WO2018173211A1 - 測定装置、測定方法、およびモーターの製造方法 - Google Patents

測定装置、測定方法、およびモーターの製造方法 Download PDF

Info

Publication number
WO2018173211A1
WO2018173211A1 PCT/JP2017/011806 JP2017011806W WO2018173211A1 WO 2018173211 A1 WO2018173211 A1 WO 2018173211A1 JP 2017011806 W JP2017011806 W JP 2017011806W WO 2018173211 A1 WO2018173211 A1 WO 2018173211A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
winding
teeth
voltage
inner peripheral
Prior art date
Application number
PCT/JP2017/011806
Other languages
English (en)
French (fr)
Inventor
啓宇 川▲崎▼
米谷 晴之
晋也 大石
岡田 順二
坪内 剛史
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019506845A priority Critical patent/JP6678812B2/ja
Priority to CN201780088339.3A priority patent/CN110402377B/zh
Priority to PCT/JP2017/011806 priority patent/WO2018173211A1/ja
Publication of WO2018173211A1 publication Critical patent/WO2018173211A1/ja

Links

Images

Definitions

  • the present invention relates to a cage rotor measuring device, a measuring method, and a motor manufacturing method.
  • a cage core of an induction motor uses a rotor core that is manufactured by punching an electromagnetic steel plate with insulating coatings on both sides with a press to form an annular plate material, and laminating the annular plate material into a cylindrical shape.
  • the cage rotor is also simply referred to as a rotor.
  • the rotor core is formed with a plurality of slots extending from one end surface side to the other end surface side.
  • the rotor core slot is filled with a conductor by a method such as aluminum die casting to form a rotor bar.
  • an end ring for electrically connecting the end portions of the rotor bar is formed by a method such as aluminum die casting.
  • the secondary conductor is formed by the rotor bar and the end ring.
  • the annular plate material constituting the rotor core is covered with an insulating coating on both sides as the main surface, the cut surface of the plate is not covered with the insulating coating by being punched out by a press. . Since the inner peripheral surface of the slot of the rotor core is formed by a cut surface of the plate material, it is not covered with an insulating film, and the inner peripheral surface of the slot and the rotor bar formed in the slot may be in a conductive state. . Since the conduction state between the inner peripheral surface of the slot and the rotor bar affects the torque generated and the efficiency of the motor using the rotor, the quality of the motor may vary.
  • Patent Document 1 discloses a technique for measuring a generated torque when a rotor to be measured is arranged inside a reference stator prepared in advance and a specified voltage is applied to the reference stator. By comparing the measured generated torque with the reference torque, the influence of the conduction state on the generated torque and efficiency is grasped, and the variation in the quality of the motor is suppressed.
  • Patent Document 1 has a problem that the apparatus becomes large because a torque detector and a load device having a size corresponding to the output of the motor are necessary. In addition, since it is necessary to rotate the rotor at a rotational speed that is affected by the conduction state, there is a problem that it takes time for measurement.
  • the present invention has been made in view of the above, and has a simpler configuration and a measuring device that can grasp the influence of the conduction state between the inner peripheral surface of the slot and the rotor bar on the generated torque and efficiency in a shorter time.
  • the purpose is to obtain.
  • the present invention includes a winding that surrounds the rotor and generates an alternating magnetic field in the circumferential direction of the rotor, and a voltage application unit that applies an AC voltage to the winding. And a measuring unit that measures the phase difference between the AC voltage and current applied by the applied voltage unit.
  • the measuring apparatus has an effect that the influence of the conduction state between the inner peripheral surface of the slot and the rotor bar on the rotor can be grasped in a simpler configuration and in a shorter time.
  • FIG. 1 is an exploded perspective view of a motor according to a first embodiment of the present invention.
  • Plan view of rotor core in the first embodiment The figure which shows schematic structure of the measuring apparatus concerning Embodiment 1.
  • FIG. FIG. 3 is a top view of the rotor and sensor unit shown in FIG. 3 deployed linearly along the circumferential direction.
  • 4 is a side view in which the rotor shown in FIG. 4 is linearly developed along the circumferential direction.
  • 4 is a side view of the sensor unit shown in FIG. 4 developed linearly along the circumferential direction.
  • FIG. 7 is a diagram showing the rotor shown in FIG. 5 and the sensor unit shown in FIG. 6 superimposed on each other, and showing the relationship between the rotor and the sensor unit.
  • FIG. 12 is a diagram in which a rotor having a skew angle of 72 ° is developed linearly along the circumferential direction using the measuring apparatus shown in FIG.
  • FIG. 11 is a diagram showing an equivalent circuit of impedance viewed from the LCR meter when the inner peripheral surface of the slot and the rotor bar are insulated in the measurement apparatus shown in FIG.
  • FIG. 11 is a diagram showing an equivalent circuit of impedance viewed from the LCR meter when the inner peripheral surface of the slot and the rotor bar are electrically connected in the measuring apparatus shown in FIG.
  • FIG. 5 is a side view in which a rotor having a smaller skew angle than the example shown in FIG.
  • Embodiment 5 is developed linearly along the circumferential direction.
  • the side view which expanded the sensor unit linearly along the circumferential direction in Embodiment 1 16 and 18 are side views showing the relationship between the rotor and the sensor unit.
  • FIG. 1 is an exploded perspective view of a motor according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of the rotor core in the first embodiment.
  • FIG. 3 is a diagram illustrating a schematic configuration of the measurement apparatus according to the first embodiment.
  • FIG. 4 is a top view in which the rotor and the sensor unit shown in FIG. 3 are developed linearly along the circumferential direction.
  • FIG. 5 is a side view in which the rotor shown in FIG. 4 is developed linearly along the circumferential direction.
  • FIG. 6 is a side view in which the sensor unit shown in FIG. 4 is developed linearly along the circumferential direction.
  • FIG. 7 is a diagram showing the rotor shown in FIG. 5 and the sensor unit shown in FIG. 6 superimposed on each other, and is a diagram showing the relationship between the rotor and the sensor unit.
  • the motor 50 includes a rotor 1, a bearing 2, an outer shell 3, and a stator 4.
  • the motor 50 is an induction motor.
  • the rotor 1 has a rotor core 1c that is formed in a cylindrical shape by laminating annular plate materials shown in FIG.
  • An annular plate material to be laminated is obtained by punching a magnetic steel sheet having an insulating film on both sides by press working.
  • the laminated annular plate material has a plurality of teeth 1t protruding toward the outer peripheral side, and forms an annular shape as a whole including the teeth 1t.
