WO2018173283A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2018173283A1
WO2018173283A1 PCT/JP2017/012131 JP2017012131W WO2018173283A1 WO 2018173283 A1 WO2018173283 A1 WO 2018173283A1 JP 2017012131 W JP2017012131 W JP 2017012131W WO 2018173283 A1 WO2018173283 A1 WO 2018173283A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
drain pipe
compressor
reactor
cooler
Prior art date
Application number
PCT/JP2017/012131
Other languages
English (en)
French (fr)
Inventor
山田 哲也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/012131 priority Critical patent/WO2018173283A1/ja
Priority to JP2019506911A priority patent/JP6707183B2/ja
Priority to CN201790000521.4U priority patent/CN209978480U/zh
Publication of WO2018173283A1 publication Critical patent/WO2018173283A1/ja

Links

Images

Definitions

  • the present invention relates to an indirect cooling refrigerator.
  • Refrigerator receives water generated in the cooler by the drip tray when removing frost attached to the cooler.
  • the water received by the drip tray is stored in the drain pan through the drain pipe.
  • the water stored in the drain pan evaporates by the heat of the machine room of the refrigerator, for example.
  • the drain pipe is cooled in the cooling operation. If the temperature outside the refrigerator is relatively high, the water remaining in the drain pipe evaporates, while if the temperature outside the refrigerator is relatively low, the water remaining in the drain pipe freezes.
  • the water remaining in the drain pipe is repeatedly frozen, ice grows and the drain pipe is blocked by ice.
  • the drain pipe is blocked by ice, the water received by the drip tray overflows from the drip tray and the floor on which the refrigerator is installed gets wet.
  • the technique of heating the drain pipe with the above-mentioned heater can prevent the drain pipe from being clogged with ice, but requires a heater that is not necessary to realize the cooling function that is the original function of the refrigerator. It becomes. Even if the technique described in Patent Document 1 is applied to a refrigerator, it is difficult to prevent the drain pipe from being blocked by ice.
  • This invention is made in view of the above, Comprising: It aims at obtaining the refrigerator which suppresses that a drain pipe is plugged up with ice by components required in order to implement
  • a refrigerator includes a compressor that compresses a refrigerant, an inverter that drives the compressor, and a reactor that improves the power factor of the inverter.
  • a cooler that evaporates the refrigerant that has become liquid after being compressed by the compressor, a drip tray that receives water generated in the cooler, a drain pan that stores water from the drip tray, and a drip tray It has a drain pipe which is a passage of water to the drain pan, and a heat sink attached to the drain pipe.
  • the reactor is attached to the heat sink.
  • the refrigerator according to the present invention has an effect that the drain pipe can be prevented from being blocked by ice with parts necessary for realizing the cooling function.
  • FIG. 1 The figure which shows typically one cross section of the refrigerator which concerns on Embodiment 1.
  • FIG. One figure which shows typically the composition of some refrigerators concerning Embodiment 1 Another figure which shows typically the structure of some refrigerators which concern on Embodiment 1.
  • FIG. The figure which shows typically the drain pipe which the refrigerator which concerns on Embodiment 1 has, a reactor, and a heat sink The figure which shows typically one cross section of the refrigerator which concerns on Embodiment 2.
  • FIG. 1 is a diagram schematically showing one cross section of the refrigerator 1 according to the first embodiment.
  • the refrigerator 1 has a plurality of components as described below. In FIG. 1, hatching is not added to some of the plurality of components included in the refrigerator 1 in order to easily understand each of the plurality of components included in the refrigerator 1.
  • the refrigerator 1 includes a compressor 2 that compresses refrigerant, an inverter 3 that drives the compressor 2, a control board 4 on which the inverter 3 is mounted, and a reactor that improves the power factor of the inverter 3.
  • the reactor is not shown in FIG.
  • the reactor is connected to an AC line (not shown).
  • the reactor also has a function of improving the power factor of the current supplied to the refrigerator 1 from an AC power source (not shown).
  • the refrigerator 1 further includes a cooler 5 that vaporizes the refrigerant that has become liquid after being compressed by the compressor 2.
  • the refrigerator 1 has a condenser and an expansion mechanism (not shown) in addition to the compressor 2 and the cooler 5.
  • An example of the expansion mechanism is an expansion valve or a capillary tube.
  • the refrigerant is compressed by the compressor 2 to become high-temperature and high-pressure gas, and the gaseous refrigerant from the compressor 2 is cooled in the condenser to become low-temperature and high-pressure gas.
  • the gaseous refrigerant from the condenser becomes a low-temperature and low-pressure liquid in the expansion mechanism, and the liquid refrigerant from the expansion mechanism is vaporized in the cooler 5 to become a low-temperature and low-pressure gas.
  • the compressor 2 compresses the refrigerant from the cooler 5.
  • the refrigerant in the refrigeration cycle flows through the compressor 2, the condenser, the expansion mechanism, and the cooler 5 in this order, and the state of the refrigerant changes.
  • the refrigerator 1 includes a heater 6 that heats the frost attached to the cooler 5, a drip tray 7 that receives water generated in the cooler 5 based on the frost removed by heating by the heater 6, and a drip tray 7 And a drain pipe 9 that is a water passage from the drip tray 7 to the drain pan 8.
  • the heater 6 is located below the cooler 5 when the refrigerator 1 is properly installed.
  • the case where the refrigerator 1 is properly installed is a case where the refrigerator 1 is installed in a state where the compressor 2 is positioned vertically downward and the control board 4 is positioned vertically upward.
