WO2018173379A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2018173379A1
WO2018173379A1 PCT/JP2017/043630 JP2017043630W WO2018173379A1 WO 2018173379 A1 WO2018173379 A1 WO 2018173379A1 JP 2017043630 W JP2017043630 W JP 2017043630W WO 2018173379 A1 WO2018173379 A1 WO 2018173379A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
capacitor
section
semiconductor element
power conversion
Prior art date
Application number
PCT/JP2017/043630
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 松元
中津 欣也
央 上妻
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018173379A1 publication Critical patent/WO2018173379A1/en

Links

Images

Definitions

  • the present invention relates to a power conversion device.
  • Patent Document 1 states that “a plurality of compartments are formed inside the box of the power converter, and at least one of the compartments is configured to allow forced air flow from outside.
  • the partition chamber adjacent to the partition wall through the partition wall cannot be forced to flow cooling air from the outside, and the power conversion device needs to be cooled in the partition chamber capable of forced cooling air flow.
  • the component device is accommodated, and the electrical connection terminal portion of the component device accommodated in the compartment is exposed through the partition wall into the compartment where the cooling air cannot be forced to flow through.
  • the connection terminal portions of the component devices exposed to each other and the connection terminal portions of other component devices are connected by connection conductors in the compartment where the forced air flow is not possible.
  • a first semiconductor element, a first heat sink mounted on the first semiconductor element, a first capacitor, and a first semiconductor element A first main circuit board on which the first capacitor is mounted; a second semiconductor element; a second heat sink mounted on the second semiconductor element; a second capacitor; A second main circuit board on which the semiconductor element and the second capacitor are mounted; a first section in which the first main circuit board is accommodated; and a second section having a ventilation path through which the cooling air flows.
  • a housing that forms a third compartment in which the second main circuit board is accommodated, and an electrical terminal of the first capacitor and an electrical terminal of the first semiconductor element are the first At least a portion of the first capacitor and the first heat shield.
  • At least a portion of the first capacitor is exposed to the second section, and an electric terminal of the second capacitor and an electric terminal of the second semiconductor element are housed in the third section, and at least the second capacitor A part and at least a part of the second heat sink are exposed to the second section.
  • a power converter device can be comprised small and lightweight, suppressing accumulation of dust.
  • FIG. 2B is a partially enlarged view of FIG. 2A. It is a cross-sectional view of the principal part of the power converter device of 2nd Embodiment.
  • FIG. 3B is a partially enlarged view of FIG. 3A.
  • FIG. 1 is a longitudinal sectional view of a power conversion device S1 according to the first embodiment of the present invention.
  • the power conversion device S1 includes a substantially cuboid frame-shaped casing 100.
  • the outside of the housing 100 is in an atmospheric environment.
  • the casing 100 has three sections divided along the vertical direction, and these sections are arranged in order from the top, SP1 (first section), SP2 (second section), SP3 (third section). ).
  • the upper surface and side surfaces of the section SP1 are covered with an upper lid 110 (first lid member) having a substantially cross-sectional shape, thereby suppressing the flow of air and outside air in the section SP1.
  • the lower surface of the section SP1 is covered with the partition plate 130 (first partition plate) and the power conversion circuit 120.
  • the power conversion circuit 120 includes a main circuit board 122 (first main circuit board), a capacitor 124 (first capacitor), and a semiconductor element 126 (first semiconductor element).
  • the partition plate 130 is obtained by forming a plurality of through holes 130a (first through holes) in a rectangular plate made of an insulating material or a metal material.
  • the main circuit board 122 is attached to the partition plate 130 so as to cover the through hole 130a.
  • a plurality of capacitors 124 and a plurality of semiconductor elements 126 are mounted on the main circuit board 122.
  • the main circuit board 122 is obtained by applying a wiring pattern (not shown) made of copper metal or the like to a plate of an insulating material such as an epoxy resin, and the wiring patterns having different potentials are insulated by the insulating material.
  • the capacitor 124 and the semiconductor element 126 are appropriately connected to these wiring patterns.
  • the configuration of the wiring pattern and the type and quantity of the capacitor 124 and the semiconductor element 126 may be determined according to a desired power conversion method.
  • the capacitor 124 is arranged so that these electric terminals 124a face upward, and the main body portion of the capacitor 124 passes through the partition plate 130 through the through hole 130a and protrudes to the lower section SP2.
  • the semiconductor element 126 has an electrical terminal 126a protruding in the lateral direction. These electric terminals 124 a and 126 a are connected to the wiring pattern by soldering or the like on the upper surface side of the main circuit board 122.
  • a heat sink 128 that suppresses a temperature rise during operation is mounted on the lower surface of the semiconductor element 126.
  • the semiconductor element 126 and the heat sink 128 are inserted through the through hole 130 a of the partition plate 130.
  • the abutting surface between the semiconductor element 126 and the heat sink 128 is preferably near the vertical center position of the through-hole 130a (vertical center position of the partition plate 130).
  • the heat sink 128 has a plurality of fins (not indicated) serving as a heat radiating portion, and the heat radiating portion protrudes into the lower section SP2 through the through hole 130a.
  • the lower surface and side surfaces of the section SP3 are covered with a lower lid 150 (second cover member) having a substantially square cross section, thereby suppressing the flow of air and outside air in the section SP3.
  • the vertical width of the lower lid 150 is wider than that of the upper lid 110.
  • the upper surface of the section SP3 is covered with the partition plate 140 (second partition plate) and the power conversion circuit 160.
  • the power conversion circuit 160 includes a main circuit board 162 (second main circuit board), a capacitor 164, and a semiconductor element 166.
  • the partition plate 140 is formed by forming a plurality of through holes 140a (second through holes) in a rectangular plate made of an insulating material or a metal material, like the partition plate 130.
  • the main circuit board 162 is mounted on the partition plate 140 so as to cover the through hole 140a.
  • the main circuit board 162 is obtained by applying a wiring pattern to a plate of an insulating material.
  • the capacitor 164 (second capacitor) and the semiconductor element 166 (second semiconductor element) are These wiring patterns are appropriately connected.
  • the capacitor 164 is disposed such that these electric terminals 164a face downward, and the main body portion of the capacitor 164 penetrates the partition plate 140 through the through hole 140a and protrudes into the section SP2. Further, the semiconductor element 166 has an electrical terminal 166a protruding in the lateral direction. The electrical terminals 164a and 166a are connected to the wiring pattern by soldering or the like on the lower surface side of the main circuit board 162.
  • a heat sink 168 (second heat sink) configured similarly to the heat sink 128 is mounted on the upper surface of the semiconductor element 166.
  • the semiconductor element 166 and the heat sink 168 are inserted through the through hole 140a.
  • the abutting surface between the semiconductor element 166 and the heat sink 168 is preferably in the vicinity of the vertical center position of the through hole 140a.
  • a control circuit 170 is disposed below the power conversion circuit 160.
  • the control circuit 170 has a control board 172 and various components (not shown) mounted thereon.
  • the control circuit 170 controls the on / off states of the semiconductor elements 126 and 166.
  • the housing 100 has electrical terminals that input and output power to the power conversion circuits 120 and 160.
  • the main body portions of the capacitors 124 and 164 and the heat dissipation portions of the heat sinks 128 and 168 protrude into the section SP2.
  • Both ends (front and rear ends in FIG. 1) of the partition SP2 are opened, and the partition plates 130 and 140 are the upper and lower surfaces.
  • a pair of side wall plates 134 (in FIG. 1, only one of them is shown because it is a cross-sectional view) serves as the left and right surfaces.
  • the section SP2 is formed in a substantially duct shape as a whole.
  • a blower 132 is disposed in front of the section SP2. The cooling air W by the blower 132 flows in from the front of the section SP2 and flows out backward.
  • the partition plates 130 and 140 are separated by a distance that can secure a sufficient space between the capacitors 124 and 164 and between the heat sinks 128 and 168.
  • the cooling air W cools the main body portions of the capacitors 124 and 164, cools the semiconductor elements 126 and 166 through the heat sinks 128 and 168, and then is discharged backward.
  • the partition plates 130 and 140 are also exposed to the cooling air W, the heat of the main circuit boards 122 and 162 is exhausted after being transmitted to the partition plates 130 and 140.
  • the section SP1 and the section SP3 are in an airtight state. Therefore, the capacitors 124 and 164 and the electrical terminals 124a, 164a, 126a, and 166a of the semiconductor elements 126 and 166 are not directly exposed to the cooling air W.
  • the cooling air W purifies the atmosphere containing dust and the like with an air filter or the like, it still contains a certain amount of dust. Therefore, dust tends to accumulate in the path of the cooling air W due to long-term use of the power conversion device S1.
  • the electrical terminals 124a, 164a, 126a, 166a are not exposed in the path of the cooling air W, it is possible to suppress the accumulation of dust between these terminals.
  • the dust becomes a short circuit path and an unexpected short circuit may occur between the electrical terminals. Since such a short circuit leads to a sudden stop or failure of the apparatus, a certain distance is provided between the electrical terminals. The distance is determined by a period in which a short circuit due to dust is desired to be prevented, a dust level, and the like. In general, there is a desire to use the apparatus for a long period of time and in an environment with a high dust level. If this requirement is met, the distance between the electrical terminals becomes longer, which tends to increase the size of the apparatus. On the other hand, according to the present embodiment, since the cooling air W is not directly exposed to the electric terminals, it is not necessary to increase the distance between the electric terminals even when the dust level of the outside air is high.
