1の検出部17に進行させる画素pxの所定の位置を特定している。このような構成により、第1の実施形態の電磁波検出装置10では、反射波による進行部20の1回の走査において、複数の画素pxを放射方向に関する情報の更新に用い得る。したがって、第1の実施形態の電磁波検出装置10は、放射方向に関する情報の更新に複数の画素pxを用いる構成において、更新に用いる全画素pxに関する反射波の検出時間を短縮させ得る。
 また、第1の実施形態の電磁波検出装置10は、進行部20の作用面asに配置された画素px毎に第1の状態と第2の状態に切替え得る。このような構成により、第1の実施形態の電磁波検出装置10は、前段光学系19の光軸を、第1の状態において電磁波を進行させる第1の方向d1における第1の後段光学系21の光軸に、かつ第2の状態において電磁波を進行させる第2の方向d2における第2の後段光学系22の光軸に合わせることが可能となる。したがって、第1の実施形態の電磁波検出装置10は、進行部20の画素pxを第1の状態および第2の状態のいずれかに切替えることにより、第1の検出部17および第2の検出部18の光軸のズレを低減し得る。これにより、第1の実施形態の電磁波検出装置10は、第1の検出部17および第2の検出部18における検出軸のズレを低減し得る。そのため、第1の実施形態の電磁波検出装置10は、第1の検出部17および第2の検出部18による検出結果における座標系のズレを低減し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置10についても同じである。
 また、第1の実施形態の電磁波検出装置10は、進行部20における一部の画素pxを第1の状態に切替え、且つ別の一部の画素pxを第2の状態に切替え得る。したがって、第1の実施形態の電磁波検出装置10は、一部の画素pxにおいて第1の検出部17に電磁波を検出させながら、同時に別の一部の画素pxにおいて第2の検出部18に電磁波を検出させ得る。これにより、第1の実施形態の電磁波検出装置10は、異なる領域に関する情報を同時に取得し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置10についても同じである。
 また、第1の実施形態の電磁波検出装置10は、進行部20における同一の画素pxを第1の状態の次に第2の状態に切替え得る。このような構成において、進行部20における画素pxの第1の状態において第1の検出部17に電磁波が検出され得、その直後、当該画素pxの第2の状態において第2の検出部18に電磁波が検出され得る。したがって、第1の実施形態の電磁波検出装置10は、進行部20における同一の画素pxによる第1の検出部17および第2の検出部18における電磁波の検出時期のズレを低減し得る。これにより、第1の実施形態の電磁波検出装置10は、同一領域に関する情報の取得時期のズレを低減し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置10についても同じである。
 また、第1の実施形態の電磁波検出装置10は、照射源15を有している。したがって、第1の実施形態の電磁波検出装置10は、対象obに電磁波を照射することにより、第1の検出部17をアクティブセンサとして機能させ得る。また、第1の実施形態の電磁波検出装置10は、第2の検出部18をパッシブセンサとして機能させ得る。このような構成において、第1の実施形態の電磁波検出装置10は、進行部20における画素pxの少なくともいずれかを第1の状態の次に第2の状態に切替えることにより、同一領域に関する情報をアクティブセンサおよびパッシブセンサの両方に取得させ得る。また、このような構成において、第1の実施形態の電磁波検出装置10は、進行部20における一部の画素pxを第1の状態に切替え、且つ別の一部の画素pxを第2の状態に切替えることにより、アクティブセンサが情報を取得する領域とパッシブセンサが情報を取得する領域とを分け得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置10についても同じである。
 また、第1の実施形態の電磁波検出装置10は、進行方向変更部16を有している。このような構成により、第1の実施形態の電磁波検出装置10は、照射源15が放射する電磁波を用いて対象obを走査し得る。すなわち、第1の実施形態の電磁波検出装置10は、第1の検出部17を進行方向変更部16と協同させて走査型のアクティブセンサとして機能させ得る。したがって、第1の実施形態の電磁波検出装置10は、第1の検出部17により、一次元方向または二次元方向の位置に応じて情報を取得し得る。なお、このような構成および効果は、後述する第2の実施形態の電磁波検出装置10についても同じである。
 次に、本開示の第2の実施形態に係る電磁波検出装置について説明する。第2の実施形態では放射方向に関する情報の更新方法が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第2の実施形態について説明する。なお、第1の実施形態と同じ構成を有する部位には同じ符号を付す。