  • the drip tray 7 is positioned below the heater 6 when the refrigerator 1 is properly installed.
  • the drain pan 8 is positioned below the drip tray 7 when the refrigerator 1 is properly installed.
  • the drain pipe 9 is located below the drip tray 7 and above the drain pan 8 when the refrigerator 1 is properly installed.
  • the refrigerator 1 further includes a fan motor 10 that circulates cold air inside the refrigerator 1.
  • the fan motor 10 is a combination of a fan and a motor that drives the fan.
  • FIG. 2 is a diagram schematically showing a partial configuration of the refrigerator 1 according to the first embodiment.
  • the refrigerator 1 includes the drain pipe 9 that is a water passage from the drip tray 7 to the drain pan 8.
  • a valve 11 is provided at the end of the drain pipe 9 on the side of the drain pan 8.
  • the refrigerator 1 further includes a pipe 12 that is a refrigerant passage.
  • Water generated in the cooler 5 based on the frost removed by heating by the heater 6 is received by the drip tray 7 and then passes through the drain pipe 9.
  • the valve 11 is opened by the weight of the water, and the water is stored in the drain pan 8.
  • the water stored in the drain pan 8 is vaporized and evaporated by one or both of the heat of the compressor 2 and the heat of the pipe 12.
  • the refrigerator 1 has a reactor 13 for improving the power factor of the inverter 3.
  • the reactor 13 also has a function of improving the power factor of the current supplied to the refrigerator 1 from an AC power source (not shown).
  • FIG. 3 is another diagram schematically showing a part of the configuration of the refrigerator 1 according to the first embodiment.
  • the refrigerator 1 further includes a heat radiating plate 14 attached to the drain pipe 9.
  • the heat radiating plate 14 transmits heat.
  • the heat sink 14 is made of aluminum, for example.
  • the reactor 13 is attached to the heat sink 14.
  • FIG. 4 is a diagram schematically illustrating the drain pipe 9, the reactor 13, and the heat dissipation plate 14 included in the refrigerator 1 according to the first embodiment. As shown in FIG. 4, one end portion 14 a of the heat radiating plate 14 is wound around the drain pipe 9 and attached to the drain pipe 9.
  • a first set of a first bolt 15a and a first nut (not shown), a second set of a second bolt 15b and a second nut (not shown) are used.
  • the reactor 13 is attached to the heat sink 14.
  • the refrigerator 1 When the refrigerator 1 is operated, current always flows through the reactor 13, so heat is generated in the reactor 13, and the generated heat is transmitted to the drain pipe 9 by the heat radiating plate 14 that transmits the heat. That is, the heat generated in the reactor 13 is added to the drain pipe 9.
  • the refrigerator 1 When the refrigerator 1 is operated, a current always flows through each of the control board 4 and the reactor 13. Since current always flows, heat is always generated in each of the control board 4 and the reactor 13.
  • the compressor 2 When the refrigerator 1 performs the cooling operation, the compressor 2 operates and the cooler 5 is cooled by the refrigerant refrigeration cycle. For example, the cooler 5 is cooled to a temperature in the range of minus 30 ° C. to minus 40 ° C.
  • frost adheres to the cooler 5.
  • the heater 6 is energized, and the heater 6 adds heat to the frost attached to the cooler 5. Since the frost is melted by the heating by the heater 6, the frost adhering to the cooler 5 is removed.
  • the compressor 2 and the fan are used to suppress the adhering of the frost to the cooler 5 and the temperature inside the refrigerator 1 rising. The motor 10 stops operation.
  • the water generated in the cooler 5 based on the frost removed by heating by the heater 6 is received by the drip tray 7, passes through the drain pipe 9, and is stored in the drain pan 8.
  • the water stored in the drain pan 8 is vaporized and evaporated by one or both of the heat of the compressor 2 and the heat of the pipe 12.
  • the water generated in the cooler 5 may remain in the drain pipe 9.
  • the water remaining in the drain pipe 9 is not sublimated by the operation of the fan motor 10 and remains in the drain pipe 9. Since the amount of frost adhering to the cooler 5 increases even when the door of the refrigerator 1 is opened for a relatively long time and when the door is opened and closed at a relatively high frequency, heating by the heater 6 is performed. As a result, the amount of water generated increases and water tends to remain in the drain pipe 9.
  • the operation of removing the frost attached to the cooler 5 is repeated, so that the water remaining in the drain pipe 9 grows with the ice generated first as a nucleus, and eventually the inside of the drain pipe 9 is closed with ice.
  • the inside of the drain pipe 9 is blocked by ice, the water received by the drip tray 7 cannot flow through the drain pipe 9 and overflows from the drip tray 7, and the floor on which the refrigerator 1 is installed gets wet.
  • a heater is wound around the drain pipe 9 in order to prevent the inside of the drain pipe 9 from being blocked by ice.
  • the refrigerator 1 includes the reactor 13 that generates heat and the radiator plate 14 to which the reactor 13 is attached.
  • the heat radiating plate 14 is attached to the drain pipe 9.
  • the heat generated in the reactor 13 is transmitted to the drain pipe 9 through the heat radiating plate 14. That is, the heat generated in the reactor 13 is added to the drain pipe 9. Therefore, the water remaining in the drain pipe 9 does not become ice. That is, the refrigerator 1 can prevent the inside of the drain pipe 9 from being blocked by ice using the heat generated in the reactor 13 without having a heater for heating the drain pipe 9.
  • the refrigerator 1 can suppress the floor on which the refrigerator 1 is installed from getting wet.
  • the refrigerator 1 can suppress the drain pipe 9 from being blocked by ice by the reactor 13 which is a component necessary for realizing the cooling function.