  • the device S1 can be reduced in size.
  • the configuration of the main circuit boards 122 and 162 is determined based on the adopted power conversion method or the like, but the potential (for example, ground potential) of the main circuit boards 122 and 162 may be greatly different depending on the power conversion method or the like. In that case, there is a case where a certain distance should be provided between the main circuit boards 122 and 162 in accordance with the potential difference between them.
  • the main circuit boards 122 and 162 are originally separated by a certain distance (the width in the vertical direction of the side wall plate 134), thereby ensuring a sufficient insulation distance. There are many cases. Therefore, it is not necessary to secure an extra space for securing the insulation distance, and the power conversion device S1 can be configured to be small and light.
  • FIG. 2A is a cross-sectional view of the power conversion device S1 in the vicinity of the ends of the sections SP1 and SP2.
  • FIG. 2B is an enlarged view of the A1 portion.
  • the partition plate 130 and the side wall plate 134 are in direct contact with each other.
  • a sealing material 210 (first sealing material) is inserted between the upper lid 110 and the partition plate 130.
  • the sealing material 210 a sheet of resin or the like, an adhesive, or the like can be applied.
  • a sealing material 210 (second sealing material) is similarly inserted between the partition plate 140 and the lower lid 150 shown in FIG. 1 (not shown). Thereby, the airtightness of division SP3 can be improved similarly.
  • FIGS. 3A and 3B are cross-sectional views of the power conversion device in the vicinity of the ends of the sections SP1 and SP2 in the power conversion device S2 of the present embodiment.
  • FIG. 3B is an enlarged view of the B1 portion.
  • FIG. 3A the upper lid 110 and the partition plate 130 are in direct contact with each other.
  • a sealing material 220 (third sealing material) is inserted between the partition plate 130 and the side wall plate 134.
  • the sealing material 220 a sheet of resin or the like, an adhesive, or the like can be applied as in the sealing material 210 (see FIG. 2B) of the first embodiment.
  • the sealing material 220 it is possible to close a minute gap due to a manufacturing error of the partition plate 130 and the side wall plate 134, and to improve the airtightness in the lateral direction of the section SP2.
  • a sealing material 220 (fourth sealing material) is similarly inserted between the partition plate 140 and the side wall plate 134 shown in FIG. 1 (not shown). Thereby, leakage of the cooling air W from the lateral direction can be prevented, and the diffusion of dust throughout the entire apparatus can be more reliably suppressed.
  • a sealing material 210 may be inserted between the upper lid 110 and the partition plate 130 as in the first embodiment (see FIG. 2B). That is, both the sealing materials 210 and 220 may be applied.
  • FIG. 4 is a longitudinal sectional view of the power converter S3 according to the present embodiment.
  • the power conversion device S3 has a substantially rectangular parallelepiped frame-shaped housing 100B.
  • the housing 100B has sections SP1, SP2, and SP3 partitioned along the vertical direction, like the housing 100 (see FIG. 1) of the first embodiment.
  • control circuits 180 (first control circuits) and 190 are provided instead of the control circuit 170 in the first embodiment.
  • the control circuit 180 controls the on / off state of the semiconductor element 126 in the power conversion circuit 120.
  • the control circuit 190 controls the on / off state of the semiconductor element 166 in the power conversion circuit 160.
  • the control circuit 180 includes a control board 182 (first control board) provided in the section SP1 and a heat sink 184 (third heat sink) attached to a heat generating component (not shown) mounted on the control board 182. And have.
  • the heat sink 184 protrudes into the partition SP2 through the through hole 130a of the partition plate 130.
  • control circuit 190 (second control circuit) is mounted on a control board 192 (second control board) provided in the section SP3 and a heat generating component (not shown) mounted on the control board 192.
  • Heat sink 194 (fourth heat sink). The heat sink 194 protrudes into the partition SP2 through the through hole 140a of the partition plate 140.
  • the control circuits 180 and 190 can be cooled by the cooling air W, the reliability of these control circuits can be improved particularly when the amount of heat generated by the control circuits 180 and 190 is large.
  • FIG. 5 is a perspective view of the power converter S4 according to the present embodiment.
  • the power conversion device S4 includes a housing 100. Inside the housing 100, each component of the power conversion device S1 (first embodiment) shown in FIG. 1, such as the power conversion circuits 120 and 160, is provided.
  • a power conversion circuit 410 having a substantially rectangular parallelepiped casing 412 is attached to the right end of the front end portion of the casing 100.
  • a power conversion circuit 430 having a substantially rectangular parallelepiped casing 432 is attached to the left end of the front end portion of the casing 100.
  • Electrical terminals 414 and 434 protrude from the front surfaces of the housings 412 and 432 toward the front, respectively.
  • heat sinks 416 and 436 protrude from the left side surface of the housing 412 and the right side surface of the housing 432 so as to face each other.
  • a transformer circuit 450 having a substantially rectangular parallelepiped casing 452 is attached to the rear end of the casing 100.
  • the housing 452 is open along the front-rear direction (not shown).
  • the cooling air W flowing in from the front of the housings 412 and 432 is discharged rearward through the housing 100 and the housing 452.
  • the above-described casings 100, 412, 432, and 452 are collectively referred to as a casing 400.
  • the housings 412 and 432 are configured to keep the inside thereof in an airtight state. Accordingly, dust is less likely to accumulate around electrical terminals (not shown) inside the casings 412 and 432.
  • FIG. 6 is a circuit diagram of the power conversion device S4 according to the present embodiment.
  • the power conversion circuit 410 includes four semiconductor elements 422 that are bridge-connected.
  • the semiconductor element 422 is an IGBT (Insulated Gate Bipolar Transistor) and a free-wheeling diode connected to each of them in parallel.
  • the power conversion circuit 410 operates as a synchronous rectification circuit, and converts an AC voltage (for example, commercial frequency) applied to the electrical terminal 414 into a DC voltage.
  • the heat sink 416 shown in FIG. 5 is attached to these semiconductor elements 422.
  • the power conversion circuit 120 includes a plurality of capacitors 124 and a plurality of semiconductor elements 126.
  • the plurality of capacitors 124 are illustrated as one capacitor 124G in FIG.
  • the DC voltage output from the power conversion circuit 410 is smoothed by the capacitor 124G.
  • the semiconductor element 126 is a MOSFET (Metal-Oxide-SemiconductoremiField-Effect Transistor) and a free-wheeling diode connected in parallel to each of them, and four semiconductor devices 126 are bridge-connected. .
  • MOSFET Metal-Oxide-SemiconductoremiField-Effect Transistor
  • the power conversion circuit 120 operates as an inverter, and converts the DC voltage output from the capacitor 124G into a high-frequency voltage of about several tens of kHz.
  • the transformer circuit 450 includes a high-frequency transformer 462, a reactor 468, and a capacitor 464, and supplies power from the power conversion circuit 120 to the power conversion circuit 160 while insulating the power conversion circuit 120 and the power conversion circuit 160.
  • the power conversion circuit 160 includes a plurality of capacitors 164 and a plurality of semiconductor elements 166.
  • the plurality of capacitors 164 are illustrated as one capacitor 164G in FIG.
  • the semiconductor element 126 is a diode, and four semiconductor elements 126 are bridge-connected to form a full-wave rectifier circuit.
  • the high-frequency voltage output from the transformer circuit 450 is converted into a DC voltage by the semiconductor element 166, and the DC voltage is smoothed by the capacitor 164G.
  • the power conversion circuit 430 includes four semiconductor elements 442 that are bridge-connected.
  • the semiconductor element 442 is an IGBT and a free-wheeling diode connected to each of them in parallel. Note that the heat sink 436 shown in FIG. 5 is attached to these semiconductor elements 442.
  • the power conversion circuit 430 operates as an inverter, converts the DC voltage supplied from the power conversion circuit 160 into an AC voltage (for example, commercial frequency), and outputs the AC voltage via the electrical terminal 434.
  • the control circuit 170 controls the on / off states of the semiconductor elements 126, 422, 442 included in the power conversion circuits 120, 410, 430.
  • the AC voltage applied to the electrical terminal 414 can be converted into another AC voltage having a desired voltage and frequency and output via the electrical terminal 434.
  • FIG. 7 is a schematic diagram of the power conversion system S5 according to the present embodiment.
  • the power conversion system S5 includes a housing 500, and four power conversion devices S4 are arranged in the vertical direction inside the housing 500.
  • the configuration of each power conversion device S4 is the same as that of the fourth embodiment.
  • the electric terminals 414 (see FIG. 6) in the four power converters S4 are sequentially connected in series, and the electric terminals 434 are also sequentially connected in series. In this way, when a plurality of power conversion devices S4 are connected in series, a higher level AC voltage can be input / output compared to a single power conversion device S4.
  • a duct-shaped exhaust passage 510 is formed behind each power conversion device S ⁇ b> 4, and a blower 132 is attached to the upper end portion of the exhaust passage 510.
  • the cooling air W is sucked from the front surface of each power converter S4.
