WO2018173106A1 - 回転数検出器 - Google Patents
回転数検出器 Download PDFInfo
- Publication number
- WO2018173106A1 WO2018173106A1 PCT/JP2017/011135 JP2017011135W WO2018173106A1 WO 2018173106 A1 WO2018173106 A1 WO 2018173106A1 JP 2017011135 W JP2017011135 W JP 2017011135W WO 2018173106 A1 WO2018173106 A1 WO 2018173106A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- speed detector
- magnet
- rotation speed
- detector according
- Prior art date
Links
Images
Definitions
- the present invention relates to a rotational speed detector that detects the rotational speed of a rotating body.
- Patent Document 1 includes four magnets arranged in the rotation direction of a rotating shaft, and three power generation units each using a magnetic wire that are arranged to face the four magnets, and the number of rotations of the rotating body is determined.
- An encoder for detecting is disclosed.
- the present invention has been made in view of the above, and an object of the present invention is to obtain a rotation speed detector that can be miniaturized.
- the rotational speed detector of the present invention includes a disc-shaped magnet provided on a shaft, a magnetic wire and a pickup coil.
- Each of the power generation units is arranged on each of a plurality of sides constituting a virtual polygon arranged on the end face side of the magnet.
- the rotational speed detector according to the present invention has an effect that it can be miniaturized.
- FIG. 2 is a plan view of the power generation unit group shown in FIG. 2 toward the magnet.
- Configuration diagram of rotation speed detector according to Embodiment 2 The figure which shows the state which mounted components other than an electric power generation part group in the board
- FIG. The figure for demonstrating the hysteresis characteristic by the rotation direction of a magnet in the rotation speed detector which concerns on Embodiment 2.
- Configuration diagram of rotation speed detector according to Embodiment 3 The figure which shows the state which mounted components other than an electric power generation part group in the rotation speed detector which concerns on Embodiment 3.
- Configuration diagram of rotation speed detector according to Embodiment 4 The figure which shows the state which mounted components other than the electric power generation part group in the rotation speed detector which concerns on Embodiment 4 on the board
- FIG. Configuration diagram of rotation speed detector according to embodiment 7 The figure which shows the modification of the rotation speed detector which concerns on Embodiment 7.
- FIG. 1 is a cross-sectional view of a motor provided with a rotation speed detector according to the first embodiment.
- FIG. 2 is a perspective view of the rotational speed detector according to the first embodiment.
- a motor 100 shown in FIG. 1 is provided at the center of a cylindrical frame 1, a stator 2 fixed inside the frame 1, a rotor 3 arranged inside the stator 2, and the rotor 3.
- a shaft 4. The shaft 4 is rotatably supported on the frame 1 by a bearing (not shown).
- the motor 100 is disposed opposite to the disc-shaped magnet 5 provided at the end 4a of the shaft 4 in the axial direction D1 of the central axis AX and the end surface 5a of the magnet 5 in the axial direction D1 and A substrate 6 fixed inside, a power generation unit group 7 fixed to an end surface 6a opposite to the magnet 5 side of the substrate 6 in the axial direction D1, a connector 8 fixed to the end surface 6a of the substrate 6, and a substrate 6 and a rotation speed detection circuit 9 fixed to the end face 6a.
- the disc shape includes not only a disc shape but also a ring shape in which a through-hole is formed in the central portion of the magnet 5 in the radial direction D2.
- the magnet 5 is fixed to the shaft 4 by bonding, screwing or press-fitting, and rotates together with the shaft 4.
- At least the shaft 4, the magnet 5, and the power generation unit group 7 constitute a rotation speed detector 200.
- the power generation unit group 7 includes three power generation units 71, 72, and 73. 2, the illustration of the substrate 6 shown in FIG. 1 is omitted.
- the power generation unit 71 includes a magnetic wire 71a and a pickup coil 71b wound around the magnetic wire 71a.
- the power generation unit 72 includes a magnetic wire 72a and a pickup coil 72b wound around the magnetic wire 72a.
- the power generation unit 73 includes a magnetic wire 73a and a pickup coil 73b wound around the magnetic wire 73a.
- Each of the three power generation units 71, 72, 73 generates voltage pulses due to the large Barkhausen effect as the magnet 5 rotates.
- Each of the three power generation units 71, 72, 73 has the diameter and length of the magnetic wires 71a, 72a, 73a set so that the magnitudes of the generated voltage pulses, that is, the power generation amounts are equal to each other, and the pickup coil It is assumed that the number of turns 71b, 72b, 73b is set.
- the magnetization direction of the magnet 5 may be a direction orthogonal to the axial direction D1 of the central axis AX, or may be a direction parallel to the axial direction D1 of the central axis AX, but the magnet 5 according to the first embodiment includes S It is assumed that one pole and one N pole are each magnetized in the axial direction D1, that is, in the thickness direction of the magnet 5. On one end face 5 a in the axial direction D ⁇ b> 1 of the magnet 5, an S pole and an N pole are arranged in the rotation direction of the magnet 5. On the end surface 5b opposite to the end surface 5a in the axial direction D1 of the magnet 5, a polarity different from the polarity of the end surface 5a is arranged in the rotation direction of the magnet 5.
- the voltage pulse generated in each of the power generation units 71, 72, 73 is input to the rotation speed detection circuit 9 via a signal line (not shown) connected to the pickup coils 71b, 72b, 73b.
- the rotation speed of the rotor 3 is detected by the voltage pulse, and the rotation speed information of the rotor 3 is recorded in a memory (not shown).
- the rotation speed information is transmitted to a host device (not shown) via the connector 8 and a signal line connected to the connector 8.
- the host device generates a voltage command for driving the motor 100 using the rotation speed information.
- FIG. 3 is a plan view of the power generation unit group shown in FIG. 2 toward the magnet.
- FIG. 3 shows a virtual circle 5A having a diameter equal to the diameter of the magnet 5 shown in FIG.
- each of the three power generation units 71, 72, 73 is arranged on each of a plurality of sides of the virtual polygon 10. 2 and 3, the virtual polygon 10 is an equilateral triangle 30.
- the equilateral triangle 30 is composed of three vertices 31 and three sides 32 connecting two adjacent vertices 31 to each other.
- the lengths of the three sides 32 are equal to each other, and the sizes of the angles ⁇ 1 of the three inner angles 33 are equal to each other.
- the angle ⁇ 1 of one interior angle 33 is 60 °.
- the three vertices 31 of the equilateral triangle 30 are inscribed in the virtual circle 5A.
- the perpendicular bisectors of the three sides of the equilateral triangle 30 intersect at the central portion CP1, and the distance from the central portion CP1 to each vertex 31 is equal.
- the position of the center portion CP2 of the equilateral triangle 30 coincides with the position of the center portion CP1 of the virtual circle 5A.