  • the heat generated in the reactor 13 is transmitted to the drain pipe 9 through the heat radiating plate 14, the heat of the reactor 13 is dissipated and the temperature of the reactor 13 is suppressed from becoming too high, and the resistance of the reactor 13 is reduced.
  • the value is relatively low. As a result, it is suppressed that the power consumption concerning the refrigerator 1 becomes large. That is, the refrigerator 1 can suppress an increase in power consumption related to the refrigerator 1.
  • the refrigerator 1 does not have a heater for heating the drain pipe 9. Therefore, the cost relating to the refrigerator 1 is lower than the cost relating to the refrigerator having a heater for heating the drain pipe 9.
  • the reactor 13 is directly attached to the drain pipe 9 in order to transfer the heat of the reactor 13 relatively uniformly in each of the plurality of refrigerators 1. It is not attached and is attached to the heat sink 14, and the heat sink 14 is attached to the drain pipe 9.
  • FIG. FIG. 5 is a diagram schematically showing one cross section of the refrigerator 1A according to the second embodiment. Also in FIG. 5, hatching is not added to some of the plurality of components included in the refrigerator 1 ⁇ / b> A in order to easily understand each of the plurality of components included in the refrigerator 1 ⁇ / b> A.
  • 1 A of refrigerators have the component which the refrigerator 1 which concerns on Embodiment 1 has except the heat sink 14, the 1st volt
  • the second embodiment parts different from the first embodiment will be mainly described.
  • FIG. 6 is a diagram schematically showing a part of the configuration of the refrigerator 1A according to the second embodiment.
  • the refrigerator 1A further includes a container 16 in which the reactor 13 is stored.
  • the container 16 prevents the reactor 13 from getting wet. A part of the container 16 is opened.
  • the reactor 13 is contained in a container 16.
  • the container 16 is attached to the drain pan 8 by a member not shown. In the refrigerator 1 ⁇ / b> A, the reactor 13 is in contact with the drain pan 8.
  • the reactor 13 always generates heat during the operation of the refrigerator 1A. Since the reactor 13 is in contact with the drain pan 8, the heat generated in the reactor 13 is transmitted to the drain pan 8. That is, the heat generated in the reactor 13 is added to the drain pan 8. Therefore, the water stored in the drain pan 8 evaporates relatively quickly. More specifically, for example, the door of the refrigerator 1A is opened for a relatively long time, a relatively large amount of frost adheres to the cooler 5, and the frost is melted by the heating of the heater 6 so that a relatively large amount of water is drained. Even if it comes in, the water stored in the drain pan 8 evaporates relatively quickly. Therefore, it is suppressed that the floor in which refrigerator 1A is installed gets wet.
  • the refrigerator 1 ⁇ / b> A can suppress the floor on which the refrigerator 1 ⁇ / b> A is installed from getting wet by the reactor 13 which is a component necessary for realizing the cooling function.
  • the heat generated in the reactor 13 is transmitted to the drain pan 8, the heat of the reactor 13 is dissipated, the temperature of the reactor 13 is suppressed from becoming too high, and the resistance value of the reactor 13 becomes relatively low. As a result, the increase in power consumption related to the refrigerator 1A is suppressed. That is, the refrigerator 1A can suppress an increase in power consumption related to the refrigerator 1A.
  • FIG. 7 is a diagram schematically illustrating a partial configuration of the refrigerator 1B according to the third embodiment.
  • Refrigerator 1B has the components that refrigerator 1 according to Embodiment 1 has.
  • parts different from the first embodiment will be mainly described.
  • the reactor 13 is attached to the heat radiating plate 14, but in the refrigerator 1B, the control board 4 is attached to the heat radiating plate 14 instead of the reactor 13. That is, in the third embodiment, the control board 4 is located at a place different from the place shown in FIG. In the specific example of the third embodiment, a fourth set of a third set of a third bolt 17a and a third nut not shown, a fourth bolt 17b and a fourth nut not shown. The control board 4 is attached to the heat radiating plate 14 depending on the set.
  • the refrigerator 1B can suppress the drain pipe 9 from being blocked by ice by the control board 4 which is a component necessary for realizing the cooling function.
  • an element for driving the compressor 2 may be mounted on the control board 4, and in that case, heat generated in the control board 4 includes heat generated by the element.
  • FIG. FIG. 8 is a diagram schematically showing a part of the configuration of the refrigerator 1C according to the fourth embodiment.
  • Refrigerator 1C has the components that refrigerator 1A according to Embodiment 2 has.
  • parts different from the second embodiment will be mainly described.
  • the reactor 13 is stored in the container 16, but in the refrigerator 1 ⁇ / b> C, not the reactor 13 but the control board 4 is stored in the container 16. That is, in the fourth embodiment, the control board 4 is located in a place different from the place shown in FIG. The control board 4 is in contact with the drain pan 8.
  • the door of the refrigerator 1C is opened for a relatively long time, a relatively large amount of frost adheres to the cooler 5, and the frost is melted by the heating by the heater 6 so that a relatively large amount of water is drained. Even if it comes in, the water stored in the drain pan 8 evaporates relatively quickly. Therefore, it is suppressed that the floor in which refrigerator 1C is installed gets wet.
  • the refrigerator 1 ⁇ / b> C can suppress the floor on which the refrigerator 1 ⁇ / b> C is installed from getting wet by the control board 4 that is a component necessary for realizing the cooling function.
  • the position of the reactor is not limited.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