  • the cooling air W is discharged
  • FIG. thus, according to this embodiment, it becomes possible to input / output a higher level AC voltage than in the fourth embodiment, and the number of blowers 132 can be made smaller than the number of power conversion devices S4.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the above-described embodiments are illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • the control lines and information lines shown in the figure are those that are considered necessary for the explanation, and not all the control lines and information lines that are necessary on the product are shown. Actually, it may be considered that almost all the components are connected to each other. Examples of possible modifications to the above embodiment are as follows.
  • a plurality of through holes 130 a and 140 a are formed for the partition plates 130 and 140.
  • the number of through holes 130a and 140a may be one each. That is, a plurality of semiconductor elements and capacitors may be inserted through one through hole.
  • a diode is applied as the semiconductor element 166 of the power conversion circuit 160.
  • switching elements such as MOSFETs and IGBTs may be applied in place of the diodes.

Abstract

In order to configure a power conversion device to have a small size and a small weight while inhibiting accumulation of dust, this power conversion device comprises a housing (100) having formed therein a first compartment (SP1) accommodating a first main circuit board (122), a second compartment (SP2) having an airflow passage for allowing cooling airflow to pass therethrough, and a third compartment (SP3) accommodating a second main circuit board (162), wherein: electric terminals (124a) of first capacitors (124) and electric terminals (126a) of first semiconductor elements (126) are accommodated in the first compartment; at least a part of each of the first capacitors (124) and at least a part of each first heat sink (128) are exposed in the second compartment; electric terminals (164a) of second capacitors (164) and electric terminals (166a) of second semiconductor elements (166) are accommodated in the third compartment; and at least a part of each of the second capacitors (164) and at least a part of each second heat sink (168) are exposed in the second compartment.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
 インバータ等の電力変換装置に対して強制空冷を行うと、冷却風に塵埃が含まれている場合には、各部の電気端子に塵埃が溜まり、絶縁性能が低下することがある。その対策として、下記特許文献1には、「電力変換装置の箱体の内部に複数の区画室を形成し、この区画室の少なくとも1つは、外部から冷却空気の強制貫流の可能な構成とし、これと前記隔壁を介して隣接する区画室は、外部から冷却空気の強制貫流の不能な構成とし、前記冷却空気の強制貫流の可能な区画室内に、前記電力変換装置の冷却を必要とする構成機器を収容し、この区画室に収容された構成機器の電気的接続端子部を、前記仕切り壁を貫通して前記冷却空気の強制貫流の不能な構成とした区画室内に露出させ、この冷却空気の強制貫流の不能な構成とした区画室内において前記構成機器の露出された接続端子部の相互間、および他の構成機器の接続端子部との間を接続導体により接続する。」と記載されている(要約書参照)。 When forced air cooling is performed on a power conversion device such as an inverter, if the cooling air contains dust, dust may accumulate in the electrical terminals of each part, and the insulation performance may be reduced. As a countermeasure, the following Patent Document 1 states that “a plurality of compartments are formed inside the box of the power converter, and at least one of the compartments is configured to allow forced air flow from outside. The partition chamber adjacent to the partition wall through the partition wall cannot be forced to flow cooling air from the outside, and the power conversion device needs to be cooled in the partition chamber capable of forced cooling air flow. The component device is accommodated, and the electrical connection terminal portion of the component device accommodated in the compartment is exposed through the partition wall into the compartment where the cooling air cannot be forced to flow through. The connection terminal portions of the component devices exposed to each other and the connection terminal portions of other component devices are connected by connection conductors in the compartment where the forced air flow is not possible. " Yes (see abstract)
特開2016-116327号公報JP 2016-116327 A
 しかし、電力変換装置の筐体の内部に、複数の区画室を単に形成すると、スペース効率が悪くなり、電力変換装置の筐体が大型化するという問題が生じる。また、電力変換装置が電位の大きく異なる複数の回路を含む場合には、これら回路間にスペースを確保するために、筐体が一層大型化するという問題が生じる。
 この発明は上述した事情に鑑みてなされたものであり、塵埃の堆積を抑制しつつ、小型、軽量に構成できる電力変換装置を提供することを目的とする。
However, if a plurality of compartments are simply formed inside the casing of the power conversion device, space efficiency is deteriorated, resulting in a problem that the casing of the power conversion device is enlarged. Further, when the power conversion device includes a plurality of circuits having greatly different potentials, there arises a problem that the casing is further increased in size in order to secure a space between the circuits.
This invention is made in view of the situation mentioned above, and it aims at providing the power converter device which can be comprised small and lightweight, suppressing accumulation of dust.
 上記課題を解決するため本発明の電力変換装置にあっては、第1の半導体素子と、第1の半導体素子に実装された第1のヒートシンクと、第1のキャパシタと、第1の半導体素子と、第1のキャパシタとが実装された第1の主回路基板と、第2の半導体素子と、第2の半導体素子に実装された第2のヒートシンクと、第2のキャパシタと、第2の半導体素子と、第2のキャパシタとが実装された第2の主回路基板と、第1の主回路基板が収容される第1の区画と、冷却風が通風する通風経路を有する第2の区画と、第2の主回路基板が収容される第3の区画と、を形成する筐体と、を備え、第1のキャパシタの電気端子と、第1の半導体素子の電気端子と、が第1の区画に収容され、第1のキャパシタの少なくとも一部と、第1のヒートシンクの少なくとも一部と、が第2の区画に露出し、第2のキャパシタの電気端子と、第2の半導体素子の電気端子と、が第3の区画に収納され、第2のキャパシタの少なくとも一部と、第2のヒートシンクの少なくとも一部と、が第2の区画に露出することを特徴とする。 In order to solve the above problems, in the power conversion device of the present invention, a first semiconductor element, a first heat sink mounted on the first semiconductor element, a first capacitor, and a first semiconductor element A first main circuit board on which the first capacitor is mounted; a second semiconductor element; a second heat sink mounted on the second semiconductor element; a second capacitor; A second main circuit board on which the semiconductor element and the second capacitor are mounted; a first section in which the first main circuit board is accommodated; and a second section having a ventilation path through which the cooling air flows. And a housing that forms a third compartment in which the second main circuit board is accommodated, and an electrical terminal of the first capacitor and an electrical terminal of the first semiconductor element are the first At least a portion of the first capacitor and the first heat shield. At least a portion of the first capacitor is exposed to the second section, and an electric terminal of the second capacitor and an electric terminal of the second semiconductor element are housed in the third section, and at least the second capacitor A part and at least a part of the second heat sink are exposed to the second section.
本発明によれば、塵埃の堆積を抑制しつつ、電力変換装置を小型、軽量に構成できる。 ADVANTAGE OF THE INVENTION According to this invention, a power converter device can be comprised small and lightweight, suppressing accumulation of dust.
本発明の第1実施形態による電力変換装置の縦断面図である。It is a longitudinal cross-sectional view of the power converter device by 1st Embodiment of this invention. 第1実施形態の電力変換装置の要部の横断面図である。It is a cross-sectional view of the principal part of the power converter device of 1st Embodiment. 図2Aの一部拡大図である。FIG. 2B is a partially enlarged view of FIG. 2A. 第2実施形態の電力変換装置の要部の横断面図である。It is a cross-sectional view of the principal part of the power converter device of 2nd Embodiment. 図3Aの一部拡大図である。FIG. 3B is a partially enlarged view of FIG. 3A. 第3実施形態による電力変換装置の縦断面図である。It is a longitudinal cross-sectional view of the power converter device by 3rd Embodiment. 第4実施形態による電力変換装置の斜視図である。It is a perspective view of the power converter device by 4th Embodiment. 第4実施形態による電力変換装置の回路図である。It is a circuit diagram of the power converter device by 4th Embodiment. 第5実施形態による電力変換システムの模式図である。It is a schematic diagram of the power conversion system by 5th Embodiment.
[第1実施形態]
 図1は、本発明の第1実施形態による電力変換装置S1の縦断面図である。
 電力変換装置S1は、略直方体枠状の筐体100を有している。筐体100の外部は大気環境にある。筐体100は、上下方向に沿って区切られた3つの区画を有しており、これら区画を上から順にSP1(第1の区画),SP2(第2の区画),SP3(第3の区画)と呼ぶ。
[First Embodiment]
FIG. 1 is a longitudinal sectional view of a power conversion device S1 according to the first embodiment of the present invention.
The power conversion device S1 includes a substantially cuboid frame-shaped casing 100. The outside of the housing 100 is in an atmospheric environment. The casing 100 has three sections divided along the vertical direction, and these sections are arranged in order from the top, SP1 (first section), SP2 (second section), SP3 (third section). ).
 区画SP1の上面および側面は、断面略Π字状の上蓋110(第1の蓋部材)で覆われており、これによって区画SP1内の空気と外気との通流を抑制する。また、区画SP1の下面は、仕切板130(第1の仕切板)と、電力変換回路120と、によって覆われている。電力変換回路120は、主回路基板122(第1の主回路基板)と、キャパシタ124(第1のキャパシタ)と、半導体素子126(第1の半導体素子)と、を有している。ここで、仕切板130は、絶縁材料または金属材料の矩形板に複数の貫通孔130a(第1の貫通孔)を形成したものである。また、主回路基板122は、貫通孔130aを覆うように仕切板130に装着されている。 The upper surface and side surfaces of the section SP1 are covered with an upper lid 110 (first lid member) having a substantially cross-sectional shape, thereby suppressing the flow of air and outside air in the section SP1. Further, the lower surface of the section SP1 is covered with the partition plate 130 (first partition plate) and the power conversion circuit 120. The power conversion circuit 120 includes a main circuit board 122 (first main circuit board), a capacitor 124 (first capacitor), and a semiconductor element 126 (first semiconductor element). Here, the partition plate 130 is obtained by forming a plurality of through holes 130a (first through holes) in a rectangular plate made of an insulating material or a metal material. The main circuit board 122 is attached to the partition plate 130 so as to cover the through hole 130a.