  • illustration of an electromagnetic steel plate is abbreviate
  • the rotor core 1c is formed with a plurality of slots 1s extending from one end surface side to the other end surface side of the rotor core 1c.
  • a conductor is filled to form a plurality of rotor bars 1b.
  • End rings 1e are provided on one end surface and the other end surface of the rotor core 1c. Both ends of the plurality of rotor bars 1b are short-circuited by end rings 1e.
  • the rotor bar 1b and the end ring 1e form a secondary conductor.
  • the rotor bar 1b and the end ring 1e are formed by, for example, aluminum die casting.
  • the rotation shaft 1a is fitted in the center of the rotor core 1c.
  • a bearing 2 such as a ball bearing is mounted on the rotating shaft 1a.
  • the bearing 2 is held by a bearing box 3 h provided on the outer shell 3 of the motor 50.
  • the rotor 1 can rotate around the rotation shaft 1a.
  • a stator 4 is disposed in which a winding 4w is wound around a tooth 4t of a stator core 4c.
  • FIG. 1 shows an example of a two-pole capacitor phase separation induction motor. Note that the capacitor is not shown.
  • the measuring device 60 includes a sensor unit 5 and an LCR meter 6.
  • the sensor unit 5 has a cylindrical sensor core 5c, and a plurality of teeth 5t protruding toward the inner peripheral side are formed on the sensor core 5c.
  • FIG. 3 shows an example in which ten teeth 5t are formed side by side in the circumferential direction.
  • a winding 5w is wound around each of the teeth 5t.
  • the windings 5w wound around the teeth 5t are connected in series. Further, the number of turns of each winding 5w is the same. Further, the winding directions of the adjacent windings 5w around the teeth 5t are opposite to each other.
  • the LCR meter 6 includes a transmission unit 6g, a current measurement unit 6i, and a voltage measurement unit 6v, and applies an AC voltage to both ends 5e of the winding 5w connected in series.
  • the LCR meter 6 measures the magnitude and phase difference of the current flowing through the winding 5w with respect to the applied voltage and converts it to an equivalent impedance.
  • an LCR meter (product number: IM3533) manufactured by Hioki Electric can be used.
  • the LCR meter 6 exhibits the function of a voltage application unit that applies an AC voltage to the winding 5w and the function of a measurement unit that measures a phase difference.
  • the sensor unit 5 can grasp the state of the rotor with respect to the fifth-order component of the harmonic component in the rotating magnetic field by generating a 10-pole alternating magnetic field.
  • the sensor core 5c, the teeth 5t, and the windings 5w constitute a magnetic field generation unit that generates an alternating magnetic field around the rotor 1.
  • the measuring device 60 when the total sum of the magnetic fluxes 7 linked to the secondary conductor is small, the current flowing through the secondary conductor is also small. When the total sum of the magnetic fluxes 7 linked to the secondary conductor is large, the current flowing through the secondary conductor is also small. The state of the secondary conductor is measured by utilizing the increase.
  • the measuring device 60 when an AC voltage is applied from the LCR meter 6 to the winding 5w, an alternating magnetic field is generated on the inner peripheral surface of the tooth 5t of the sensor core 5c. Since the winding direction around the teeth 5t is opposite between the adjacent windings 5w, the direction of the magnetic flux is reversed between the adjacent windings 5w. On the other hand, since the number of windings 5w is the same, the magnitude of the magnetic flux is the same, and the magnetic flux density is almost the same at any location on the inner peripheral surface of the tooth 5t. Thus, the 10-pole magnetic flux generated on the inner peripheral surface of the tooth 5t is passed through the tooth 1t of the rotor 1.
  • the equivalent circuit of the equivalent impedance viewed from the LCR meter 6 varies depending on the number of teeth 5t and the skew angle.
  • one tooth 1t is opposed to three adjacent teeth 5t.
  • the opposing teeth 5t are divided for each different region and surrounded by thick lines, which are a region 1t1, a region 1t2, and a region 1t3, respectively.
  • the direction of the magnetic flux is reversed in the region 1t1, the region 1t3, and the region 1t2 due to the difference in the winding direction of the winding 5w wound around the tooth 5t. Further, since the number of turns of the winding 5w is the same, the magnetic flux densities are equal in the region 1t1, the region 1t3, and the region 1t2.
  • the area of the region 1t2 sandwiched between the region 1t1 and the region 1t3 is equal to the sum of the areas of the region 1t1 and the region 1t3. Therefore, the total sum of magnetic fluxes linked to the teeth 1t composed of the regions 1t1, 1t2, and 1t3 is zero.
  • FIG. 8 is a diagram showing an equivalent circuit of impedance viewed from the LCR meter 6 when no induced current flows through the secondary conductor in the first embodiment.
  • FIG. 8 shows the impedance Z as viewed from the LCR meter 6 when the inner peripheral surface 10 of the slot 1s and the rotor bar 1b are not conductive, that is, when no induced current flows through the secondary conductor, as shown in FIG.
  • An equivalent circuit without a secondary conductor is obtained.
  • Ra is the resistance of the winding 5w of the sensor unit 5
  • La is the leakage inductance of the winding 5w of the sensor unit 5
  • Lm is the inductance of the magnetic flux interlinked with the rotor core 1c.
  • the impedance in the case where there is a portion where the inner peripheral surface 10 of the slot 1s of the rotor core 1c and the rotor bar 1b are electrically insulated without ensuring insulation will be described.
  • the inner peripheral surface 10 of the slot 1s The rotor bar 1b conducts, and the secondary conductor loop surrounding the tooth 1t by the rotor bar 1b and the end ring 1e is divided into two loops 9 as shown by broken lines in FIG.
  • the sum of the magnetic fluxes linked to each of the divided loops 9 is not 0, and an induced electromotive force is generated for each loop, and an induced current flows through the circuit of the secondary conductor and the tooth 1t.
  • FIG. 9 is a diagram showing an equivalent circuit of impedance viewed from the LCR meter 6 when an induced current flows through the secondary conductor in the first embodiment.
  • the impedance Z viewed from the LCR meter 6 is as shown in FIG.
  • the series circuit of the resistor Ri and the inductance Li of the 1t circuit becomes an equivalent circuit in which the inductance Lm of the magnetic flux interlinking with the rotor core 1c is connected in parallel.
  • FIG. 10 is a diagram showing the relationship between the contact resistance between the rotor bar 1b and the inner peripheral surface 10 of the slot 1s and the real part Re (Z).
  • the value obtained by subtracting the resistance Ra of the winding 5w from the real part Re (Z) when the contact resistance between the rotor bar 1b and the inner peripheral surface 10 of the slot 1s is changed is obtained by electromagnetic field analysis. An example is shown.
  • the real part Re (Z) increases as the contact resistance decreases and the current increases.