冷蔵庫(1)は、冷媒を圧縮する圧縮機と、圧縮機を駆動するインバータと、インバータの力率を改善するためのリアクタ(13)と、圧縮機によって圧縮された後に液体になった冷媒を気化させる冷却器と、冷却器において発生する水を受けるドリップトレイ(7)と、ドリップトレイ(7)からの水を蓄えるドレンパンと、ドリップトレイ(7)からドレンパンへの水の通路であるドレンパイプ(9)と、ドレンパイプ(9)に取り付けられた放熱板(14)とを有し、リアクタ(13)は、放熱板(14)に取り付けられている。

Description

冷蔵庫
 本発明は、間接冷却式の冷蔵庫に関する。
 冷蔵庫は、冷却器に付着した霜を取り除く際に冷却器において発生する水をドリップトレイにより受ける。ドリップトレイによって受けられた水は、ドレンパイプを介してドレンパンに蓄えられる。ドレンパンに蓄えられた水は、例えば冷蔵庫の機械室の熱によって蒸発する。水がドレンパイプを流れる際、水の一部はドレンパイプに残る。冷蔵庫は、霜を取り除く動作が終了すると冷却運転を行うので、冷却運転においてドレンパイプは冷却される。冷蔵庫の外部の温度が比較的高ければドレンパイプに残った水は蒸発するが、冷蔵庫の外部の温度が比較的低ければドレンパイプに残った水は凍る。ドレンパイプに残った水が凍ることが繰り返されると、氷が成長してドレンパイプは氷によって塞がれる。ドレンパイプが氷によって塞がれると、ドリップトレイにより受けられた水はドリップトレイからあふれ、冷蔵庫が設置されている床が濡れる。
 従来、ヒータをドレンパイプに巻き付けて、ヒータでドレンパイプを加熱することによって、ドレンパイプが氷によって塞がれることを防止する技術が提案されている。従来、冷蔵冷凍ショーケースの制御基板内の温度が上昇することを抑制するために、蛇行して配置された耐熱チューブにドレン水の一部を流すことで、制御基板内の温度を下げる技術も提案されている(例えば、特許文献1参照)。
特開2011-252691号公報
 しかしながら、上述のヒータでドレンパイプを加熱する技術では、ドレンパイプが氷によって塞がれることを防止することができるものの、冷蔵庫の本来の機能である冷却機能を実現するために必要でないヒータが必要となる。特許文献1に記載されている技術を冷蔵庫に適用しても、ドレンパイプが氷によって塞がれることを防止することは困難である。
 本発明は、上記に鑑みてなされたものであって、冷却機能を実現するために必要な部品によりドレンパイプが氷によって塞がれることを抑制する冷蔵庫を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る冷蔵庫は、冷媒を圧縮する圧縮機と、前記圧縮機を駆動するインバータと、前記インバータの力率を改善するためのリアクタと、前記圧縮機によって圧縮された後に液体になった前記冷媒を気化させる冷却器と、前記冷却器において発生する水を受けるドリップトレイと、前記ドリップトレイからの水を蓄えるドレンパンと、前記ドリップトレイから前記ドレンパンへの水の通路であるドレンパイプと、前記ドレンパイプに取り付けられた放熱板とを有する。前記リアクタは、前記放熱板に取り付けられている。
 本発明に係る冷蔵庫は、冷却機能を実現するために必要な部品によりドレンパイプが氷によって塞がれることを抑制することができるという効果を奏する。
実施の形態1に係る冷蔵庫のひとつの断面を模式して示す図 実施の形態1に係る冷蔵庫の一部の構成を模式して示すひとつの図 実施の形態1に係る冷蔵庫の一部の構成を模式して示す別のひとつの図 実施の形態1に係る冷蔵庫が有するドレンパイプ、リアクタ及び放熱板を模式して示す図 実施の形態2に係る冷蔵庫のひとつの断面を模式して示す図 実施の形態2に係る冷蔵庫の一部の構成を模式して示す図 実施の形態3に係る冷蔵庫の一部の構成を模式して示す図 実施の形態4に係る冷蔵庫の一部の構成を模式して示す図
 以下に、本発明の実施の形態に係る冷蔵庫を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 まず、実施の形態1に係る冷蔵庫1の構成を説明する。図1は、実施の形態1に係る冷蔵庫1のひとつの断面を模式して示す図である。冷蔵庫1は以下に説明する通り複数の構成要素を有している。図1では、冷蔵庫1が有する複数の構成要素の各々を容易に理解させるために、冷蔵庫1が有する複数の構成要素の一部にはハッチングが加えられていない。
 冷蔵庫1は、冷媒を圧縮する圧縮機2と、圧縮機2を駆動するインバータ3と、インバータ3が搭載される制御基板4と、インバータ3の力率を改善するためのリアクタとを有する。リアクタは、図1には示されていない。リアクタは、図示されていない交流ラインに接続されている。リアクタは、図示されていない交流電源から冷蔵庫1に供給される電流の力率を改善する機能も有する。冷蔵庫1は、圧縮機2によって圧縮された後に液体になった冷媒を気化させる冷却器5を更に有する。