 主回路基板122には、複数のキャパシタ124と、複数の半導体素子126と、が実装されている。主回路基板122は、エポキシ樹脂等の絶縁材の板に銅金属等による配線パターン(図示せず)を施したものであり、絶縁材にて電位の異なる配線パターンは絶縁される。キャパシタ124および半導体素子126は、これら配線パターンに適宜接続されている。 A plurality of capacitors 124 and a plurality of semiconductor elements 126 are mounted on the main circuit board 122. The main circuit board 122 is obtained by applying a wiring pattern (not shown) made of copper metal or the like to a plate of an insulating material such as an epoxy resin, and the wiring patterns having different potentials are insulated by the insulating material. The capacitor 124 and the semiconductor element 126 are appropriately connected to these wiring patterns.
 配線パターンの構成や、キャパシタ124および半導体素子126の種類や数量等は、所望の電力変換方式に応じて決定するとよい。キャパシタ124は、これらの電気端子124aが上に向くように配置され、キャパシタ124の本体部分は、貫通孔130aを介して仕切板130を貫通し、下方の区画SP2に突出している。また、半導体素子126は、横方向に突出する電気端子126aを有している。これら電気端子124a,126aは、主回路基板122の上面側で半田等によって配線パターンに接続されている。 The configuration of the wiring pattern and the type and quantity of the capacitor 124 and the semiconductor element 126 may be determined according to a desired power conversion method. The capacitor 124 is arranged so that these electric terminals 124a face upward, and the main body portion of the capacitor 124 passes through the partition plate 130 through the through hole 130a and protrudes to the lower section SP2. In addition, the semiconductor element 126 has an electrical terminal 126a protruding in the lateral direction. These electric terminals 124 a and 126 a are connected to the wiring pattern by soldering or the like on the upper surface side of the main circuit board 122.
 半導体素子126の下面には、動作時の温度上昇を抑制するヒートシンク128が装着されている。そして、半導体素子126およびヒートシンク128は、仕切板130の貫通孔130aに挿通されている。半導体素子126と、ヒートシンク128との衝合面は、貫通孔130aの上下方向の中心位置(仕切板130の上下方向の中心位置)の付近にすることが好ましい。ヒートシンク128は、放熱部となる複数のフィン(符号なし)を有し、この放熱部は、貫通孔130aを介して、下方の区画SP2に突出している。 On the lower surface of the semiconductor element 126, a heat sink 128 that suppresses a temperature rise during operation is mounted. The semiconductor element 126 and the heat sink 128 are inserted through the through hole 130 a of the partition plate 130. The abutting surface between the semiconductor element 126 and the heat sink 128 is preferably near the vertical center position of the through-hole 130a (vertical center position of the partition plate 130). The heat sink 128 has a plurality of fins (not indicated) serving as a heat radiating portion, and the heat radiating portion protrudes into the lower section SP2 through the through hole 130a.
 また、区画SP3の下面および側面は、断面略Π字状の下蓋150(第2の蓋部材)で覆われており、これによって区画SP3内の空気と外気との通流を抑制する。ここで、下蓋150の上下方向の幅は、上蓋110よりも広くなっている。また、区画SP3の上面は、仕切板140(第2の仕切板)と、電力変換回路160と、によって覆われている。電力変換回路160は、主回路基板162(第2の主回路基板)と、キャパシタ164と、半導体素子166と、を有している。 Further, the lower surface and side surfaces of the section SP3 are covered with a lower lid 150 (second cover member) having a substantially square cross section, thereby suppressing the flow of air and outside air in the section SP3. Here, the vertical width of the lower lid 150 is wider than that of the upper lid 110. Further, the upper surface of the section SP3 is covered with the partition plate 140 (second partition plate) and the power conversion circuit 160. The power conversion circuit 160 includes a main circuit board 162 (second main circuit board), a capacitor 164, and a semiconductor element 166.
 仕切板140は、仕切板130と同様に、絶縁材料または金属材料の矩形板に複数の貫通孔140a(第2の貫通孔)を形成したものである。また、主回路基板162は、貫通孔140aを覆うように仕切板140に装着されている。また、主回路基板162は、主回路基板122と同様に、絶縁材の板に配線パターンを施したものであり、キャパシタ164(第2のキャパシタ)および半導体素子166(第2の半導体素子)は、これら配線パターンに適宜接続されている。 The partition plate 140 is formed by forming a plurality of through holes 140a (second through holes) in a rectangular plate made of an insulating material or a metal material, like the partition plate 130. The main circuit board 162 is mounted on the partition plate 140 so as to cover the through hole 140a. Similarly to the main circuit board 122, the main circuit board 162 is obtained by applying a wiring pattern to a plate of an insulating material. The capacitor 164 (second capacitor) and the semiconductor element 166 (second semiconductor element) are These wiring patterns are appropriately connected.
 キャパシタ164は、これらの電気端子164aが下に向くように配置され、キャパシタ164の本体部分は、貫通孔140aを介して仕切板140を貫通し、区画SP2に突出している。また、半導体素子166は、横方向に突出する電気端子166aを有している。電気端子164a,166aは、主回路基板162の下面側で半田等によって配線パターンに接続されている。 The capacitor 164 is disposed such that these electric terminals 164a face downward, and the main body portion of the capacitor 164 penetrates the partition plate 140 through the through hole 140a and protrudes into the section SP2. Further, the semiconductor element 166 has an electrical terminal 166a protruding in the lateral direction. The electrical terminals 164a and 166a are connected to the wiring pattern by soldering or the like on the lower surface side of the main circuit board 162.
 また、半導体素子166の上面には、ヒートシンク128と同様に構成されたヒートシンク168(第2のヒートシンク)が装着されている。そして、半導体素子166およびヒートシンク168は、貫通孔140aに挿通されている。半導体素子166と、ヒートシンク168との衝合面は、貫通孔140aの上下方向の中心位置の付近にすることが好ましい。これにより、ヒートシンク168の放熱部となる複数のフィン(符号なし)は、貫通孔140aを介して、区画SP2に突出している。 Further, a heat sink 168 (second heat sink) configured similarly to the heat sink 128 is mounted on the upper surface of the semiconductor element 166. The semiconductor element 166 and the heat sink 168 are inserted through the through hole 140a. The abutting surface between the semiconductor element 166 and the heat sink 168 is preferably in the vicinity of the vertical center position of the through hole 140a. As a result, the plurality of fins (not shown) serving as the heat radiating portion of the heat sink 168 protrudes into the partition SP2 through the through hole 140a.
 また、区画SP3において、電力変換回路160の下方には、制御回路170が配置されている。制御回路170は、制御基板172と、ここに実装された各種部品(図示せず)と、を有している。制御回路170は、半導体素子126,166のオン/オフ状態を制御する。なお、図1において図示は省略するが、筐体100は、電力変換回路120,160に対して電力を入力、出力する電気端子を有している。 In the section SP3, a control circuit 170 is disposed below the power conversion circuit 160. The control circuit 170 has a control board 172 and various components (not shown) mounted thereon. The control circuit 170 controls the on / off states of the semiconductor elements 126 and 166. Although not shown in FIG. 1, the housing 100 has electrical terminals that input and output power to the power conversion circuits 120 and 160.
 上述したように、キャパシタ124,164の本体部と、ヒートシンク128,168の放熱部とは、区画SP2内に突出している。区画SP2は、その両端(図1における前後端)が開放され、仕切板130,140がその上下面になる。また、一対の側壁板134(図1では、断面図であることから一方のみを図示する)がその左右面になる。これにより、区画SP2は、全体として略ダクト状に形成されている。また、区画SP2の前方には送風機132が配置されている。送風機132による冷却風Wは、区画SP2の前方から流入し、後方に流出する。 As described above, the main body portions of the capacitors 124 and 164 and the heat dissipation portions of the heat sinks 128 and 168 protrude into the section SP2. Both ends (front and rear ends in FIG. 1) of the partition SP2 are opened, and the partition plates 130 and 140 are the upper and lower surfaces. In addition, a pair of side wall plates 134 (in FIG. 1, only one of them is shown because it is a cross-sectional view) serves as the left and right surfaces. Thereby, the section SP2 is formed in a substantially duct shape as a whole. A blower 132 is disposed in front of the section SP2. The cooling air W by the blower 132 flows in from the front of the section SP2 and flows out backward.
 なお、仕切板130,140は、キャパシタ124,164の間、およびヒートシンク128,168の間に充分な間隔を確保できる距離だけ隔てられている。これにより、冷却風Wは、キャパシタ124,164の本体部分を冷却し、ヒートシンク128,168を介して半導体素子126,166を冷却し、その後に後方に排出される。その際、仕切板130,140も冷却風Wに晒されるため、主回路基板122,162が有する熱も、仕切板130,140に伝搬した後に排熱される。 In addition, the partition plates 130 and 140 are separated by a distance that can secure a sufficient space between the capacitors 124 and 164 and between the heat sinks 128 and 168. Thereby, the cooling air W cools the main body portions of the capacitors 124 and 164, cools the semiconductor elements 126 and 166 through the heat sinks 128 and 168, and then is discharged backward. At this time, since the partition plates 130 and 140 are also exposed to the cooling air W, the heat of the main circuit boards 122 and 162 is exhausted after being transmitted to the partition plates 130 and 140.