  • the method of measuring the amount of change in the impedance Z of the equivalent series circuit is the same as in the actually assembled motor 50, by using conduction between the rotor bar 1b and the inner peripheral surface 10 of the slot 1s using the induced electromotive force.
  • the change caused by the current flowing to 1c is measured. Therefore, there is a correlation between the measurement result and the degree of influence on the generated torque, and by measuring the amount of change in the impedance Z, the degree of influence of the conduction state in the rotor 1 on the reduction of the generated torque and the efficiency.
  • the teeth 5t around which the winding 5w of the sensor unit 5 is wound are configured in the entire area on the inner peripheral side of the sensor core 5c. However, even if the teeth 5t are not configured in the entire area on the inner peripheral side, the teeth 5t are adjacent to each other. The winding should just be wound.
  • the assembly process such as taking out the rotor 1 from the inside of the sensor core 5c, that is, the region surrounded by the winding 5w, and incorporating the taken out rotor 1 into the inside of the stator 4 is performed.
  • the motor 50 is manufactured.
  • the number of teeth 5t formed in the sensor unit 5 is selected so that the width of the two teeth 5t formed in the sensor unit 5 matches the skew angle of the rotor core 1c.
  • FIG. 11 is a diagram showing a schematic configuration of the measuring apparatus 61 using the 8-pole sensor unit 15 in the first embodiment.
  • FIG. 12 is a diagram in which the rotor 1 having a skew angle of 72 ° is developed linearly along the circumferential direction using the measuring device 61 shown in FIG. 11, and shows the relationship between the rotor 1 and the sensor unit 15. It is.
  • FIG. 13 is a diagram showing an equivalent circuit of impedance viewed from the LCR meter 6 when the inner peripheral surface 10 of the slot 1s and the rotor bar 1b are insulated in the measuring apparatus 61 shown in FIG. FIG.
  • the sensor unit 15 includes a sensor core 15c and a tooth 15t, and a winding 5w is wound around the tooth 15t.
  • the impedance Z as viewed from the LCR meter 6 is equivalent to a series circuit of the resistance Rr of the secondary conductor and the leakage inductance Lr connected in parallel with the inductance Lm of the magnetic flux linked to the rotor core 1c as shown in FIG. Become a circuit.
  • the locations of the conductive portions 8 shown in FIG. 12 are opposite to each other in the direction of the sum of magnetic fluxes linked to the loop composed of the rotor bar 1b, the end ring 1e, and the rotor core 1c formed on both sides thereof. Since the total amount of magnetic fluxes to be exchanged is also large, the current flowing through the teeth 1t becomes large.
  • electrical_connection part 8 into which an electric current flows in the same teeth 1t is not necessarily one place, The conduction
  • the impedance Z viewed from the LCR meter 6 at this time is the inductance Lm and the secondary of the magnetic flux interlinked with the rotor core 1c by the series circuit of the resistance Ri and the inductance Li of the circuit of the secondary conductor and the tooth 1t.
  • This is an equivalent circuit connected in parallel to the series circuit of the resistance Rr of the conductor and the leakage inductance Lr.
  • FIG. 15 is a diagram showing the relationship between the contact resistance between the rotor bar 1b and the inner peripheral surface 10 of the slot 1s and the real part Re (Z) in the example of FIG.
  • the value obtained by subtracting the resistance Ra of the winding 5w from the real part Re (Z) when the contact resistance between the rotor bar 1b and the inner peripheral surface 10 of the slot 1s is changed is obtained by electromagnetic field analysis. An example is shown.
  • FIG. 16 is a side view in which the rotor 1 having a smaller skew angle than the example shown in FIG. 5 is developed linearly along the circumferential direction.
  • 17 is a side view in which the sensor unit 5 of FIG. 6 is superimposed on the side view of the rotor of FIG.
  • FIG. 18 is a side view in which the sensor unit 25 is developed linearly along the circumferential direction in the first embodiment.
  • FIG. 19 is a side view showing the relationship between the rotor 1 and the sensor unit 25 by superimposing FIG. 16 and FIG.
  • the sensor unit 25 has a sensor core 25c and teeth 25t.
  • the number of poles of the sensor unit 5 is linked to one tooth 1t of the rotor core 1c. It is desirable that the number of poles is twice the number obtained by dividing 360 ° at which the sum of the magnetic fluxes to be zero is divided by the skew angle of the rotor core 1c.
  • the number of poles of the sensor unit 5 is larger than the number of teeth 1t of the rotor core 1c, the amplitude of the spatial harmonics of the magnetic flux actually applied to the rotor core 1c when the rotor 1 is incorporated in the motor 50 is large.
  • the third order, the fifth order, and the seventh order are far from each other, and the phase between the impedance and the degree of torque reduction becomes thin.
  • the detection sensitivity of the degree of continuity at the contact portion between the rotor bar 1b and the inner peripheral surface 10 of the slot 1s is 0 in the sum of the magnetic fluxes that the number of poles of the sensor unit 5 is linked to one tooth 1t of the rotor core 1c.
  • the optimal skew angle for the motor 50 is not necessarily an integer of 360 °.
  • the magnetic poles are skewed.
  • the skew angle of the rotor core 1c is S1
  • the skew angle of the magnetic pole of the sensor unit 25 is S2
  • the number of magnetic poles of the sensor unit 25 is P
  • S1 + S2 360 ° / P / 2 (1)
  • the skew angle S2 of the magnetic poles of the sensor unit 25 is set so as to satisfy the following relationship, the total sum of magnetic fluxes linked to one tooth 1t of all the rotor cores 1c can be set to zero with an arbitrary even number of magnetic poles P.
  • the sum of the magnetic fluxes linked to both loops is increased when the direction of the sum of the magnetic fluxes linked to the loops formed on both sides thereof is opposite.
  • the induced electromotive force can be increased.
  • the current passing through the rotor core 1c can easily flow at the conduction portion where the rotor bar 1b and the inner peripheral surface 10 of the slot 1s are conducted, and the detection sensitivity can be improved.
  • FIG. FIG. 20 is a diagram showing a schematic configuration of the measuring apparatus 62 according to the second embodiment of the present invention.
  • the winding 5w is wound around the tooth 5t formed on the sensor core 5c (see also FIG. 3 and the like).
  • the sensor unit 35 according to the second embodiment only the winding 35w is provided without providing the sensor core and the teeth.
  • the winding 35w is formed in a shape that generates an alternating magnetic field along the circumferential direction of the rotor core 1c.
  • the LCR meter 6 is connected to the end 35e of the winding 35w.
  • the imaginary part Im (Z) of the impedance Z of the winding viewed from the LCR meter 6 is reduced, so that the output voltage of the LCR meter 6 can be lowered, and the influence of variations in the magnetic characteristics and shape of the sensor core can be reduced. Can be excluded.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

