WO2018171334A1 - 终端能力的协商方法、装置和存储介质 - Google Patents

终端能力的协商方法、装置和存储介质 Download PDF

Info

Publication number
WO2018171334A1
WO2018171334A1 PCT/CN2018/074418 CN2018074418W WO2018171334A1 WO 2018171334 A1 WO2018171334 A1 WO 2018171334A1 CN 2018074418 W CN2018074418 W CN 2018074418W WO 2018171334 A1 WO2018171334 A1 WO 2018171334A1
Authority
WO
WIPO (PCT)
Prior art keywords
capability
base station
serving base
specific
capability negotiation
Prior art date
Application number
PCT/CN2018/074418
Other languages
English (en)
French (fr)
Inventor
杨立
黄河
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18772487.7A priority Critical patent/EP3606228B1/en
Publication of WO2018171334A1 publication Critical patent/WO2018171334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00698Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method, an apparatus, and a storage medium for negotiating a terminal capability.
  • the LTE primary and secondary base stations have the same RAT attribute, only the master node is responsible for various capabilities of the UE (such as radio frequency band (RF band), cache. Etc.) Allocation and coordination between primary and secondary base stations.
  • the primary base station (MeNB) can understand the current SCG specific configuration of the secondary base station (SeNB), so it is clear how many UE capabilities should be allocated to the SCG side, and is the partitioned SCG part reasonable? With the SCG addition/modification process, the MeNB can know how many UE capabilities are needed on the SeNB side.
  • the NR/LTE DC primary and secondary base station has different RAT attributes, and the Secondary Node side allows to independently generate its own RRC PDU, and the Master Node may not be able to resolve and understand The content of the RRC PDU cannot be derived from how many UE capabilities are consumed in real time on the SCG side. The Master Node cannot determine whether the current UE capability is allocated to the SCG side is sufficient and reasonable.
  • the DC dual-connection technology is standardized, and the UE establishes two independent RL connections with the MeNB and the SeNB at the same time.
  • the UE can configure the SCG bearer (Bearer) or the Split Bearer (only downlink offload).
  • the UE can simultaneously obtain the DRB (Data Radio Bearer) service provided by the Non Co-site two inter-frequency base station radio resources.
  • DRB Data Radio Bearer
  • the eDC enhanced dual connectivity technology is further standardized, and the UE simultaneously establishes two independent RL connections with the MeNB (the primary serving base station in LTE) and the SeNB (the secondary serving base station in the LTE), and the UE further You can configure the Split Bearer (additional uplink offload).
  • the UE can obtain the DRB service provided by the two inter-base station radio resources of the Non Co-site at the same time, and adds a certain mobility scenario, such as switching across the MeNB but simultaneously Keep the SeNB unchanged.
  • the SeNB on the MeNB side which is referred to as the MCG SRB
  • the RRC Radio Resource Control
  • the SeNB side only the common SRB0 is used to transmit the CCCH uplink message, but there is no dedicated SRB, and the RRC message cannot be directly transmitted. Therefore, any RRC-related configuration operations generated by the SeNB side must be completed by means of the MCG SRB.
  • Option3/3a/3x corresponds to different DRB Types of MCG Split Bearer, SCG Bearer, and SCG Split Bearer.
  • Option 1 is a network architecture in the related art of the present disclosure.
  • the Option 3/3a/3x in FIG. 1 is complete with the function of the NR gNB base station and related technologies, such as supporting the NG interface of the NGC and supporting the NR SI message.
  • operators have gradually transitioned from EPC to the new core network NGC.
  • NR gNB can work independently in Standalone mode. This gNB independent deployment mode is called Option2.
  • the operator also upgrades a large number of eNB base stations to eLTE eNB base stations, so that it can be connected to the NGC connection as well as the NR gNB, and the eLTE eNB base station and the gNB can also be connected through the Xn interface, and the eLTE eNB base station is independently deployed.
  • the mode is called Option5, and Option 2/5 is not part of the LTE/NR DC scenario, so it will not be highlighted below.
  • the NR gNB and the eLTE eNB can also perform LTE/NR Tight Interworking.
  • the deployment mode is called Option 4/4a.
  • the eLTE eNB is used as the primary base station and the gNB is used as the secondary base station, the The deployment mode is called Option7/7a/7x, similar to the 3 series in Figure 1, and the above 4/7 sub-series correspond to different DRB Types. Therefore, in general, the LTE/NR DC scenario includes Option 3/3a/3x, Option 4/4a, and Option 7/7a/7x.
  • the Option 3/3a/3x adopts the old E-RAB Based QOS model because it is connected to the EPC. It is still regarded as a 4G heterogeneous dual connectivity scenario; while Option 4/4a, Option 7/7a/7x adopts a new PDU Session Based QOS model due to connection to NGC, which is regarded as a 5G heterogeneous dual connectivity scenario, based on dual connectivity.
  • Multiple connections can be derived, that is, the UE and more gNBs and eNB base stations are simultaneously connected to perform data transmission on the control plane/user plane.
  • the base station and the UE can also configure the dedicated SRB on the secondary Node side, which is referred to as SCG SRB, which can be used to directly transmit only the Secondary Node.
  • SCG SRB which can be used to directly transmit only the Secondary Node.
  • the RRC uplink and downlink messages, such as the RRM measurement report message, any RRC-related configuration operations independently generated by the Secondary Node side can be directly delivered through the SCG SRB without borrowing the MCG SRB.
  • the Secondary Node side allows to independently generate its own RRC PDU and directly through the SCG SRB.
  • the UE is sent to the UE, but the Master Node may not be able to resolve and understand the content of the RRC PDU. Therefore, it cannot be deduced whether the SCG side consumes a lot of UE capabilities in real time.
  • the Master Node cannot determine whether the current UE capability partitioning to the SCG side is sufficient and reasonable.
  • the specific capability of UE-supported RF Band Combination will be exemplified below.
  • a certain 4/5G dual-mode terminal UE can independently support the frequency band (A, B) in the LTE domain, and the serving eNB can know the specific capability of the UE in the frequency band (A, B) through the wireless capability reporting of the UE, such as: A maximum of LTE carriers can be aggregated, LTE MIMO order, Softchanel Bits, etc.; the UE can independently support the frequency band (C, D, E) in the NR Domain, and the service gNB can know the UE in the frequency band (C) , D, E) specific capabilities, such as: the maximum can aggregate several NR carriers, NR MIMO order, Softchanel Bits, etc.; and if the UE is in NR / LTE DC mode, can also support NR / LTE band combination (A+C, A+E, B+D).
  • the UE has been configured to operate in the NR/LTE DC Option 7, ie, MeNB+SgNB and is currently in the band combination (A+C), that is, the MCG cells in the MeNB are in the frequency band A, and the SCG cells in the SgNB are in the frequency band. C. Since the MCG and the SCG have relatively independently maintained RRM measurements and reports, the MeNB may only know the radio signal/load condition of the target frequency point in the band supported by the LTE side, and the SgNB may only know the band supported by the NR side. The radio signal/load condition of the target frequency point, the MeNB/SgNB may not be able to know the specific situation of the other party in real time, such as which frequency band is currently in the middle, aggregate several carriers, and how many other UE capabilities are consumed.
  • A+C band combination
  • the SgNB (the secondary serving base station in the NR, corresponding to the MgNB) wants to reconfigure its own SCG Cells into the frequency band D based on the wireless measurement report of the UE on the SCG side (for example, due to: several services in the source frequency band C) The quality of the cell is degraded.
  • the NR/LTE DC cannot support the band combination (A+D), but can support the band combination (B+D)
  • the cell on the MCG side is matched to the cell mobile reconfiguration on the SCG side.
  • Mobile reconfiguration may also be required, which requires the SgNB to cooperate with the MeNB in this aspect of the UE before the RRC reconfiguration is initiated locally, and thus is associated with each other and potential capability conflicts may occur.
  • the advantage of UE capability coordination is that the Master Node can know the UE capability division request and the back reason between the Secondary Nodes in real time. Therefore, both the MCG and the SCG can adopt a more reasonable RRM/RRC action to adapt; otherwise, if Since the NR/LTE DC cannot support the band combination (A+D), the SCG Cells are forced to go to the band D. This will cause the NR/LTE DC mode of operation to fail, and the UE has to return to the single-connection mode of operation. During the post-reconfiguration process, the user's business experience is affected to varying degrees. If the SgNB negotiates and coordinates with the MeNB in some way before initiating the "Reconfiguration to Band D" request, the MeNB may have at least the following RRM/RRC actions in order to maintain the NR/LTE DC operating mode:
  • the MeNB directly rejects the request of the SgNB to "reconfigure the SCG Cells to the frequency band D", and can perform the DRB Type change process, and the SCG Bearers are first returned to the MCG side, leaving only the SCG SRB, and the entire NR/LTE DC working mode continues.
  • the MeNB agrees that the SgNB "reconfigures the SCG Cells to the Band D" request, and the MeNB reconfigures the MCG Cells to the Band B, because the NR/LTE DC can support the band combination (B+D), and the entire NR/LTE DC works. The mode continues.
  • the MeNB rejects the SgNB request to "reconfigure SCG Cells to Band D", but gives auxiliary information to suggest: Is SgNB willing to "reconfigure SCG Cells to Band E” instead of Band D because NR/LTE DC can
  • the band combination (A+E) is supported so that the MeNB can continue to maintain the MCG Cells in the band A, and the entire NR/LTE DC mode of operation continues.
  • the MeNB decides to delete all SCG Cells and exit the NR/LTE DC working mode.
  • the UE capability no longer needs to be coordinated on both sides.
  • the embodiments of the present disclosure provide a method, an apparatus, and a storage medium for negotiating a terminal capability, so as to at least solve the technical problem that a primary and secondary serving base station cannot negotiate UE capability in a multi-connection network system of LTE and NR.
  • a method for negotiating a terminal capability including: in a multi-connection scenario including a long term evolution LTE network and a new wireless NR network, a secondary serving base station configures a request according to a local secondary serving cell set SCG And initiating a user equipment UE capability negotiation request to the primary serving base station, where the UE capability negotiation request is used to negotiate the UE capability; and the secondary serving base station receives the UE capability negotiation response that is sent by the primary serving base station according to the UE capability negotiation request feedback.
  • another method for negotiating a terminal capability including: in a multi-connection scenario including a long term evolution LTE network and a new wireless NR network, the primary serving base station receives the UE capability negotiation sent by the secondary serving base station.