 第2の実施形態に係る電磁波検出装置10は、第1の実施形態の電磁波検出装置10と同じく、照射部11、電磁波検出部12、記憶部13、および制御部14を含んで構成されている。第2の実施形態における、照射部11、電磁波検出部12、および記憶部13の構成および機能は、第1の実施形態と同じである。第2の実施形態における、制御部14の構成は、第1の実施形態と同じである。第2の実施形態における制御部14の放射方向に関する情報の更新以外の機能は、第1の実施形態と同じである。以下に、第2の実施形態の制御部14が実行する放射方向に関する情報の更新機能の詳細が説明される。
 第2の実施形態においても、制御部14は、進行部20の中で反射波を第1の検出部17に進行させている進行素子の位置に基づいて、放射方向に関する情報を更新する。第2の実施形態において、制御部14は放射方向に関する情報の更新として、第1の関連情報を更新する。なお、第1の実施形態と類似して、放射方向が固定である構成においては、制御部14は放射方向を更新すればよい。
 第2の実施形態において、制御部14は、第1の実施形態と異なり、放射方向に関する情報を更新するために、進行部20の中の所定の位置の単一の画素pxを第1の状態に切替え、他の位置の画素pxを第2の状態に切替えさせる。
 また、第2の実施形態において、制御部14は、第1の実施形態と同じく、信号値が基準時間からの経過時間の関数である駆動信号を進行方向変更部16に送信する。制御部14は、連続的な電磁波放射信号を照射源15に送信する。
 第2の実施形態において、制御部14は、第1の実施形態と同じく、第1の検出部17が反射波を検出する基準時間からの実際の経過時間を観察する。第2の実施形態において、制御部14は、第1の実施形態と同じく、実際の経過時間を用いて、駆動信号の関数に基づいて、駆動信号の信号値を算出する。また、第2の実施形態において、制御部14は、第1の実施形態と同じく、第1の状態に切替えた画素pxの所定の位置を用いて、第2の関連情報に基づいて、放射方向を算出する。
 第2の実施形態において、制御部14は、第1の実施形態と異なり、算出した駆動信号の信号値および放射方向を組合わせて、記憶部13に記憶させる。第2の実施形態において、第1の関連情報の更新に複数の画素pxを用いる構成においては、制御部14は、第1の実施形態と異なり、さらに、別の位置の単一の画素pxを第1の状態に切替え、他の画素pxを第2の状態に切替えて、当該別の位置の単一の画素pxに対する駆動信号の信号値および放射方向を算出する。制御部14は、当該駆動信号の信号値および放射方向を組合わせて、記憶部13に記憶させる。以後、制御部14は、第1の関連情報の更新に用いる画素pxの数と同じ回数で、同様の制御を行ない、駆動信号の信号値および放射方向を組合わせて、記憶部13に記憶させる。
 制御部14は、記憶部13において組合わされて記憶された、駆動信号および放射方向に基づいて、第1の関連情報を更新する。なお、第1の関連情報の更新方法は、第1の実施形態と同じである。
 次に、第2の実施形態において制御部14が実行する、第1の関連情報の更新処理について、図13のフローチャートを用いて説明する。制御部14は、例えば、電磁波検出装置10の入力デバイスが第1の関連情報の更新処理実行の操作を検出するとき、第1の関連情報の更新処理を開始する。
 ステップS200において、制御部14は、進行部20の所定の位置の単一の画素pxを第1の状態に切替させる。制御部14が所定の位置の単一の画素pxを第1の状態に切替させると、プロセスはステップS201に進む。
 ステップS201では、制御部14は、記憶部13から第2の関連情報を読出す。制御部14が第2の関連情報を読出すと、プロセスはステップS202に進む。
 ステップS202では、制御部14は、ステップS200において第1の状態に切替えられた単一の画素pxの所定の位置を用いて、ステップS201において読出した第2の関連情報に基づいて、放射方向を算出する。制御部14が放射方向を算出すると、プロセスはステップS203に進む。
 ステップS203では、制御部14は、経過時間に応じた関数である駆動信号を進行方向変更部16に送信する。また、制御部14は、連続的な電磁波放射信号を照射源15に送信する。制御部14が駆動信号および電磁波放射信号を送信すると、プロセスはステップS204に進む。
 ステップS204では、制御部14は、第1の検出部17を駆動する。制御部14は、第1の検出部17の駆動により、反射波を検出するときの基準時間からの実際の経過時間を取得する。制御部14が実際の経過時間を取得すると、プロセスはステップS205に進む。
 ステップS205では、制御部14は、ステップS204において取得した実際の経過時間を用いて、駆動信号の関数に基づいて、駆動信号の信号値を算出する。制御部14が駆動信号の信号値を算出すると、プロセスはステップS206に進む。
 ステップS206では、制御部14は、ステップS202において算出した放射方向と、ステップS205において算出した駆動信号の信号値を組合わせて、記憶部13に記憶させる。制御部14が算出した放射方向および信号値を記憶させると、プロセスはステップS207に進む。