より簡素な構成およびより短時間でスロットの内周面とローターバーとの導通状態が発生トルクおよび効率に与える影響を把握できる測定装置を得ることを目的とする。測定装置(60)は、ローター(1)の周囲を囲み、ローター(1)の周方向に交番磁界を発生させる巻線(5w)と、巻線(5w)に交流電圧を印加する電圧印加部(6)と、印加電圧部によって印加された交流電圧と電流との位相差を測定する測定部(6)と、を備える。

Description

測定装置、測定方法、およびモーターの製造方法
 本発明は、かご形ローターの測定装置、測定方法、およびモーターの製造方法に関する。
 一般に、誘導モーターのかご形ローターには、絶縁皮膜を両面に施した電磁鋼板をプレスで打抜いて円環状の板材とし、円環状に板材を積層して円柱状に製作したローターコアが用いられる。なお、以下の説明においてかご形ローターを単にローターともいう。ローターコアには、円柱形状の一端面側から他端面側に向けて延びる複数のスロットが形成されている。ローターコアのスロット内には、アルミダイカストなどの工法によって導体が充填されてローターバーが形成される。また、アルミダイカストなどの工法によって、ローターバーの端部同士を電気的に接続させるエンドリングが形成される。ローターでは、ローターバーとエンドリングで2次導体が形成される。
 ローターコアを構成する円環状の板材は、主面である両面は絶縁被膜に覆われているものの、プレスによって打抜かれることで板材の切断面は絶縁被膜に覆われていない状態となっている。ローターコアのスロットの内周面は板材の切断面で形成されるため絶縁皮膜で覆われておらず、スロットの内周面とスロット内に形成されたローターバーとが導通状態となる場合がある。スロットの内周面とローターバーとの導通状態は、そのローターを用いたモーターの発生トルクおよび効率に影響を及ぼすため、モーターの品質のばらつきを招くおそれがある。
 そこで、スロットの内周面とローターバーとの導通状態が発生トルクおよび効率に与える影響を、ローターをモーターに組み込む前に検査する技術が提案されている。特許文献1には、予め用意された基準のステーターの内側に、測定対象となるローターを配置し、基準のステーターに規定の電圧を印加したときの発生トルクを測定する技術が開示されている。測定された発生トルクと基準トルクとを比較することで、発生トルクおよび効率への導通状態の影響を把握し、モーターの品質のばらつきの抑制を図っている。
特開平5-133821号公報
 しかしながら、特許文献1に開示された技術では、モーターの出力に対応した大きさのトルク検出器および負荷装置が必要であるため装置が大掛りになるという問題があった。また、導通状態の影響が出る回転数でローターを回転させる必要があるため、測定に時間がかかるといった問題があった。
 本発明は、上記に鑑みてなされたものであって、より簡素な構成およびより短時間でスロットの内周面とローターバーとの導通状態が発生トルクおよび効率に与える影響を把握できる測定装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、ローターの周囲を囲み、ローターの周方向に交番磁界を発生させる巻線と、巻線に交流電圧を印加する電圧印加部と、印加電圧部によって印加された交流電圧と電流との位相差を測定する測定部と、を備えることを特徴とする。
 本発明にかかる測定装置は、より簡素な構成およびより短時間でスロットの内周面とローターバーとの導通状態がローターに与える影響を把握できるという効果を奏する。
本発明の実施の形態1にかかるモーターの分解斜視図 実施の形態1におけるローターコアの平面図 実施の形態1にかかる測定装置の概略構成を示す図 図3に示すローターとセンサーユニットとを、周方向に沿って直線状に展開した上面図 図4に示すローターを周方向に沿って直線状に展開した側面図 図4に示すセンサーユニットを周方向に沿って直線状に展開した側面図 図5に示すローターと図6に示すセンサーユニットとを重ね合わせて示す図であり、ローターとセンサーユニットとの関係を示す図 実施の形態1において2次導体に誘導電流が流れない場合のLCRメーターからみたインピーダンスの等価回路を示す図 実施の形態1において2次導体に誘導電流が流れる場合のLCRメーターからみたインピーダンスの等価回路を示す図 ローターバーとスロットの内周面との接触抵抗と、実数部Re(Z)との関係を示す図 実施の形態1において8極のセンサーユニットを用いた測定装置の概略構成を示す図 図11に示す測定装置を用いてスキュー角が72°のローターを周方向に沿って直線状に展開した図であって、ローターとセンサーユニットとの関係を示す図 図11に示す測定装置において、スロットの内周面とローターバーとが絶縁されている場合のLCRメーターからみたインピーダンスの等価回路を示す図 図11に示す測定装置において、スロットの内周面とローターバーとが導通している場合のLCRメーターからみたインピーダンスの等価回路を示す図 図11の例でローターバーとスロットの内周面との接触抵抗と、実数部Re(Z)との関係を示す図 図5に示した例よりもスキュー角が小さいローターを、周方向に沿って直線状に展開した側面図 図16のローターの側面図に図6のセンサーユニットを重ね合せた側面図 実施の形態1においてセンサーユニットを周方向に沿って直線状に展開した側面図 図16と図18とを重ねあわせて、ローターとセンサーユニットとの関係を示す側面図 本発明の実施の形態2にかかる測定装置の概略構成を示す図
 以下に、本発明の実施の形態にかかる測定装置、測定方法、およびモーターの製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかるモーターの分解斜視図である。図2は、実施の形態1におけるローターコアの平面図である。図3は、実施の形態1にかかる測定装置の概略構成を示す図である。図4は、図3に示すローターとセンサーユニットとを、周方向に沿って直線状に展開した上面図である。図5は、図4に示すローターを周方向に沿って直線状に展開した側面図である。図6は、図4に示すセンサーユニットを周方向に沿って直線状に展開した側面図である。図7は、図5に示すローターと図6に示すセンサーユニットとを重ね合わせて示す図であり、ローターとセンサーユニットとの関係を示す図である。
 図1に示すように、モーター50はローター1、軸受2、外郭3、およびステーター4を備える。モーター50は誘導モーターである。ローター1は、図2に示す円環形状の板材を積層して円柱形状に成形されたローターコア1cを有する。積層される円環形状の板材は、両面に絶縁皮膜を有する電磁鋼板をプレス加工にて打ち抜いて得られる。積層される円環形状の板材は、外周側に向けて突出する複数のティース1tを有し、ティース1tを含めた全体で円環形状をなす。なお、電磁鋼板の図示は省略する。ローターコア1cには、ローターコア1cの一端面側から他端面側に向けて延びる複数のスロット1sが形成されている。
 ローターコア1cのスロット1s内には、導体が充填されて複数のローターバー1bが形成されている。ローターコア1cの一端面と他端面には、エンドリング1eが設けられている。複数のローターバー1bの両端は、エンドリング1eで短絡されている。ローターバー1bとエンドリング1eとで2次導体が形成される。ローターバー1bとエンドリング1eは、例えばアルミダイカストによって形成される。
 ローターコア1cの中心には回転軸1aが嵌め込まれる。回転軸1aには、ボールベアリングなどの軸受2が装着される。軸受2は、モーター50の外郭3に設けられた軸受箱3hによって保持される。これにより、ローター1は回転軸1aを中心に回転可能とされる。ローター1の外周には、ステーターコア4cのティース4tに巻線4wが巻き付けられたステーター4が配置されている。巻線4wに位相がずれた2相の交流電圧を印加して電流を流すことで、ステーターコア4cのティース4tの内周側に回転磁界を発生し、回転磁界によってローター1の2次導体に誘導電流が流れることにより、ローター1にトルクが発生する。すなわち、図1では2極のコンデンサー分相誘導モーターの例を示している。なお、コンデンサーの図示は省略している。
 ここで、ステーター4が発生した回転磁界によりローター1の2次導体にだけ誘導電流が流れる場合には、ローター1に発生するトルクが安定する。しかしながら、ローターコア1cのスロット1sの内周面10は、電磁鋼板を打ち抜いた際の切断面であるため、絶縁皮膜に覆われていない。そのため、ローターバー1bとスロット1sの内周面10との接触状態と、2次導体に発生する誘導起電力の大きさによっては、ローターバー1bとスロット1sの内周面10との間に導通箇所が発生する。ローターバー1bとスロット1sの内周面10と導通すると、ローターバー1bからローターコア1cを経由して隣接のローターバー1bへと電流が流れる横流れ電流が発生して損失となる。すなわち、ローターバー1bとスロット1sの内周面10との導通状態によって、ローター1に発生するトルクの低下および効率の低下を招く場合がある。