  • the request wherein the UE capability negotiation request is used to negotiate a UE capability; the primary serving base station acquires capability information of the UE, and feeds back a UE capability negotiation response according to the UE capability negotiation request.
  • a terminal capability negotiation apparatus which is applied to a secondary serving base station, and includes: an initiating module configured to be in a multi-connection scenario including a long term evolution LTE network and a new wireless NR network, according to The local secondary serving cell set SCG configuration request initiates a UE capability negotiation request to the primary serving base station, where the UE capability negotiation request is used to negotiate the UE capability, and the receiving module is configured to receive the primary serving base station to negotiate according to the UE capability.
  • the UE capability requesting feedback is negotiated and replied.
  • another terminal capability negotiation apparatus which is applied to a primary serving base station, and includes: a receiving module configured to be in a multi-connection scenario including a long term evolution LTE network and a new wireless NR network, The processing module is configured to receive a UE capability negotiation request sent by the secondary serving base station, where the UE capability negotiation request is used to negotiate the UE capability, acquire the capability information of the UE, and feed back the UE capability negotiation according to the UE capability negotiation request. Reply.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the user equipment UE capability negotiation request is initiated to the primary serving base station according to the local secondary serving cell set SCG configuration requirement, where the UE capability negotiation request is used for negotiation.
  • UE capability UE capability
  • the secondary serving base station in a multi-connection scenario including a long-term evolution LTE network and a new wireless NR network, the secondary serving base station initiates a user equipment UE capability negotiation request to the primary serving base station according to the local secondary serving cell set SCG configuration requirement, where And the UE capability negotiation request is used to negotiate the UE capability; the secondary serving base station receives the UE capability negotiation response that is sent by the primary serving base station according to the UE capability negotiation request.
  • the technical problem that the primary and secondary service base stations cannot negotiate the UE capability in the LTE and NR multi-connection network system can be solved, so that the performance of the NR/LTE DC dual connection is kept as optimal as possible, and unnecessary failure processing/mode weight is reduced.
  • the signaling overhead brought by the allocation reduces the maintenance load of all RRM operations of the UE by one side of the primary base station.
  • FIG. 1 is a network architecture diagram 1 in the related art of the present disclosure
  • FIG. 2 is a network architecture diagram 2 in the related art of the present disclosure
  • FIG. 3 is a flowchart of a method for negotiating terminal capabilities according to an embodiment of the present disclosure
  • FIG. 5 is a structural block diagram of a device for negotiating terminal capabilities according to an embodiment of the present disclosure
  • FIG. 6 is a structural block diagram of another apparatus for negotiating terminal capabilities according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a UE capability negotiation process in an NR/LTE DC scenario according to an embodiment of the present disclosure
  • FIG. 9 is a schematic flow chart of a specific embodiment 2 of the present disclosure.
  • FIG. 10 is a schematic flow chart of a specific embodiment 3 of the present disclosure.
  • FIG. 11 is a schematic flow chart of a specific embodiment 4 of the present disclosure.
  • Embodiments of the present disclosure may operate on the network architecture shown in FIG. 1 or 2.
  • FIG. 3 is a flowchart of a method for negotiating a terminal capability according to an embodiment of the present disclosure. As shown in FIG. 3, the process includes The following steps:
  • Step S302 in the multi-connection scenario including the long-term evolution LTE network and the new wireless NR network, the secondary serving base station initiates a user equipment UE capability negotiation request to the primary serving base station according to the local secondary serving cell set SCG configuration requirement, where the UE capability negotiation is performed.
  • Step S304 The secondary serving base station receives the UE capability negotiation reply fed back by the primary serving base station according to the UE capability negotiation request.
  • the secondary serving base station initiates a user equipment UE capability negotiation request to the primary serving base station according to the local secondary serving cell set SCG configuration requirement, where The UE capability negotiation request is used to negotiate the UE capability; the secondary service base station receives the UE capability negotiation response that is sent by the primary serving base station according to the UE capability negotiation request.
  • the technical problem that the primary and secondary service base stations cannot negotiate the UE capability in the LTE and NR multi-connection network system can be solved, so that the performance of the NR/LTE DC dual connection is kept as optimal as possible, and unnecessary failure processing/mode weight is reduced.
  • the signaling overhead brought by the allocation reduces the maintenance load of all RRM operations of the UE by one side of the primary base station.
  • the UE capability negotiation request includes at least one of: current actual consumption/occupation of the UE-specific capability; absolute or relative amount of the UE-specific capability of the requesting application; reason for requesting the UE-specific capability; When the UE-specific capability is rejected by the primary serving base station, whether the secondary serving base station is willing to accept the recommended value of the primary serving base station for the specific capability of the UE.
  • the UE-specific capability includes at least one of: a frequency band capability supported by the UE or a frequency band combining capability supported by the UE; a capability of the UE to aggregate the maximum number of carriers and a total spectrum bandwidth; The maximum number of transport blocks TB that can be transmitted in the time interval TTI; the UE air interface user plane layer 2 protocol buffer area size L2; the total number of UE air interface physical layer soft channel bits.
  • the step S302 may include: the secondary serving base station sends a UE capability negotiation request to the primary serving base station by using an XnAP or X2AP flow message according to the local SCG configuration requirement, where the UE capability negotiation request message includes The configuration parameters of the negotiation requirements.
  • the method further includes: the primary serving base station reassigns the negotiation result according to the local UE capability, and passes the XnAP.
  • the X2AP process message sends a UE capability negotiation reply to the secondary service base station, where the UE capability negotiation reply message includes a parameter of the negotiation result; and the secondary service base station analyzes the negotiation result of the UE capability negotiation reply to determine the UE capability.
  • the negotiation result includes at least one of: whether the primary serving base station agrees to allocate an absolute amount or a relative amount of UE specific capabilities applied by the secondary serving base station; whether the primary serving base station allocates a pair of UEs The recommended value of the specific capability, and the specific recommended value content; whether the UE-specific capability reallocation affects the configuration of the primary serving cell set MCG side and the data radio bearer operation; and rejects the reason why the secondary serving base station applies for the UE-specific capability.
  • one or more UE-specific capabilities are negotiated simultaneously, and the respective configuration/result parameters are independent.
  • FIG. 4 is a flowchart of another method for negotiating terminal capabilities according to an embodiment of the present disclosure. The process includes the following steps:
  • Step S402 the primary serving base station receives the UE capability negotiation request sent by the secondary serving base station, where the UE capability negotiation request is used to negotiate the UE capability, in the multi-connection scenario including the long-term evolution LTE network and the new wireless NR network.
  • Step S404 The primary serving base station acquires capability information of the UE, and feeds back the UE capability negotiation response according to the UE capability negotiation request.
  • the executor of the foregoing step may be a combination of MeNB+SgNB and MgNB+SeNB, that is, the secondary serving base station may be an SgNB, a SeNB, and the primary serving base station may be a MeNB, a MgNB, or the like, but is not limited thereto.
  • one or more UE-specific capabilities are negotiated at the same time, and the respective configuration/result parameters are independent.
  • the UE capability negotiation request may be, but is not limited to, the current actual consumption/occupation quantity of the UE specific capability; the absolute quantity or the relative quantity of the UE-specific capability required for the application; the reason for applying the UE specific capability; When the primary serving base station rejects, the secondary serving base station is willing to accept the recommended value of the primary serving base station.
  • the UE-specific capability includes at least one of the following: a frequency band capability supported by the UE or a frequency band combining capability supported by the UE; a capability that the UE can aggregate the maximum number of carriers and a total spectrum bandwidth; and the UE can transmit in each transmission time interval TTI.
  • the maximum number of transport blocks TB UE air interface user plane 2 protocol buffer size L2; UE air interface physical layer soft channel bits total.
  • the sending, by the secondary serving base station, the UE capability negotiation request to the primary serving base station according to the local SCG configuration requirement includes:
  • the secondary service base station sends a UE capability negotiation request to the primary serving base station by using the XnAP or the X2AP process message according to the local SCG configuration request, where the UE capability negotiation request message includes the configuration parameter of the configuration requirement.
  • the method further includes: the primary serving base station reassigns the negotiation result according to the local UE capability, and sends the secondary service through the XnAP or X2AP process message.
  • the base station initiates a UE capability negotiation reply, and the UE capability negotiation reply message includes a parameter of the negotiation result; the secondary service base station analyzes the UE capability negotiation reply to determine the UE capability negotiation result.
  • the negotiation result may be, but is not limited to, whether the primary serving base station agrees to allocate the absolute amount or the relative amount of the UE specific capability applied by the secondary serving base station; whether the primary serving base station allocates the recommended value for the specific capability of the UE, and specific The recommended value content; whether the UE-specific capability reallocation affects the configuration of the primary serving cell set MCG side and the data radio bearer operation; and rejects the reason why the secondary serving base station applies for the UE-specific capability.
  • the UE capability negotiation reply includes at least one of: an absolute quantity or a relative quantity of the UE specific capability allocated by the primary serving base station to the secondary serving base station; whether the primary serving base station allows the secondary serving base station to apply for the UE specific capability; the primary service Whether the base station allocates the UE-specific capability affects the current configuration of the MCG side and the data radio bearer operation; and the reason value of the rejection in the case where the application for the UE-specific capability is rejected by the primary serving base station.
  • a device for negotiating the capability of the terminal is provided, and the device is used to implement the foregoing embodiments and the preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 5 is a structural block diagram of a device for negotiating a terminal capability according to an embodiment of the present disclosure.
  • the device is applied to a secondary service base station. As shown in FIG. 5, the device includes:
  • the initiating module 50 is configured to initiate a UE capability negotiation request to the primary serving base station according to the local secondary serving cell set SCG configuration requirement in a multi-connection scenario including the long-term evolution LTE network and the new wireless NR network, where the UE capability negotiation request is used. In order to negotiate UE capabilities;
  • the receiving module 52 is configured to receive a UE capability negotiation reply fed back by the primary serving base station according to the UE capability negotiation request.
  • FIG. 6 is a structural block diagram of another apparatus for negotiating a terminal capability according to an embodiment of the present disclosure, which is applied to a primary serving base station. As shown in FIG. 6, the apparatus includes:
  • the receiving module 60 is configured to receive a UE capability negotiation request sent by the secondary serving base station in a multi-connection scenario including a long-term evolution LTE network and a new wireless NR network, where the UE capability negotiation request is used to negotiate the UE capability;
  • the processing module 62 is configured to acquire capability information of the UE, and feed back the UE capability negotiation response according to the UE capability negotiation request.