- the positions of the center portion CP2 and the center portion CP1 coincide with the position of the center axis AX of the shaft 4 shown in FIG.
- each of the magnetic wires 71a, 72a, 73a of the power generation units 71, 72, 73 is shorter than the length of the side 32, but is desirably as long as possible so as to be in contact with the virtual circle 5A. That is, the power generation units 71, 72, and 73 are preferably configured such that the end portions of the magnetic wires 71 a, 72 a, and 73 a are arranged near the vertex 31 of the equilateral triangle 30.
- FIG. 4 is a diagram showing the relationship between the power generation amount generated in each of the three power generation units shown in FIG. 3 and the magnetic wire length.
- the vertical axis in FIG. 4 indicates the amount of power generation.
- the horizontal axis of FIG. 4 shows the ratio of the magnetic wire length to the radius when the radius of the magnet 5 is 1. .
- “1” on the horizontal axis in FIG. 4 indicates that the radius of the magnet 5 is equal to the magnetic wire length.
- the magnetic wire length is equal to a value obtained by multiplying the radius R by ⁇ 3
- the power generation amounts of the three power generation units 71, 72, and 73 are maximized.
- the magnetic wires 71a, 72a, 73a When the ends of the magnetic wires 71a, 72a, 73a extend to the outside of the virtual circle 5A and the magnetic wire length becomes longer than a value obtained by multiplying the radius R by ⁇ 3, the magnetic wires 71a, 72a and 73a do not contribute to power generation, and the amount of power generation decreases due to the resistance of the magnetic wire.
- the end portions of the magnetic wires 71a, 72a, 73a are arranged at the positions of the three apexes 31 inscribed in the virtual circle 5A, the power generation amount generated in each of the power generation units 71, 72, 73 is maximized. Therefore, it is possible to improve the detection accuracy of the rotational speed.
- the power generation unit group 7, the connector 8, and the rotation speed detection circuit 9 are provided on the end surface 6 a of the substrate 6 on the side opposite to the magnet 5 side. 9 may be provided on the end surface 6b of the substrate 6 on the magnet side. Further, any one of the power generation unit group 7, the connector 8, and the rotation speed detection circuit 9 may be provided on the end face 6a, and the rest may be provided on the end face 6b. As shown in FIG. 1, by providing all of the power generation unit group 7, the connector 8 and the rotational speed detection circuit 9 on either the end surface 6a or the end surface 6b of the substrate 6, the power generation unit group 7, the connector 8 and the rotational speed detection are performed.
- the motor 100 can be reduced in size.
- FIG. FIG. 5 is a configuration diagram of a rotation speed detector according to the second embodiment.
- the difference between the rotation speed detector 200 shown in FIG. 3 and the rotation speed detector 200A shown in FIG. 5 is that the virtual polygon 10 is an isosceles triangle 30A in the rotation speed detector 200A.
- the lengths of the magnetic wires 71a and 72a are equal, and the lengths of the magnetic wires 71a and 72a are longer than the length of the magnetic wire 73a.
- the isosceles triangle 30A includes three vertices 31, an equal side 32a that is two sides having the same length, and one base 32b that is shorter than the equal side 32a.
- the angle ⁇ 11 of the apex angle 33b formed by the two equal sides 32a is narrower than the angle ⁇ 12 of the base angle 33a formed by the base 32b and the equal side 32a.
- the three perpendicular bisectors of the isosceles triangle 30A intersect at the center CP3, and the distance from the center CP3 to each vertex 31 is equal.
- the position of the center part CP3 of the isosceles triangle 30A coincides with the position of the center part CP1 of the virtual circle 5A.
- the positions of the central portion CP3 and the central portion CP1 coincide with the position of the central axis AX of the shaft 4 shown in FIG.
- the lengths of the magnetic wires 71a and 72a are shorter than the length of the equal side 32a, but it is desirable to make them as long as possible so as to contact the virtual circle 5A.
- the length of the magnetic wire 73a is shorter than the length of the base 32b, it is desirable to make it as long as possible so that it may touch the virtual circle 5A.
- the power generation units 71, 72, 73 are preferably configured such that the ends of the magnetic wires 71a, 72a, 73a are arranged near the apex 31 of the isosceles triangle 30A.
- the lengths of the magnetic wires 71a and 72a are equal and the lengths of the magnetic wires 71a and 72a are longer than the length of the magnetic wire 73a. You may comprise so that the length of 72a may become shorter than the length of the magnetic wire 73a.
- FIG. 6 is a diagram illustrating a state in which components other than the power generation unit group are mounted on a substrate in the rotation speed detector according to the second embodiment.
- the substrate 6 shown in FIG. 6 has the same size and shape as the virtual circle 5A shown in FIG. 5 for convenience of explanation.
- the power generation unit group 7A When the power generation unit group 7A is mounted on the substrate 6, the power generation unit group 7A needs to avoid interference with components such as the connector 8 and the rotation speed detection circuit 9 mounted on the substrate 6.
- the power generation units 71, 72, 73 By disposing the power generation units 71, 72, 73 on the three sides of the isosceles triangle 30A that is the virtual polygon 10 as in the second embodiment, the outer side of the isosceles triangle 30A compared to the first embodiment A region between the outer periphery of the substrate 6 can be widened, and a mounting space for the connector 8 can be secured.
- FIG. 7 is a diagram for explaining the hysteresis characteristics depending on the rotation direction of the magnet in the rotation speed detector according to the second embodiment.
- FIG. 7 shows only the power generation unit 71 as an example.
- 7 shows a rotation angle ⁇ 4 at which a voltage pulse is generated in the pickup coil 71b of the power generation unit 71 when the magnet 5 rotates in the clockwise direction DR.
- the rotation angle ⁇ 4 is an angle from when the positive voltage pulse voltage (+ V) is generated when the magnet 5 rotates in the clockwise direction DR to when a voltage pulse of a certain value or more is detected.
- the rotation angle ⁇ 5 is an angle from when the negative voltage pulse voltage ( ⁇ V) is generated when the magnet 5 rotates in the counterclockwise direction DL to when a voltage pulse of a certain value or more is detected.
- the rotation speed detector 200A has a position where a voltage pulse of a certain value or more is detected when the magnet 5 rotates clockwise, and a voltage pulse of a certain value or more when the magnet 5 rotates counterclockwise DL. It has a hysteresis characteristic different from the position where is detected.
- the hysteresis angle corresponding to the difference between the rotation angle ⁇ 4 and the rotation angle ⁇ 5 is ⁇
- it is desirable that the angle ⁇ 11 of the apex angle 33b shown in FIG. 6 is larger than the hysteresis angle ⁇ .
- FIG. FIG. 8 is a configuration diagram of a rotation speed detector according to the third embodiment.