 特に、図1に示すように板材を周方向にずらしながら積層することでスロット1sを螺旋状に形成してスキュー角を設けたローターコア1cでは、スキュー角が大きくなるほどローターコア1cへ流れる電流が大きくなる。したがって、スキュー角の大きいローターコア1cを用いたローター1ほど損失も大きくなって、発生トルクの低下が大きくなる。また、回転磁界に含まれる高調波成分が大きいほど発生トルクの低下が大きくなる。
 次に、図3に示す測定装置60について説明する。測定装置60は、センサーユニット5と、LCRメーター6とを備える。センサーユニット5は、筒状形状のセンサーコア5cを有し、センサーコア5cには内周側に向けて突出する複数のティース5tが形成されている。図3では、10個のティース5tが周方向に並べて形成された例を示している。ティース5tのそれぞれには、巻線5wが巻き付けられている。ティース5tに巻き付けられた巻線5w同士は直列に接続されている。また、各巻線5wの巻き数は同数となっている。また、隣り合う巻線5w同士は、ティース5tへの巻き付け方向が逆方向となっている。
 LCRメーター6は、発信部6g、電流測定部6i、および電圧測定部6vを備え、直列に接続された巻線5wの両端部5eに交流電圧を印加する。また、LCRメーター6は、印加電圧に対する巻線5wに流れる電流の大きさと位相差を測定して等価インピーダンスに換算する。LCRメーター6には、例えば日置電機製のLCRメーター(品番:IM3533)を用いることができる。LCRメーター6は、巻線5wに交流電圧を印加する電圧印加部の機能を発揮するとともに、位相差を測定する測定部の機能を発揮する。
 LCRメーター6から巻線5wに交流電圧が印加されるとローター1には周方向に沿った10極の交番磁界が発生する。これにより、図4に示すようにセンサーコア5cのティース5tからローターコア1cのティース1tを経由する磁束7が発生し、ローターバー1bとエンドリング1eからなる2次導体に鎖交する。センサーユニット5では、10極の交番磁界を発生することで、回転磁界中の高調波成分の5次成分に対するローターの状態を把握することができる。本実施の形態1では、センサーコア5c、ティース5t、巻線5wで、ローター1の周囲に交番磁界を発生させる磁界発生部を構成する。
 測定装置60は、2次導体に鎖交する磁束7の総和が小さいと2次導体に流れる電流も小さくなり、2次導体に鎖交する磁束7の総和が大きいと2次導体に流れる電流も大きくなることを利用して2次導体の状態を測定するものである。
 図3から図7を用いて、測定装置60の具体的な動作を説明する。上述したように、LCRメーター6から交流電圧を巻線5wに加えると、センサーコア5cのティース5tの内周面には交番磁界が発生する。隣接する巻線5w同士ではティース5tへの巻き付け方向が逆方向となっているため、磁束の向きが隣接する巻線5w同士で逆となる。一方、巻線5wの巻き数が同数であるため、磁束の大きさは同一となり、ティース5tの内周面ではどの場所でもほぼ同一の磁束密度となる。このようにティース5tの内周面で発生した10極の磁束が、ローター1のティース1tに通される。ここで、ティース5tの数とスキュー角によってLCRメーター6からみた等価インピーダンスの等価回路が変わってくる。
 まず、判り易いようにティース5tはスキューされておらず、測定対象であるローターコア1cがスキューされている例で説明する。具体的には、図7に示すスキュー角Sが、ローター1のティース1tの外周がティース5tの2個分の幅と一致する角度の例を説明する。すなわち、S=360°÷10(極)×2(個)=72°の例で説明する。
 ここで、1つのティース1tに鎖交する磁束について着目する。図7に示すように、1つのティース1tは、3つの隣接するティース5tと対向している。図7では、着目した1つのティース1tのうち、対向するティース5tが異なる領域ごとに分けて太線で囲い、それぞれ領域1t1、領域1t2、領域1t3としている。
 上述したように、ティース5tに巻き付けられた巻線5wの巻き付け方向の違いによって、領域1t1および領域1t3と、領域1t2とでは磁束の向きが逆方向となる。また、巻線5wの巻き数が同数であるため、領域1t1、領域1t3、および領域1t2で磁束密度は等しくなる。領域1t1と領域1t3に挟まれた領域1t2の面積は、領域1t1と領域1t3の面積の合計と一致する。そのため、領域1t1と領域1t2と領域1t3とからなるティース1tに鎖交する磁束の総和は0となる。
 これは、着目したティース1t以外のティース1tにおいても同様であり、ローターバー1bとエンドリング1eで各ティース1tを囲う2次導体のループに鎖交する磁束の総和がどこでも0となる。そのため、ローターコア1cのスロット1sの内周面10とローターバー1bとが導通していない場合には、巻線5wの端部5eに交流電圧を印加しても、2次導体には誘導起電力が発生せず誘導電流が流れない。
 図8は、実施の形態1において2次導体に誘導電流が流れない場合のLCRメーター6からみたインピーダンスの等価回路を示す図である。図8は、スロット1sの内周面10とローターバー1bとが導通していない場合、すなわち2次導体に誘導電流が流れない場合のLCRメーター6からみたインピーダンスZは、図8に示すように2次導体がない等価回路となる。ここで、Raはセンサーユニット5の巻線5wの抵抗であり、Laはセンサーユニット5の巻線5wの漏れインダクタンスであり、Lmはローターコア1cに鎖交する磁束のインダクタンスである。
 次に、ローターコア1cのスロット1sの内周面10とローターバー1bとの絶縁が確保されずに導通する箇所がある場合のインピーダンスについて説明する。例えば、図7に示す導通部8で、ローターバー1bからローターコア1cのティース1tを経由して隣接するローターバー1bへ向かう部分の絶縁が不十分であると、スロット1sの内周面10とローターバー1bとが導通して、ローターバー1bとエンドリング1eでティース1tを囲う2次導体のループが、図7において破線で示すような2つのループ9に分断される。この場合、分断されたそれぞれのループ9に鎖交する磁束の総和は0とならず、それぞれのループに対して誘導起電力が発生して2次導体とティース1tの回路に誘導電流が流れる。
 図9は、実施の形態1において2次導体に誘導電流が流れる場合のLCRメーター6からみたインピーダンスの等価回路を示す図である。スロット1sの内周面10とローターバー1bとが導通している場合、すなわち2次導体に誘導電流が流れる場合のLCRメーター6からみたインピーダンスZは、図9に示すように2次導体とティース1tの回路の抵抗RiとインダクタンスLiの直列回路がローターコア1cに鎖交する磁束のインダクタンスLmと並列につながった等価回路となる。
 等価直列回路のインピーダンスZを、実数部がRe(Z)、虚数部がIm(Z)として
 Z=Re(Z)+jIm(Z)  (jは虚数単位)
とした場合、ローターバー1bからティース1tを経由して誘導電流が流れた場合には、誘導電流が流れない場合に対して実数部Re(Z)は大きくなり、虚数部Im(Z)は小さくなる。
 図10は、ローターバー1bとスロット1sの内周面10との接触抵抗と、実数部Re(Z)との関係を示す図である。図10では、ローターバー1bとスロット1sの内周面10との接触抵抗を変化させた場合の、実数部Re(Z)から巻線5wの抵抗Raを差し引いた値を電磁界解析にて求めた一例を示している。図10に示すように、接触抵抗が小さくなって電流が大きくなるほど実数部Re(Z)が大きくなっている。
 この等価直列回路のインピーダンスZの変化量の測定方法は、実際に組み立てられたモーター50と同じように、誘導起電力を用いてローターバー1bとスロット1sの内周面10との導通によってローターコア1cへ流れる電流で生じる変化を測定している。そのため、測定結果と発生トルクの低下に及ぼす度合との間に相間関係があり、インピーダンスZの変化量を測定することで、ローター1での導通状態が発生トルクの低下および効率の低下に及ぼす度合を把握することができる。すなわち、測定された実数部が大きいローター1ほど、モーター50に組み込んだ際に導通状態の影響によって発生トルクが低下するローター1であると判定できる。
 なお、センサーユニット5の巻線5wが巻き付けられたティース5tがセンサーコア5cの内周側の全域に構成されているが、内周側の全域に構成されなくても隣接する偶数個のティースに巻線が巻き付けられていればよい。
 このようにインピーダンスZの変化量を測定した後に、センサーコア5cの内側、すなわち巻線5wに囲まれた領域からローター1を取り出し、取り出されたローター1をステーター4の内側に組み込む等の組立工程を行うことでモーター50が製造される。本実施の形態1にかかる測定装置60を用いれば、ローター1を実際に回転させることなく、発生トルクおよび効率に与える影響を把握することができる。すなわち、より簡素な構成およびより短時間でスロット1sの内周面10とローターバー1bとの導通状態が発生トルクおよび効率に与える影響を把握することができる。
 ここまでは、センサーユニット5に形成される2つのティース5tの幅が、ローターコア1cのスキュー角に一致するように、センサーユニット5に形成されるティース5tの数を選択した例を示した。このようなティース5tの選択によって、スロット1sの内周面10とローターバー1bとが絶縁されている場合に、2次導体のループに鎖交する磁束の総和を0とすることができた。しかしながら、ローターコア1cのスキュー角によっては、2次導体のループに鎖交する磁束の総和を0にできるようなティース5tの数が定まらない場合がある。