 ここで、区画SP1および区画SP3は、気密状態になっている。従って、キャパシタ124,164および半導体素子126,166の電気端子124a,164a,126a,166aは、冷却風Wに直接晒されることはない。冷却風Wは、塵埃等を含む大気を、エアフィルタ等で浄化しているものの、ある程度の塵埃は含んだままである。そのため、電力変換装置S1の長期間の使用により、冷却風Wの経路には塵埃が堆積しやすくなる。しかし、冷却風Wの経路には、電気端子124a,164a,126a,166aが露出していないため、これらの端子間に塵埃が堆積することを抑制できる。 Here, the section SP1 and the section SP3 are in an airtight state. Therefore, the capacitors 124 and 164 and the electrical terminals 124a, 164a, 126a, and 166a of the semiconductor elements 126 and 166 are not directly exposed to the cooling air W. Although the cooling air W purifies the atmosphere containing dust and the like with an air filter or the like, it still contains a certain amount of dust. Therefore, dust tends to accumulate in the path of the cooling air W due to long-term use of the power conversion device S1. However, since the electrical terminals 124a, 164a, 126a, 166a are not exposed in the path of the cooling air W, it is possible to suppress the accumulation of dust between these terminals.
 仮に、電気端子124a,164a,126a,166a等の電気端子間に塵埃が堆積すると、塵埃が短絡経路となり、電気端子間で予期しない短絡が発生する場合がある。このような短絡は装置の突発的な停止や故障につながるため、電気端子間には一定の距離が設けられる。その距離は、塵埃による短絡を予防したい期間と、塵埃のレベル等によって定まる。一般的に、装置は長期的に、また塵埃レベルが高い環境においても利用したい、という要望がある。この要望に沿うようにすると、電気端子間の距離が長くなり、装置の大型化につながる傾向がある。これに対して、本実施形態によれば、電気端子に冷却風Wが直接的に暴露されないため、外気の塵埃レベルが高い場合においても、電気端子間の距離を長くする必要がなくなり、電力変換装置S1を小型にすることができる。 If dust accumulates between the electrical terminals such as the electrical terminals 124a, 164a, 126a, 166a, etc., the dust becomes a short circuit path and an unexpected short circuit may occur between the electrical terminals. Since such a short circuit leads to a sudden stop or failure of the apparatus, a certain distance is provided between the electrical terminals. The distance is determined by a period in which a short circuit due to dust is desired to be prevented, a dust level, and the like. In general, there is a desire to use the apparatus for a long period of time and in an environment with a high dust level. If this requirement is met, the distance between the electrical terminals becomes longer, which tends to increase the size of the apparatus. On the other hand, according to the present embodiment, since the cooling air W is not directly exposed to the electric terminals, it is not necessary to increase the distance between the electric terminals even when the dust level of the outside air is high. The device S1 can be reduced in size.
 主回路基板122,162の構成は、採用する電力変換方式等に基づいて定まるが、電力変換方式等によっては、主回路基板122,162の電位(例えば、対地電位)が大きく異なる場合もある。その場合、両者の電位差に応じて主回路基板122,162の間にある程度の距離を隔てるべき場合も生じる。本実施形態においては、図1に示すように、主回路基板122,162は、元々ある程度の距離(側壁板134の上下方向の幅)だけ隔てられており、これによって充分な絶縁距離が確保されている場合が多い。従って、絶縁距離を確保するために余分なスペースを確保する必要がなくなり、電力変換装置S1を小型、軽量に構成することができる。 The configuration of the main circuit boards 122 and 162 is determined based on the adopted power conversion method or the like, but the potential (for example, ground potential) of the main circuit boards 122 and 162 may be greatly different depending on the power conversion method or the like. In that case, there is a case where a certain distance should be provided between the main circuit boards 122 and 162 in accordance with the potential difference between them. In the present embodiment, as shown in FIG. 1, the main circuit boards 122 and 162 are originally separated by a certain distance (the width in the vertical direction of the side wall plate 134), thereby ensuring a sufficient insulation distance. There are many cases. Therefore, it is not necessary to secure an extra space for securing the insulation distance, and the power conversion device S1 can be configured to be small and light.
 図2Aは、区画SP1,SP2の端部付近における電力変換装置S1の横断面図である。また、図2Bは、そのA1部の拡大図である。
 図2Bにおいて、仕切板130と側壁板134は、直接的に衝合している。一方、上蓋110と、仕切板130との間には、シール材210(第1のシール材)が挿入されている。ここで、シール材210は、樹脂等のシートや接着剤等を適用することができる。このように、シール材210を適用したことにより、上蓋110、仕切板130の製造誤差等による微細な隙間を塞ぐことができ、区画SP1の気密性を高め、塵埃等の侵入を防止することができる。なお、図1に示した仕切板140と下蓋150との間にも、同様にシール材210(第2のシール材)が挿入される(図示略)。これにより、区画SP3の気密性も同様に高めることができる。
FIG. 2A is a cross-sectional view of the power conversion device S1 in the vicinity of the ends of the sections SP1 and SP2. FIG. 2B is an enlarged view of the A1 portion.
In FIG. 2B, the partition plate 130 and the side wall plate 134 are in direct contact with each other. On the other hand, a sealing material 210 (first sealing material) is inserted between the upper lid 110 and the partition plate 130. Here, as the sealing material 210, a sheet of resin or the like, an adhesive, or the like can be applied. As described above, by applying the sealing material 210, it is possible to close a minute gap due to a manufacturing error of the upper lid 110 and the partition plate 130, to improve the airtightness of the section SP1, and to prevent entry of dust and the like. it can. Note that a sealing material 210 (second sealing material) is similarly inserted between the partition plate 140 and the lower lid 150 shown in FIG. 1 (not shown). Thereby, the airtightness of division SP3 can be improved similarly.
[第2実施形態]
 次に、本発明の第2実施形態による電力変換装置S2について説明する。なお、以下の説明において、図1および図2の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 本実施形態の電力変換装置S2の構成は、第1実施形態の電力変換装置S1(図1参照)のものと略同様であるが、図3A,図3Bに示す部分の構成が異なっている。
 ここで、図3Aは、本実施形態の電力変換装置S2における区画SP1,SP2の端部付近における電力変換装置の横断面図である。また、図3Bは、そのB1部の拡大図である。
[Second Embodiment]
Next, the power conversion device S2 according to the second embodiment of the present invention will be described. In the following description, parts corresponding to those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof may be omitted.
The configuration of the power conversion device S2 of the present embodiment is substantially the same as that of the power conversion device S1 (see FIG. 1) of the first embodiment, but the configuration of the parts shown in FIGS. 3A and 3B is different.
Here, FIG. 3A is a cross-sectional view of the power conversion device in the vicinity of the ends of the sections SP1 and SP2 in the power conversion device S2 of the present embodiment. FIG. 3B is an enlarged view of the B1 portion.
 図3Aにおいて、上蓋110と、仕切板130とは、直接的に衝合している。
 一方、図3Bにおいて、仕切板130と側壁板134との間には、シール材220(第3のシール材)が挿入されている。シール材220は、第1実施形態のシール材210(図2B参照)と同様に、樹脂等のシートや接着剤等を適用することができる。このように、シール材220を適用したことにより、仕切板130、側壁板134の製造誤差等による微細な隙間を塞ぐことができ、区画SP2の横方向の気密性を高めることができる。
In FIG. 3A, the upper lid 110 and the partition plate 130 are in direct contact with each other.
On the other hand, in FIG. 3B, a sealing material 220 (third sealing material) is inserted between the partition plate 130 and the side wall plate 134. As the sealing material 220, a sheet of resin or the like, an adhesive, or the like can be applied as in the sealing material 210 (see FIG. 2B) of the first embodiment. As described above, by applying the sealing material 220, it is possible to close a minute gap due to a manufacturing error of the partition plate 130 and the side wall plate 134, and to improve the airtightness in the lateral direction of the section SP2.
 また、図1に示した仕切板140と側壁板134との間にも、同様にシール材220(第4のシール材)が挿入される(図示略)。これにより、冷却風Wの横方向からの漏出を防ぐことができ、装置全域に塵埃が拡散することを、一層確実に抑制できる。なお、本実施形態において、第1実施形態のもの(図2B参照)と同様に、上蓋110と仕切板130との間にシール材210を挿入してもよい。すなわち、シール材210,220の双方を適用してもよい。 Also, a sealing material 220 (fourth sealing material) is similarly inserted between the partition plate 140 and the side wall plate 134 shown in FIG. 1 (not shown). Thereby, leakage of the cooling air W from the lateral direction can be prevented, and the diffusion of dust throughout the entire apparatus can be more reliably suppressed. In the present embodiment, a sealing material 210 may be inserted between the upper lid 110 and the partition plate 130 as in the first embodiment (see FIG. 2B). That is, both the sealing materials 210 and 220 may be applied.