- the difference between the rotation speed detector 200 shown in FIG. 3 and the rotation speed detector 200B shown in FIG. 8 is that, in the rotation speed detector 200B, among the three vertices 31 of the regular triangle 30 that is a virtual polygon 10. Only the two vertices 31 are inscribed in the virtual circle 5A. That is, the position of the center portion CP2 of the equilateral triangle 30 is shifted from the position of the center portion CP1 of the virtual circle 5A.
- the power generation units 71, 72, and 73 cannot be arranged so that the three vertices 31 of the equilateral triangle 30 are inscribed in the virtual circle 5A because the size of the substrate 6 is restricted, the two sides of the equilateral triangle 30 are perpendicular to each other. By moving the equilateral triangle 30 in the direction in which the dividing line extends, the outputs of the power generation units 71, 72, 73 can be made equal.
- the power generation amount of the power generation units 71 and 72 is different from the power generation amount of the power generation unit 73. In the arrangement example of FIG. And it becomes lower than the power generation amount of the power generation unit 73. Therefore, as in the second embodiment, by changing the capacitance of the capacitor that charges the voltage pulse in the rotation speed detection circuit 9, the voltage pulses from the three power generation units 71, 72, and 73 are prevented from being unbalanced. Is desirable.
- FIG. 9 is a diagram illustrating a state in which components other than the power generation unit group are mounted on a substrate in the rotation speed detector according to the third embodiment.
- FIG. 10 is a configuration diagram of a rotation speed detector according to the fourth embodiment.
- the difference between the rotational speed detector 200A shown in FIG. 5 and the rotational speed detector 200C shown in FIG. 10 is that, in the rotational speed detector 200C, the three vertices 31 of the isosceles triangle 30A that is a virtual polygon 10 are shown. Of these, only one vertex 31 is inscribed in the virtual circle 5A. That is, the position of the center portion CP3 of the isosceles triangle 30A is shifted from the position of the center portion CP1 of the virtual circle 5A. In FIG. 10, the vertex 31 where two equal sides 32a of the isosceles triangle 30A intersect is inscribed in the virtual circle 5A.
- the power generation units 71, 72, and 73 cannot be arranged so that the three vertices 31 of the isosceles triangle 30A are inscribed in the virtual circle 5A because the size of the substrate 6 is restricted, the base 32b of the isosceles triangle 30A is perpendicular to the base 32b. By moving the isosceles triangle 30A in the direction in which the bisector extends, the power generation units 71, 72, 73 can be arranged.
- the voltage pulses from the three power generation units 71, 72, and 73 are unbalanced by changing the capacitance of the capacitor that charges the voltage pulse. It is desirable to prevent this from occurring.
- FIG. 11 is a diagram illustrating a state in which components other than the power generation unit group are mounted on a substrate in the rotation speed detector according to the fourth embodiment.
- FIG. 12 is a perspective view of a rotation speed detector according to the fifth embodiment.
- FIG. 13 is a side view of the rotational speed detector according to the fifth embodiment.
- the difference between the rotational speed detector 200 according to Embodiment 1 and the rotational speed detector 200D according to Embodiment 5 is as follows. That is, in the rotation speed detector 200D, the power generation units 71, 72, 73 are arranged so that only one vertex 31 of the regular triangle 30 that is the virtual polygon 10 is inscribed in the virtual circle 5A.
- the distance L1 from the pickup coil 72b to the magnet 5 is shorter than the distance L2 from the pickup coils 71b and 73b to the magnet 5.
- the amount of power generation is changed. As shown in FIG. 12, when the position of the center portion CP ⁇ b> 2 of the equilateral triangle 30 is shifted from the position of the center portion CP ⁇ b> 1 of the magnet 5, the power generation amounts of the power generation units 71 and 73 are equal to each other. The power generation will be unbalanced.
- the distance L1 from the pickup coil 72b of the power generation unit 72 disposed on the nearest side of the central portion CP1 of the magnet 5 to the magnet 5 is set as the power generation unit disposed on the remaining side.
- the power generation amount of the power generation unit 72 can be increased and the power generation amounts of the three power generation units can be made equal. This eliminates the need for balance adjustment by the capacitance of the capacitor that charges the voltage pulse.
- the distance L1 from the pickup coil 72b to the magnet 5 is shorter than the distance L2 from the pickup coils 71b and 73b to the magnet 5, but the magnetic field strength varies depending on the position of the magnet 5, so that the magnetic field
- the three power generation amounts may be balanced by changing the distance from each of the pickup coils 71b, 72b, 73b to the magnet 5 in accordance with the strength of the.
- FIG. 14 is a perspective view of a rotation speed detector according to the sixth embodiment.
- one magnetic wire 74 is used instead of the three magnetic wires 71a, 72a, 73a.
- the magnetic wire 74 is formed in an equilateral triangle shape by bending two portions of one linear magnetic wire.
- Pickup coils 71b, 72b, 73b are arranged on three sides of the equilateral triangle in the magnetic wire 74 formed in an equilateral triangle.
- three power generation units 71, 72, 73 are formed.
- the magnetic power wire is bent at two places to obtain three power generation units 71, 72, and 73.
- the magnetic characteristics of the three magnetic wires 71a, 72a, and 73a are different due to variations in stress generated in the magnetic wire during cutting.
- An imbalance occurs between the power generation amounts of the two power generation units 71, 72, and 73.
- the magnetic wire has a polygonal shape formed by bending one wire, and the pickup coils 71b, 72b, 73b are provided on each of a plurality of sides of the polygonal magnetic wire. ing. Since the three power generation units 71, 72, and 73 can be configured by bending one magnetic wire, there is no variation in stress due to cutting, and each power generation amount of the three power generation units 71, 72, and 73 is eliminated. it can.
- FIG. FIG. 15 is a configuration diagram of a rotation speed detector according to the seventh embodiment.
- ferrite beads 50 that are soft magnetic bodies are provided at both ends of each of the magnetic wires 71a, 72a, and 73a.
- the ferrite beads 50 are arranged near the three vertices 31 constituting the equilateral triangle 30 that is the virtual polygon 10.
- the magnetic permeability of the ferrite bead 50 is preferably higher than the magnetic permeability of the magnetic wires 71a, 72a, 73a.
- the ferrite bead 50 By providing the ferrite bead 50, since the magnetic flux is linked to the ferrite bead 50 when the magnet 5 is rotated and the ferrite bead 50 itself is magnetized, the power generation amount generated in each of the power generation units 71, 72, and 73 is increased and the rotation is performed. Number detection accuracy is improved.
- FIG. 16 is a view showing a modification of the rotation speed detector according to the seventh embodiment.
- FIG. 17 is an enlarged view of the ferrite bead shown in FIG.