 ステップS207では、制御部14は、ステップS206において記憶した組合せが所定の数以上であるか否かを判別する。組合せが所定の数以上でないとき、プロセスはステップS208に進む。組合せが所定の数以上であるとき、プロセスはステップS209に進む。
 ステップS208では、制御部14は、第1の状態に切替える画素pxの所定の位置を、未だに切替えられていない位置に変更する。制御部14が所定の位置を変更すると、プロセスはステップS200に戻る。
 ステップS209では、制御部14は、ステップS206において算出した信号値および放射方向の組合せを用いて、記憶部13に記憶した第1の関連情報を更新する。制御部14は、第1の関連情報の更新後、第1の関連情報の更新処理を終了する。
 以上のような構成の第2の実施形態の電磁波検出装置10は、反射波による進行部20の一回の走査において単一の画素pxを第1の方向d1に切替えている。このような構成により、推定される放射方向および実際の放射方向の差異が比較的大きい場合においても、第2の実施形態の電磁波検出装置10は、反射波を検出するときの反射波を第1の検出部17に進行させる画素pxの位置および駆動信号を正確に組合わせ得る。したがって、第2の実施形態の電磁波検出装置10は、推定される放射方向および実際の放射方向の差異が比較的大きい場合においても、推定される放射方向および実際の放射方向の差異を高精度で低減させ得る。
 本発明を諸図面および実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形および修正を行うことが容易であることに注意されたい。従って、これらの変形および修正は本発明の範囲に含まれることに留意されたい。
 例えば、第1の実施形態および第2の実施形態において、照射部11からの電磁波の放射方向が固定である構成においては、以下のような変形例の構成によって、放射方向に関する情報を更新してよい。当該変形例において、制御部14は、電磁波を連続的に放射させながら、進行部20の画素pxを順番に第1の状態に切替えさせる。制御部14は、第1の検出部17が反射波を検出するときに第1の状態に切替えていた画素pxの位置を用いて、第2の関連情報に基づいて放射方向を算出する。制御部14は、算出した放射方向を用いて、記憶部13に記憶された放射方向に関する情報を更新する。
 また、第1の実施形態および第2の実施形態において、進行部20は、作用面asに入射する電磁波の進行方向を第1の方向d1および第2の方向d2の2方向に切替可能であるが、2方向のいずれかへの切替えでなく、3以上の方向に切替可能であってよい。
 また、第1の実施形態および第2の実施形態において、進行部20の第1の状態および第2の状態は、作用面asに入射する電磁波を、それぞれ、第1の方向d1に反射する第1の反射状態、および第2の方向d2に反射する第2の反射状態であるが、他の態様であってもよい。
 例えば、第2の状態が、作用面asに入射する電磁波を、透過させて第2の方向d2に進行させる透過状態であってもよい。進行部20は、さらに具体的には、画素px毎に電磁波を反射する反射面を有するシャッタを含んでいてもよい。このような構成の進行部20においては、画素px毎のシャッタを開閉することにより、第1の反射状態および第2の状態としての透過状態を画素px毎に切替え得る。このような構成の進行部20として、例えば、開閉可能な複数のシャッタがアレイ状に配列されたMEMSシャッタを含む進行部が挙げられる。また、進行部20は、電磁波を反射する反射状態と電磁波を透過する透過状態とを液晶配向に応じて切替え可能な液晶シャッタを含む進行部が挙げられる。このような構成の進行部20においては、画素px毎の液晶配向を切替えることにより、第1の状態としての反射状態および第2の状態としての透過状態を画素px毎に切替え得る。
 また、第1の実施形態および第2の実施形態において、電磁波検出装置10は、第1の検出部17がアクティブセンサの一部として機能し、第2の検出部18がパッシブセンサである構成を有する。しかし、電磁波検出装置10は、このような構成に限られない。例えば、電磁波検出装置10は、第1の検出部17および第2の検出部18が共にパッシブセンサである構成でも、アクティブセンサの一部として機能する構成でも第1の実施形態と類似の効果が得られる。
 また、第1の実施形態および第2の実施形態において、電磁波検出装置10は、照射源15、進行方向変更部16、記憶部13、制御部14、および電磁波検出部12を含んで構成されているが、これらの少なくとも1つを含んで構成されてもよい。また、電磁波検出装置10が少なくとも電磁波検出部12を含み、別の装置がその他を含むことにより、電磁波検出システムが構成されてもよい。