  • the UE capability negotiation request includes at least one of: current actual consumption/occupation quantity of the UE specific capability; an absolute quantity or relative quantity of the specific application capability of the requirement application; a reason for requesting the specific capability of the UE;
  • the primary serving base station rejects, the secondary serving base station is willing to accept the recommended value of the primary serving base station.
  • the UE-specific capability includes at least one of the following: a frequency band capability supported by the UE or a frequency band combining capability supported by the UE; a capability that the UE can aggregate the maximum number of carriers and a total spectrum bandwidth; and the UE can transmit in each transmission time interval TTI.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the present disclosure is applicable to the deployment scenario of the NR/LTE DC Option 3/4/7 sub-series, and the case where there are more serving base station nodes with multiple connections, that is, the Master Node and the Secondary Node are heterogeneous different RAT types, and the Master Node at this time
  • the secondary node and the Secondary Node cannot directly understand the SCG/MCG configuration content of the other party, so that the actual consumption of the specific capability of the UE by the base station node cannot be derived.
  • specific capability For a certain “specific capability that can be shared and negotiated on both sides of the NR” (corresponding to “specific capability”), including but not limited to: the frequency band (combination) capability supported by the UE, the maximum number of carriers that the UE can aggregate And the total spectrum bandwidth capability, the maximum number of TB (Transport Block) that the UE can transmit in each transmission time interval TTI, the UE air interface user plane layer 2 protocol buffer area size L2Buffer Size, the total number of UE air interface physical layer soft channel bits Soft Channel bits and so on.
  • the frequency band (combination) capability supported by the UE the maximum number of carriers that the UE can aggregate And the total spectrum bandwidth capability
  • the maximum number of TB (Transport Block) that the UE can transmit in each transmission time interval TTI the UE air interface user plane layer 2 protocol buffer area size L2Buffer Size
  • the total number of UE air interface physical layer soft channel bits Soft Channel bits Soft Channel bits and so on.
  • the Master Node and the Secondary Node need to negotiate/allocate the specific capabilities (one or more) of the UEs involved according to the following procedures (Per UE capability granularity). ).
  • the secondary node initiates a UE capability negotiation request to the master node through the XnAP process message according to the local specific SCG configuration request, and the auxiliary information includes, but is not limited to, the current current consumption/capacity (Current Consumption) of the specific capability of the UE.
  • the application assistance information of each specific capability (one or more) described above may be independently and independently included.
  • the Master Node After receiving the UE capability application message, the Master Node analyzes and determines each UE's specific capability application one by one.
  • the current consumption of the UE can be known to the SCG side.
  • the current allocation request situation for the specific capability of the UE on the SCG side can be known.
  • the cause of the current capability request for the UE on the SCG side can be known.
  • the Master Node can give its own new recommended value (Allocated Amount) based on the (Request Amount) and (Request Cause Value) cells, that is, the value different from the Request Amount.
  • the Master Node initiates a UE capability negotiation reply to the Secondary Node through the XnAP process message, and the auxiliary information includes but is not limited to: a new absolute amount or relative quantity (Allocated Amount) or a request Amount for the specific capability allocation of the UE.
  • a new absolute amount or relative quantity (Allocated Amount) or a request Amount for the specific capability allocation of the UE.
  • the Secondary Node After receiving the UE capability negotiation reply message, the Secondary Node responds to each UE with a specific capability request and performs one-by-one analysis and determination.
  • FIG. 7 is a schematic diagram of a UE capability negotiation process in an NR/LTE DC scenario according to an embodiment of the present disclosure.
  • This embodiment also includes a plurality of specific embodiments.
  • FIG. 1 is a schematic flowchart of a specific embodiment 1 of the present disclosure.
  • the primary base station eLTE MeNB is connected to the core network elements AMF and UPF of the 5G.
  • an inter-frequency SgNB and an MeNB have Xn interfaces connected to each other, and are configured for an NR/LTE DC Option7 working mode for a specific UE, and the MeNB+SgNB is currently in a service frequency band combination.
  • the UE reports the Measurement Report message through the SCG SRB, and informs the SgNB that the target frequency band D is higher than the current service frequency band C signal.
  • the UE only supports the band combination (A+C, A+E, B+D), and the SgNB needs to negotiate with the MeNB for the UE-specific capability of “band combination”.
  • the source MeNB and the source SgNB support the related content of the present disclosure.
  • Step 101 The SgNB re-allocates its own SCG to the frequency band D based on the UE's RRM measurement report and various local condition factors. Therefore, based on the SCG reconfiguration requirement, the SgNB prepares to initiate the target to the MeNB through the XnAP flow message UE Capability Negociation Request. Application request for UE "band combination" specific capabilities.
  • Step 103 After receiving the negotiation application message for the UE "band combination" specific capability, the MeNB performs the following analysis and determination on the application of the specific capability of the UE "band combination”:
  • the SCG side proposes the negotiation application based on the local “wireless condition factor”.
  • Step 105 After receiving the UE Capability Negociation Response message on the Xn interface, the SgNB responds to the application for the specific capability of the UE "band combination", and performs the following analysis and determination:
  • the MeNB can reconfigure the SCG into the frequency band E.
  • FIG. 9 is a schematic flowchart of Embodiment 2 of the present disclosure.
  • the primary base station eLTE MeNB is connected to the core network element AMF and UPF of the 5G, and the physical macro of the MeNB is used.
  • an inter-frequency SgNB and MeNB have Xn interfaces connected to each other.
  • MeNB+SgNB is currently in service band combination (A+C).
  • the MCG cells in the MeNB are in the frequency band A
  • the SCG cells in the SgNB are in the frequency band C.
  • the UE reports the Measurement Report message through the SCG SRB, and informs the SgNB that the target frequency band D is better than the current serving frequency band C signal, but the UE Only the band combination (A+C, A+E, B+D) is supported, and the SgNB needs to negotiate with the MeNB for the UE-specific capability of “band combination”.
  • the source MeNB and the source SgNB support the related content of the present disclosure.
  • Step 201 The SgNB re-allocates its own SCG to the frequency band D based on the UE's RRM measurement report and various local condition factors. Therefore, based on the SCG reconfiguration requirement, the SgNB prepares to initiate the target to the MeNB through the XnAP process message UE Capability Negociation Request. Application request for UE "band combination" specific capabilities.
  • Step 203 After receiving the negotiation application message for the UE's “band combination” specific capability, the MeNB performs the following analysis and determination on the application of the UE “band combination” specific capability:
  • the SCG side proposes the negotiation application based on the local “wireless condition factor”.
  • Step 205 After receiving the UE Capability Negociation Response message on the Xn interface, the SgNB responds to the application for the specific capability of the UE "band combination", and performs the following analysis and determination:
  • the MeNB agrees that the SgNB can reconfigure the SCG into the frequency band D.
  • FIG. 3 is a schematic flowchart of a specific embodiment 3 of the present disclosure.
  • the primary base station MgNB is connected to the core network elements AMF and UPF of the 5G.
  • an inter-frequency eLTE SeNB and an MNB have Xn interfaces interconnected.
  • the NR/LTE DC Option4 working mode is configured, and the MgNB+SeNB is currently paired with the UE L2 Buffer.
  • the allocation ratio of the size is 50%+50%, that is, the upper limit of the UE L2 Buffer Size of all MCG Cells in the MgNB is 50% of the total amount, and all the SCG Cells in the SeNB consume the upper limit of the UE L2 Buffer Size as the total amount. 50%; at a certain moment, the UE reports the Measurement Report message through the SCG SRB, and informs the SeNB that the signals of all the serving cells of the current SCG are good, and can be more divided for the MgNB data. Therefore, the SeNB needs to be specific to the UE of the "L2 Buffer Size". Ability to negotiate.
  • the source MgNB and the source SeNB support the related content of the present disclosure.
  • Step 301 The SeNB, based on the RRM measurement report of the UE and various local condition factors, wants to offload more data to the SCG side. Therefore, based on the SCG reconfiguration requirement, the SeNB prepares to initiate the target to the MgNB through the XnAP process message UE Capability Negociation Request. The application request of the UE "L2 Buffer Size" specific capability.
  • Step 303 After receiving the negotiation request message for the specific capability of the UE “L2 Buffer Size”, the MgNB performs the following analysis and determination on the application of the specific capability of the UE “L2 Buffer Size”:
  • the current consumption of the specific capability of the UE on the SCG side can be known, that is, 50% of the total amount of UE L2 Buffer Size has been reached.
  • the SCG side proposes the negotiation application based on the local “Want to support more data offloading”.
  • Step 305 After receiving the UE Capability Negociation Response message on the Xn interface, the SeNB responds to the application for the specific capability of the UE “L2 Buffer Size”, and performs the following analysis and determination:
  • the MgNB can only agree to allocate 60% of the total amount of UE L2 Buffer Size for the SCG, and cannot reach 70%.
  • FIG. 4 is a schematic flowchart of a specific embodiment 4 of the present disclosure.
  • the primary base station MgNB is connected to the core network elements AMF and UPF of the 5G.
  • an inter-frequency eLTE SeNB and an MNB have Xn interfaces interconnected.
  • the NR/LTE DC Option4 working mode is configured, and the MgNB+SeNB is currently paired with the UE L2 Buffer.
  • the allocation ratio of the size is 60%+40%, that is, the upper limit of the UE L2 Buffer Size of all MCG Cells in the MgNB is 60% of the total amount, and all the SCG Cells in the SeNB consume the upper limit of the UE L2 Buffer Size as the total amount. 40%; at some time, the UE reports the Measurement Report message through the SCG SRB, and informs the SeNB that the signals of all the serving cells of the current SCG are good, and can be more divided for the MgNB data. Therefore, the SeNB needs to be specific to the UE of the "L2 Buffer Size". Ability to negotiate.
  • the source MgNB and the source SeNB support the related content of the present disclosure.
  • Step 401 The SeNB, based on the RRM measurement report of the UE and various local condition factors, wants to offload more data to the SCG side. Therefore, based on the SCG reconfiguration requirement, the SeNB prepares to initiate the target to the MgNB through the XnAP process message UE Capability Negociation Request. The application request of the UE "L2Buffer Size" specific capability.