- the ferrite beads 50 provided at both ends of the magnetic wires 71a, 72a, 73a are used.
- Ferrite beads 51 connected to the magnetic wire are used.
- magnetic wires 71 a and 73 a are connected to the ferrite bead 51.
- the magnetic wires 71a and 73a are fixed to the ferrite bead 51 so as not to contact each other.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
Abstract
回転数検出器(200)は、シャフト(4)に設けられた円板形状の磁石(5)と、磁性ワイヤ及びピックアップコイルで構成される3つ以上の発電部(71,72,73)とを備え、3つ以上の発電部(71,72,73)のそれぞれは、磁石(5)の端面側に配置される仮想的な多角形(10)を構成する複数の辺のそれぞれに配置されることを特徴とする。これにより回転数検出器(200)は、発電量のアンバランスを抑制すると共に小型化を図ることができるという効果を奏する。
Description
本発明は、回転体の回転数を検出する回転数検出器に関する。
特許文献1には、回転シャフトの回転方向に配列された4つの磁石と、それぞれが4つの磁石と対向して配置され磁性ワイヤを用いた3つの発電部とを備え、回転体の回転数を検出するエンコーダが開示されている。
特許文献1に開示されるエンコーダでは、4つの磁石を互いに磁界が干渉しないように配置する必要があるためエンコーダ全体が大きくなるという課題があった。
本発明は、上記に鑑みてなされたものであって、小型化を図ることができる回転数検出器を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明の回転数検出器は、シャフトに設けられた円板形状の磁石と、磁性ワイヤ及びピックアップコイルで構成される3つ以上の発電部とを備え、それぞれの発電部は、磁石の端面側に配置される仮想的な多角形を構成する複数の辺のそれぞれに配置されることを特徴とする。
本発明に係る回転数検出器は、小型化を図ることができるという効果を奏する。
以下に、本発明の実施の形態に係る回転数検出器を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は実施の形態1に係る回転数検出器を備えたモータの断面図である。図2は実施の形態1に係る回転数検出器の斜視図である。図1に示すモータ100は、筒状のフレーム1と、フレーム1の内側に固定される固定子2と、固定子2の内側に配置される回転子3と、回転子3の中心に設けられるシャフト4とを備える。シャフト4は不図示の軸受により、フレーム1に回転可能に支持される。
図1は実施の形態1に係る回転数検出器を備えたモータの断面図である。図2は実施の形態1に係る回転数検出器の斜視図である。図1に示すモータ100は、筒状のフレーム1と、フレーム1の内側に固定される固定子2と、固定子2の内側に配置される回転子3と、回転子3の中心に設けられるシャフト4とを備える。シャフト4は不図示の軸受により、フレーム1に回転可能に支持される。
またモータ100は、中心軸AXの軸線方向D1におけるシャフト4の端部4aに設けられる円板形状の磁石5と、軸線方向D1における磁石5の端面5aに対向して配置されると共にフレーム1の内側に固定される基板6と、軸線方向D1における基板6の磁石5側とは反対側の端面6aに固定される発電部群7と、基板6の端面6aに固定されるコネクタ8と、基板6の端面6aに固定される回転数検出回路9とを備える。円板形状とは、円盤形状のほか、磁石5の径方向D2における中央部に貫通孔が形成されたリング形状も含む。
磁石5は、シャフト4に接着、ねじ止め又は圧入により固定され、シャフト4と共に回転する。少なくともシャフト4、磁石5及び発電部群7により回転数検出器200が構成される。
図2に示すように発電部群7は、3つの発電部71,72,73を備える。図2では図1に示される基板6の図示が省略されている。発電部71は磁性ワイヤ71aと、磁性ワイヤ71aに巻かれたピックアップコイル71bとで構成される。発電部72は磁性ワイヤ72aと、磁性ワイヤ72aに巻かれたピックアップコイル72bとで構成される。発電部73は磁性ワイヤ73aと、磁性ワイヤ73aに巻かれたピックアップコイル73bとで構成される。
3つの発電部71,72,73のそれぞれは、磁石5の回転に伴い大バルクハウゼン効果により電圧パルスを発生する。3つの発電部71,72,73のそれぞれは、発生する電圧パルスの大きさ、すなわち発電量が互いに等しくなるように、磁性ワイヤ71a,72a,73aの線径及び長さが設定され、ピックアップコイル71b,72b,73bの巻数が設定されているものとする。
磁石5の着磁方向は、中心軸AXの軸線方向D1と直交する方向でもよいし、中心軸AXの軸線方向D1と平行な方向でもよいが、実施の形態1に係る磁石5には、S極とN極がそれぞれ1極ずつ軸線方向D1、すなわち磁石5の厚み方向に着磁されているものとする。磁石5の軸線方向D1における一方の端面5aには、磁石5の回転方向にS極とN極が配列される。磁石5の軸線方向D1における端面5aとは反対側の端面5bには、磁石5の回転方向に端面5aの極性とは異なる極性が配列される。
発電部71,72,73のそれぞれで発生した電圧パルスは、ピックアップコイル71b,72b,73bに接続された不図示の信号線を介して、回転数検出回路9に入力される。回転数検出回路9では電圧パルスにより回転子3の回転数が検出され、回転子3の回転数情報が不図示のメモリに記録される。回転数情報は、コネクタ8とコネクタ8に接続された信号線とを介して、不図示の上位機器に伝送される。上位機器では回転数情報を用いてモータ100を駆動させる電圧指令が生成される。
図3は図2に示す発電部群を磁石に向かって平面視した図である。図3には、図2に示す磁石5の直径と等しい直径の仮想円5Aが示される。図3に示すように3つの発電部71,72,73のそれぞれは、仮想的な多角形10の複数の辺のそれぞれに配置される。図2及び図3では仮想的な多角形10が正三角形30とされる。
正三角形30は、3つの頂点31と、隣接する2つの頂点31同士を結ぶ3つの辺32とで構成される。3つの辺32の長さは互いに等しく、3つの内角33の角度θ1の大きさは互いに等しい。1つの内角33の角度θ1は60°である。
図2に示す磁石5に向かって発電部群7を平面視したときに、正三角形30の3つの頂点31は仮想円5Aに内接する。正三角形30の3辺の垂直二等分線は、中心部CP1で交わり、中心部CP1から各頂点31までの距離は等しい。正三角形30の中心部CP2の位置は、仮想円5Aの中心部CP1の位置と一致する。中心部CP2及び中心部CP1の位置は、図1に示すシャフト4の中心軸AXの位置と一致する。
発電部71,72,73のそれぞれの磁性ワイヤ71a,72a,73aの長さは、辺32の長さよりも短いが、仮想円5Aに接するように極力長くすることが望ましい。すなわち発電部71,72,73は、磁性ワイヤ71a,72a,73aの端部が正三角形30の頂点31の近くに配置されるように構成することが望ましい。