 このような場合であっても、ローターバー1bからティース1tを経由する誘導電流の有無や誘導電流の量が変化すると、センサーユニット5とLCRメーター6を用いて測定したインピーダンスZの値が変化する。したがって、インピーダンスZの変化量からローターバー1bとスロット1sの内周面10との導通がトルクの低下に及ぼす度合を把握することができる。
 図11は、実施の形態1において8極のセンサーユニット15を用いた測定装置61の概略構成を示す図である。図12は、図11に示す測定装置61を用いてスキュー角が72°のローター1を周方向に沿って直線状に展開した図であって、ローター1とセンサーユニット15との関係を示す図である。図13は、図11に示す測定装置61において、スロット1sの内周面10とローターバー1bとが絶縁されている場合のLCRメーター6からみたインピーダンスの等価回路を示す図である。図14は、図11に示す測定装置61において、スロット1sの内周面10とローターバー1bとが導通している場合のLCRメーター6からみたインピーダンスの等価回路を示す図である。センサーユニット15は、センサーコア15cとティース15tとを有し、ティース15tに巻線5wが巻き付けられている。
 図12に示すような場合には、スロット1sの内周面10とローターバー1bとが絶縁されている場合であっても、2次導体のループに鎖交する磁束の総和が、全ティースで0とはならない。そのため、LCRメーター6からみたインピーダンスZは、図13に示すように2次導体の抵抗分Rrと漏れインダクタンス分Lrの直列回路がローターコア1cに鎖交する磁束のインダクタンスLmと並列につながった等価回路になる。
 一方、スロット1sの内周面10とローターバー1bとの絶縁が確保されずに導通がある場合には、ローターバー1bとエンドリング1eとティース1tとからなるループに誘導起電力による電流が流れることになる。電流が流れるティース1tの箇所は、その両側にできるループに鎖交する磁束の総和の方向が逆方向のところで、両ループに発生する誘導起電力によりティース1tに流れる電流の方向が同一となるところとなる。
 例えば、図12に示す導通部8の箇所が、その両側にできるローターバー1bとエンドリング1eとローターコア1cからなるループに鎖交する磁束の総和の方向が逆で、かつ、各ループに鎖交する磁束の総和量も大きいので、ティース1tに流れる電流が大きくなる。なお、同一のティース1t内で電流が流れる導通部8は1か所とは限らず、ティース1tの導通部8が、その両側にできるループに鎖交する磁束の総和の方向が逆方向のところで両ループに発生する誘導起電力によりティース1tに流れる電流の方向が同一となる箇所であれば、誘導起電力の大きさと、スロット1sの内周面10とローターバー1bとの絶縁状態との兼ね合いで電流が流れ得る。
 このときのLCRメーター6からみたインピーダンスZは、図14に示すように2次導体とティース1tの回路の抵抗RiとインダクタンスLiの直列回路がローターコア1cに鎖交する磁束のインダクタンスLmおよび2次導体の抵抗分Rrと漏れインダクタンス分Lrの直列回路に並列につながった等価回路となる。
 ローターバー1bからティース1tを経由して誘導電流が流れた場合には、流れない場合に対して実数部Re(Z)は大きくなり、虚数部Im(Z)は小さくなる。図15は、図11の例でローターバー1bとスロット1sの内周面10との接触抵抗と、実数部Re(Z)との関係を示す図である。図15では、ローターバー1bとスロット1sの内周面10との接触抵抗を変化させた場合の、実数部Re(Z)から巻線5wの抵抗Raを差し引いた値を電磁界解析にて求めた一例を示している。ローターバー1bとスロット1sの内周面10とが導通していない場合でもRe(Z)-Raは0とはならず、図13に示した等価回路となる場合より感度は落ちるが、接触抵抗が小さくなるほど実数部Re(Z)が大きくなって、接触度合の識別が可能である。
 図16は、図5に示した例よりもスキュー角が小さいローター1を、周方向に沿って直線状に展開した側面図である。図17は、図16のローターの側面図に図6のセンサーユニット5を重ね合せた側面図である。図18は、実施の形態1においてセンサーユニット25を周方向に沿って直線状に展開した側面図である。図19は、図16と図18とを重ねあわせて、ローター1とセンサーユニット25との関係を示す側面図である。センサーユニット25は、センサーコア25cとティース25tを有する。
 図17に示すように、スキュー角が小さいローター1の場合には、極数の少ないセンサーユニット5で交番磁界を作っても、ティース1tに導通部があった場合に、その両側にできるループに鎖交する磁束の総和の方向が逆方向であって両ループに発生する誘導起電力によりティース1tに流れる電流の方向が同一となる場所が少ない。そのため、ループに鎖交する磁束の総和も小さいので誘導起電力が小さくなり、ティース1tを経由して流れる電流が少なくなりやすい。
 上述したように、ローターバー1bとスロット1sの内周面10の接触部分での導通の検出感度を高めるためには、センサーユニット5の極数を、ローターコア1cの1つのティース1tに鎖交する磁束の総和がゼロとなる360°をローターコア1cのスキュー角で割った数を2倍した数の極数とすることが望ましい。しかしながら、図16に示すようにスキュー角S1が小さい場合、例えばローターコア1cのスキュー角が18°だと360°÷18°×2=40極を発生するセンサーユニット5となり、極数が増大する。極数が増大することで、ティース1tに導通部があった場合に、その両側にできるループに鎖交する磁束の総和の方向が逆方向であって両ループに鎖交する磁束の総和は小さくなるので、発生する誘導起電力も小さくなって、ティース1tを経由する電流が流れにくくなる。
 また、センサーユニット5の極数がローターコア1cのティース1tの数よりも大きいため、ローター1をモーター50に組み込んだときに実際にローターコア1cに印加される磁束の空間高調波の振幅が大きくなる次数、例えば3次、5次、7次とかけ離れてしまい、インピーダンスとトルクの低下度合との相間が希薄になってしまう。
 また、ローターバー1bとスロット1sの内周面10の接触部分で導通度合の検出感度は、センサーユニット5の極数がローターコア1cの1つのティース1tに鎖交する磁束の総和が0となる場合がよいが、モーター50にとっての最適なスキュー角が360°の整数分の1となるとは限らない。
 そこで、図18に示すようにセンサーユニット25では磁極にスキューをかけるようにした。図19で示すように、ローターコア1cのスキュー角をS1、センサーユニット25の磁極のスキュー角をS2、センサーユニット25の磁極数をPとしたとき、
  S1+S2=360°/P/2   (1)
の関係となるようにセンサーユニット25の磁極のスキュー角S2を設定すると、任意の偶数の磁極数Pですべてのローターコア1cの1つのティース1tに鎖交する磁束の総和をゼロとすることができるとともに、ローターコア1cのティース1tに導通部があった場合に、その両側にできるループに鎖交する磁束の総和の方向が逆方向のところで両ループに鎖交する磁束の総和を大きくすることで誘導起電力も大きくできる。これにより、ローターバー1bとスロット1sの内周面10とが導通する導通部で、ローターコア1cを経由する電流を流れやすくし、検出感度の向上を図ることができる。
実施の形態2.
 図20は、本発明の実施の形態2にかかる測定装置62の概略構成を示す図である。上記実施の形態1では、センサーユニット5の磁極を発生させるのに、センサーコア5cに形成されたティース5tに巻線5wを巻き付けていた(図3等も参照)。一方、本実施の形態2にかかるセンサーユニット35では、センサーコアおよびティースを設けずに巻線35wのみを設けている。巻線35wは、ローターコア1cの周方向に沿って交番磁界を発生させる形状に形成されている。巻線35wの端部35eにはLCRメーター6が接続される。
 この場合は、LCRメーター6から見た巻線のインピーダンスZの虚数部Im(Z)が小さくなって、LCRメーター6の出力電圧を低くできるとともに、センサーコアの磁気特性および形状のばらつきの影響を除外できる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 ローター、1a 回転軸、1b ローターバー、1c ローターコア、1e エンドリング、1s スロット、1t ティース、1t1,1t2,1t3 領域、2 軸受、3 外郭、3h 軸受箱、4 ステーター、4c ステーターコア、4t ティース、4w 巻線、5,15,25,35 センサーユニット、5c,25c センサーコア、5e,35e 端部、5t,25t ティース、5w,35w 巻線、6 LCRメーター、6g 発信部、6i 電流測定部、6v 電圧測定部、7 磁束、8 導通部、9 ループ、10 内周面、50 モーター、60,61,62 測定装置。