 また、第1の実施形態および第2の実施形態において、電磁波検出装置10は、照射源15から放射されるビーム状の電磁波を進行方向変更部16により走査させることにより、第1の検出部17を進行方向変更部16と協同させて走査型のアクティブセンサとして機能させる構成である。しかし、電磁波検出装置10は、このような構成に限られない。例えば、電磁波検出装置10は、進行方向変更部16を備えず、照射源15から放射状の電磁波を放射させ、走査なしで情報を取得する構成でも、第1の実施形態および第2の実施形態と類似の効果が得られる。
 なお、ここでは、特定の機能を実行する種々のモジュール及び/またはユニットを有するものとしてのシステムを開示しており、これらのモジュール及びユニットは、その機能性を簡略に説明するために模式的に示されたものであって、必ずしも、特定のハードウェア及び/またはソフトウェアを示すものではないことに留意されたい。その意味において、これらのモジュール、ユニット、その他の構成要素は、ここで説明された特定の機能を実質的に実行するように実装されたハードウェア及び/またはソフトウェアであればよい。異なる構成要素の種々の機能は、ハードウェア及び/もしくはソフトウェアのいかなる組合せまたは分離したものであってもよく、それぞれ別々に、またはいずれかの組合せにより用いることができる。また、キーボード、ディスプレイ、タッチスクリーン、ポインティングデバイス等を含むがこれらに限られない入力/出力もしくはI/Oデバイスまたはユーザインターフェースは、システムに直接にまたは介在するI/Oコントローラを介して接続することができる。このように、本開示内容の種々の側面は、多くの異なる態様で実施することができ、それらの態様はすべて本開示内容の範囲に含まれる。
 機械読取り可能な非一時的記憶媒体は、さらに、ソリッドステートメモリ、磁気ディスク及び光学ディスクの範疇で構成されるコンピュータ読取り可能な有形のキャリア(媒体)として構成することができ、かかる媒体には、ここに開示する技術をプロセッサに実行させるためのプログラムモジュールなどのコンピュータ命令の適宜なセットや、データ構造が格納される。コンピュータ読取り可能な媒体には、一つ以上の配線を備えた電気的接続、磁気ディスク記憶媒体、磁気カセット、磁気テープ、その他の磁気及び光学記憶装置(たとえば、CD(Compact Disk)、レーザーディスク(登録商標)、DVD(Digital Versatile Disc)、フロッピーディスク及びブルーレイディスク)、可搬型コンピュータディスク、RAM(Random Access Memory)、ROM(Read-Only Memory)、EPROM、EEPROMもしくはフラッシュメモリ等の書換え可能でプログラム可能なROMもしくは情報を格納可能な他の有形の記憶媒体またはこれらいずれかの組合せが含まれる。メモリは、プロセッサ/プロセッシングユニットの内部及び/または外部に設けることができる。ここで用いられるように、「メモリ」という語は、あらゆる種類の長期記憶用、短期記憶用、揮発性、不揮発性その他のメモリを意味し、特定の種類やメモリの数または記憶が格納される媒体の種類は限定されない。
 10 電磁波検出装置
 11 照射部
 12 電磁波検出部
 13 記憶部
 14 制御部
 15 照射源
 16進行方向変更部
 17 第1の検出部
 18 第2の検出部
 19 前段光学系
 20 進行部
 21 第1の後段光学系
 22 第2の後段光学系
 as 作用面
 d1 第1の方向
 d2 第2の方向
 ob 対象
 px、px1、px2 画素

Claims (14)

  1.  電磁波を放射する照射部と、
     対象に照射された前記電磁波の反射波を検出する第1の検出部と、
     前記対象に照射された前記電磁波の照射位置別に、前記反射波の前記第1の検出部への進行の可否を切替える複数の進行素子を有する進行部と、
     前記電磁波の放射方向に関する情報を記憶する記憶部と、
     前記第1の検出部が前記反射波を検出するときに前記反射波を前記第1の検出部に進行させている進行素子の位置に基づいて、前記放射方向に関する情報を更新する制御部と、を備える
     電磁波検出装置。
  2.  請求項1に記載の電磁波検出装置において、
     前記照射部は、駆動信号に応じて、前記電磁波の放射方向を変更することにより、照射位置を変えながら、前記電磁波を前記対象に照射し、
     前記記憶部は、前記駆動信号および前記放射方向を関連付けた第1の関連情報を、前記放射方向に関する情報として記憶し、
     前記制御部は、前記第1の検出部が前記反射波を検出するとき前記反射波を前記第1の検出部に進行させている進行素子の位置とともに、前記第1の検出部が前記反射波を検出するときの前記駆動信号に基づいて、前記放射方向に関する情報の更新として、前記第1の関連情報を更新する
     電磁波検出装置。
  3.  請求項2に記載の電磁波検出装置において、
     前記記憶部は、前記放射方向と、該放射方向に放射される電磁波の反射波が入射する進行素子の位置とを関連付けた第2の関連情報を含み、
     前記制御部は、前記第1の検出部が前記反射波を検出するとき前記反射波を前記第1の検出部に進行させている進行素子の位置および前記第2の関連情報に基づく放射方向と、前記第1の検出部が前記反射波を検出するときの前記駆動信号とに基づいて前記第1の関連情報を更新する