 冷蔵庫1は、圧縮機2及び冷却器5に加えて図示されていない凝縮器及び膨張機構を有している。膨張機構の一例は、膨張弁又はキャピラリチューブである。冷媒は圧縮機2によって圧縮されることにより高温かつ高圧の気体になり、圧縮機2からの気体の冷媒は凝縮器において冷却されて低温かつ高圧の気体になる。凝縮器からの気体の冷媒は膨張機構において低温かつ低圧の液体となり、膨張機構からの液体の冷媒は冷却器5において気化して低温かつ低圧の気体になる。圧縮機2は、冷却器5からの冷媒を圧縮する。このように、冷凍サイクルにおける冷媒は圧縮機2、凝縮器、膨張機構及び冷却器5をこの順に循環して流れ、冷媒の状態は変化する。
 冷蔵庫1は、冷却器5に付着した霜に熱を加えるヒータ6と、ヒータ6による加熱によって取り除かれた霜をもとに冷却器5において発生する水を受けるドリップトレイ7と、ドリップトレイ7からの水を蓄えるドレンパン8と、ドリップトレイ7からドレンパン8への水の通路であるドレンパイプ9とを更に有する。ヒータ6は、冷蔵庫1が適切に設置された場合に冷却器5の下方に位置する。冷蔵庫1が適切に設置された場合とは、圧縮機2が鉛直下方側に位置して制御基板4が鉛直上方側に位置する状態で冷蔵庫1が設置された場合である。
 ドリップトレイ7は、冷蔵庫1が適切に設置された場合にヒータ6の下方に位置する。ドレンパン8は、冷蔵庫1が適切に設置された場合にドリップトレイ7の下方に位置する。ドレンパイプ9は、冷蔵庫1が適切に設置された場合にドリップトレイ7の下方であってドレンパン8の上方に位置する。冷蔵庫1は、冷蔵庫1の内部の冷気を循環させるファンモータ10を更に有する。ファンモータ10は、ファンとファンを駆動するモータとが一体になったものである。
 図2は、実施の形態1に係る冷蔵庫1の一部の構成を模式して示すひとつの図である。上述の通り、冷蔵庫1は、ドリップトレイ7からドレンパン8への水の通路であるドレンパイプ9を有する。ドレンパイプ9のドレンパン8の側の端部には、弁11が設けられている。冷蔵庫1は、冷媒の通路である配管12を更に有する。
 ヒータ6による加熱によって取り除かれた霜をもとに冷却器5において発生する水は、ドリップトレイ7によって受けられた後、ドレンパイプ9を通る。冷却器5において発生した水がドレンパイプ9を通る際、当該水の重みで弁11は開き、当該水はドレンパン8に蓄えられる。ドレンパン8に蓄えられた水は、圧縮機2の熱と配管12の熱との一方又は双方によって気化し、蒸発する。
 図2に示す通り、冷蔵庫1は、インバータ3の力率を改善するためのリアクタ13を有する。リアクタ13は、図示されていない交流電源から冷蔵庫1に供給される電流の力率を改善する機能も有する。図3は、実施の形態1に係る冷蔵庫1の一部の構成を模式して示す別のひとつの図である。冷蔵庫1は、ドレンパイプ9に取り付けられた放熱板14を更に有する。放熱板14は、熱を伝達させる。放熱板14は、例えばアルミニウムで形成されている。リアクタ13は、放熱板14に取り付けられている。図4は、実施の形態1に係る冷蔵庫1が有するドレンパイプ9、リアクタ13及び放熱板14を模式して示す図である。図4に示す通り、放熱板14の一方の端部14aはドレンパイプ9に巻き付けられてドレンパイプ9に取り付けられている。
 実施の形態1の具体例では、第1のボルト15aと図示されていない第1のナットとの第1の組と、第2のボルト15bと図示されていない第2のナットとの第2の組とによって、リアクタ13は放熱板14に取り付けられている。冷蔵庫1が運転する際、リアクタ13に電流が常時流れるので、リアクタ13では熱が発生し、発生した熱は、熱を伝達させる放熱板14によってドレンパイプ9に伝達される。すなわち、リアクタ13において発生した熱はドレンパイプ9に加えられる。
 次に、実施の形態1に係る冷蔵庫1の動作を説明する。冷蔵庫1が運転する際、制御基板4及びリアクタ13の各々に、電流が常時流れる。電流が常時流れるので、制御基板4及びリアクタ13の各々では、熱が常時発生する。冷蔵庫1が冷却運転を行う場合、圧縮機2が運転し、冷却器5は冷媒の冷凍サイクルにより冷却される。例えば、冷却器5はマイナス30℃からマイナス40℃までの範囲の温度に冷却される。
 冷却運転が継続すると、冷却器5の周囲の空気が冷やされ、霜が冷却器5に付着する。冷却器5の全体が霜で覆われると、ファンモータ10が運転しても冷気は循環しなくなり、冷蔵庫1の内部は冷えなくなる。冷蔵庫1の内部が冷えない状態を回避するため、冷却器5に付着した霜の量が増加すると、ヒータ6への通電が行われ、ヒータ6は冷却器5に付着した霜に熱を加える。ヒータ6による加熱によって霜は溶けるので、冷却器5に付着した霜は取り除かれる。ヒータ6による加熱により冷却器5に付着した霜が取り除かれる際、霜が冷却器5に付着することと、冷蔵庫1の内部の温度が上昇することとを抑制するために、圧縮機2及びファンモータ10は運転を停止する。