Claims (8)

  1.  ローターの周囲を囲み、前記ローターの周方向に交番磁界を発生させる巻線と、
     前記巻線に交流電圧を印加する電圧印加部と、
     前記電圧印加部によって印加された交流電圧と電流との位相差を測定する測定部と、を備えることを特徴とする測定装置。
  2.  前記ローターの周囲を囲むセンサーコアと、
     前記センサーコアから前記ローターに向けて突出するとともに、前記ローターの周方向に沿って並べて設けられた複数のティースと、
     前記巻線は、前記複数のティースのそれぞれに巻き付けられるとともに直列に接続されていることを特徴とする請求項1に記載の測定装置。
  3.  前記センサーコアおよび前記ティースにスキューが設けられていることを特徴とする請求項2に記載の測定装置。
  4.  前記ローターのスキュー角をS1、前記センサーコアおよび前記ティースのスキュー角をS2、前記交番磁界の磁極数をPとしたとき、
      S1+S2=360°/P/2
    の関係を満たすことを特徴とする請求項3に記載の測定装置。
  5.  前記巻線が発生させる前記交番磁界の極数は、360°を前記ローターのスキュー角で割った値の2倍の数値の極数の整数倍であることを特徴とする請求項2に記載の測定装置。
  6.  前記測定部は、測定した前記位相差に基づいて実数部と虚数部とからなる前記巻線のインピーダンスを求めることを特徴とする請求項1から請求項5のいずれか1つに記載の測定装置。
  7.  ローターの周囲を巻線で囲むステップと、
     前記巻線に交流電圧を印加して交番磁界を発生させるステップと、
     前記交流電圧と電流との位相差を測定するステップと、を備えることを特徴とする測定方法。
  8.  ローターの周囲を巻線で囲むステップと、
     前記巻線に交流電圧を印加して交番磁界を発生させるステップと、
     前記交流電圧と電流との位相差を測定するステップと、
     前記巻線に囲まれた領域から前記ローターを取り出すステップと、
     前記ローターの周囲をステーターで囲むステップと、を備えることを特徴とするモーターの製造方法。
PCT/JP2017/011806 2017-03-23 2017-03-23 測定装置、測定方法、およびモーターの製造方法 WO2018173211A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019506845A JP6678812B2 (ja) 2017-03-23 2017-03-23 測定装置、測定方法、およびモーターの製造方法
CN201780088339.3A CN110402377B (zh) 2017-03-23 2017-03-23 测量装置、测量方法以及马达的制造方法
PCT/JP2017/011806 WO2018173211A1 (ja) 2017-03-23 2017-03-23 測定装置、測定方法、およびモーターの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011806 WO2018173211A1 (ja) 2017-03-23 2017-03-23 測定装置、測定方法、およびモーターの製造方法