     電磁波検出装置。
  4.  請求項2または3に記載の電磁波検出装置において、
     前記制御部は、前記第1の関連情報の更新として、前記第1の関連情報における前記駆動信号および前記放射方向の関連性を更新する
     電磁波検出装置。
  5.  請求項2から4のいずれか1項に記載の電磁波検出装置において、
     前記制御部は、前記第1の関連情報の更新として、前記第1の関連情報における前記駆動信号および前記放射方向の相関性を示す関数を更新する
     電磁波検出装置。
  6.  請求項2から5のいずれか1項に記載の電磁波検出装置において、
     前記第1の関連情報は、前記駆動信号の複数の信号値、および該複数の信号値別に対応付けた前記放射方向であり、
     前記制御部は、前記第1の関連情報の更新として、前記第1の関連情報における前記駆動信号の複数の信号値と、前記放射方向との対応付けを更新する
     電磁波検出装置。
  7.  請求項6に記載の電磁波検出装置において、
     前記制御部は、前記第1の関連情報の更新として、前記第1の関連情報における前記駆動信号の複数の信号値を更新する
     電磁波検出装置。
  8.  請求項2から7のいずれか1項に記載の電磁波検出装置において、
     前記制御部は、前記第1の関連情報の更新として、前記第1の関連情報における前記放射方向を更新する
     電磁波検出装置。
  9.  請求項2から8のいずれか1項に記載の電磁波検出装置において、
     前記照射部は、放射する電磁波を、前記駆動信号に応じて向きを変更しながら反射することにより照射位置を変えながら前記対象に照射する反射面を有する
     電磁波検出装置。
  10.  請求項1から9のいずれか1項に記載の電磁波検出装置において、
     前記進行部は、前記反射波を、前記進行素子毎に、前記第1の検出部が配置される第1の方向に進行させる第1の状態と、前記第1の方向とは異なる第2の方向に進行させる第2の状態とに切替え可能である
     電磁波検出装置。
  11.  請求項10に記載の電磁波検出装置において、
     前記制御部は、前記複数の進行素子の少なくとも1つの進行素子を前記第1の状態に切替え、前記第1の状態に切替えた進行素子の位置を、前記第1の検出部が前記反射波を検出するときに前記反射波を前記第1の検出部に進行させている進行素子の位置とみなす
     電磁波検出装置。
  12.  請求項10または11に記載の電磁波検出装置において、
     前記進行部に対して前記第2の方向に配置され、入射する前記反射波を検出する第2の検出部を、さらに備える
     電磁波検出装置。
  13.  電磁波を放射するステップと、
     対象に照射された前記電磁波の反射波を第1の検出部によりに検出するステップと、
     前記対象に照射された前記電磁波の照射位置別に、前記反射波の前記第1の検出部への進行の可否を切替え可能な複数の進行素子の一部を、前記第1の検出部に進行させるステップと、
     前記電磁波の放射方向に関する情報を記憶するステップと、
     前記第1の検出部が前記反射波を検出するときに前記反射波を前記第1の検出部に進行させている進行素子の位置に基づいて、前記放射方向に関する情報を更新するステップと、を装置に実行させる
     プログラム。
  14.  電磁波を放射する照射部と、
     対象に照射された前記電磁波の反射波を検出する第1の検出部と、
     前記対象に照射された前記電磁波の照射位置別に、前記反射波の前記第1の検出部への進行の可否を切替える複数の進行素子を有する進行部と、
     前記電磁波の放射方向に関する情報を記憶する記憶部と、
     前記第1の検出部が前記反射波を検出するときに前記反射波を前記第1の検出部に進行させている進行素子の位置に基づいて、前記放射方向に関する情報を更新する制御部と、を備える
     電磁波検出システム。
     
PCT/JP2018/008335 2017-03-24 2018-03-05 電磁波検出装置、プログラム、および電磁波検出システム WO2018173720A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/495,470 US11408982B2 (en) 2017-03-24 2018-03-05 Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system
EP18770202.2A EP3605138A4 (en) 2017-03-24 2018-03-05 DEVICE FOR DETECTING ELECTROMAGNETIC WAVES, PROGRAM AND SYSTEM FOR DETECTING ELECTROMAGNETIC WAVES