 ヒータ6による加熱によって取り除かれた霜をもとに冷却器5において発生した水は、ドリップトレイ7によって受けられた後、ドレンパイプ9を通り、ドレンパン8に蓄えられる。ドレンパン8に蓄えられた水は、圧縮機2の熱と配管12の熱との一方又は双方によって気化し、蒸発する。
 ところで、冷却器5において発生した水は、ドレンパイプ9に残ることがある。冬においては、冷蔵庫1の周囲の温度が比較的低いので、ドレンパイプ9に残った水は、ファンモータ10の運転によって昇華しきれずにドレンパイプ9に残り続ける。冷蔵庫1の扉が比較的長時間にわたって開いている場合と、当該扉が比較的高い頻度で開閉される場合とにおいても、冷却器5に付着する霜の量が増加するので、ヒータ6による加熱によって発生する水の量が増加し、水はドレンパイプ9に残りやすくなる。
 冷却器5に付着した霜を取り除く動作が繰り返されることによって、ドレンパイプ9に残った水は、最初に生成された氷を核に成長し、やがてドレンパイプ9の内部は氷によって塞がれる。ドレンパイプ9の内部が氷によって塞がれると、ドリップトレイ7により受けられた水はドレンパイプ9を通ることができずにドリップトレイ7からあふれ、冷蔵庫1が設置されている床が濡れる。従来、ドレンパイプ9の内部が氷によって塞がれることを抑制するために、ヒータがドレンパイプ9に巻き付けられている。
 実施の形態1では、上述の通り、冷蔵庫1は、熱を発生するリアクタ13と、リアクタ13が取り付けられた放熱板14とを有する。放熱板14は、ドレンパイプ9に取り付けられている。リアクタ13において発生した熱は、放熱板14を介してドレンパイプ9に伝達される。つまり、リアクタ13において発生した熱はドレンパイプ9に加えられる。そのため、ドレンパイプ9の内部に残った水は氷にならない。つまり、冷蔵庫1は、ドレンパイプ9を加熱するヒータを有することなく、リアクタ13において発生した熱を用いてドレンパイプ9の内部が氷によって塞がれることを抑制することができる。
 更に言うと、冬においても、冷蔵庫1の扉が比較的長時間にわたって開いていても、当該扉が比較的高い頻度で開閉されても、冷却機能を実現するために必要なリアクタ13において発生した熱がドレンパイプ9に加えられるので、ドレンパイプ9の内部は氷によって塞がれることが抑制される。その結果、冷蔵庫1は、冷蔵庫1が設置されている床が濡れることを抑制することができる。
 すなわち、冷蔵庫1は、冷却機能を実現するために必要な部品であるリアクタ13によりドレンパイプ9が氷によって塞がれることを抑制することができる。
 加えて、リアクタ13において発生した熱が放熱板14を介してドレンパイプ9に伝達されるので、リアクタ13の熱が放散し、リアクタ13の温度が高くなりすぎることが抑制され、リアクタ13の抵抗値は比較的低くなる。その結果、冷蔵庫1に係る消費電力が大きくなることが抑制される。すなわち、冷蔵庫1は、冷蔵庫1に係る消費電力が大きくなることを抑制することができる。
 さらに、冷蔵庫1は、ドレンパイプ9を加熱するヒータを有さない。そのため、冷蔵庫1に係るコストは、ドレンパイプ9を加熱するヒータを有する冷蔵庫に係るコストよりも低くなる。
 なお、複数のリアクタ13の各々には放熱性について個体差があるので、複数の冷蔵庫1の各々において、リアクタ13の熱を比較的均一に伝達させるために、リアクタ13はドレンパイプ9に直接取り付けられておらず放熱板14に取り付けられており、放熱板14がドレンパイプ9に取り付けられている。
実施の形態2.
 図5は、実施の形態2に係る冷蔵庫1Aのひとつの断面を模式して示す図である。図5においても、冷蔵庫1Aが有する複数の構成要素の各々を容易に理解させるために、冷蔵庫1Aが有する複数の構成要素の一部にはハッチングが加えられていない。冷蔵庫1Aは、放熱板14、第1のボルト15a及び第2のボルト15bを除いて、実施の形態1に係る冷蔵庫1が有する構成要素を有する。実施の形態2では、実施の形態1と相違する部分を主に説明する。
 図6は、実施の形態2に係る冷蔵庫1Aの一部の構成を模式して示す図である。冷蔵庫1Aは、リアクタ13が収められる容器16を更に有する。容器16は、リアクタ13が濡れることを抑制する。容器16の一部は、開放されている。リアクタ13は容器16に収められている。容器16は、図示されていない部材によりドレンパン8に取り付けられている。冷蔵庫1Aでは、リアクタ13はドレンパン8に接している。