図4は図3に示す3つの発電部のそれぞれで発生する発電量と磁性ワイヤ長との関係を示す図である。図4の縦軸は発電量を示す。図3に示す仮想円5Aの半径が図2に示す磁石5の半径に等しい場合、図4の横軸には、磁石5の半径を1としたときの半径に対する磁性ワイヤ長の比率で示される。具体的には、図4の横軸の「1」は磁石5の半径と磁性ワイヤ長とが等しいことを示す。図4に示すように、磁性ワイヤ長が半径Rを√3倍した値と等しいとき、3つの発電部71,72,73のそれぞれの発電量が最大となる。
なお磁性ワイヤ71a,72a,73aの端部が仮想円5Aの外側まで伸びて、磁性ワイヤ長が半径Rを√3倍した値よりも長くなると、仮想円5Aの外側に位置する磁性ワイヤ71a,72a,73aは発電に寄与しないと共に、磁性ワイヤの抵抗分により発電量が減少する。
仮想円5Aに内接する3つの頂点31のそれぞれの位置に磁性ワイヤ71a,72a,73aの端部が配置されることにより、発電部71,72,73のそれぞれで発生する発電量が最も多くなり、回転数の検出精度の向上を図ることができる。
なお図1では発電部群7、コネクタ8及び回転数検出回路9が基板6の磁石5側とは反対側の端面6aに設けられているが、発電部群7、コネクタ8及び回転数検出回路9は、基板6の磁石側の端面6bに設けられてもよい。また発電部群7、コネクタ8及び回転数検出回路9の何れかが端面6aに設けられ、残りが端面6bに設けられていてもよい。図1に示すように基板6の端面6a又は端面6bの何れか一方に発電部群7、コネクタ8及び回転数検出回路9の全てを設けることにより、発電部群7、コネクタ8及び回転数検出回路9の一部が端面6aに設けられ、残りが端面6bに設けられている場合に比べて、発電部群7、コネクタ8、回転数検出回路9及び基板6の全体の軸線方向D1における幅を狭くすることができ、モータ100を小型化することができる。
実施の形態2.
図5は実施の形態2に係る回転数検出器の構成図である。図3に示す回転数検出器200と図5に示す回転数検出器200Aとの相違点は、回転数検出器200Aでは仮想的な多角形10が二等辺三角形30Aとされていることである。図5に示す発電部群7Aでは、磁性ワイヤ71a,72aの長さが等しく、磁性ワイヤ71a,72aの長さが磁性ワイヤ73aの長さよりも長い。
図5は実施の形態2に係る回転数検出器の構成図である。図3に示す回転数検出器200と図5に示す回転数検出器200Aとの相違点は、回転数検出器200Aでは仮想的な多角形10が二等辺三角形30Aとされていることである。図5に示す発電部群7Aでは、磁性ワイヤ71a,72aの長さが等しく、磁性ワイヤ71a,72aの長さが磁性ワイヤ73aの長さよりも長い。
二等辺三角形30Aは、3つの頂点31と、長さが等しい2つの辺である等辺32aと、等辺32aよりも短い辺である1つの底辺32bとで構成される。2つの等辺32aが成す頂角33bの角度θ11は、底辺32bと等辺32aとが成す底角33aの角度θ12よりも狭い。
二等辺三角形30Aの3辺の垂直二等分線は、中心部CP3で交わり、中心部CP3から各頂点31までの距離は等しい。二等辺三角形30Aの中心部CP3の位置は、仮想円5Aの中心部CP1の位置と一致する。中心部CP3及び中心部CP1の位置は、図1に示すシャフト4の中心軸AXの位置と一致する。
磁性ワイヤ71a,72aの長さは、等辺32aの長さよりも短いが、仮想円5Aに接するように極力長くすることが望ましい。また磁性ワイヤ73aの長さは、底辺32bの長さよりも短いが、仮想円5Aに接するように極力長くすることが望ましい。すなわち発電部71,72,73は、磁性ワイヤ71a,72a,73aの端部が二等辺三角形30Aの頂点31の近くに配置されるように構成することが望ましい。
図5に示す発電部群7Aでは、磁性ワイヤ71a,72aの長さが等しく、磁性ワイヤ71a,72aの長さが磁性ワイヤ73aの長さよりも長いが、発電部群7Aは、磁性ワイヤ71a,72aの長さが磁性ワイヤ73aの長さよりも短くなるように構成してもよい。
実施の形態2に係る回転数検出器200Aによれば、実施の形態1と同様の効果に加えて以下の効果を奏する。図6は実施の形態2に係る回転数検出器において発電部群以外の部品を基板に実装した状態を示す図である。図6に示される基板6は、説明の便宜上、図5に示す仮想円5Aと同様の大きさ及び形状である。
発電部群7Aを基板6上に実装する場合、発電部群7Aは、基板6上に実装されるコネクタ8及び回転数検出回路9といった部品と干渉を避ける必要がある。実施の形態2のように仮想的な多角形10である二等辺三角形30Aの3辺に発電部71,72,73を配置することにより、実施の形態1に比べて二等辺三角形30Aの外側と基板6の外周部との間の領域を広げることができ、コネクタ8の実装スペースを確保することができる。
但し発電部71,72のそれぞれの発電量が等しく、かつ発電部71,72のそれぞれの発電量が発電部73の発電量よりも大きい場合、図1に示す回転数検出回路9において電圧パルスをチャージするコンデンサの容量を変えることで3つの発電部71,72,73からの電圧パルスにアンバランスが発生しないようにすることが望ましい。具体的には、発電部71,72,73のそれぞれで発生する電圧パルスをチャージするコンデンサの容量がC11,C12,C13である場合、C11=C12>C13となるようにコンデンサ容量を設定すれば、同じチャージ電圧が得られる。
図7は実施の形態2に係る回転数検出器において磁石の回転方向によるヒステリシス特性を説明するための図である。図7には一例として発電部71のみが示される。図7の上側には磁石5が右回り方向DRに回転したとき、発電部71のピックアップコイル71bで電圧パルスが発生する回転角度θ4が示される。回転角度θ4は、磁石5が右回り方向DRに回転したときに正側の電圧パルス電圧(+V)が発生してから一定値以上の電圧パルスが検出されるまでの角度である。図7の下側には磁石5が左回り方向DLに回転したとき、発電部71のピックアップコイル71bで電圧パルスが発生する回転角度θ5が示される。回転角度θ5は、磁石5が左回り方向DLに回転したときに負側の電圧パルス電圧(-V)が発生してから一定値以上の電圧パルスが検出されるまでの角度である。
回転数検出器200Aは、磁石5が右回り方向DRに回転したときに一定値以上の電圧パルスが検出される位置と、磁石5が左回り方向DLに回転したときに一定値以上の電圧パルスが検出される位置とが異なるヒステリシス特性を有している。回転角度θ4と回転角度θ5との差分に相当するヒステリシス角度をφとしたとき、図6に示す頂角33bの角度θ11はヒステリシス角度φよりも大きくすることが望ましい。
頂角33bの角度θ11をヒステリシス角度φよりも小さくした場合、一定値以上の電圧パルスが図6に示す発電部71,72のそれぞれで同じタイミングで発生するため、回転検出精度が低下する可能性がある。二等辺三角形30Aの頂角33bの角度θ11を、磁石5の回転方向の違いによって磁性ワイヤで発生する回転角度のヒステリシス角度φよりも大きくすることにより、二等辺三角形30Aの頂角33bが狭くなることによる発電量のアンバランスを小さくすることができ、回転検出精度の低下を抑制できる。
実施の形態3.