[第3実施形態]
 次に、本発明の第3実施形態による電力変換装置について説明する。なお、以下の説明において、図1~図3Bの各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図4は、本実施形態による電力変換装置S3の縦断面図である。
 電力変換装置S3は、略直方体枠状の筐体100Bを有している。筐体100Bは、第1実施形態の筐体100(図1参照)と同様に、上下方向に沿って区切られた区画SP1,SP2,SP3を有している。
[Third Embodiment]
Next, the power converter device by 3rd Embodiment of this invention is demonstrated. In the following description, parts corresponding to those in FIGS. 1 to 3B are denoted by the same reference numerals and description thereof may be omitted.
FIG. 4 is a longitudinal sectional view of the power converter S3 according to the present embodiment.
The power conversion device S3 has a substantially rectangular parallelepiped frame-shaped housing 100B. The housing 100B has sections SP1, SP2, and SP3 partitioned along the vertical direction, like the housing 100 (see FIG. 1) of the first embodiment.
 本実施形態においては、第1実施形態における制御回路170に代えて、制御回路180(第1の制御回路),190が設けられている。ここで、制御回路180は、電力変換回路120における半導体素子126のオン/オフ状態を制御する。また、制御回路190は、電力変換回路160における半導体素子166のオン/オフ状態を制御する。制御回路180は、区画SP1内に設けられた制御基板182(第1の制御基板)と、制御基板182に搭載された発熱部品(図示せず)に装着されたヒートシンク184(第3のヒートシンク)と、を有している。ヒートシンク184は、仕切板130の貫通孔130aを介して、区画SP2に突出している。 In the present embodiment, control circuits 180 (first control circuits) and 190 are provided instead of the control circuit 170 in the first embodiment. Here, the control circuit 180 controls the on / off state of the semiconductor element 126 in the power conversion circuit 120. In addition, the control circuit 190 controls the on / off state of the semiconductor element 166 in the power conversion circuit 160. The control circuit 180 includes a control board 182 (first control board) provided in the section SP1 and a heat sink 184 (third heat sink) attached to a heat generating component (not shown) mounted on the control board 182. And have. The heat sink 184 protrudes into the partition SP2 through the through hole 130a of the partition plate 130.
 同様に、制御回路190(第2の制御回路)は、区画SP3内に設けられた制御基板192(第2の制御基板)と、制御基板192に搭載された発熱部品(図示せず)に装着されたヒートシンク194(第4のヒートシンク)と、を有している。ヒートシンク194は、仕切板140の貫通孔140aを介して、区画SP2に突出している。
 本実施形態によれば、冷却風Wによって制御回路180,190を冷却できるので、特に制御回路180,190の発熱量が大きい場合に、これら制御回路の信頼性を高めることができる。
Similarly, the control circuit 190 (second control circuit) is mounted on a control board 192 (second control board) provided in the section SP3 and a heat generating component (not shown) mounted on the control board 192. Heat sink 194 (fourth heat sink). The heat sink 194 protrudes into the partition SP2 through the through hole 140a of the partition plate 140.
According to the present embodiment, since the control circuits 180 and 190 can be cooled by the cooling air W, the reliability of these control circuits can be improved particularly when the amount of heat generated by the control circuits 180 and 190 is large.
[第4実施形態]
 次に、本発明の第4実施形態による電力変換装置について説明する。なお、以下の説明において、図1~図4の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図5は、本実施形態による電力変換装置S4の斜視図である。電力変換装置S4は、筐体100を有している。筐体100の内部には、電力変換回路120,160等、図1に示した電力変換装置S1(第1実施形態)の各構成要素が備わっている。
[Fourth Embodiment]
Next, the power converter device by 4th Embodiment of this invention is demonstrated. In the following description, parts corresponding to those in FIGS. 1 to 4 are denoted by the same reference numerals, and the description thereof may be omitted.
FIG. 5 is a perspective view of the power converter S4 according to the present embodiment. The power conversion device S4 includes a housing 100. Inside the housing 100, each component of the power conversion device S1 (first embodiment) shown in FIG. 1, such as the power conversion circuits 120 and 160, is provided.
 また、筐体100の前端部の右端には、略直方体状の筐体412を有する電力変換回路410が装着されている。また、筐体100の前端部の左端には、略直方体状の筐体432を有する電力変換回路430が装着されている。筐体412,432の前面には、各々前方向に向かって電気端子414,434が突出している。さらに、筐体412の左側面および筐体432の右側面からは、各々ヒートシンク416,436が対向するように突出している。 Further, a power conversion circuit 410 having a substantially rectangular parallelepiped casing 412 is attached to the right end of the front end portion of the casing 100. A power conversion circuit 430 having a substantially rectangular parallelepiped casing 432 is attached to the left end of the front end portion of the casing 100. Electrical terminals 414 and 434 protrude from the front surfaces of the housings 412 and 432 toward the front, respectively. Furthermore, heat sinks 416 and 436 protrude from the left side surface of the housing 412 and the right side surface of the housing 432 so as to face each other.
 また、筐体100の後端部には、略直方体状の筐体452を有するトランス回路450が装着されている。筐体452は、前後方向に沿って開口している(図示略)。これにより、筐体412,432の前方から流入した冷却風Wは、筐体100および筐体452を介して、後方に排出される。上述した筐体100,412,432,452を総称して、筐体400と呼ぶ。筐体412,432は、その内部を気密状態に保つように構成されている。従って、筐体412,432の内部の電気端子(図示せず)周辺には、塵埃が蓄積されにくくなっている。 Also, a transformer circuit 450 having a substantially rectangular parallelepiped casing 452 is attached to the rear end of the casing 100. The housing 452 is open along the front-rear direction (not shown). As a result, the cooling air W flowing in from the front of the housings 412 and 432 is discharged rearward through the housing 100 and the housing 452. The above-described casings 100, 412, 432, and 452 are collectively referred to as a casing 400. The housings 412 and 432 are configured to keep the inside thereof in an airtight state. Accordingly, dust is less likely to accumulate around electrical terminals (not shown) inside the casings 412 and 432.
 図6は、本実施形態による電力変換装置S4の回路図である。
 図6において、電力変換回路410は、ブリッジ接続された4個の半導体素子422を有している。なお、図示の例において、半導体素子422は、IGBT(Insulated Gate Bipolar Transistor)と、これらに各々並列接続された還流ダイオードである。電力変換回路410は、同期整流回路として動作し、電気端子414に印加された交流電圧(例えば商用周波数)を直流電圧に変換する。なお、図5に示したヒートシンク416は、これら半導体素子422に装着される。
FIG. 6 is a circuit diagram of the power conversion device S4 according to the present embodiment.
In FIG. 6, the power conversion circuit 410 includes four semiconductor elements 422 that are bridge-connected. In the example shown in the drawing, the semiconductor element 422 is an IGBT (Insulated Gate Bipolar Transistor) and a free-wheeling diode connected to each of them in parallel. The power conversion circuit 410 operates as a synchronous rectification circuit, and converts an AC voltage (for example, commercial frequency) applied to the electrical terminal 414 into a DC voltage. Note that the heat sink 416 shown in FIG. 5 is attached to these semiconductor elements 422.
 電力変換回路120は、図1に示したように、複数のキャパシタ124と、複数の半導体素子126とを有している。但し、これら複数のキャパシタ124は、図6においては1個のキャパシタ124Gとして図示する。電力変換回路410から出力された直流電圧は、キャパシタ124Gにおいて平滑化される。また、本実施形態においては、半導体素子126はMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)と、これらに各々並列接続された還流ダイオードであり、4個の半導体素子126がブリッジ接続されている。 As shown in FIG. 1, the power conversion circuit 120 includes a plurality of capacitors 124 and a plurality of semiconductor elements 126. However, the plurality of capacitors 124 are illustrated as one capacitor 124G in FIG. The DC voltage output from the power conversion circuit 410 is smoothed by the capacitor 124G. In the present embodiment, the semiconductor element 126 is a MOSFET (Metal-Oxide-SemiconductoremiField-Effect Transistor) and a free-wheeling diode connected in parallel to each of them, and four semiconductor devices 126 are bridge-connected. .
 本実施形態において、電力変換回路120はインバータとして動作し、キャパシタ124Gから出力された直流電圧を、数十kHz程度の高周波電圧に変換する。トランス回路450は、高周波トランス462と、リアクトル468と、コンデンサ464とを有し、電力変換回路120と電力変換回路160とを絶縁しつつ電力変換回路120から電力変換回路160に電力を供給する。 In the present embodiment, the power conversion circuit 120 operates as an inverter, and converts the DC voltage output from the capacitor 124G into a high-frequency voltage of about several tens of kHz. The transformer circuit 450 includes a high-frequency transformer 462, a reactor 468, and a capacitor 464, and supplies power from the power conversion circuit 120 to the power conversion circuit 160 while insulating the power conversion circuit 120 and the power conversion circuit 160.