 実施の形態1において説明した通り、冷蔵庫1Aの運転中において、リアクタ13は熱を常時発生する。リアクタ13がドレンパン8に接しているので、リアクタ13において発生した熱はドレンパン8に伝達される。つまり、リアクタ13において発生した熱はドレンパン8に加えられる。そのため、ドレンパン8に蓄えられた水は、比較的早く蒸発する。更に言うと、例えば冷蔵庫1Aの扉が比較的長時間にわたって開いていて比較的多くの霜が冷却器5に付着し、当該霜がヒータ6の加熱によって溶かされて比較的大量の水がドレンパン8に入ることになっても、ドレンパン8に蓄えられた水は、比較的早く蒸発する。そのため、冷蔵庫1Aが設置されている床が濡れることは抑制される。
 すなわち、冷蔵庫1Aは、冷却機能を実現するために必要な部品であるリアクタ13により冷蔵庫1Aが設置されている床が濡れることを抑制することができる。
 加えて、リアクタ13において発生した熱がドレンパン8に伝達されるので、リアクタ13の熱が放散し、リアクタ13の温度が高くなりすぎることが抑制され、リアクタ13の抵抗値は比較的低くなる。その結果、冷蔵庫1Aに係る消費電力が大きくなることが抑制される。すなわち、冷蔵庫1Aは、冷蔵庫1Aに係る消費電力が大きくなることを抑制することができる。
実施の形態3.
 図7は、実施の形態3に係る冷蔵庫1Bの一部の構成を模式して示す図である。冷蔵庫1Bは、実施の形態1に係る冷蔵庫1が有する構成要素を有する。実施の形態3では、実施の形態1と相違する部分を主に説明する。
 実施の形態1に係る冷蔵庫1ではリアクタ13が放熱板14に取り付けられているが、冷蔵庫1Bでは、リアクタ13ではなく制御基板4が放熱板14に取り付けられている。つまり、実施の形態3では、制御基板4は、図1に示される場所とは異なる場所に位置していて、放熱板14に取り付けられている。実施の形態3の具体例では、第3のボルト17aと図示されていない第3のナットとの第3の組と、第4のボルト17bと図示されていない第4のナットとの第4の組とによって、制御基板4は放熱板14に取り付けられている。
 冷蔵庫1Bが運転する際、制御基板4に電流が常時流れるので、制御基板4では熱が常時発生する。制御基板4において発生した熱は、放熱板14を介してドレンパイプ9に伝達される。つまり、制御基板4において発生した熱はドレンパイプ9に加えられる。そのため、ドレンパイプ9の内部に残った水は氷にならない。
 すなわち、冷蔵庫1Bは、冷却機能を実現するために必要な部品である制御基板4によりドレンパイプ9が氷によって塞がれることを抑制することができる。
 なお、制御基板4には圧縮機2を駆動するための素子が搭載されている場合があり、その場合、制御基板4において発生した熱は当該素子が発生する熱を含む。
実施の形態4.
 図8は、実施の形態4に係る冷蔵庫1Cの一部の構成を模式して示す図である。冷蔵庫1Cは、実施の形態2に係る冷蔵庫1Aが有する構成要素を有する。実施の形態4では、実施の形態2と相違する部分を主に説明する。
 実施の形態2に係る冷蔵庫1Aではリアクタ13が容器16に収められているが、冷蔵庫1Cでは、リアクタ13ではなく制御基板4が容器16に収められている。つまり、実施の形態4では、制御基板4は、図1に示される場所とは異なる場所に位置していて、容器16に収められている。制御基板4は、ドレンパン8に接している。
 冷蔵庫1Cが運転する際、制御基板4に電流が常時流れるので、制御基板4では熱が常時発生する。制御基板4がドレンパン8に接しているので、制御基板4において発生した熱はドレンパン8に伝達される。つまり、制御基板4において発生した熱はドレンパン8に加えられる。そのため、ドレンパン8に蓄えられた水は、比較的早く蒸発する。
 更に言うと、例えば冷蔵庫1Cの扉が比較的長時間にわたって開いていて比較的多くの霜が冷却器5に付着し、当該霜がヒータ6による加熱によって溶かされて比較的大量の水がドレンパン8に入ることになっても、ドレンパン8に蓄えられた水は、比較的早く蒸発する。そのため、冷蔵庫1Cが設置されている床が濡れることは抑制される。
 すなわち、冷蔵庫1Cは、冷却機能を実現するために必要な部品である制御基板4により冷蔵庫1Cが設置されている床が濡れることを抑制することができる。
 なお、冷蔵庫1B及び冷蔵庫1Cでは、リアクタの位置は限定されない。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略又は変更することも可能である。
 1,1A,1B,1C 冷蔵庫、2 圧縮機、3 インバータ、4 制御基板、5 冷却器、6 ヒータ、7 ドリップトレイ、8 ドレンパン、9 ドレンパイプ、10 ファンモータ、11 弁、12 配管、13 リアクタ、14 放熱板、16 容器。