図8は実施の形態3に係る回転数検出器の構成図である。図3に示す回転数検出器200と図8に示す回転数検出器200Bとの相違点は、回転数検出器200Bでは、仮想的な多角形10である正三角形30の3つの頂点31の内、2つの頂点31のみが仮想円5Aに内接していることである。すなわち正三角形30の中心部CP2の位置は、仮想円5Aの中心部CP1の位置からずれている。
図8は実施の形態3に係る回転数検出器の構成図である。図3に示す回転数検出器200と図8に示す回転数検出器200Bとの相違点は、回転数検出器200Bでは、仮想的な多角形10である正三角形30の3つの頂点31の内、2つの頂点31のみが仮想円5Aに内接していることである。すなわち正三角形30の中心部CP2の位置は、仮想円5Aの中心部CP1の位置からずれている。
基板6の大きさが制約されるために正三角形30の3つの頂点31が仮想円5Aに内接するように発電部71,72,73を配置できない場合、正三角形30の3辺の垂直二等分線が伸びる方向に正三角形30を移動させることにより、発電部71,72,73のそれぞれの出力を等しくすることができる。
但し実施の形態1に比べて回転数検出器200Bでは、発電部71,72の発電量が発電部73の発電量と異なり、図8の配置例では発電部71,72の発電量が等しく、かつ発電部73の発電量よりも低くなる。そのため実施の形態2と同様に、回転数検出回路9において電圧パルスをチャージするコンデンサの容量を変えることで3つの発電部71,72,73からの電圧パルスにアンバランスが発生しないようにすることが望ましい。
実施の形態3に係る回転数検出器200Bによれば、実施の形態1と同様の効果に加えて以下の効果を奏する。図9は実施の形態3に係る回転数検出器において発電部群以外の部品を基板に実装した状態を示す図である。実施の形態3のように発電部71,72,73を配置することにより、実施の形態1に比べて正三角形30の外側と基板6の外周部との間の領域を広げることができるため、コネクタ8の実装スペースを確保することができる。
なお実施の形態3では、正三角形30の3つの頂点31の内、2つの頂点31のみが仮想円5Aに内接している例を説明したが、正三角形30の3つの頂点31の内、1つの頂点31のみが仮想円5Aに内接するように発電部71,72,73を実装した場合でも、同様の効果が得られる。
実施の形態4.
図10は実施の形態4に係る回転数検出器の構成図である。図5に示す回転数検出器200Aと図10に示す回転数検出器200Cとの相違点は、回転数検出器200Cでは、仮想的な多角形10である二等辺三角形30Aの3つの頂点31の内、1つの頂点31のみが仮想円5Aに内接していることである。すなわち二等辺三角形30Aの中心部CP3の位置は、仮想円5Aの中心部CP1の位置からずれている。図10では二等辺三角形30Aの2つの等辺32aが交わる頂点31が仮想円5Aに内接している。
図10は実施の形態4に係る回転数検出器の構成図である。図5に示す回転数検出器200Aと図10に示す回転数検出器200Cとの相違点は、回転数検出器200Cでは、仮想的な多角形10である二等辺三角形30Aの3つの頂点31の内、1つの頂点31のみが仮想円5Aに内接していることである。すなわち二等辺三角形30Aの中心部CP3の位置は、仮想円5Aの中心部CP1の位置からずれている。図10では二等辺三角形30Aの2つの等辺32aが交わる頂点31が仮想円5Aに内接している。
基板6の大きさが制約されるため二等辺三角形30Aの3つの頂点31が仮想円5Aに内接するように発電部71,72,73を配置できない場合でも、二等辺三角形30Aの底辺32bの垂直二等分線が伸びる方向に二等辺三角形30Aを移動させることにより、発電部71,72,73を配置できる。
なお実施の形態4に係る回転数検出器200Cでは、実施の形態2と同様に、電圧パルスをチャージするコンデンサの容量を変えることで3つの発電部71,72,73からの電圧パルスにアンバランスが発生しないようにすることが望ましい。
実施の形態4に係る回転数検出器200Cによれば、実施の形態2と同様の効果に加えて以下の効果を奏する。図11は実施の形態4に係る回転数検出器において発電部群以外の部品を基板に実装した状態を示す図である。実施の形態4のように発電部71,72,73を配置することにより、実施の形態2に比べて二等辺三角形30Aの外側と基板6の外周部との間の領域を広げることができるため、コネクタ8の実装スペースを確保することができる。
実施の形態5.
図12は実施の形態5に係る回転数検出器の斜視図である。図13は実施の形態5に係る回転数検出器の側面図である。実施の形態1に係る回転数検出器200と実施の形態5に係る回転数検出器200Dとの相違点は、次の通りである。すなわち、回転数検出器200Dでは、仮想的な多角形10である正三角形30の3つの頂点31の内、1つの頂点31のみが仮想円5Aに内接するように発電部71,72,73が実装され、ピックアップコイル72bから磁石5までの距離L1が、ピックアップコイル71b,73bから磁石5までの距離L2よりも短いことである。
図12は実施の形態5に係る回転数検出器の斜視図である。図13は実施の形態5に係る回転数検出器の側面図である。実施の形態1に係る回転数検出器200と実施の形態5に係る回転数検出器200Dとの相違点は、次の通りである。すなわち、回転数検出器200Dでは、仮想的な多角形10である正三角形30の3つの頂点31の内、1つの頂点31のみが仮想円5Aに内接するように発電部71,72,73が実装され、ピックアップコイル72bから磁石5までの距離L1が、ピックアップコイル71b,73bから磁石5までの距離L2よりも短いことである。
ピックアップコイル71b,72b,73bから磁石5までの距離を変化させると発電量が変化する。図12に示すように正三角形30の中心部CP2の位置が磁石5の中心部CP1の位置からずれている場合、発電部71,73の発電量は、互いに等しく、かつ発電部72の発電量よりも多くなり、3つの発電量のアンバランスが発生する。
二等辺三角形の3つの辺の内、磁石5の中心部CP1の最も近くの辺に配置された発電部72のピックアップコイル72bから磁石5までの距離L1を、残りの辺に配置された発電部71,73のピックアップコイル71b,73bから磁石5までの距離L2よりも短くすることにより、発電部72の発電量を増加させて3つの発電部の発電量を等しくすることができる。これにより電圧パルスをチャージするコンデンサの容量によるバランス調整が不要になる。
実施の形態5では、ピックアップコイル72bから磁石5までの距離L1が、ピックアップコイル71b,73bから磁石5までの距離L2よりも短いが、磁石5の位置によっては磁界の強さが異なるため、磁界の強さに応じてピックアップコイル71b,72b,73bのそれぞれから磁石5までの距離を変えることにより3つの発電量のバランスを取ってもよい。
実施の形態6.