  • Step 403 After receiving the negotiation request message for the specific capability of the UE “L2 Buffer Size”, the MgNB performs the following analysis and determination on the application of the specific capability of the UE “L2 Buffer Size”:
  • the current consumption of the specific capability of the UE on the SCG side can be known, that is, 40% of the total amount of UE L2 Buffer Size has been reached.
  • the SCG side proposes the negotiation application based on the local “Want to support more data offloading”.
  • Step 405 After receiving the UE Capability Negociation Response message on the Xn interface, the SeNB responds to the application for the specific capability of the UE “L2 Buffer Size”, and performs the following analysis and determination:
  • the MgNB does not mean that the SCG allocates 60% of the total amount of UE L2 Buffer Size.
  • NR/LTE DC (4/5G heterogeneous system dual connectivity) configuration operation various related capabilities of the UE can be negotiated between the Master Node and the Secondary Node, and the participating base station nodes provide each other with each other, and can optimize their respective RRMs.
  • / RRC action auxiliary information so that both MCG and SCG can take more reasonable RRM / RRC actions, so that the performance of NR / LTE DC dual connectivity is kept as optimal as possible, reducing unnecessary failure processing / mode reconfiguration
  • the signaling overhead is reduced, and the maintenance load of all RRM operations of the UE on one side of the Master Node is alleviated.
  • NR/LTE DC (4/5G heterogeneous system dual connectivity) configuration operation various related capabilities of the UE can be negotiated between the Master Node and the Secondary Node, and the participating base station nodes provide each other with each other, and can optimize the respective RRMs.
  • / RRC action auxiliary information so that both MCG and SCG can take more reasonable RRM / RRC actions, so that the performance of NR / LTE DC dual connectivity is kept as optimal as possible, reducing unnecessary failure processing / mode reconfiguration
  • the signaling overhead is reduced, and the maintenance load of all RRM operations of the UE on one side of the Master Node is alleviated.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the secondary serving base station in a multi-connection scenario including a long-term evolution LTE network and a new wireless NR network, the secondary serving base station initiates a user equipment UE capability negotiation request to the primary serving base station according to the local secondary serving cell set SCG configuration requirement, where the UE capability The negotiation request is used to negotiate the UE capability;
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the storage medium is a non-transitory storage medium.
  • the processor performs, according to the stored program code in the storage medium, in a multi-connection scenario including a long-term evolution LTE network and a new wireless NR network, according to the local secondary serving cell set SCG configuration requirement
  • the primary serving base station initiates a user equipment UE capability negotiation request, where the UE capability negotiation request is used to negotiate the UE capability;
  • the processor performs, according to the stored program code in the storage medium, the UE capability negotiation reply that is received by the primary serving base station according to the UE capability negotiation request.
  • the present disclosure also provides a base station, which may be the foregoing primary serving base station or secondary serving base station.
  • the base station may include: a transceiver, a memory, and a processor, the transceiver may be configured to perform information transceiving, the memory may be configured as information storage; the processor is respectively connected to the transceiver and the memory, and is configurable
  • the terminal capability negotiation method provided by one or more of the foregoing technical solutions by execution of the computer executable code, for example, one or more of the methods shown in FIG. 3 to FIG. 4 and FIG. 7 to FIG. 11 may be performed.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure provides a method for performing terminal capability negotiation between a primary serving base station and a secondary serving base station.
  • the capability negotiation between the primary serving base station and the secondary serving base station can solve the problem that the primary serving base station and the secondary serving base station cannot be negotiated.
  • the technical problem of the UE capability so that the performance of the NR/LTE DC dual connection is kept as optimal as possible, the signaling overhead caused by unnecessary failure processing/mode reconfiguration is reduced, and all RRMs of the primary base station to the UE are mitigated.
  • the maintenance load of the operation, etc. has a positive industrial effect and is easy to implement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种终端能力的协商方法及装置,其中,该方法包括:在包括长期演进LTE网络和新无线NR网络的多连接场景下,辅服务基站根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;所述辅服务基站接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。本公开还提供了一种存储介质。

Description

终端能力的协商方法、装置和存储介质
相关申请的交叉引用
本公开基于申请号为201710184570.4、申请日为2017年03月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及通信领域,具体而言,涉及一种终端能力的协商方法、装置和存储介质。
背景技术
在传统LTE DC(双连接)或者MC(多连接)的配置操作中,由于LTE主辅基站同RAT属性,只有主节点(Master Node)负责UE各种能力(如射频带宽(RF band),缓存等)在主辅基站间的分配和协同。主基站(MeNB)能够理解辅基站(SeNB)当前的SCG具体配置,因此清楚应该划分多少UE的能力到SCG侧,且划分的SCG部分是否合理?伴随着SCG添加/修改等流程,MeNB都能知道SeNB侧具体需要多少的UE能力。
在NR/LTE DC(4/5G异构系统双连接)的配置操作中,NR/LTE DC主辅基站异RAT属性,Secondary Node侧允许独立产生自己的RRC PDU,并且Master Node可能不能解析理解该RRC PDU的内容,因此不能推导出SCG侧到底实时消耗了多少UE能力,Master Node也不能确定当前UE能力划分到SCG侧的部分是否足够和合理。
在4G LTE Rel-12版本,DC双连接技术被标准化,实现了UE同时和MeNB和SeNB建立两条独立的RL连接,UE可以配置SCG承载(Bearer)或者Split Bearer(仅仅下行分流),此时UE可以同时获得通过Non Co-site两个异频基站无线资源提供的DRB(数据无线承载)服务。
在LTE Rel-13版本,eDC增强双连接技术进一步被标准化,实现了UE同时和MeNB(LTE中的主服务基站)和SeNB(LTE中的辅服务基站)建立两条独立的RL连接,UE进一步可以配置Split Bearer(补充了上行分流),此时UE可以同时获得通过Non Co-site两个异频基站无线资源提供的DRB服务,且增加了一定的移动性场景,如跨MeNB切换但同时可以保留SeNB不变。