 電力変換回路160は、図1に示したように、複数のキャパシタ164と、複数の半導体素子166とを有している。但し、これら複数のキャパシタ164は、図6においては1個のキャパシタ164Gとして図示する。また、本実施形態においては、半導体素子126はダイオードであり、4個の半導体素子126がブリッジ接続され、全波整流回路を構成している。トランス回路450から出力された高周波電圧は、半導体素子166によって直流電圧に変換され、該直流電圧は、キャパシタ164Gにおいて平滑化される。 As shown in FIG. 1, the power conversion circuit 160 includes a plurality of capacitors 164 and a plurality of semiconductor elements 166. However, the plurality of capacitors 164 are illustrated as one capacitor 164G in FIG. In the present embodiment, the semiconductor element 126 is a diode, and four semiconductor elements 126 are bridge-connected to form a full-wave rectifier circuit. The high-frequency voltage output from the transformer circuit 450 is converted into a DC voltage by the semiconductor element 166, and the DC voltage is smoothed by the capacitor 164G.
 電力変換回路430は、ブリッジ接続された4個の半導体素子442を有している。なお、図示の例において、半導体素子442は、IGBTと、これらに各々並列接続された還流ダイオードである。なお、図5に示したヒートシンク436は、これら半導体素子442に装着される。 The power conversion circuit 430 includes four semiconductor elements 442 that are bridge-connected. In the illustrated example, the semiconductor element 442 is an IGBT and a free-wheeling diode connected to each of them in parallel. Note that the heat sink 436 shown in FIG. 5 is attached to these semiconductor elements 442.
 電力変換回路430は、インバータとして動作し、電力変換回路160から供給された直流電圧を交流電圧(例えば商用周波数)に変換し、電気端子434を介して出力する。制御回路170は、電力変換回路120,410,430に備わる半導体素子126,422,442のオン/オフ状態を制御する。本実施形態によれば、電気端子414に印加された交流電圧を、所望の電圧および周波数を有する他の交流電圧に変換し、電気端子434を介して出力することができる。 The power conversion circuit 430 operates as an inverter, converts the DC voltage supplied from the power conversion circuit 160 into an AC voltage (for example, commercial frequency), and outputs the AC voltage via the electrical terminal 434. The control circuit 170 controls the on / off states of the semiconductor elements 126, 422, 442 included in the power conversion circuits 120, 410, 430. According to the present embodiment, the AC voltage applied to the electrical terminal 414 can be converted into another AC voltage having a desired voltage and frequency and output via the electrical terminal 434.
[第5実施形態]
 次に、本発明の第5実施形態による電力変換システムについて説明する。なお、以下の説明において、図1~図6の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 図7は、本実施形態による電力変換システムS5の模式図である。電力変換システムS5は、筐体500を有し、その内部には、4台の電力変換装置S4が上下方向に沿って配列されている。なお、個々の電力変換装置S4の構成は、第4実施形態のものと同様である。
[Fifth Embodiment]
Next, a power conversion system according to a fifth embodiment of the present invention will be described. In the following description, parts corresponding to those in FIGS. 1 to 6 are denoted by the same reference numerals, and the description thereof may be omitted.
FIG. 7 is a schematic diagram of the power conversion system S5 according to the present embodiment. The power conversion system S5 includes a housing 500, and four power conversion devices S4 are arranged in the vertical direction inside the housing 500. The configuration of each power conversion device S4 is the same as that of the fourth embodiment.
 4台の電力変換装置S4における電気端子414(図6参照)は、順次直列に接続され、電気端子434も順次直列に接続されている。このように、複数の電力変換装置S4を直列接続すると、1台の電力変換装置S4と比較して、より高レベルの交流電圧を入出力できる。 The electric terminals 414 (see FIG. 6) in the four power converters S4 are sequentially connected in series, and the electric terminals 434 are also sequentially connected in series. In this way, when a plurality of power conversion devices S4 are connected in series, a higher level AC voltage can be input / output compared to a single power conversion device S4.
 図7において、各電力変換装置S4の後方には、ダクト状の排気路510が形成されており、排気路510の上端部には、送風機132が装着されている。ここで、送風機132を動作させると、冷却風Wは各電力変換装置S4の前面から吸入される。そして、冷却風Wは、各電力変換装置S4を冷却した後、排気路510および送風機132を介して外部に排出される。
 このように、本実施形態によれば、第4実施形態よりも高レベルの交流電圧を入出力できるようになり、電力変換装置S4の数よりも、送風機132の数を少なくすることができる。
In FIG. 7, a duct-shaped exhaust passage 510 is formed behind each power conversion device S <b> 4, and a blower 132 is attached to the upper end portion of the exhaust passage 510. Here, when the blower 132 is operated, the cooling air W is sucked from the front surface of each power converter S4. And after cooling each power converter device S4, the cooling air W is discharged | emitted outside via the exhaust path 510 and the air blower 132. FIG.
Thus, according to this embodiment, it becomes possible to input / output a higher level AC voltage than in the fourth embodiment, and the number of blowers 132 can be made smaller than the number of power conversion devices S4.
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、若しくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification]
The present invention is not limited to the above-described embodiments, and various modifications can be made. The above-described embodiments are illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Further, it is possible to delete a part of the configuration of each embodiment, or to add or replace another configuration. In addition, the control lines and information lines shown in the figure are those that are considered necessary for the explanation, and not all the control lines and information lines that are necessary on the product are shown. Actually, it may be considered that almost all the components are connected to each other. Examples of possible modifications to the above embodiment are as follows.
(1)上記第1実施形態においては、仕切板130,140に対して、複数の貫通孔130a,140aを形成した。しかし、貫通孔130a,140aの数は、各1個であってもよい。すなわち、1個の貫通孔に複数の半導体素子およびコンデンサを挿通させてもよい。 (1) In the first embodiment, a plurality of through holes 130 a and 140 a are formed for the partition plates 130 and 140. However, the number of through holes 130a and 140a may be one each. That is, a plurality of semiconductor elements and capacitors may be inserted through one through hole.
(2)また、上記第4実施形態(図6参照)においては、電力変換回路160の半導体素子166としてダイオードを適用した。しかし、ダイオードに代えて、MOSFETやIGBT等のスイッチング素子を適用してもよい。電力変換回路160にスイッチング素子を適用することにより、電気端子414,434の間で、双方向の電力伝送が可能になる。 (2) In the fourth embodiment (see FIG. 6), a diode is applied as the semiconductor element 166 of the power conversion circuit 160. However, switching elements such as MOSFETs and IGBTs may be applied in place of the diodes. By applying a switching element to the power conversion circuit 160, bidirectional power transmission between the electrical terminals 414 and 434 becomes possible.
100,100B 筐体
110 上蓋(第1の蓋部材)
122 主回路基板(第1の主回路基板)
124,124G キャパシタ(第1のキャパシタ)
124a,164a,126a,166a 電気端子
126 半導体素子(第1の半導体素子)
128 ヒートシンク(第1のヒートシンク)
130 仕切板(第1の仕切板)
130a 貫通孔(第1の貫通孔)
134 側壁板
140 仕切板(第2の仕切板)
140a 貫通孔(第2の貫通孔)
150 下蓋(第2の蓋部材)
162 主回路基板(第2の主回路基板)
164,164G キャパシタ(第2のキャパシタ)
166 半導体素子(第2の半導体素子)
168 ヒートシンク(第2のヒートシンク)
180 制御回路(第1の制御回路)
182 制御基板(第1の制御基板)
184 ヒートシンク(第3のヒートシンク)
190 制御回路(第2の制御回路)
192 制御基板(第2の制御基板)
194 ヒートシンク(第4のヒートシンク)
210 シール材(第1のシール材、第2のシール材)
220 シール材(第3のシール材、第4のシール材)
S1~S4 電力変換装置
SP1,SP2,SP3 区画(第1の区画、第2の区画、第3の区画)
100, 100B Housing 110 Upper lid (first lid member)
122 Main circuit board (first main circuit board)
124,124G capacitor (first capacitor)
124a, 164a, 126a, 166a Electrical terminal 126 Semiconductor element (first semiconductor element)
128 heat sink (first heat sink)
130 Partition plate (first partition plate)
130a Through hole (first through hole)
134 Side wall plate 140 Partition plate (second partition plate)
140a Through hole (second through hole)
150 Lower lid (second lid member)
162 Main circuit board (second main circuit board)
164,164G capacitor (second capacitor)
166 Semiconductor element (second semiconductor element)
168 heat sink (second heat sink)
180 control circuit (first control circuit)
182 Control board (first control board)
184 heat sink (third heat sink)
190 Control circuit (second control circuit)
192 Control board (second control board)
194 Heat sink (fourth heat sink)
210 Sealing material (first sealing material, second sealing material)
220 Sealing material (third sealing material, fourth sealing material)
S1 to S4 power converters SP1, SP2, SP3 partitions (first partition, second partition, third partition)

Claims (9)

  1.  第1の半導体素子と、
     前記第1の半導体素子に実装された第1のヒートシンクと、
     第1のキャパシタと、
     前記第1の半導体素子と、前記第1のキャパシタとが実装された第1の主回路基板と、
     第2の半導体素子と、
     前記第2の半導体素子に実装された第2のヒートシンクと、
     第2のキャパシタと、
     前記第2の半導体素子と、前記第2のキャパシタとが実装された第2の主回路基板と、
     前記第1の主回路基板が収容される第1の区画と、冷却風が通風する通風経路を有する第2の区画と、前記第2の主回路基板が収容される第3の区画と、を形成する筐体と、
     を備え、
     前記第1のキャパシタの電気端子と、前記第1の半導体素子の電気端子と、が前記第1の区画に収容され、
     前記第1のキャパシタの少なくとも一部と、前記第1のヒートシンクの少なくとも一部と、が前記第2の区画に露出し、
     前記第2のキャパシタの電気端子と、前記第2の半導体素子の電気端子と、が前記第3の区画に収納され、
     前記第2のキャパシタの少なくとも一部と、前記第2のヒートシンクの少なくとも一部と、が前記第2の区画に露出する
     ことを特徴とする電力変換装置。
    A first semiconductor element;
    A first heat sink mounted on the first semiconductor element;
    A first capacitor;
    A first main circuit board on which the first semiconductor element and the first capacitor are mounted;
    A second semiconductor element;
    A second heat sink mounted on the second semiconductor element;
    A second capacitor;
    A second main circuit board on which the second semiconductor element and the second capacitor are mounted;
    A first section in which the first main circuit board is accommodated, a second section having a ventilation path through which cooling air flows, and a third section in which the second main circuit board is accommodated. A housing to be formed;
    With
    An electrical terminal of the first capacitor and an electrical terminal of the first semiconductor element are housed in the first compartment;
    At least a portion of the first capacitor and at least a portion of the first heat sink are exposed to the second compartment;
    An electrical terminal of the second capacitor and an electrical terminal of the second semiconductor element are housed in the third compartment;
    At least a part of the second capacitor and at least a part of the second heat sink are exposed to the second section.