図14は実施の形態6に係る回転数検出器の斜視図である。実施の形態6に係る回転数検出器200Eでは、3つの磁性ワイヤ71a,72a,73aの代わりに、1本の磁性ワイヤ74が用いられている。磁性ワイヤ74は、1本の直線状の磁性ワイヤの2箇所が折り曲げられて正三角形状に形成されたものである。正三角形状に形成された磁性ワイヤ74には、正三角形の3つの辺にピックアップコイル71b,72b,73bが配置される。これにより3つの発電部71,72,73が形成される。なお1本の直線状の磁性ワイヤに3つのピックアップコイル71b,72b,73bを通した後、磁性ワイヤを2か所折り曲げることにより、3つの発電部71,72,73が得られる。
図14は実施の形態6に係る回転数検出器の斜視図である。実施の形態6に係る回転数検出器200Eでは、3つの磁性ワイヤ71a,72a,73aの代わりに、1本の磁性ワイヤ74が用いられている。磁性ワイヤ74は、1本の直線状の磁性ワイヤの2箇所が折り曲げられて正三角形状に形成されたものである。正三角形状に形成された磁性ワイヤ74には、正三角形の3つの辺にピックアップコイル71b,72b,73bが配置される。これにより3つの発電部71,72,73が形成される。なお1本の直線状の磁性ワイヤに3つのピックアップコイル71b,72b,73bを通した後、磁性ワイヤを2か所折り曲げることにより、3つの発電部71,72,73が得られる。
長尺の磁性ワイヤから3本の磁性ワイヤ71a,72a,73aを切り出す際、切断時に磁性ワイヤに生じる応力のバラツキによって、3本の磁性ワイヤ71a,72a,73aの磁気特性に差異が生じ、3つの発電部71,72,73のそれぞれの発電量にアンバランスが生じる。
このように実施の形態6では、磁性ワイヤは1つのワイヤを折り曲げて形成された多角形を成し、当該多角形の磁性ワイヤの複数の辺のそれぞれにピックアップコイル71b,72b,73bが設けられている。1本の磁性ワイヤを折り曲げることで3つの発電部71,72,73を構成できるため、切断による応力のバラツキがなくなり、3つの発電部71,72,73のそれぞれの発電量のアンバランスを解消できる。
実施の形態7.
図15は実施の形態7に係る回転数検出器の構成図である。実施の形態7に係る回転数検出器200Fでは、磁性ワイヤ71a,72a,73aのそれぞれの両端に軟磁性体であるフェライトビーズ50が設けられる。フェライトビーズ50は、仮想的な多角形10である正三角形30を構成する3つの頂点31の近くに配置される。フェライトビーズ50の透磁率は、磁性ワイヤ71a,72a,73aの透磁率よりも高いことが望ましい。フェライトビーズ50を設けることにより、磁石5の回転時にフェライトビーズ50に磁束が鎖交してフェライトビーズ50自体が磁化するため、発電部71,72,73のそれぞれで発生する発電量が高まり、回転数の検出精度が向上する。
図15は実施の形態7に係る回転数検出器の構成図である。実施の形態7に係る回転数検出器200Fでは、磁性ワイヤ71a,72a,73aのそれぞれの両端に軟磁性体であるフェライトビーズ50が設けられる。フェライトビーズ50は、仮想的な多角形10である正三角形30を構成する3つの頂点31の近くに配置される。フェライトビーズ50の透磁率は、磁性ワイヤ71a,72a,73aの透磁率よりも高いことが望ましい。フェライトビーズ50を設けることにより、磁石5の回転時にフェライトビーズ50に磁束が鎖交してフェライトビーズ50自体が磁化するため、発電部71,72,73のそれぞれで発生する発電量が高まり、回転数の検出精度が向上する。
図16は実施の形態7に係る回転数検出器の変形例を示す図である。図17は図16に示すフェライトビーズの拡大図である。図15に示される回転数検出器200Fでは、磁性ワイヤ71a,72a,73aのそれぞれの両端に設けられるフェライトビーズ50が用いられるが、図16に示される回転数検出器200Gでは、隣接する2つの磁性ワイヤに接続されるフェライトビーズ51が用いられる。図17に示すようにフェライトビーズ51には磁性ワイヤ71a,73aが接続される。磁性ワイヤ71a,73aは互いに非接触となるようにフェライトビーズ51に固定される。フェライトビーズ51を用いることにより、図15に示すフェライトビーズ50と同様の効果を得ることができると共に、フェライトビーズ50を用いた場合に比べて、フェライトビーズ51の使用数を減らすことができるため、回転数検出器の製造時間を短縮することができる。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 フレーム、2 固定子、3 回転子、4 シャフト、4a 端部、5 磁石、5A 仮想円、5a,5b,6a,6b 端面、6 基板、7,7A 発電部群、8 コネクタ、9 回転数検出回路、10 仮想的な多角形、30 正三角形、30A 二等辺三角形、50,51 フェライトビーズ、71,72,73 発電部、71a,72a,73a,74 磁性ワイヤ、71b,72b,73b ピックアップコイル、100 モータ、200,200A,200B,200C,200D,200E,200F,200G 回転数検出器。
Claims (9)
- シャフトに設けられた円板形状の磁石と、
磁性ワイヤ及びピックアップコイルで構成される3つ以上の発電部と
を備え、
それぞれの前記発電部は、前記磁石の端面側に構成された仮想的な多角形の複数の辺のそれぞれに配置されることを特徴とする回転数検出器。 - 3つ以上の前記発電部を前記磁石側から平面視した前記多角形の頂点の少なくとも1つは、前記磁石の直径と等しい直径の仮想円に内接することを特徴とする請求項1に記載の回転数検出器。
- 前記多角形は正三角形又は二等辺三角形であり、
前記正三角形又は二等辺三角形の全ての前記頂点が、前記仮想円に内接することを特徴とする請求項2に記載の回転数検出器。 - 前記多角形は正三角形又は二等辺三角形であり、
前記正三角形又は二等辺三角形の複数の前記頂点が、前記仮想円に内接することを特徴とする請求項2に記載の回転数検出器。 - 前記二等辺三角形の3つの辺の内、前記磁石の中心の最も近くの辺に配置された前記発電部から前記磁石までの距離は、残りの辺に配置された前記発電部から前記磁石までの距離よりも短いことを特徴とする請求項4に記載の回転数検出器。
- 前記二等辺三角形の頂角の角度は、前記磁石の回転方向の違いによって前記磁性ワイヤで発生する回転角度のヒステリシス角度よりも大きいことを特徴とする請求項4又は5に記載の回転数検出器。
- 前記磁性ワイヤは、1つのワイヤを折り曲げて形成された多角形を成し、
当該多角形の磁性ワイヤの複数の辺のそれぞれに前記ピックアップコイルが設けられていることを特徴とする請求項1から6の何れか一項に記載の回転数検出器。 - 前記磁性ワイヤの端部には軟磁性体が設けられることを特徴とする請求項1から7の何れか一項に記載の回転数検出器。
- 前記磁石には、S極とN極がそれぞれ1極ずつ前記磁石の厚み方向に着磁されていることを特徴とする請求項1から8の何れか一項に記載の回転数検出器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/011135 WO2018173106A1 (ja) | 2017-03-21 | 2017-03-21 | 回転数検出器 |
CN201790000489.XU CN209927881U (zh) | 2017-03-21 | 2017-03-21 | 转速检测器 |
JP2018506359A JP6336232B1 (ja) | 2017-03-21 | 2017-03-21 | 回転数検出器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/011135 WO2018173106A1 (ja) | 2017-03-21 | 2017-03-21 | 回転数検出器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173106A1 true WO2018173106A1 (ja) | 2018-09-27 |
Family