对于传统LTE DC,eNB基站和UE之间只能配置MeNB侧的SRB,简称MCG SRB,用于传输RRC(无线资源控制)消息。SeNB侧只有公共的SRB0,用于传输CCCH上行消息,但没有专用的SRB,不能直接传输RRC消息,因此SeNB侧产生的任何和RRC相关的配置操作,都必须借助MCG SRB来传递完成。
在5G NR gNB引入的早期阶段,由于运营商还主要依赖于EPC,现网中还有大量的LTE eNB覆盖,且NR gNB可能还不能以Standalone的方式独立工作,比如还不支持和5G核心网NGC的NG接口或者不能支持NR SI消息,因此Non Standalone的gNB只能通过LTE/NR Tight Interworking,又简称为LTE/NR DC的方式进行工作,此种部署方式被称为Option3/3a/3x,Option3/3a/3x分别对应着MCG Split Bearer,SCG Bearer,SCG Split Bearer不同DRB Type。
图1是本公开相关技术中的网络构架图1,上述图1中的Option3/3a/3x随着NR gNB基站功能的成熟和相关技术完备,比如支持和NGC的NG接口,支持NR SI消息,同时运营商们也逐渐从EPC过渡到新的核心网NGC,此时NR gNB可以以Standalone的方式独立工作,此种gNB独立部署的方式被称为Option2。同时运营商也会把大量eNB基站升级成eLTE eNB基站,从而可以和NR gNB一样,同样和NGC连接被管辖,且eLTE eNB基站和gNB也能够通过Xn接口连接,此种eLTE eNB基站独立部署的方式被称为Option5,Option2/5不属于LTE/NR DC场景,因此下面不再重点说明。
图2是本公开相关技术中的网络构架图2,如图2所示,NR gNB和eLTE eNB同样可以做LTE/NR Tight Interworking。当gNB作为主基站Master Node,eLTE eNB作为辅基站Secondary Node的时候,此种部署方式被称为 Option4/4a;相反当eLTE eNB作为主基站Master Node,gNB作为辅基站Secondary Node的时候,此种部署方式被称为Option7/7a/7x,类似图1中的3系列,上述4/7各个子系列对应着不同DRB Type。因此总体上,LTE/NR DC场景包含Option3/3a/3x,Option4/4a,Option7/7a/7x三大种,其中Option3/3a/3x由于连接到EPC,采取旧的E-RAB Based QOS模型,仍然被视为4G异构双连接场景;而Option4/4a,Option7/7a/7x由于连接到NGC,采取新的PDU Session Based QOS模型,被视为5G异构双连接场景,在双连接基础之上可衍生出多连接,即UE和更多的gNB和eNB基站同时连接,进行控制面/用户面的数据传输。
对于LTE/NR DC,基站和UE之间除了能配置Master Node侧的MCG SRB之外,还能同时配置Secondary Node侧的专用SRB,简称SCG SRB,它可以用来直接传输仅和Secondary Node相关的RRC上下行消息,如RRM测量上报消息,因此Secondary Node侧独立产生的任何和RRC相关的配置操作,可以直接通过SCG SRB来传递完成,而不需要借用MCG SRB。
在NR/LTE DC(4/5G异构系统双连接)的配置操作中,由于NR/LTE DC主辅基站是异RAT属性,Secondary Node侧允许独立产生自己的RRC PDU,并且直接通过SCG SRB下发给UE,但Master Node可能不能解析理解该RRC PDU的内容,因此不能推导出SCG侧到底实时消耗了多少UE能力,Master Node也不能确定当前UE能力划分到SCG侧的部分是否足够和合理?为了简化说明,下面将以UE支持的RF Band Combination这一特定能力为例子。
假设某4/5G双模终端UE在LTE Domain内能独立支持频段(A,B),通过UE的无线能力上报,服务eNB能够知道UE在频段(A,B)内的具体能力情况,如:最大能聚合几个LTE载波,LTE MIMO阶数,Softchanel Bits等;UE在NR Domain内能独立支持频段(C,D,E),通过UE的无线能力上报,服务gNB能够知道UE在频段(C,D,E)内的具体能力情况,如:最大能聚合几个NR载波,NR MIMO阶数,Softchanel Bits等;同时如果UE处于NR/LTE DC工作模式下,还能支持NR/LTE频段组合(A+C,A+E,B+D)。这里需要注意:虽然LTE/NR各自独立支持的频段 之间理论上还有更多的组合,例如(A+D,B+C,B+E),但它们不一定能支持NR/LTE DC操作,这取决于不同厂家的UE最终具体实现和能力。因此UE需要把属于NR/LTE DC专有的各种能力也上报给主/辅基站,防止出现配置异常。
假设该UE已被配置处于NR/LTE DC Option7的工作模式,即:MeNB+SgNB且当前处于频段组合(A+C),即MeNB内的MCG Cells处于频段A,而SgNB内的SCG Cells处于频段C。由于MCG和SCG有各自相对独立维护的RRM测量和上报,因此MeNB可能只能知道自己LTE侧所支持频段内目标频点的无线信号/负荷情况,而SgNB可能只能知道NR侧所支持频段内目标频点的无线信号/负荷情况,MeNB/SgNB可能不能实时地知道对方的具体情况,如当前处在哪个频段,聚合着几个载波,具体消耗着多少UE其他能力等。
在某时刻,SgNB(NR中的辅服务基站,对应于MgNB)基于UE在SCG侧的无线测量报告,想把自己的SCG Cells重配置到频段D内(比如由于:源频段C内的若干服务小区质量变差),如上述,由于NR/LTE DC不能支持频段组合(A+D),但能支持频段组合(B+D),因此为了配合SCG侧的小区移动重配,MCG侧的小区可能也需要移动重配,这就需要SgNB在本地发起RRC重配之前,必须先和MeNB协同UE这方面的能力,因此彼此关联,且会发生潜在的能力冲突。UE能力协同的好处在于Master Node能够实时知道Secondary Node彼此间的UE能力划分诉求和背后原因,因此MCG和SCG两侧能够采取更合理的RRM/RRC动作去做适配;否则如上例中,如果由于NR/LTE DC不能支持频段组合(A+D),但SCG Cells却强行想去频段D内,这会导致NR/LTE DC的工作模式失败,UE不得不退回到单连接工作模式,整个失败后重配置的过程中,用户的业务体验受到不同程度的影响。如果SgNB在发起“重配置到频段D”诉求之前,先和MeNB通过某种方式方法协商协调,那么MeNB为了保持NR/LTE DC的工作模式,至少可以有下列几种RRM/RRC动作:
1:MeNB直接拒绝SgNB把SCG Cells“重配置到频段D”的请求,可以执行DRB Type change流程,把SCG Bearers先回流到MCG侧,仅仅 保留着SCG SRB,整个NR/LTE DC工作模式继续。
2:MeNB同意SgNB把SCG Cells“重配置到频段D”的请求,MeNB把MCG Cells也重配置到频段B,因为NR/LTE DC能支持频段组合(B+D),整个NR/LTE DC工作模式继续。
3:MeNB拒绝SgNB把SCG Cells“重配置到频段D”的请求,但给出辅助信息以建议:SgNB是否愿意把SCG Cells“重配置到频段E”而不是频段D,因为NR/LTE DC能支持频段组合(A+E),这样MeNB可以把MCG Cells继续维持在频段A内,整个NR/LTE DC工作模式继续。
4:MeNB决定删除所有SCG Cells,退出NR/LTE DC工作模式,UE能力不再需要两边协调。
发明内容
本公开实施例提供了一种终端能力的协商方法、装置和存储介质,以至少解决在LTE和NR的多连接网络系统中主辅服务基站不能协商UE能力的技术问题。
根据本公开的一个实施例,提供了一种终端能力的协商方法,包括:在包括长期演进LTE网络和新无线NR网络的多连接场景下,辅服务基站根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;所述辅服务基站接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。
根据本发明的一个实施例,提供了另一种终端能力的协商方法,包括:在包括长期演进LTE网络和新无线NR网络的多连接场景下,主服务基站接收辅服务基站发送的UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;所述主服务基站获取所述UE的能力信息,并根据所述UE能力协商请求反馈UE能力协商回复。
根据本发明的另一个实施例,提供了一种终端能力的协商装置,应用 在辅服务基站,包括:发起模块,配置为在包括长期演进LTE网络和新无线NR网络的多连接场景下,根据本地的辅服务小区集合SCG配置需求向主服务基站发起UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;接收模块,配置为接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。
根据本公开的另一个实施例,提供了另一种终端能力的协商装置,应用在主服务基站,包括:接收模块,配置为在包括长期演进LTE网络和新无线NR网络的多连接场景下,处理模块,配置为接收辅服务基站发送的UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;获取所述UE的能力信息,并根据所述UE能力协商请求反馈UE能力协商回复。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
在包括长期演进LTE网络和新无线NR网络的多连接场景下,根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;
接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。
在本公开实施例中,在包括长期演进LTE网络和新无线NR网络的多连接场景下,辅服务基站根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;所述辅服务基站接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。可以解决了在LTE和NR的多连接网络系统中主辅服务基站不能协商UE能力的技术问题,从而使得NR/LTE DC双连接的性能尽量保持在最佳,减少不必要的失败处理/模式重配所带来的信令开销,减轻主基站单侧对UE的所有RRM操作的维护负荷等。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开相关技术中的网络构架图1;
图2是本公开相关技术中的网络构架图2;
图3是根据本公开实施例的一种终端能力的协商方法的流程图;
图4是根据本公开实施例的另一种终端能力的协商方法的流程图;
图5是根据本公开实施例的一种终端能力的协商装置的结构框图;
图6是根据本公开实施例的另一种终端能力的协商装置的结构框图;
图7是本公开实施例的NR/LTE DC场景下UE能力协商流程示意图;
图8是本公开具体实施例1的流程示意图;
图9是本公开具体实施例2的流程示意图;
图10是本公开具体实施例3的流程示意图;
图11是本公开具体实施例4的流程示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本公开实施例可以运行于图1或图2所示的网络架构上。
在本实施例中提供了一种运行于上述网络架构的终端能力的协商方法,图3是根据本公开实施例的一种终端能力的协商方法的流程图,如图3 所示,该流程包括如下步骤:
步骤S302,在包括长期演进LTE网络和新无线NR网络的多连接场景下,辅服务基站根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,UE能力协商请求用于协商UE能力;
步骤S304,辅服务基站接收主服务基站根据UE能力协商请求反馈的UE能力协商回复。
通过上述步骤,在包括长期演进LTE网络和新无线NR网络的多连接场景下,辅服务基站根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;所述辅服务基站接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。可以解决了在LTE和NR的多连接网络系统中主辅服务基站不能协商UE能力的技术问题,从而使得NR/LTE DC双连接的性能尽量保持在最佳,减少不必要的失败处理/模式重配所带来的信令开销,减轻主基站单侧对UE的所有RRM操作的维护负荷等。
在一些实施例中,所述UE能力协商请求包括以下至少之一:UE特定能力当前的实际消耗/占有量;需求申请UE特定能力的绝对量或相对量;申请UE特定能力的原因;在申请UE特定能力被所述主服务基站拒绝时,所述辅服务基站是否愿意接受所述主服务基站针对该UE特定能力的建议值。
在另一些实施例中,所述UE特定能力包括以下至少之一:UE支持的频段能力或UE支持的频段组合能力;UE能聚合载波最大个数和总频谱带宽的能力;UE在每个传输时间间隔TTI内能传输传输块TB的最大个数;UE空口用户面层2协议缓存区大小L2;UE空口物理层软信道比特总数。
可选地,所述步骤S302可包括:所述辅服务基站根据本地的SCG配置需求通过XnAP或X2AP流程消息向主服务基站发起UE能力协商请求,其中,所述UE能力协商请求消息中包含所述协商需求的配置参数。
在所述辅服务基站接收所述主服务基站根据所述UE能力协商请求反 馈的UE能力协商回复之后,所述方法还包括:所述主服务基站根据本地的UE能力重新分配协商结果,通过XnAP或X2AP流程消息向所述辅服务基站发起UE能力协商回复,所述UE能力协商回复消息中包含协商结果的参数;所述辅服务基站分析所述UE能力协商回复确定UE能力的协商结果。
可选地,所述协商结果包括以下至少之一:所述主服务基站是否同意分配所述辅服务基站所申请的绝对量或相对量的UE特定能力;所述主服务基站是否分配了对UE特定能力的建议值,和具体的建议值内容;对UE特定能力重新分配是否影响到主服务小区集合MCG侧的配置和数据无线承载工作情况;拒绝所述辅服务基站申请UE特定能力的原因。
在一些实施例中,同时协商一个或者多个UE特定能力,且各自的配置/结果参数独立。
在本实施例中提供了另一种运行于上述网络架构的终端能力的协商方法,图4是根据本公开实施例的另一种终端能力的协商方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,在包括长期演进LTE网络和新无线NR网络的多连接场景下,主服务基站接收辅服务基站发送的UE能力协商请求,其中,UE能力协商请求用于协商UE能力;
步骤S404,主服务基站获取UE的能力信息,并根据UE能力协商请求反馈UE能力协商回复。
可选地,上述步骤的执行主体可以为MeNB+SgNB,MgNB+SeNB的组合形式,也即,辅服务基站可以是SgNB,SeNB,主服务基站可以是MeNB,MgNB,等,但不限于此。
可选的,同时协商一个或者多个UE特定能力,且各自的配置/结果参数独立。
可选的,UE能力协商请求可以但不限于为:UE特定能力当前的实际消耗/占有量;需求申请UE特定能力的绝对量或相对量;申请UE特定能力的原因;在申请UE特定能力被主服务基站拒绝时,辅服务基站是否愿意 接受主服务基站的建议值。具体的,UE特定能力包括以下至少之一:UE支持的频段能力或UE支持的频段组合能力;UE能聚合载波最大个数和总频谱带宽的能力;UE在每个传输时间间隔TTI内能传输传输块TB的最大个数;UE空口用户面层2协议缓存区大小L2;UE空口物理层软信道比特总数。
可选的,辅服务基站根据本地的SCG配置需求向主服务基站发起UE能力协商请求包括:
辅服务基站根据本地的SCG配置需求通过XnAP或X2AP流程消息向主服务基站发起UE能力协商请求,其中,UE能力协商请求消息中包含配置需求的配置参数。
可选的,在辅服务基站接收主服务基站根据UE能力协商请求反馈的UE能力协商回复之后,还包括:主服务基站根据本地的UE能力重新分配协商结果,通过XnAP或X2AP流程消息向辅服务基站发起UE能力协商回复,UE能力协商回复消息中包含协商结果的参数;辅服务基站分析UE能力协商回复确定UE能力的协商结果。
可选的,协商结果可以但不限于为:主服务基站是否同意分配辅服务基站所申请的绝对量或相对量的UE特定能力;主服务基站是否分配了对UE特定能力的建议值,和具体的建议值内容;对UE特定能力重新分配是否影响到主服务小区集合MCG侧的配置和数据无线承载工作情况;拒绝辅服务基站申请UE特定能力的原因。
可选的,UE能力协商回复包括以下至少之一:主服务基站分配给辅服务基站的UE特定能力的绝对量或相对量;主服务基站是否允许辅服务基站对UE特定能力的申请;主服务基站分配UE特定能力是否会影响到MCG侧的当前配置和数据无线承载工作情况;在对UE特定能力的申请被主服务基站拒绝的情况下,拒绝的原因值。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软 件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种终端能力的协商装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本公开实施例的一种终端能力的协商装置的结构框图,应用在辅服务基站,如图5所示,该装置包括:
发起模块50,配置为在包括长期演进LTE网络和新无线NR网络的多连接场景下,根据本地的辅服务小区集合SCG配置需求向主服务基站发起UE能力协商请求,其中,UE能力协商请求用于协商UE能力;
接收模块52,配置为接收主服务基站根据UE能力协商请求反馈的UE能力协商回复。
图6是根据本公开实施例的另一种终端能力的协商装置的结构框图,应用在主服务基站,如图6所示,该装置包括:
接收模块60,配置为在包括长期演进LTE网络和新无线NR网络的多连接场景下,接收辅服务基站发送的UE能力协商请求,其中,UE能力协商请求用于协商UE能力;
处理模块62,配置为获取UE的能力信息,并根据UE能力协商请求反馈UE能力协商回复。
可选的,UE能力协商请求包括以下至少之一:UE特定能力当前的实际消耗/占有量;需求申请UE特定能力的绝对量或相对量;申请UE特定能力的原因;在申请UE特定能力被主服务基站拒绝时,辅服务基站是否愿意接受主服务基站的建议值。具体的,UE特定能力包括以下至少之一: UE支持的频段能力或UE支持的频段组合能力;UE能聚合载波最大个数和总频谱带宽的能力;UE在每个传输时间间隔TTI内能传输传输块TB的最大个数;UE空口用户面层2协议缓存区大小L2;UE空口物理层软信道比特总数。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本公开内容适用于NR/LTE DC Option3/4/7子系列的部署场景下,以及有更多服务基站节点多连接的情况,即Master Node和Secondary Node是异构不同RAT类型,此时Master Node和Secondary Node不能直接理解对方的SCG/MCG配置内容,从而不能推导出对方基站节点对UE特定能力的实际消耗。
针对UE内某一“NR/LTE两侧可以共享且协商使用的特定能力”(对应于“特定能力”),包括但不限于:UE支持的频段(组合)能力,UE能聚合载波最大个数和总频谱带宽的能力,UE在每个传输时间间隔TTI内能传输TB(Transport Block)的最大个数,UE空口用户面层2协议缓存区大小L2Buffer Size,UE空口物理层软信道比特总数Soft Channel bits等。当系统即将进入或者已经处于NR/LTE DC某一工作模式,Master Node和Secondary Node需要基于下列流程对所涉及的UE上述特定能力(一个或者多个),逐一进行协商/分配(Per UE capability粒度)。
1:Secondary Node基于本地具体的SCG配置需求,通过XnAP流程消息向Master Node发起UE能力协商请求,内含辅助信息包括但不限于:UE某特定能力当前的实际消耗/占有量(Current Consumption),申请请求的绝对量或相对量(Request Amount),申请该UE能力的原因(Request Cause Value),如果该申请被Master Node拒绝,是否愿意接受Master Node侧的新建议值(Suggestion Enquiry)。
2:在上述同一条UE特定能力的申请消息中,可以同时独立的包含上述各个特定能力(一个或者多个)的申请辅助信息。
3:Master Node接收到UE能力申请消息后,对每个UE特定能力的申请,进行逐一分析和判定。
通过当前的实际消耗/占有量(Current Consumption)信元,可得知SCG侧当前针对该UE特定能力的消耗情况。
通过申请的绝对量或相对量(Request Amount)信元,可得知SCG侧当前针对该UE特定能力的分配请求情况。
通过原因(Request Cause Value)信元,可得知SCG侧当前针对该UE特定能力诉求的原因情况。
当Suggestion Enquiry=True的时候,
Master Node可以基于(Request Amount)和(Request Cause Value)信元,给出自己新的建议值(Allocated Amount),即不同于申请(Request Amount)的值。
当Suggestion Enquiry=False的时候,
Master Node基于(Request Amount)和(Request Cause Value)信元,只能给出申请的判定结果(Request Agreed=Yes or No)的答复,即不需要给出不同于申请(Request Amount)的新建议值。
4:Master Node通过XnAP流程消息向Secondary Node发起UE能力协商回复,内含辅助信息包括但不限于:UE某特定能力分配的新绝对量或相对量(Allocated Amount)或者对申请(Request Amount)的Yes or No答复,分配该UE特定能力是否会影响到MCG侧的当前配置和数据无线承载工作情况(MCG Impact Value=Yes or No),如果该申请被Master Node拒绝,拒绝的原因值(Reject Cause Value)。
5:Secondary Node接收到UE能力协商回复消息后,对每个UE特定能力的申请回复,进行逐一分析判定。
通过(Request Agreed=Yes or No)信元,可得知Master Node是否同意分配了Secondary Node之前的申请(Request Amount)。
通过(Allocated Amount)信元,可得知Master Node是否分配了新建议值。
通过(MCG Impact Value)信元,可得知此UE特定能力协商分配过程中,是否影响到MCG侧配置。
通过(Reject Cause Value)信元,可得知Secondary Node之前的UE特定能力申请为何被拒绝。图7是本公开实施例的NR/LTE DC场景下UE能力协商流程示意图。
本实施例还包括多个具体实施例
具体实施例1:图8是本公开具体实施例1的流程示意图,如图8所示,在NR/LTE DC Option7系列的部署场景中,主基站eLTE MeNB连接在5G的核心网元AMF和UPF,在MeNB物理宏覆盖区域之内,有一个异频的SgNB和MeNB有Xn接口相互连接,针对某个特定UE,已配置成NR/LTE DC Option7工作模式,且MeNB+SgNB当前处于服务频段组合(A+C),即MeNB内的MCG Cells处于频段A内,而SgNB内的SCG Cells处于频段C内;某时刻UE通过SCG SRB上报Measurement Report消息,告知SgNB目标频段D比当前服务频段C信号更好,但UE仅支持频段组合(A+C,A+E,B+D),SgNB需要和MeNB针对“频段组合”这一UE特定能力进行协商。源MeNB和源SgNB支持本公开的相关内容。
步骤101:SgNB基于UE的RRM测量上报和本地各种条件因素,想把自己SCG重配到频段D内,因此基于该SCG重配需求,准备通过XnAP流程消息UE Capability Negociation Request,向MeNB发起针对UE“频段组合”特定能力的申请请求。
步骤102:SgNB在发出的XnAP流程消息UE Capability Negociation Request中,针对UE“频段组合”这一特定能力,至少包含下面辅助信息:Current Consumption=频段C,Request Amount=频段D,Request Cause Value=Better Radio Condition和Suggestion Enquiry=True。
步骤103:MeNB接收到针对UE“频段组合”特定能力的协商申请消息后,对UE“频段组合”这一特定能力的申请,进行如下分析判定:
通过信元Current Consumption=频段C,可得知SCG侧当前针对该UE特定能力的消耗情况,处于频段C内。
通过信元Request Amount=频段D,可得知SCG侧想把SCG重配到频段D内。
通过信元Request Cause Value=Better Radio Condition,可得知SCG侧是基于本地“无线条件因素”而提出该协商申请的。
通过信元Suggestion Enquiry=True,MeNB可给出不同于申请(Request Amount=频段D)的其他值,比如给出建议值(Allocated Amount=频段E)。
步骤104:MeNB通过XnAP流程消息UE Capability Negociation Response向SgNB发起UE能力协商回复,至少包含下面辅助信息:Allocated Amount=频段E,MCG Impact value=No。
步骤105:SgNB在Xn接口上接收到UE Capability Negociation Response消息后,对针对UE“频段组合”这一特定能力的申请回复,进行如下分析判定:
通过信元Allocated Amount=频段E,可得知:MeNB同意如果SCG侧条件允许,SgNB可把SCG重配到频段E内。
通过信元MCG Impact value=No,可得知针对UE“频段组合”这一特定能力的协商过程中,没有影响到MCG侧的配置。
具体实施例2:
如图9所示,图9是本公开具体实施例2的流程示意图,在NR/LTE DC Option7系列的部署场景中,主基站eLTE MeNB连接在5G的核心网元AMF和UPF,在MeNB物理宏覆盖区域之内,有一个异频的SgNB和MeNB有Xn接口相互连接,针对某个特定UE,已配置成NR/LTE DC Option7工作模式,且MeNB+SgNB当前处于服务频段组合(A+C),即MeNB内的MCG Cells处于频段A内,而SgNB内的SCG Cells处于频段C内;某时刻UE通过SCG SRB上报Measurement Report消息,告知SgNB目标频段D比当前服务频段C信号更好,但UE仅支持频段组合(A+C,A+E,B+D),SgNB需要和MeNB针对“频段组合”这一UE特定能力进行协商。源MeNB和源SgNB支持本公开的相关内容。
步骤201:SgNB基于UE的RRM测量上报和本地各种条件因素,想把自己SCG重配到频段D内,因此基于该SCG重配需求,准备通过XnAP流程消息UE Capability Negociation Request,向MeNB发起针对UE“频段组合”特定能力的申请请求。
步骤202:SgNB在发出的XnAP流程消息UE Capability Negociation Request中,针对UE“频段组合”这一特定能力,至少包含下面辅助信息:Current Consumption=频段C,Request Amount=频段D,Request Cause Value=Better Radio Condition和Suggestion Enquiry=False。
步骤203:MeNB接收到针对UE“频段组合”特定能力的协商申请消息后,对UE“频段组合”这一特定能力的申请,进行如下分析判定:
通过信元Current Consumption=频段C,可得知SCG侧当前针对该UE特定能力的消耗情况,处于频段C内。
通过信元Request Amount=频段D,可得知SCG侧想把SCG重配到频段D内。
通过信元Request Cause Value=Better Radio Condition,可得知SCG侧是基于本地“无线条件因素”而提出该协商申请的。
通过信元Suggestion Enquiry=False,MeNB得知针对UE“频段组合”这一特定能力只能回复Request Agreed=Yes or No,不能给出其他的建议值。
步骤204:MeNB通过XnAP流程消息UE Capability Negociation Response向SgNB发起UE能力协商回复,至少包含下面辅助信息:Request Agreed=Yes,MCG Impact value=Yes。
步骤205:SgNB在Xn接口上接收到UE Capability Negociation Response消息后,对针对UE“频段组合”这一特定能力的申请回复,进行如下分析判定:
通过信元Request Agreed=Yes,可得知:MeNB同意了SgNB可把SCG重配到频段D内。
通过信元MCG Impact value=Yes,可得知针对UE“频段组合”这一特定能力的协商过程中,影响到了MCG侧的配置,因为MeNB需要把MCG重 配到频段B内。
具体实施例3:图10是本公开具体实施例3的流程示意图,如图10所示,在NR/LTE DC Option4系列的部署场景中,主基站MgNB连接在5G的核心网元AMF和UPF,在MgNB物理宏覆盖区域之内,有一个异频的eLTE SeNB和MgNB有Xn接口相互连接,针对某个特定UE,已配置成NR/LTE DC Option4工作模式,且MgNB+SeNB当前对UE L2 Buffer Size的分配比例为50%+50%,即MgNB内的所有MCG Cells消耗UE L2 Buffer Size的上限为总量的50%,而SeNB内的所有SCG Cells消耗UE L2 Buffer Size的上限为总量的50%;某时刻UE通过SCG SRB上报Measurement Report消息,告知SeNB当前SCG所有服务小区的信号很好,可以更多的为MgNB数据分流,因此SeNB需要和MgNB针对“L2 Buffer Size”这一UE特定能力进行协商。源MgNB和源SeNB支持本公开的相关内容。
步骤301:SeNB基于UE的RRM测量上报和本地各种条件因素,想把更多的数据分流到SCG侧,因此基于该SCG重配需求,准备通过XnAP流程消息UE Capability Negociation Request,向MgNB发起针对UE“L2 Buffer Size”特定能力的申请请求。
步骤302:SeNB在发出的XnAP流程消息UE Capability Negociation Request中,针对UE“L2 Buffer Size”这一特定能力,至少包含下面辅助信息:Current Consumption=50%,Request Amount=70%,Request Cause Value=More Offloading Ratio和Suggestion Enquiry=True。
步骤303:MgNB接收到针对UE“L2 Buffer Size”特定能力的协商申请消息后,对UE“L2 Buffer Size”这一特定能力的申请,进行如下分析判定:
通过信元Current Consumption=50%,可得知SCG侧当前针对该UE特定能力的消耗情况,即已达到UE L2 Buffer Size总量的50%。
通过信元Request Amount=70%,可得知SCG侧想申请更多的L2 Buffer Size,为了能支持更多的数据分流。
通过信元Request Cause Value=More Offloading Ratio,可得知SCG侧是基于本地“想支持更多的数据分流”而提出该协商申请的。
通过信元Suggestion Enquiry=True,MgNB可给出不同于申请(Request Amount=70%)的其他值,比如给出建议值(Allocated Amount=60%)。
步骤304:MgNB通过XnAP流程消息UE Capability Negociation Response向SeNB发起UE能力协商回复,至少包含下面辅助信息:Allocated Amount=60%,MCG Impact value=Yes。
步骤305:SeNB在Xn接口上接收到UE Capability Negociation Response消息后,对针对UE“L2 Buffer Size”这一特定能力的申请回复,进行如下分析判定:
通过信元Allocated Amount=60%,可得知:MgNB只能同意为SCG最大分配UE L2 Buffer Size总量的60%,不能到70%。
通过信元MCG Impact value=Yes,可得知针对UE“L2 Buffer Size”这一特定能力的协商过程中,影响到了MCG侧的配置,即MCG只能最大使用UE L2 Buffer Size总量的40%。
具体实施例4:图11是本公开具体实施例4的流程示意图,如图11所示,在NR/LTE DC Option4系列的部署场景中,主基站MgNB连接在5G的核心网元AMF和UPF,在MgNB物理宏覆盖区域之内,有一个异频的eLTE SeNB和MgNB有Xn接口相互连接,针对某个特定UE,已配置成NR/LTE DC Option4工作模式,且MgNB+SeNB当前对UE L2 Buffer Size的分配比例为60%+40%,即MgNB内的所有MCG Cells消耗UE L2 Buffer Size的上限为总量的60%,而SeNB内的所有SCG Cells消耗UE L2 Buffer Size的上限为总量的40%;某时刻UE通过SCG SRB上报Measurement Report消息,告知SeNB当前SCG所有服务小区的信号很好,可以更多的为MgNB数据分流,因此SeNB需要和MgNB针对“L2 Buffer Size”这一UE特定能力进行协商。源MgNB和源SeNB支持本公开的相关内容。
步骤401:SeNB基于UE的RRM测量上报和本地各种条件因素,想把更多的数据分流到SCG侧,因此基于该SCG重配需求,准备通过XnAP流程消息UE Capability Negociation Request,向MgNB发起针对UE“L2Buffer Size”特定能力的申请请求。
步骤402:SeNB在发出的XnAP流程消息UE Capability Negociation Request中,针对UE“L2 Buffer Size”这一特定能力,至少包含下面辅助信息:Current Consumption=40%,Request Amount=60%,Request Cause Value=More Offloading Ratio和Suggestion Enquiry=False。
步骤403:MgNB接收到针对UE“L2 Buffer Size”特定能力的协商申请消息后,对UE“L2 Buffer Size”这一特定能力的申请,进行如下分析判定:
通过信元Current Consumption=40%,可得知SCG侧当前针对该UE特定能力的消耗情况,即已达到UE L2 Buffer Size总量的40%。
通过信元Request Amount=60%,可得知SCG侧想申请更多的L2 Buffer Size,为了能支持更多的数据分流。
通过信元Request Cause Value=More Offloading Ratio,可得知SCG侧是基于本地“想支持更多的数据分流”而提出该协商申请的。
通过信元Suggestion Enquiry=False,MgNB不可给出不同于申请(Request Amount=60%)的其他值,只能同意或者拒绝SCG侧的申请。
步骤404:MgNB通过XnAP流程消息UE Capability Negociation Response向SeNB发起UE能力协商回复,至少包含下面辅助信息:Request Agreed=No,Reject Cause value=No more offloading。
步骤405:SeNB在Xn接口上接收到UE Capability Negociation Response消息后,对针对UE“L2 Buffer Size”这一特定能力的申请回复,进行如下分析判定:
通过信元Request Agreed=No,可得知:MgNB不同意为SCG最大分配UE L2 Buffer Size总量的60%。
通过信元Reject Cause value=No more offloading,可得知:针对UE“L2Buffer Size”这一特定能力的协商过程中,MCG侧不同意将更多的数据分流到SCG侧。
在NR/LTE DC(4/5G异构系统双连接)配置操作中,UE的各种相关能力能在Master Node和Secondary Node之间协商,并且参与的基站节点彼此提供给对方,能够优化各自RRM/RRC动作的辅助性信息,这样MCG和 SCG两侧能够采取更合理的RRM/RRC动作,从而使得NR/LTE DC双连接的性能尽量保持在最佳,减少不必要的失败处理/模式重配所带来的信令开销,减轻Master Node单侧对UE的所有RRM操作的维护负荷等。
在NR/LTE DC(4/5G异构系统双连接)配置操作中,UE的各种相关能力能在Master Node和Secondary Node之间协商,并且参与的基站节点彼此提供给对方,能够优化各自RRM/RRC动作的辅助性信息,这样MCG和SCG两侧能够采取更合理的RRM/RRC动作,从而使得NR/LTE DC双连接的性能尽量保持在最佳,减少不必要的失败处理/模式重配所带来的信令开销,减轻Master Node单侧对UE的所有RRM操作的维护负荷等。
实施例4
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,在包括长期演进LTE网络和新无线NR网络的多连接场景下,辅服务基站根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;
S2,接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。可选为,所述存储介质为非瞬间存储介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行在包括长期演进LTE网络和新无线NR网络的多连接场景下,根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
本公开还提供一种基站,该基站可为前述的主服务基站或辅服务基站。所述基站可包括:收发器、存储器及处理器,所述收发器可配置为进行信息收发,所述存储器可配置为信息存储;所述处理器分别与所述收发器及存储器连接,可配置为通过计算机可执行代码的执行,实现前述一个或多个技术方案提供的终端能力的协商方法,例如,可执行图3至图4及图7至图11所示方法中的一个或多个。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供了一种在主服务基站和辅服务基站之间进行终端能力协商的方法,通过主服务基站和辅服务基站之间的能力协商,可以解决主服务基站和辅服务基站之间不能协商UE能力的技术问题,从而使得NR/LTE DC双连接的性能尽量保持在最佳,减少不必要的失败处理/模式重配所带来的信令开销,减轻主基站单侧对UE的所有RRM操作的维护负荷等,从而具 有积极的工业效果,且具有实现简便的特点。

Claims (18)

  1. 一种终端能力的协商方法,包括:
    在包括长期演进LTE网络和新无线NR网络的多连接场景下,辅服务基站根据本地的辅服务小区集合SCG配置需求向主服务基站发起用户设备UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;
    所述辅服务基站接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。
  2. 根据权利要求1所述的方法,其中,所述UE能力协商请求包括以下至少之一:
    UE特定能力当前的实际消耗/占有量;
    需求申请UE特定能力的绝对量或相对量;
    申请UE特定能力的原因;
    在申请UE特定能力被所述主服务基站拒绝时,所述辅服务基站是否愿意接受所述主服务基站针对该UE特定能力的建议值。
  3. 根据权利要求2所述的方法,其中,所述UE特定能力包括以下至少之一:
    UE支持的频段能力或UE支持的频段组合能力;UE能聚合载波最大个数和总频谱带宽的能力;UE在每个传输时间间隔TTI内能传输传输块TB的最大个数;UE空口用户面层2协议缓存区大小L2;UE空口物理层软信道比特总数。
  4. 根据权利要求1所述的方法,其中,所述辅服务基站根据本地的SCG配置需求向主服务基站发起UE能力协商请求包括:
    所述辅服务基站根据本地的SCG配置需求通过XnAP或X2AP流程消息向主服务基站发起UE能力协商请求,其中,所述UE能力协商请求消息中包含所述协商需求的配置参数。
  5. 根据权利要求1所述的方法,其中,在所述辅服务基站接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复之后,所述方法还包括:
    所述主服务基站根据本地的UE能力重新分配协商结果,通过XnAP或X2AP流程消息向所述辅服务基站发起UE能力协商回复,所述UE能力协商回复消息中包含协商结果的参数;
    所述辅服务基站分析所述UE能力协商回复确定UE能力的协商结果。
  6. 根据权利要求5所述的方法,其中,所述协商结果包括以下至少之一:
    所述主服务基站是否同意分配所述辅服务基站所申请的绝对量或相对量的UE特定能力;
    所述主服务基站是否分配了对UE特定能力的建议值,和具体的建议值内容;
    对UE特定能力重新分配是否影响到主服务小区集合MCG侧的配置和数据无线承载工作情况;
    拒绝所述辅服务基站申请UE特定能力的原因。
  7. 根据权利要求1所述的方法,其中,同时协商一个或者多个UE特定能力,且各自的配置/结果参数独立。
  8. 一种终端能力的协商方法,包括:
    在包括长期演进LTE网络和新无线NR网络的多连接场景下,主服务基站接收辅服务基站发送的UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;
    所述主服务基站获取所述UE的能力信息,并根据所述UE能力协商请求反馈UE能力协商回复。
  9. 根据权利要求8所述的方法,其中,所述UE能力协商请求包括以下 至少之一:
    UE特定能力当前的实际消耗/占有量;
    需求申请UE特定能力的绝对量或相对量;
    申请UE特定能力的原因;
    在申请UE特定能力被所述主服务基站拒绝时,所述辅服务基站是否愿意接受所述主服务基站针对该UE特定能力的建议值。
  10. 根据权利要求9所述的方法,其中,所述UE特定能力包括以下至少之一:
    UE支持的频段能力或UE支持的频段组合能力;UE能聚合载波最大个数和总频谱带宽的能力;UE在每个传输时间间隔TTI内能传输传输块TB的最大个数;UE空口用户面层2协议缓存区大小L2;UE空口物理层软信道比特总数。
  11. 根据权利要求8所述的方法,其中,所述UE能力协商回复包括以下至少之一:
    所述主服务基站分配给所述辅服务基站的UE特定能力的绝对量或相对量;
    所述主服务基站是否允许所述辅服务基站对UE特定能力的申请;
    所述主服务基站分配UE特定能力是否会影响到MCG侧的当前配置和数据无线承载工作情况;
    在对UE特定能力的申请被所述主服务基站拒绝的情况下,拒绝的原因值。
  12. 一种终端能力的协商装置,应用在辅服务基站,其中,包括:
    发起模块,配置为在包括长期演进LTE网络和新无线NR网络的多连接场景下,根据本地的辅服务小区集合SCG配置需求向主服务基站发起UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;
    接收模块,配置为接收所述主服务基站根据所述UE能力协商请求反馈的UE能力协商回复。
  13. 根据权利要求12所述的装置,其中,所述UE能力协商请求包括以下至少之一:
    UE特定能力当前的实际消耗/占有量;
    需求申请UE特定能力的绝对量或相对量;
    申请UE特定能力的原因;
    在申请UE特定能力被所述主服务基站拒绝时,所述辅服务基站是否愿意接受所述主服务基站针对该UE特定能力的建议值。
  14. 根据权利要求13所述的装置,其中,所述UE特定能力包括以下至少之一:
    UE支持的频段能力或UE支持的频段组合能力;UE能聚合载波最大个数和总频谱带宽的能力;UE在每个传输时间间隔TTI内能传输传输块TB的最大个数;UE空口用户面层2协议缓存区大小L2;UE空口物理层软信道比特总数。
  15. 一种终端能力的协商装置,应用在主服务基站,其中,包括:
    接收模块,配置为在包括长期演进LTE网络和新无线NR网络的多连接场景下,接收辅服务基站发送的UE能力协商请求,其中,所述UE能力协商请求用于协商UE能力;
    处理模块,配置为获取所述UE的能力信息,并根据所述UE能力协商请求反馈UE能力协商回复。
  16. 根据权利要求15所述的装置,其中,所述UE能力协商请求包括:
    UE特定能力当前的实际消耗/占有量;
    需求申请UE特定能力的绝对量或相对量;
    申请UE特定能力的原因;
    在申请UE特定能力被所述主服务基站拒绝时,所述辅服务基站是否愿意接受所述主服务基站针对该UE特定能力的建议值。
  17. 根据权利要求16所述的装置,其中,所述UE特定能力包括以下至少之一:
    UE支持的频段能力或UE支持的频段组合能力;UE能聚合载波最大个数和总频谱带宽的能力;UE在每个传输时间间隔TTI内能传输传输块TB的最大个数;UE空口用户面层2协议缓存区大小L2;UE空口物理层软信道比特总数。
  18. 一种存储介质,所述存储介质存储有程序代码,所述程序代码被执行后,能够实现权利要求1至7或8至11任一项提供的方法。
PCT/CN2018/074418 2017-03-24 2018-01-29 终端能力的协商方法、装置和存储介质 WO2018171334A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18772487.7A EP3606228B1 (en) 2017-03-24 2018-01-29 Terminal capability negotiation method, apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184570.4A CN108924961B (zh) 2017-03-24 2017-03-24 终端能力的协商方法及装置
CN201710184570.4 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018171334A1 true WO2018171334A1 (zh) 2018-09-27

Family

ID=63585894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074418 WO2018171334A1 (zh) 2017-03-24 2018-01-29 终端能力的协商方法、装置和存储介质

Country Status (3)

Country Link
EP (1) EP3606228B1 (zh)
CN (1) CN108924961B (zh)
WO (1) WO2018171334A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557822A (zh) * 2019-09-19 2019-12-10 京信通信系统(中国)有限公司 上行功率配置方法、装置、计算机设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057803B2 (en) 2018-01-11 2021-07-06 Htc Corporation Method and device of handling mobility to a NR standalone network
EP4135440A4 (en) * 2020-04-06 2024-01-10 Ntt Docomo Inc TERMINAL AND BASE STATION DEVICE
WO2021232331A1 (en) * 2020-05-21 2021-11-25 Qualcomm Incorporated Restoration of new radio data service for dual subscriber identity modules
WO2024025279A1 (en) * 2022-07-25 2024-02-01 Lg Electronics Inc. Fast conflict resolution in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519583A (zh) * 2013-09-27 2015-04-15 上海贝尔股份有限公司 一种通过双连接进行数据传输和处理的方法、装置和系统
CN106304411A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 用于双连接系统中的上行链路分割承载的方法及装置
EP3117682A1 (en) * 2014-03-14 2017-01-18 NEC Europe Ltd. Method, user equipment, master evolved node b and communication system for dual connectivity
CN106416421A (zh) * 2014-10-03 2017-02-15 株式会社Ntt都科摩 信息通知方法、移动通信系统、以及基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480067B2 (en) * 2013-08-08 2016-10-25 Qualcomm Incorporated Techniques for allocating user equipment processing capability among multiple access nodes
US9894668B2 (en) * 2014-02-01 2018-02-13 Lg Electronics Inc. Method for performing CoMP operation in wireless communication system and apparatus for the same
KR102049815B1 (ko) * 2015-01-30 2019-11-29 후아웨이 테크놀러지 컴퍼니 리미티드 통신 방법, 네트워크 디바이스, 사용자 장비, 및 통신 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519583A (zh) * 2013-09-27 2015-04-15 上海贝尔股份有限公司 一种通过双连接进行数据传输和处理的方法、装置和系统
EP3117682A1 (en) * 2014-03-14 2017-01-18 NEC Europe Ltd. Method, user equipment, master evolved node b and communication system for dual connectivity
CN106416421A (zh) * 2014-10-03 2017-02-15 株式会社Ntt都科摩 信息通知方法、移动通信系统、以及基站
CN106304411A (zh) * 2015-05-15 2017-01-04 上海贝尔股份有限公司 用于双连接系统中的上行链路分割承载的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3606228A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557822A (zh) * 2019-09-19 2019-12-10 京信通信系统(中国)有限公司 上行功率配置方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
EP3606228B1 (en) 2022-03-16
CN108924961B (zh) 2023-05-02
EP3606228A1 (en) 2020-02-05
EP3606228A4 (en) 2020-11-04
CN108924961A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2018171334A1 (zh) 终端能力的协商方法、装置和存储介质
CN108282836B (zh) 辅基站切换方法、装置及基站
CN110381530B (zh) 双连接的测量配置、测量、调度方法及装置和存储介质
US11323911B2 (en) Radio bearer configuration method and apparatus for configuring a dual connectivity terminal
EP3051876B1 (en) Small cell switching method, enb and computer storage medium
EP3146779B1 (en) Enhanced inter-cell interference coordination
CN109246757B (zh) 一种新型服务质量架构在双连接系统的配置方法及装置
WO2017054538A1 (zh) 建立辅助信令链路的方法及其装置、基站及终端
EP3606276B1 (en) Radio bearer determination in dual connectivity
US8908640B2 (en) Method, apparatus and system for handover between multi-carrier cells
US10129766B2 (en) Quality of service management methods, quality of service management devices and quality of service management system
JP7147883B2 (ja) gNB-CU-UPにおける完全性保護のハンドリング
WO2016197779A1 (zh) 一种多无线接入网络下提供业务与接受业务的方法及设备
KR102645345B1 (ko) 네트워크 액세스를 위한 방법 및 장치
CN110035443B (zh) 双连接时辅助配置测量间隙的方法、装置及基站
CN106341907B (zh) 一种数据传输方法、装置和系统
WO2017000889A1 (zh) 无线接入网设备、数据处理方法和ip报文处理方法
US20150195744A1 (en) Channel Negotiation Method, Device, and System
US20160050646A1 (en) Radio Resource Management Method, Macro Base Station, And Low-Power Node
US10708891B2 (en) Method for establishing evolved packet system bearer and base station
JP7276500B2 (ja) 通信システム
US9425944B1 (en) Intelligent allocation of wireless resources between access link and relay link
WO2018171321A1 (zh) 信息传输方法和基站
CN113518397A (zh) 一种测量方法和装置
CN110139324B (zh) 消息传输方法及装置、计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018772487

Country of ref document: EP

Effective date: 20191024