KR1020197027505A KR102287270B1 (ko) 2017-03-24 2018-03-05 전자파 검출 장치, 프로그램, 및 전자파 검출 시스템
CN201880020356.8A CN110476076B (zh) 2017-03-24 2018-03-05 电磁波检测装置、程序以及电磁波检测系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059893A JP6850173B2 (ja) 2017-03-24 2017-03-24 電磁波検出装置、プログラム、および電磁波検出システム
JP2017-059893 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173720A1 true WO2018173720A1 (ja) 2018-09-27

Family

ID=63585961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008335 WO2018173720A1 (ja) 2017-03-24 2018-03-05 電磁波検出装置、プログラム、および電磁波検出システム

Country Status (6)

Country Link
US (1) US11408982B2 (ja)
EP (1) EP3605138A4 (ja)
JP (1) JP6850173B2 (ja)
KR (1) KR102287270B1 (ja)
CN (1) CN110476076B (ja)
WO (1) WO2018173720A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071180A1 (ja) * 2018-10-05 2020-04-09 京セラ株式会社 電磁波検出装置及び情報取得システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067403A (ja) * 2018-10-25 2020-04-30 京セラ株式会社 電磁波検出装置
JP7118865B2 (ja) * 2018-11-19 2022-08-16 京セラ株式会社 電磁波検出装置および情報取得システム
US10539644B1 (en) * 2019-02-27 2020-01-21 Northern Digital Inc. Tracking an object in an electromagnetic field
JP2020176983A (ja) * 2019-04-22 2020-10-29 パイオニア株式会社 検知装置、測距方法、プログラム及び記録媒体
CN113607757A (zh) * 2021-09-18 2021-11-05 三兄弟(珠海)科技有限公司 一种用于材料检测的电磁波检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163271A (ja) * 2002-11-13 2004-06-10 Tokyo Denki Univ 非接触画像計測装置
JP2010096574A (ja) * 2008-10-15 2010-04-30 Ihi Corp レーザレーダ及びレーザレーダによる計測方法
JP2011220732A (ja) 2010-04-06 2011-11-04 Honda Motor Co Ltd 車両の周辺監視装置
JP2014512525A (ja) * 2011-03-17 2014-05-22 ウニベルジテート ポリテクニカ デ カタル−ニア 光ビームを受光するシステムと方法とコンピュータ・プログラム
JP2015513825A (ja) * 2012-02-15 2015-05-14 メサ・イメージング・アー・ゲーMesa Imaging Ag ストライプ照明の飛行時間型カメラ
US20160109561A1 (en) * 2014-10-16 2016-04-21 Harris Corporation Modulation of input to geiger mode avalanche photodiode lidar using digital micromirror devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219814A (en) * 1978-12-26 1980-08-26 Rca Corporation Scanning radar
EP0427822B2 (en) * 1989-04-10 2001-01-17 Auto-Sense, Limited Collision avoidance system for vehicles
JP3483303B2 (ja) * 1994-06-21 2004-01-06 株式会社トプコン 回転レーザ装置
US5760886A (en) * 1994-07-29 1998-06-02 Miyazaki; Hidenori Scanning-type distance measurement device responsive to selected signals