  2.  前記筐体は、
     絶縁材料または金属材料を有するとともに、前記第1のキャパシタの少なくとも一部と、前記第1のヒートシンクの少なくとも一部と、を挿通し前記第2の区画に露出させる第1の貫通孔を有し、前記第1の区画と前記第2の区画とを区切る第1の仕切板と、
     絶縁材料または金属材料を有するとともに、前記第2のキャパシタの少なくとも一部と、前記第2のヒートシンクの少なくとも一部と、を挿通し前記第2の区画に露出させる第2の貫通孔を有し、前記第2の区画と前記第3の区画とを区切る第2の仕切板と、
     前記第1の仕切板と前記第2の仕切板とともに前記通風経路を構成する側壁板と、
     をさらに備え、
     前記第1のキャパシタおよび前記第1のヒートシンクが前記第1の貫通孔を挿通する向きと、前記第2のキャパシタおよび前記第2のヒートシンクが前記第2の貫通孔を挿通する向きと、が対向している
     ことを特徴とする請求項1に記載の電力変換装置。
    The housing is
    It has an insulating material or a metal material, and has a first through hole that is inserted through at least a part of the first capacitor and at least a part of the first heat sink to be exposed to the second section. , A first partition plate that divides the first section and the second section;
    It has an insulating material or a metal material, and has a second through-hole that passes through at least a part of the second capacitor and at least a part of the second heat sink and is exposed to the second section. , A second partition plate that divides the second section and the third section;
    Side wall plates constituting the ventilation path together with the first partition plate and the second partition plate;
    Further comprising
    The direction in which the first capacitor and the first heat sink pass through the first through hole is opposite to the direction in which the second capacitor and the second heat sink pass through the second through hole. The power converter according to claim 1, wherein the power converter is provided.
  3.  前記筐体は、前記第1の区画内の空気と外気との通流を抑制するように前記第1の区画を覆う第1の蓋部材をさらに有する
     ことを特徴とする請求項2に記載の電力変換装置。
    The said housing | casing further has a 1st cover member which covers the said 1st division so that the flow of the air in the said 1st division and external air may be suppressed. The Claim 2 characterized by the above-mentioned. Power conversion device.
  4.  前記筐体は、前記第3の区画内の空気と外気との通流を抑制するように前記第3の区画を覆う第2の蓋部材をさらに有する
     ことを特徴とする請求項3に記載の電力変換装置。
    The said housing | casing further has a 2nd cover member which covers the said 3rd division so that the flow of the air in the said 3rd division and external air may be suppressed. Power conversion device.
  5.   前記第1の蓋部材と前記第1の仕切板とに挟まれた第1のシール材
     をさらに有することを特徴とする請求項4に記載の電力変換装置。
    The power converter according to claim 4, further comprising: a first sealing material sandwiched between the first lid member and the first partition plate.
  6.  前記第2の蓋部材と前記第2の仕切板とに挟まれた第2のシール材
     をさらに有することを特徴とする請求項5に記載の電力変換装置。
    The power converter according to claim 5, further comprising: a second seal member sandwiched between the second lid member and the second partition plate.
  7.  前記第1の仕切板と、前記側壁板とに挟まれた第3のシール材
     をさらに有することを特徴とする請求項6に記載の電力変換装置。
    The power conversion device according to claim 6, further comprising a third sealing material sandwiched between the first partition plate and the side wall plate.
  8.  前記第2の仕切板と、前記側壁板とに挟まれた第4のシール材
     をさらに有することを特徴とする請求項7に記載の電力変換装置。
    The power converter according to claim 7, further comprising: a fourth sealing material sandwiched between the second partition plate and the side wall plate.
  9.  前記第1の区画に設けられ、前記第1の半導体素子を制御する第1の制御回路を有する第1の制御基板と、
     前記第1の制御基板に装着された第3のヒートシンクと、
     前記第3の区画に設けられ、前記第2の半導体素子を制御する第2の制御回路を有する第2の制御基板と、
     前記第2の制御基板に装着された第4のヒートシンクと、
     をさらに有し、
     前記第1の仕切板に形成された前記第1の貫通孔は、前記第3のヒートシンクの少なくとも一部を挿通し前記第2の区画に露出させるものであり、
     前記第2の仕切板に形成された前記第2の貫通孔は、前記第4のヒートシンクの少なくとも一部を挿通し前記第2の区画に露出させるものである
     ことを特徴とする請求項4に記載の電力変換装置。
    A first control board provided in the first section and having a first control circuit for controlling the first semiconductor element;
    A third heat sink mounted on the first control board;
    A second control board provided in the third section and having a second control circuit for controlling the second semiconductor element;
    A fourth heat sink mounted on the second control board;
    Further comprising
    The first through hole formed in the first partition plate is inserted through at least a part of the third heat sink and exposed to the second partition,
    The said 2nd through-hole formed in the said 2nd partition plate inserts at least one part of a said 4th heat sink, and is exposed to the said 2nd division. The Claim 4 characterized by the above-mentioned. The power converter described.
PCT/JP2017/043630 2017-03-22 2017-12-05 Power conversion device WO2018173379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-056708 2017-03-22
JP2017056708 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173379A1 true WO2018173379A1 (en) 2018-09-27

Family

ID=63584409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043630 WO2018173379A1 (en) 2017-03-22 2017-12-05 Power conversion device

Country Status (1)

Country Link
WO (1) WO2018173379A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002952A (en) * 2019-06-24 2021-01-07 富士電機株式会社 Power conversion device
WO2021215281A1 (en) * 2020-04-22 2021-10-28 株式会社日立製作所 Power conversion unit and power conversion device
JP7316193B2 (en) 2019-10-30 2023-07-27 日立ジョンソンコントロールズ空調株式会社 power converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357348A (en) * 2003-05-27 2004-12-16 Mitsubishi Electric Corp Power converter
WO2015097833A1 (en) * 2013-12-26 2015-07-02 三菱電機株式会社 Power conversion device
WO2016152320A1 (en) * 2015-03-20 2016-09-29 三菱重工オートモーティブサーマルシステムズ株式会社 Electric compressor, control device, and monitoring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357348A (en) * 2003-05-27 2004-12-16 Mitsubishi Electric Corp Power converter
WO2015097833A1 (en) * 2013-12-26 2015-07-02 三菱電機株式会社 Power conversion device
WO2016152320A1 (en) * 2015-03-20 2016-09-29 三菱重工オートモーティブサーマルシステムズ株式会社 Electric compressor, control device, and monitoring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002952A (en) * 2019-06-24 2021-01-07 富士電機株式会社 Power conversion device
JP7316193B2 (en) 2019-10-30 2023-07-27 日立ジョンソンコントロールズ空調株式会社 power converter
WO2021215281A1 (en) * 2020-04-22 2021-10-28 株式会社日立製作所 Power conversion unit and power conversion device

Similar Documents

Publication Publication Date Title
US8687357B2 (en) Electric power converter
US8717760B2 (en) Electric power conversion apparatus
JP6175556B2 (en) Power converter
WO2014061447A1 (en) Power conversion device
JP2006245529A (en) Electronic apparatus provided with both water-proofing structure and heat dissipating structure
WO2018173379A1 (en) Power conversion device
JP2014187827A (en) Power conversion device
JP2010153527A (en) Device for cooling semiconductor module
JP5716610B2 (en) Power converter
US20200068749A1 (en) Cooling structure of power conversion device
JP6617492B2 (en) Power converter
JP6576360B2 (en) Power converter
JP2005124322A (en) Power source apparatus
JP5787105B2 (en) Power converter
CN115226370A (en) Package of power conversion unit
JP6319074B2 (en) Power converter
JP6115430B2 (en) Power converter
JP7052609B2 (en) Power converter
JP5730700B2 (en) Power conditioner device and photovoltaic power generation system
JP7006464B2 (en) Power converter
JP2015079773A (en) Cooling device of electronic component and heat source machine of refrigeration cycle device
JP6575914B2 (en) Power converter
JP6680393B2 (en) Power converter
JP6439523B2 (en) Power converter
JP2019126203A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP