WO2021232331A1 - Restoration of new radio data service for dual subscriber identity modules - Google Patents

Restoration of new radio data service for dual subscriber identity modules Download PDF

Info

Publication number
WO2021232331A1
WO2021232331A1 PCT/CN2020/091499 CN2020091499W WO2021232331A1 WO 2021232331 A1 WO2021232331 A1 WO 2021232331A1 CN 2020091499 W CN2020091499 W CN 2020091499W WO 2021232331 A1 WO2021232331 A1 WO 2021232331A1
Authority
WO
WIPO (PCT)
Prior art keywords
sim
cell
list
support
determining
Prior art date
Application number
PCT/CN2020/091499
Other languages
French (fr)
Inventor
Tianya LIN
Chaofeng HUI
Hao Zhang
Jian Li
Fojian ZHANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/091499 priority Critical patent/WO2021232331A1/en
Publication of WO2021232331A1 publication Critical patent/WO2021232331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for restoring New Radio data service for dual subscriber identity modules.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point, a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining, for a first subscriber identity module (SIM) of the UE in a non-standalone (NSA) network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell.
  • the method may include adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs.
  • the method may further include determining, for a second SIM of the UE, that the cell is on the list, and performing, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list.
  • TAU tracking area update
  • DCNR New Radio
  • a UE for wireless communication may include memory and one or more processors coupled to the memory.
  • the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory.
  • the memory may include instructions executable by the one or more processors to cause the UE to determine, for a first SIM of the UE in an NSA network, that the first SIM does not support one or more IEs received in a reconfiguration message associated with adding an SCG with a cell, and add, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs.
  • the memory may include instructions executable by the one or more processors to cause the UE to determine, for a second SIM of the UE, that the cell is on the list, and perform, for the second SIM, a TAU procedure with the cell, indicating no support for DCNR, based at least in part on the determining that the cell is on the list.
  • an apparatus for wireless communication may include means for determining, for a first SIM of the apparatus in an NSA network, that the first SIM does not support one or more IEs received in a reconfiguration message associated with adding an SCG with a cell, means for adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs, means for determining, for a second SIM of the apparatus, that the cell is on the list, and means for performing, for the second SIM, a TAU procedure with the cell, indicating no support for DCNR, based at least in part on the determining that the cell is on the list.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of restoring New Radio (NR) data service, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example of restoring NR data service for dual subscriber identity modules (SIMs) , in accordance with various aspects of the present disclosure.
  • SIMs subscriber identity modules
  • Fig. 5 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with restoring NR data service for dual subscriber identity modules (SIMs) , as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining, for a first SIM of the UE in a non-standalone (NSA) network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell, means for adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs, means for determining, for a second SIM of the UE, that the cell is on the list, means for performing, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list, and/or the like.
  • IEs information elements
  • SCG secondary cell group
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of restoring NR data service, in accordance with various aspects of the present disclosure.
  • Fig. 3 shows a UE (e.g., UE 120 and or the like) that may attach to an LTE anchor cell.
  • UE e.g., UE 120 and or the like
  • the UE may transmit an attach request, indicating support for DCNR.
  • the UE may receive an attach accept message.
  • the UE may attempt to access an NR data service, which involves adding a secondary cell group (SCG) .
  • the UE may transmit a service request, as shown by reference number 315.
  • the UE may receive a radio resource control (RRC) reconfiguration message, indicating that an SCG is added, as shown by reference number 320.
  • RRC radio resource control
  • the message may include one or more unsupported IEs. If the UE does not support one or more IEs that apply to a feature that the first SIM is to use after adding the SCG, the UE may drop the SCG and lose the NR data service.
  • a UE data call may also be terminated.
  • the UE may repeat a procedure of transmitting a service request and receiving an RRC reconfiguration message associated with adding an SCG.
  • the data service may continue dropping, providing a bad user experience.
  • the UE may fall back to LTE.
  • the UE may start a backoff timer, as shown by reference number 330, for how long the UE is to operate with only LTE.
  • the UE may perform a TAU procedure, indicating no support for DCNR, as shown by reference number 335.
  • the TAU procedure is a procedure applicable to LTE networks, and normally updates a location of the UE within an LTE network. If the NR cell and the LTE cell are maintained by the same operator, the UE does not need a new registration and a TAU procedure is sufficient to attach the UE to the LTE cell.
  • the UE may receive a TAU accept message.
  • the UE may fall back to LTE because the UE indicated no support for DCNR in the TAU procedure.
  • the UE may transmit a service request, and the UE may use evolved packet system (EPS) bearers that are activated for LTE only, as shown by reference number 350.
  • EPS evolved packet system
  • the UE may continue to use an LTE data service rather than an NR data service.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of restoring NR data service for dual SIMs, in accordance with various aspects of the present disclosure. While Fig. 3 shows a solution for a UE with one SIM, Fig. 4 shows a signaling diagram for a first SIM and a second SIM of a UE configured with a dual modem.
  • Either SIM may support dual SIM dual active or dual SIM dual standby, and either SIM may be associated with a default data subscriber (DDS) subscriber registration (e.g., NSA) or a non-DDS subscriber registration (e.g., LTE) .
  • DDS data subscriber
  • NSA non-DDS subscriber registration
  • the first SIM may register with an NSA network.
  • the NSA network may involve the infrastructure of an LTE network that provides access to the Internet.
  • the second SIM may also register with the NSA network or an LTE network. While actions may be described herein as being performed by the first SIM or the second SIM, this includes the UE performing the action for the first SIM or for the second SIM. In some cases, an application protocol/application processor (AP) of the UE may direct switching between the first SIM and the second SIM or other operations.
  • AP application protocol/application processor
  • the first SIM may be attached to a cell that may be an NSA cell, an LTE cell, an NR cell, and/or the like.
  • the cell is shown as an LTE cell, and the first SIM may attach to the LTE cell with an indication of DCNR support, as described in connection with Fig. 3.
  • the first SIM may receive an RRC reconfiguration message, indicating that an SCG is added, but the RRC reconfiguration message may include one or more unsupported IEs and the SCG may drop.
  • the first SIM (or the UE for the first SIM) may fall back to LTE and start a backoff timer.
  • the second SIM may also have problems with accessing the NR data service.
  • the second SIM may also have the SCG dropped after transmitting a service request due to an RRC reconfiguration message including unsupported IEs.
  • both the first SIM and the second SIM may lose data service.
  • the UE may recognize the problem with the LTE cell for the first SIM and cause the first SIM to fall back to LTE only, but the second SIM may be unaware of the problem.
  • the second SIM may cause the UE to waste time, power, processing resources, and signaling resources transmitting a service request and losing the SCG due to unsupported IEs in an RRC reconfiguration message.
  • the first SIM may add the cell to a list of cells that the first SIM is not to use for adding the SCG.
  • the list may be referred to as an unsupported IEs cell list.
  • the first SIM may start a guard timer for the cell, as shown by reference number 410, and the cell may be removed from the unsupported IEs cell list upon expiration of the guard timer.
  • the first SIM and the second SIM may synchronize unsupported IEs cell lists.
  • the first SIM may signal to the second SIM that the cell is added to the unsupported IEs cell list for the first SIM, and, as shown by reference number 420, the second SIM may add the cell to an unsupported IEs cell list for the second SIM.
  • the second SIM may proceed with requesting an LTE data service rather than an NR data service if a cell is on the list.
  • the second SIM may help the UE to save the time, power, processing resources, and signaling resources involved with losing an SCG, detecting unsupported IEs, and falling back to LTE after the SCG drops.
  • the second SIM may also signal unsupported IEs cell list information to the first SIM. Alternatively, or additionally, the first SIM and the second SIM may access and update the same unsupported IEs cell list.
  • the UE, for the first SIM may detect particular IEs in the RRC reconfiguration message that apply to a feature that the first SIM is to use. For example, in some aspects, there may be one or more IEs that the first SIM does not support, but these IEs may not be an issue if the first SIM is not going to use them in a feature to maintain or use the NR data service. However, there may be a feature that the first SIM is to rely on for a communication or service, and the feature may be associated with one or more IEs that the first SIM does not support. If the first SIM proceeds with the communication or service, the communication or service will fail because information obtained in one or more IEs may be required for the communication or service. If the first SIM does not support the one or more IEs, the first SIM cannot obtain any necessary information for the communication or service.
  • the AP of the UE may switch from the first SIM to the second SIM, as shown by reference number 425.
  • the UE may determine, for the second SIM, whether the cell (or any other cell) is on the unsupported IEs cell list before transmitting a service request to the cell to add an SCG. If the cell is on the list, the second SIM (or the UE for the second SIM) may transmit a service request for an LTE data service rather than for an NR data service, as shown by reference number 430. In some aspects, this may include first performing a TAU procedure indicating no support for DCNR. For example, the UE, for the second SIM, may transmit a TAU request (no support for DCNR) and receive a TAU accept message.
  • the second SIM may use EPS bearers activated for LTE only, as shown by reference number 435. The second SIM may not cause the UE to lose data service or a data call.
  • the UE may remove, for the first SIM and/or the second SIM, a cell from the unsupported IEs cell list based at least in part on expiration of the guard timer, an instruction from the base station, or removal of the first SIM and/or the second SIM.
  • the UE, for the first SIM and/or the second SIM may perform a TAU procedure with the cell or another cell, indicating DCNR support, and transmit a service request to the cell or the other cell to add the SCG for NR data service.
  • the first SIM and the second SIM may avoid SCG drops (and drops in data service altogether) .
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 3 and 4, and/or the like) performs operations associated with restoring NR data service for dual SIMs.
  • the UE e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 3 and 4, and/or the like
  • process 500 may include determining, for a first SIM of the UE in a non-standalone network, that the first SIM does not support one or more IEs received in a reconfiguration message associated with adding an SCG with a cell (block 510) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 500 may include adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs (block 520) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 500 may include determining, for a second SIM of the UE, that the cell is on the list (block 530) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 500 may include performing, for the second SIM, a TAU procedure with the cell, indicating no support for DCNR, based at least in part on the determining that the cell is on the list (block 540) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 500 includes causing the first SIM and the second SIM to share the list with each other.
  • the one or more IEs that the first SIM does not support apply to a feature that the first SIM is to use after adding the SCG.
  • performing the TAU procedure includes transmitting a TAU request to the cell and receiving a TAU accept message, where the TAU request indicates no support for DCNR.
  • process 500 includes transmitting, by the second SIM, a service request to the cell.
  • adding, for the first SIM, the cell to the list includes adding the cell to the list after a specified amount of time has passed since determining that the first SIM does not support the one or more IEs.
  • process 500 includes receiving an instruction to remove the cell from the list, removing the cell from the list, and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, based at least in part on receiving the instruction.
  • process 500 includes removing the cell from the list and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, after a specified amount of time has passed for the cell being on the list.
  • process 500 includes removing all cells from the list and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, based at least in part on one of the UE powering off, or removal of one or more of the first SIM or the second SIM from the UE.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software.
  • a processor is implemented in hardware, software, and/or a combination of hardware and software.
  • Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine, for a first subscriber identity module (SIM), that the first SIM does not support information elements received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell, and add, for the first SIM, the cell to a list of cells that the first SIM is not to use for adding the SCG. The UE may determine, for a second SIM of the UE, that the cell is on the list, and perform, for the second SIM, a tracking area update procedure with the cell, indicating no support for dual connectivity with New Radio, based at least in part on the determining that the cell is on the list. Numerous other aspects are provided.

Description

RESTORATION OF NEW RADIO DATA SERVICE FOR DUAL SUBSCRIBER IDENTITY MODULES
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for restoring New Radio data service for dual subscriber identity modules.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point, a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining, for a first subscriber identity module (SIM) of the UE in a non-standalone (NSA) network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell. The method may include adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs. The method may further include determining, for a second SIM of the UE, that the cell is on the list, and performing, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list.
In some aspects, a UE for wireless communication may include memory and one or more processors coupled to the memory. For example, the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory. The memory may include instructions executable by the one or more processors to cause the UE to determine, for a first SIM of the UE in an NSA network, that the first SIM does not support one or more IEs received in a reconfiguration  message associated with adding an SCG with a cell, and add, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs. The memory may include instructions executable by the one or more processors to cause the UE to determine, for a second SIM of the UE, that the cell is on the list, and perform, for the second SIM, a TAU procedure with the cell, indicating no support for DCNR, based at least in part on the determining that the cell is on the list.
In some aspects, an apparatus for wireless communication may include means for determining, for a first SIM of the apparatus in an NSA network, that the first SIM does not support one or more IEs received in a reconfiguration message associated with adding an SCG with a cell, means for adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs, means for determining, for a second SIM of the apparatus, that the cell is on the list, and means for performing, for the second SIM, a TAU procedure with the cell, indicating no support for DCNR, based at least in part on the determining that the cell is on the list.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of restoring New Radio (NR) data service, in accordance with various aspects of the present disclosure. 
Fig. 4 is a diagram illustrating an example of restoring NR data service for dual subscriber identity modules (SIMs) , in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method  which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. 
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used. 
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell  may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul. 
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant  (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without  using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110. 
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1. 
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various  aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques  associated with restoring NR data service for dual subscriber identity modules (SIMs) , as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 500 of Fig. 5, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink. 
In some aspects, UE 120 may include means for determining, for a first SIM of the UE in a non-standalone (NSA) network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell, means for adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs, means for determining, for a second SIM of the UE, that the cell is on the list, means for performing, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of restoring NR data service, in accordance with various aspects of the present disclosure. Fig. 3 shows a UE (e.g., UE 120 and or the like) that may attach to an LTE anchor cell.
As shown by reference number 305, the UE may transmit an attach request, indicating support for DCNR. As shown by reference number 310, the UE may receive an attach accept message. The UE may attempt to access an NR data service, which involves adding a secondary cell group (SCG) . The UE may transmit a service request, as shown by reference number 315. The UE may receive a radio resource control (RRC) reconfiguration message, indicating that an SCG is added, as shown by reference number 320. The message may include one or more unsupported IEs. If the UE does not support one or more IEs that apply to a feature that the first SIM is to use after adding the SCG, the UE may drop the SCG and lose the NR data service. Because operators may configure data flow over an NR bearer, a UE data call may also be terminated. The UE may repeat a procedure of transmitting a service request and receiving an RRC reconfiguration message associated with adding an SCG. The data service may continue dropping, providing a bad user experience.
If the UE is able to detect one or more unsupported IEs in the RRC reconfiguration message, as shown by reference number 325, the UE may fall back to LTE. The UE may start a backoff timer, as shown by reference number 330, for how long the UE is to operate with only LTE. To fall back to LTE, the UE may perform a TAU procedure, indicating no support for DCNR, as shown by reference number 335. The TAU procedure is a procedure applicable to LTE networks, and normally updates a location of the UE within an LTE network. If the NR cell and the LTE cell are maintained by the same operator, the UE does not need a new registration and a TAU procedure is sufficient to attach the UE to the LTE cell. As shown by reference number 340, the UE may receive a TAU accept message.
The UE may fall back to LTE because the UE indicated no support for DCNR in the TAU procedure. As shown by reference number 345, the UE may transmit a service request, and the UE may use evolved packet system (EPS) bearers that are activated for LTE only, as shown by reference number 350. The UE may continue to use an LTE data service rather than an NR data service.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of restoring NR data service for dual SIMs, in accordance with various aspects of the present disclosure. While Fig. 3 shows a solution for a UE with one SIM, Fig. 4 shows a signaling diagram for a first SIM and a second SIM of a UE configured with a dual modem. Either SIM may  support dual SIM dual active or dual SIM dual standby, and either SIM may be associated with a default data subscriber (DDS) subscriber registration (e.g., NSA) or a non-DDS subscriber registration (e.g., LTE) . For example, the first SIM may register with an NSA network. The NSA network may involve the infrastructure of an LTE network that provides access to the Internet. The second SIM may also register with the NSA network or an LTE network. While actions may be described herein as being performed by the first SIM or the second SIM, this includes the UE performing the action for the first SIM or for the second SIM. In some cases, an application protocol/application processor (AP) of the UE may direct switching between the first SIM and the second SIM or other operations.
The first SIM may be attached to a cell that may be an NSA cell, an LTE cell, an NR cell, and/or the like. In Fig. 4, the cell is shown as an LTE cell, and the first SIM may attach to the LTE cell with an indication of DCNR support, as described in connection with Fig. 3. The first SIM may receive an RRC reconfiguration message, indicating that an SCG is added, but the RRC reconfiguration message may include one or more unsupported IEs and the SCG may drop. As described in connection with Fig. 3, the first SIM (or the UE for the first SIM) may fall back to LTE and start a backoff timer. However, if the first SIM loses data service after transmitting service requests to the LTE cell to access the NR data service, the second SIM may also have problems with accessing the NR data service. For example, the second SIM may also have the SCG dropped after transmitting a service request due to an RRC reconfiguration message including unsupported IEs. In that case, both the first SIM and the second SIM may lose data service. The UE may recognize the problem with the LTE cell for the first SIM and cause the first SIM to fall back to LTE only, but the second SIM may be unaware of the problem. The second SIM may cause the UE to waste time, power, processing resources, and signaling resources transmitting a service request and losing the SCG due to unsupported IEs in an RRC reconfiguration message.
According to various aspects described herein, if the first SIM detects unsupported IEs in an RRC reconfiguration message from the cell, as shown by reference number 405, the first SIM (or the UE for the first SIM) may add the cell to a list of cells that the first SIM is not to use for adding the SCG. The list may be referred to as an unsupported IEs cell list. In some aspects, the first SIM may start a guard timer for the cell, as shown by reference number 410, and the cell may be removed from the unsupported IEs cell list upon expiration of the guard timer.
As shown by reference number 415, the first SIM and the second SIM may synchronize unsupported IEs cell lists. For example, the first SIM may signal to the second SIM that the cell is added to the unsupported IEs cell list for the first SIM, and, as shown by reference number 420, the second SIM may add the cell to an unsupported IEs cell list for the second SIM. In this way, the second SIM may proceed with requesting an LTE data service rather than an NR data service if a cell is on the list. As a result, the second SIM may help the UE to save the time, power, processing resources, and signaling resources involved with losing an SCG, detecting unsupported IEs, and falling back to LTE after the SCG drops. The second SIM may also signal unsupported IEs cell list information to the first SIM. Alternatively, or additionally, the first SIM and the second SIM may access and update the same unsupported IEs cell list. 
In some aspects, the UE, for the first SIM, may detect particular IEs in the RRC reconfiguration message that apply to a feature that the first SIM is to use. For example, in some aspects, there may be one or more IEs that the first SIM does not support, but these IEs may not be an issue if the first SIM is not going to use them in a feature to maintain or use the NR data service. However, there may be a feature that the first SIM is to rely on for a communication or service, and the feature may be associated with one or more IEs that the first SIM does not support. If the first SIM proceeds with the communication or service, the communication or service will fail because information obtained in one or more IEs may be required for the communication or service. If the first SIM does not support the one or more IEs, the first SIM cannot obtain any necessary information for the communication or service.
As shown in Fig. 4, the AP of the UE may switch from the first SIM to the second SIM, as shown by reference number 425. The UE may determine, for the second SIM, whether the cell (or any other cell) is on the unsupported IEs cell list before transmitting a service request to the cell to add an SCG. If the cell is on the list, the second SIM (or the UE for the second SIM) may transmit a service request for an LTE data service rather than for an NR data service, as shown by reference number 430. In some aspects, this may include first performing a TAU procedure indicating no support for DCNR. For example, the UE, for the second SIM, may transmit a TAU request (no support for DCNR) and receive a TAU accept message. The second SIM may use EPS bearers activated for LTE only, as shown by reference number 435. The second SIM may not cause the UE to lose data service or a data call.
In some aspects, the UE may remove, for the first SIM and/or the second SIM, a cell from the unsupported IEs cell list based at least in part on expiration of the guard timer, an instruction from the base station, or removal of the first SIM and/or the second SIM. The UE, for the first SIM and/or the second SIM, may perform a TAU procedure with the cell or another cell, indicating DCNR support, and transmit a service request to the cell or the other cell to add the SCG for NR data service. Through sharing information about problem cells, the first SIM and the second SIM may avoid SCG drops (and drops in data service altogether) .
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example process 500 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 500 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 3 and 4, and/or the like) performs operations associated with restoring NR data service for dual SIMs. 
As shown in Fig. 5, in some aspects, process 500 may include determining, for a first SIM of the UE in a non-standalone network, that the first SIM does not support one or more IEs received in a reconfiguration message associated with adding an SCG with a cell (block 510) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine, for a first SIM of the UE in a non-standalone network, that the first SIM does not support one or more IEs received in a reconfiguration message associated with adding an SCG with a cell, as described above. 
As further shown in Fig. 5, in some aspects, process 500 may include adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs (block 520) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may add, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include determining, for a second SIM of the UE, that the cell is on the list (block 530) . For example, the UE (e.g., using receive processor 258, transmit processor 264,  controller/processor 280, memory 282, and/or the like) may determine, for a second SIM of the UE, that the cell is on the list, as described above. 
As further shown in Fig. 5, in some aspects, process 500 may include performing, for the second SIM, a TAU procedure with the cell, indicating no support for DCNR, based at least in part on the determining that the cell is on the list (block 540) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may perform, for the second SIM, a TAU procedure with the cell, indicating no support for DCNR, based at least in part on the determining that the cell is on the list, as described above. 
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 500 includes causing the first SIM and the second SIM to share the list with each other.
In a second aspect, alone or in combination with the first aspect, the one or more IEs that the first SIM does not support apply to a feature that the first SIM is to use after adding the SCG.
In a third aspect, alone or in combination with one or more of the first and second aspects, performing the TAU procedure includes transmitting a TAU request to the cell and receiving a TAU accept message, where the TAU request indicates no support for DCNR.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, process 500 includes transmitting, by the second SIM, a service request to the cell.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, adding, for the first SIM, the cell to the list includes adding the cell to the list after a specified amount of time has passed since determining that the first SIM does not support the one or more IEs.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 500 includes receiving an instruction to remove the cell from the list, removing the cell from the list, and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, based at least in part on receiving the instruction.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 500 includes removing the cell from the list and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, after a specified amount of time has passed for the cell being on the list.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 500 includes removing all cells from the list and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, based at least in part on one of the UE powering off, or removal of one or more of the first SIM or the second SIM from the UE. 
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, software, and/or a combination of hardware and software. Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, software, and/or a combination of hardware and software. The actual specialized control hardware or software code used  to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (12)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining, for a first subscriber identity module (SIM) of the UE in a non-standalone network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell;
    adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs;
    determining, for a second SIM of the UE, that the cell is on the list; and
    performing, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list.
  2. The method of claim 1, further comprising causing the first SIM and the second SIM to share the list with each other.
  3. The method of claim 1, wherein the one or more IEs that the first SIM does not support apply to a feature that the first SIM is to use after adding the SCG.
  4. The method of claim 1, wherein performing the TAU procedure includes transmitting a TAU request to the cell and receiving a TAU accept message, wherein the TAU request indicates no support for DCNR.
  5. The method of claim 1, further comprising transmitting, by the second SIM, a service request to the cell.
  6. The method of claim 1, wherein adding, for the first SIM, the cell to the list includes adding the cell to the list after a specified amount of time has passed since determining that the first SIM does not support the one or more IEs.
  7. The method of claim 1, further comprising:
    receiving an instruction to remove the cell from the list;
    removing the cell from the list; and
    performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, based at least in part on receiving the instruction.
  8. The method of claim 1, further comprising removing the cell from the list and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, after a specified amount of time has passed for the cell being on the list.
  9. The method of claim 1, further comprising removing all cells from the list and performing, by one or more of the first SIM or the second SIM, a TAU procedure with the cell, indicating support for DCNR, based at least in part on one of the UE powering off, or removal of one or more of the first SIM or the second SIM from the UE.
  10. A user equipment (UE) , comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory including instructions executable by the one or more processors to cause the UE to:
    determine, for a first subscriber identity module (SIM) of the UE in a non-standalone network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell;
    add, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs;
    determine, for a second SIM of the UE, that the cell is on the list; and
    perform, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list.
  11. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    determine, for a first subscriber identity module (SIM) of the UE in a non-standalone network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell;
    add, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs;
    determine, for a second SIM of the UE, that the cell is on the list; and
    perform, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list.
  12. An apparatus, comprising:
    means for determining, for a first subscriber identity module (SIM) of the apparatus in a non-standalone network, that the first SIM does not support one or more information elements (IEs) received in a reconfiguration message associated with adding a secondary cell group (SCG) with a cell;
    means for adding, for the first SIM, the cell to a list of one or more cells that the first SIM is not to use for adding the SCG based at least in part on the determining that the first SIM does not support the one or more IEs;
    means for determining, for a second SIM of the apparatus, that the cell is on the list; and
    means for performing, for the second SIM, a tracking area update (TAU) procedure with the cell, indicating no support for dual connectivity with New Radio (DCNR) , based at least in part on the determining that the cell is on the list.
PCT/CN2020/091499 2020-05-21 2020-05-21 Restoration of new radio data service for dual subscriber identity modules WO2021232331A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091499 WO2021232331A1 (en) 2020-05-21 2020-05-21 Restoration of new radio data service for dual subscriber identity modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091499 WO2021232331A1 (en) 2020-05-21 2020-05-21 Restoration of new radio data service for dual subscriber identity modules

Publications (1)

Publication Number Publication Date
WO2021232331A1 true WO2021232331A1 (en) 2021-11-25

Family

ID=78709074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091499 WO2021232331A1 (en) 2020-05-21 2020-05-21 Restoration of new radio data service for dual subscriber identity modules

Country Status (1)

Country Link
WO (1) WO2021232331A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
WO2019101162A1 (en) * 2017-11-27 2019-05-31 Fg Innovation Ip Company Limited Methods and related devices for multi-connectivity
EP3606228A1 (en) * 2017-03-24 2020-02-05 ZTE Corporation Terminal capability negotiation method, apparatus, and storage medium
CN111093237A (en) * 2014-03-21 2020-05-01 三星电子株式会社 Method and apparatus for transmitting/receiving signal in mobile communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093237A (en) * 2014-03-21 2020-05-01 三星电子株式会社 Method and apparatus for transmitting/receiving signal in mobile communication system
WO2017022870A1 (en) * 2015-08-03 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication system
EP3606228A1 (en) * 2017-03-24 2020-02-05 ZTE Corporation Terminal capability negotiation method, apparatus, and storage medium
WO2019101162A1 (en) * 2017-11-27 2019-05-31 Fg Innovation Ip Company Limited Methods and related devices for multi-connectivity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "UE capability coordination for LTE - NR tight interworking", 3GPP DRAFT; R2-167610 UE CAPABILITY COORDINATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051177463 *
ERICSSON: "RRC specification evolution", 3GPP DRAFT; R2-166827 - RRC SPECIFICATION EVOLUTION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Kaohsiung, Taiwan; 20161010 - 20161014, 9 October 2016 (2016-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051151279 *
QUALCOMM INCORPORATED: "(TP for NR BL CR for TS 38.423): SN Addition Trigger Indication", 3GPP DRAFT; R3-184689 SN ADDITION TRIGGER INDICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Gothenburg, Sweden; 20180820 - 20180824, 11 August 2018 (2018-08-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051528036 *

Similar Documents

Publication Publication Date Title
EP3831105A1 (en) Carrier switching and antenna switching for a target carrier combination
EP3874863A1 (en) Configuration of resource patterns for integrated access and backhaul
WO2021243690A1 (en) Public land mobile network search after protocol data unit rejection
WO2021237547A1 (en) Attach request for disabling new radio with dual subscriber identity modules
WO2022077159A1 (en) Techniques for adding new radio cell for multi-subscription user equipment
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021138753A1 (en) Techniques for indicating a multi-subscriber identity module capability of a device to a network
US11071152B2 (en) Access barring and radio resource control connection in new radio to long-term evolution voice fallback
WO2021232331A1 (en) Restoration of new radio data service for dual subscriber identity modules
WO2021232330A1 (en) Restoration of new radio data service for dual subscriber identity modules
WO2021237641A1 (en) Resolution of secondary cell group releases for dual subscriber identity modules
WO2021223202A1 (en) Restoration of data service with dual subscriber identity modules
WO2021212299A1 (en) Data service with dual subscriber identity modules
WO2021212452A1 (en) Restoration of data connectivity upon bearer removal after handover
WO2021217473A1 (en) Restoration of data connectivity after radio link failure in standalone network
WO2021237683A1 (en) Resolution of radio link failure due to user equipment capability
WO2021237684A1 (en) Resolution of new radio registration failure for dual subscriber identity modules
WO2021217677A1 (en) Restoration of data connectivity after radio link failure in standalone network
WO2021243689A1 (en) Recovery from radio link failure
WO2021207918A1 (en) Restoration of data connectivity after data call failure in non-standalone network
WO2021226859A1 (en) Restoration of data connectivity after random access problem in non-standalone network
WO2021232182A1 (en) Recovery from a problematic cell
WO2021208074A1 (en) Data service with dual subscriber information modules
WO2021207917A1 (en) Restoration of data connectivity after failure by rrc connection releases in non-standalone network
WO2021232179A1 (en) Restoration of vehicle to everything service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937164

Country of ref document: EP

Kind code of ref document: A1