Claims (4)

  1.  冷媒を圧縮する圧縮機と、
     前記圧縮機を駆動するインバータと、
     前記インバータの力率を改善するためのリアクタと、
     前記圧縮機によって圧縮された後に液体になった前記冷媒を気化させる冷却器と、
     前記冷却器において発生する水を受けるドリップトレイと、
     前記ドリップトレイからの水を蓄えるドレンパンと、
     前記ドリップトレイから前記ドレンパンへの水の通路であるドレンパイプと、
     前記ドレンパイプに取り付けられた放熱板とを備え、
     前記リアクタは、前記放熱板に取り付けられている
     ことを特徴とする冷蔵庫。
  2.  冷媒を圧縮する圧縮機と、
     前記圧縮機を駆動するインバータと、
     前記インバータの力率を改善するためのリアクタと、
     前記圧縮機によって圧縮された後に液体になった前記冷媒を気化させる冷却器と、
     前記冷却器において発生する水を受けるドリップトレイと、
     前記ドリップトレイからの水を蓄えるドレンパンと、
     前記ドリップトレイから前記ドレンパンへの水の通路であるドレンパイプとを備え、
     前記リアクタは、前記ドレンパンに接している
     ことを特徴とする冷蔵庫。
  3.  冷媒を圧縮する圧縮機と、
     前記圧縮機を駆動するインバータを含む制御基板と、
     前記圧縮機によって圧縮された後に液体になった前記冷媒を気化させる冷却器と、
     前記冷却器において発生する水を受けるドリップトレイと、
     前記ドリップトレイからの水を蓄えるドレンパンと、
     前記ドリップトレイから前記ドレンパンへの水の通路であるドレンパイプと、
     前記ドレンパイプに取り付けられた放熱板とを備え、
     前記制御基板は、前記放熱板に取り付けられている
     ことを特徴とする冷蔵庫。
  4.  冷媒を圧縮する圧縮機と、
     前記圧縮機を駆動するインバータを含む制御基板と、
     前記圧縮機によって圧縮された後に液体になった前記冷媒を気化させる冷却器と、
     前記冷却器において発生する水を受けるドリップトレイと、
     前記ドリップトレイからの水を蓄えるドレンパンと、
     前記ドリップトレイから前記ドレンパンへの水の通路であるドレンパイプとを備え、
     前記制御基板は、前記ドレンパンに接している
     ことを特徴とする冷蔵庫。
PCT/JP2017/012131 2017-03-24 2017-03-24 冷蔵庫 WO2018173283A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/012131 WO2018173283A1 (ja) 2017-03-24 2017-03-24 冷蔵庫
JP2019506911A JP6707183B2 (ja) 2017-03-24 2017-03-24 冷蔵庫
CN201790000521.4U CN209978480U (zh) 2017-03-24 2017-03-24 冰箱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012131 WO2018173283A1 (ja) 2017-03-24 2017-03-24 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2018173283A1 true WO2018173283A1 (ja) 2018-09-27

Family

ID=63586014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012131 WO2018173283A1 (ja) 2017-03-24 2017-03-24 冷蔵庫

Country Status (3)

Country Link
JP (1) JP6707183B2 (ja)
CN (1) CN209978480U (ja)
WO (1) WO2018173283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023105946A1 (de) 2022-03-16 2023-09-21 Jesper Andersen Kindersitz und gurt

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055411A (ja) * 1998-08-03 2000-02-25 Sharp Corp 空気調和機
JP2005156105A (ja) * 2003-11-28 2005-06-16 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2013155889A (ja) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp 機器、冷蔵庫

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252691A (ja) * 2010-06-04 2011-12-15 Mitsubishi Electric Corp ショーケースの機械室

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055411A (ja) * 1998-08-03 2000-02-25 Sharp Corp 空気調和機
JP2005156105A (ja) * 2003-11-28 2005-06-16 Matsushita Electric Ind Co Ltd 冷蔵庫
JP2013155889A (ja) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp 機器、冷蔵庫

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023105946A1 (de) 2022-03-16 2023-09-21 Jesper Andersen Kindersitz und gurt

Also Published As

Publication number Publication date
CN209978480U (zh) 2020-01-21
JPWO2018173283A1 (ja) 2019-06-27
JP6707183B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
US9746221B2 (en) Defrost system for refrigeration apparatus, and cooling unit
US5941085A (en) Refrigerator having an apparatus for defrosting
RU2465523C2 (ru) Холодильный аппарат и способ поддержания постоянной заданной температуры в холодильной камере холодильного аппарата
JP5261066B2 (ja) 冷凍冷蔵庫及び冷却庫
JP2021105483A (ja) 冷蔵庫
JP2005172329A (ja) 冷却庫
US20120174604A1 (en) Refrigeration system with a distributor having a flow control mechanism and a method for controlling such a system
JP2009144951A (ja) 冷凍冷蔵装置のデフロスト運転制御装置及び方法
WO2018173283A1 (ja) 冷蔵庫
KR101473894B1 (ko) 냉장고의 정온 유지를 위한 제상장치 및 제상방법
JP6729269B2 (ja) 冷蔵庫とその制御方法
JP4514804B2 (ja) 過冷却水を用いた製氷及び空調システム
JP2006317079A (ja) 冷凍冷蔵庫
RU2708761C1 (ru) Холодильное и/или морозильное устройство
JP6912673B2 (ja) デフロストシステム
JP5916174B2 (ja) 冷蔵庫
JP6511710B2 (ja) 冷凍装置
JP3742043B2 (ja) 冷却設備における冷却器の霜、氷除去装置およびその方法
JP2004020056A (ja) 冷却庫
JP2013096607A (ja) 冷蔵庫
CA2753781A1 (en) Refrigeration appliance with two evaporators in series and method for controlling such appliance
JP2006284101A (ja) 冷蔵庫の制御方法
JP2009008332A (ja) 冷凍冷蔵庫
JP6318457B2 (ja) 冷凍装置、および負荷冷却器のデフロスト方法
JP5482689B2 (ja) 二酸化炭素循環・冷却システムにおけるデフロスト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902184

Country of ref document: EP

Kind code of ref document: A1