Publications (1)

Publication Number Publication Date
WO2018173211A1 true WO2018173211A1 (ja) 2018-09-27

Family

ID=63585197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011806 WO2018173211A1 (ja) 2017-03-23 2017-03-23 測定装置、測定方法、およびモーターの製造方法

Country Status (3)

Country Link
JP (1) JP6678812B2 (ja)
CN (1) CN110402377B (ja)
WO (1) WO2018173211A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3879290A1 (en) * 2020-03-13 2021-09-15 Dr. Brockhaus Messtechnik GmbH & Co. KG Testing device for a magnetizable core and method for testing such core

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486701A (en) * 1977-12-23 1979-07-10 Toshiba Corp Method of testing rotolouver
JPS62290339A (ja) * 1986-05-06 1987-12-17 ゼネラル・エレクトリツク・カンパニイ 回転電気機械の回転子を試験する方法と試験装置
JPH05130762A (ja) * 1991-07-18 1993-05-25 Ebara Corp 誘導電動機の回転子軸振れ偏心検知装置
JP2003532081A (ja) * 2000-04-20 2003-10-28 ゼネラル・エレクトリック・カンパニイ かご形回転子用絶縁テスタ
JP2010279119A (ja) * 2009-05-27 2010-12-09 Railway Technical Res Inst かご形誘導機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808441A (en) * 1996-06-10 1998-09-15 Tecumseh Products Company Microprocessor based motor control system with phase difference detection
US5990688A (en) * 1998-01-09 1999-11-23 Hydro-Quebec Apparatus and method for evaluation a condition of a magnetic circuit of an electric machine
US6163157A (en) * 1999-02-17 2000-12-19 General Electric Co. Insulation tester for squirrel cage rotors
US6469504B1 (en) * 2000-07-28 2002-10-22 General Electric Company Method and system for detecting core faults
JP2006271187A (ja) * 2005-02-22 2006-10-05 Mitsubishi Electric Corp 回転電機
CN100563093C (zh) * 2007-09-21 2009-11-25 艾默生网络能源有限公司 一种异步电动机的堵转参数辨识方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486701A (en) * 1977-12-23 1979-07-10 Toshiba Corp Method of testing rotolouver
JPS62290339A (ja) * 1986-05-06 1987-12-17 ゼネラル・エレクトリツク・カンパニイ 回転電気機械の回転子を試験する方法と試験装置
JPH05130762A (ja) * 1991-07-18 1993-05-25 Ebara Corp 誘導電動機の回転子軸振れ偏心検知装置
JP2003532081A (ja) * 2000-04-20 2003-10-28 ゼネラル・エレクトリック・カンパニイ かご形回転子用絶縁テスタ
JP2010279119A (ja) * 2009-05-27 2010-12-09 Railway Technical Res Inst かご形誘導機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3879290A1 (en) * 2020-03-13 2021-09-15 Dr. Brockhaus Messtechnik GmbH & Co. KG Testing device for a magnetizable core and method for testing such core

Also Published As

Publication number Publication date
JPWO2018173211A1 (ja) 2019-11-07
CN110402377B (zh) 2021-06-11
JP6678812B2 (ja) 2020-04-08
CN110402377A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
JP4148647B2 (ja) 軸方向磁束を有する多極電動発電機
CN100377477C (zh) 感应电动机
US6064132A (en) Armature structure of a radial rib winding type rotating electric machine
US10298084B2 (en) Rotating electric machine for vehicle
US10622853B2 (en) Synchronous reluctance type rotary electric machine
WO2014117350A1 (en) Electrical machines
US20080036324A1 (en) Magneto generator
US20180109155A1 (en) Stator Slot Configurations For Electric Machines
US8917004B2 (en) Homopolar motor-generator
CN111835107B (zh) 旋转电机的转子
Zhang et al. High speed permanent magnet motor design and power loss analysis
JP2010041786A (ja) 固定子巻線及び回転電機
JP3662994B2 (ja) 多相多極機
US11050312B2 (en) Rotary electric machine having temperature sensor for coils and manufacturing method thereof
JP2008099502A (ja) 回転電機
WO2018173211A1 (ja) 測定装置、測定方法、およびモーターの製造方法
JP2015023750A (ja) 電動機
US6181041B1 (en) Inductance rotating electric machine
JP2019126143A (ja) 回転電機
US9755465B2 (en) Method for manufacturing a rotor of a synchronous reluctance motor, a rotor of a synchronous reluctance motor, and a synchronous reluctance motor
US20150022049A1 (en) Rotor for induction torque motor and induction torque motor
JP2005124378A (ja) リング状の固定子コイルを有する誘導電動機
JP2018129975A (ja) 回転電機、亀甲形コイルの製造方法および亀甲形コイルの製造装置
JP6739638B2 (ja) 回転電機の回転子及び回転電機
US905621A (en) Alternating-current high-frequency generator.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901859

Country of ref document: EP

Kind code of ref document: A1