JP3986671B2 (ja) * 1998-07-15 2007-10-03 本田技研工業株式会社 物体検知装置
ES2250636T3 (es) * 2001-04-04 2006-04-16 Instro Precision Limited Equipo de analisis de imagenes.
JP3962627B2 (ja) * 2001-11-12 2007-08-22 正吾 田中 コンクリート構造物及びそれ以外の構造物の非破壊検査方法
JP3950059B2 (ja) * 2003-01-06 2007-07-25 三井造船株式会社 時間分解二次元微弱光検出方法および装置
US20050058242A1 (en) * 2003-09-15 2005-03-17 Peschmann Kristian R. Methods and systems for the rapid detection of concealed objects
JP2005005975A (ja) * 2003-06-11 2005-01-06 Shimadzu Corp 撮影装置
JP4392833B2 (ja) * 2004-06-14 2010-01-06 三井造船株式会社 3次元画像情報取得装置
KR101321303B1 (ko) * 2005-12-08 2013-10-25 어드밴스트 사이언티픽 컨셉츠 인크. 3d 초점면을 사용하는 레이저 범위측정과 추적 및 지정
US7483151B2 (en) * 2006-03-17 2009-01-27 Alpineon D.O.O. Active 3D triangulation-based imaging method and device
DE102008045387B4 (de) * 2008-09-02 2017-02-09 Carl Zeiss Ag Vorrichtung und Verfahren zum Vermessen einer Oberfläche
JP5950599B2 (ja) * 2011-11-07 2016-07-13 キヤノン株式会社 被検体情報取得装置、被検体情報取得方法及びプログラム
US9470784B2 (en) * 2011-12-02 2016-10-18 Panasonic Corporation Radar device
DE102012101909B3 (de) * 2012-03-07 2013-01-03 Sick Ag Entfernungsmessender Sensor und Verfahren zur Synchronisierung
JP2013190350A (ja) * 2012-03-14 2013-09-26 Canon Inc テラヘルツ波帯の電磁波を用いた装置
ES2512965B2 (es) 2013-02-13 2015-11-24 Universitat Politècnica De Catalunya Sistema y método para escanear una superficie y programa de ordenador que implementa el método
EP2803951B1 (de) * 2013-05-17 2020-02-26 VEGA Grieshaber KG Topologiebestimmung für Schüttgüter
JP6251533B2 (ja) * 2013-09-27 2017-12-20 パナソニック株式会社 レーダ装置及び物体検出方法
US10393565B2 (en) * 2014-06-03 2019-08-27 Vega Grieshaber Kg Determination of container and interference point profiles
CN106471335B (zh) * 2014-07-03 2018-11-30 夏普株式会社 光反射型传感器和电子设备
EP3171453B1 (de) * 2015-11-17 2019-02-13 VEGA Grieshaber KG Antennenvorrichtung und verfahren zum betreiben einer antennenvorrichtung
WO2017084700A1 (de) * 2015-11-17 2017-05-26 Vega Grieshaber Kg Antennenvorrichtung und verfahren zum senden und/oder empfangen eines signals
JP6742745B2 (ja) * 2016-02-08 2020-08-19 キヤノン株式会社 情報取得装置および表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163271A (ja) * 2002-11-13 2004-06-10 Tokyo Denki Univ 非接触画像計測装置