ID=62487297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011135 WO2018173106A1 (ja) | 2017-03-21 | 2017-03-21 | 回転数検出器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6336232B1 (ja) |
CN (1) | CN209927881U (ja) |
WO (1) | WO2018173106A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210139475A (ko) * | 2019-06-14 | 2021-11-22 | 미쓰비시덴키 가부시키가이샤 | 회전수 검출기 |
WO2022004002A1 (ja) * | 2020-06-30 | 2022-01-06 | 日本電産株式会社 | モータおよび位置推定方法 |
US11913813B2 (en) | 2021-01-12 | 2024-02-27 | Mitsubishi Electric Corporation | Power generation element, magnetic sensor, encoder, and motor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111273053B (zh) * | 2020-01-22 | 2022-11-01 | 武汉船用机械有限责任公司 | 用于电机的转速测量装置 |
JP7428524B2 (ja) * | 2020-01-27 | 2024-02-06 | ヒロセ電機株式会社 | 回転検出装置 |
US20240344852A1 (en) | 2021-05-27 | 2024-10-17 | Panasonic Intellectual Property Management Co., Ltd. | Rotation detector and rotation detection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530298A (en) * | 1993-09-03 | 1996-06-25 | Dresser Industries, Inc. | Solid-state pulse generator |
JP2014137232A (ja) * | 2013-01-15 | 2014-07-28 | Hirose Electric Co Ltd | 回転検出装置 |
WO2014128937A1 (ja) * | 2013-02-22 | 2014-08-28 | 三菱電機株式会社 | 回転数検出器 |
-
2017
- 2017-03-21 JP JP2018506359A patent/JP6336232B1/ja active Active
- 2017-03-21 CN CN201790000489.XU patent/CN209927881U/zh active Active
- 2017-03-21 WO PCT/JP2017/011135 patent/WO2018173106A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5530298A (en) * | 1993-09-03 | 1996-06-25 | Dresser Industries, Inc. | Solid-state pulse generator |
JP2014137232A (ja) * | 2013-01-15 | 2014-07-28 | Hirose Electric Co Ltd | 回転検出装置 |
WO2014128937A1 (ja) * | 2013-02-22 | 2014-08-28 | 三菱電機株式会社 | 回転数検出器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210139475A (ko) * | 2019-06-14 | 2021-11-22 | 미쓰비시덴키 가부시키가이샤 | 회전수 검출기 |
KR102446180B1 (ko) * | 2019-06-14 | 2022-09-23 | 미쓰비시덴키 가부시키가이샤 | 회전수 검출기 |
WO2022004002A1 (ja) * | 2020-06-30 | 2022-01-06 | 日本電産株式会社 | モータおよび位置推定方法 |
US11913813B2 (en) | 2021-01-12 | 2024-02-27 | Mitsubishi Electric Corporation | Power generation element, magnetic sensor, encoder, and motor |
Also Published As
Publication number | Publication date |
---|---|
JP6336232B1 (ja) | 2018-06-06 |
CN209927881U (zh) | 2020-01-10 |
JPWO2018173106A1 (ja) | 2019-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6336232B1 (ja) | 回転数検出器 | |
JP5880577B2 (ja) | モータ、モータシステムおよびモータ用エンコーダ | |
JP5764373B2 (ja) | バリアブルリラクタンス型レゾルバ | |
CN104184296B (zh) | 旋转电机 | |
US11411471B2 (en) | Motor | |
JP2013021810A (ja) | 回転電機 | |
US20160181888A1 (en) | Rotary Body Driving Apparatus | |
JP6235927B2 (ja) | 角加速度検出器 | |
CN105099108B (zh) | 风扇电机及风扇 | |
WO2018131693A1 (ja) | センサマグネットアセンブリ、およびモータ | |
WO2020195003A1 (ja) | モータ | |
US10468954B2 (en) | Spindle motor with particular rotor magnet and stator teeth dimensions and disk drive device including the same | |
CN109075679A (zh) | 同步磁阻式旋转电机 | |
US20180226862A1 (en) | Rotational position detection device and motor device | |
JP2019170070A (ja) | ステータコア及びレゾルバ | |
JP3568004B2 (ja) | 小形電動機 | |
JP2017089766A (ja) | 3軸能動制御型磁気軸受及びその組立方法 | |
JP7495873B2 (ja) | 回転電機 | |
WO2018123841A1 (ja) | ロータ及びモータ | |
JP6282891B2 (ja) | モータ、モータ装置および指針式表示装置 | |
JPS5930615Y2 (ja) | ディスク形モ−タ | |
JP2013158072A (ja) | アウターロータ型モータ | |
JPH0469027A (ja) | 多極回転子を有する電気回転機 | |
JP5848160B2 (ja) | ロータ及びモータ | |
JPH04112655A (ja) | スピンドルモータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018506359 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17902108 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17902108 Country of ref document: EP Kind code of ref document: A1 |