JP2010096574A (ja) * 2008-10-15 2010-04-30 Ihi Corp レーザレーダ及びレーザレーダによる計測方法
JP2011220732A (ja) 2010-04-06 2011-11-04 Honda Motor Co Ltd 車両の周辺監視装置
JP2014512525A (ja) * 2011-03-17 2014-05-22 ウニベルジテート ポリテクニカ デ カタル−ニア 光ビームを受光するシステムと方法とコンピュータ・プログラム
JP2015513825A (ja) * 2012-02-15 2015-05-14 メサ・イメージング・アー・ゲーMesa Imaging Ag ストライプ照明の飛行時間型カメラ
US20160109561A1 (en) * 2014-10-16 2016-04-21 Harris Corporation Modulation of input to geiger mode avalanche photodiode lidar using digital micromirror devices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071180A1 (ja) * 2018-10-05 2020-04-09 京セラ株式会社 電磁波検出装置及び情報取得システム
JP2020060396A (ja) * 2018-10-05 2020-04-16 京セラ株式会社 電磁波検出装置及び情報取得システム
CN112789513A (zh) * 2018-10-05 2021-05-11 京瓷株式会社 电磁波检测装置以及信息获取系统
JP7004632B2 (ja) 2018-10-05 2022-01-21 京セラ株式会社 電磁波検出装置
EP3862777A4 (en) * 2018-10-05 2022-06-15 Kyocera Corporation ELECTROMAGNETIC WAVE DETECTION DEVICE AND INFORMATION ACQUISITION SYSTEM

Also Published As

Publication number Publication date
JP6850173B2 (ja) 2021-03-31
KR20190119109A (ko) 2019-10-21
EP3605138A1 (en) 2020-02-05
KR102287270B1 (ko) 2021-08-06
CN110476076B (zh) 2023-09-19
CN110476076A (zh) 2019-11-19
US11408982B2 (en) 2022-08-09
US20200096616A1 (en) 2020-03-26
EP3605138A4 (en) 2020-12-23
JP2018163020A (ja) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2018173720A1 (ja) 電磁波検出装置、プログラム、および電磁波検出システム
KR102275104B1 (ko) 전자파 검출 장치, 프로그램, 및 정보 취득 시스템
WO2018168507A1 (ja) 電磁波検出装置、プログラム、および電磁波検出システム
KR102287265B1 (ko) 전자파 검출 장치, 프로그램, 및 전자파 검출 시스템
US11194021B2 (en) Electromagnetic wave detection apparatus, program, and electromagnetic wave detection system comprising a controller to update related information associating an emission direction and two elements defining two points on a path of electromagnetic waves
WO2020085089A1 (ja) 電磁波検出装置
JP7037609B2 (ja) 電磁波検出装置およびプログラム
WO2018225660A1 (ja) 電磁波検出装置、電磁波検出システム、およびプログラム
JP2020016623A (ja) 電磁波検出装置および情報取得システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770202

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027505

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018770202

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018770202

Country of ref document: EP

Effective date: 20191024