WO2021226859A1 - Restoration of data connectivity after random access problem in non-standalone network - Google Patents

Restoration of data connectivity after random access problem in non-standalone network Download PDF

Info

Publication number
WO2021226859A1
WO2021226859A1 PCT/CN2020/089954 CN2020089954W WO2021226859A1 WO 2021226859 A1 WO2021226859 A1 WO 2021226859A1 CN 2020089954 W CN2020089954 W CN 2020089954W WO 2021226859 A1 WO2021226859 A1 WO 2021226859A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
count
cell
determining
satisfies
Prior art date
Application number
PCT/CN2020/089954
Other languages
French (fr)
Inventor
Hao Zhang
Chaofeng HUI
Fojian ZHANG
Jian Li
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/089954 priority Critical patent/WO2021226859A1/en
Publication of WO2021226859A1 publication Critical patent/WO2021226859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/06De-registration or detaching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for restoring data connectivity after a random access problem in a non-standalone network.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining, while registered with a non-standalone (NSA) network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group (SCG) .
  • the method may include performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • NSA non-standalone
  • a method of wireless communication may include determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG.
  • the method may include performing a tracking area update (TAU) procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • TAU tracking area update
  • a UE for wireless communication may include memory and one or more processors coupled to the memory.
  • the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory.
  • the memory may include instructions executable by the one or more processors to cause the UE to determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and perform a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • a UE for wireless communication may include memory and one or more processors coupled to the memory.
  • the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory.
  • the memory may include instructions executable by the one or more processors to cause the UE to determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group, and perform a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the UE to determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and perform a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a UE, may cause the UE to determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and perform a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • an apparatus for wireless communication may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and means for performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • an apparatus for wireless communication may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and means for performing a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of a random access problem in a non-standalone (NSA) network, in accordance with various aspects of the present disclosure.
  • NSA non-standalone
  • Fig. 4 is a diagram illustrating an example of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a diagram illustrating an example of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 7 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with restoring data connectivity after a random access problem in a non-standalone (NSA) network, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group (SCG) , means for performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • UE 120 may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, means for performing a tracking area update (TAU) procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold, and/or the like.
  • TAU tracking area update
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of a random access problem in an NSA network, in accordance with various aspects of the present disclosure.
  • Fig. 3 shows a signaling diagram for a UE (e.g., a UE 120 depicted in Figs. 1 and 2) registered in the NSA network.
  • a UE e.g., a UE 120 depicted in Figs. 1 and 2 registered in the NSA network.
  • the NSA network may be supported by existing LTE infrastructure and provide access to the Internet for the UE.
  • the UE may attach to an LTE cell and transfer data in a packet switched (PS) data transfer state.
  • PS packet switched
  • the UE may seek to enhance a user experience by accessing a 5G (NR) data service, which is faster and has additional capabilities.
  • the UE may have prepared to access the NR data service by indicating support for dual connectivity with New Radio (DCNR) when the UE attached to the LTE cell.
  • the UE may access the NR data service by adding an SCG provided by an NR cell.
  • the UE may transmit a service request or an NR measurement report to the LTE cell.
  • the LTE cell may use a radio resource control (RRC) connection reconfiguration process to connect the UE to the NR cell.
  • RRC radio resource control
  • the network may transmit an RRC connection reconfiguration message identifying the NR cell.
  • the UE may transmit an RRC connection reconfiguration complete message.
  • the UE has now added the SCG for the NR data service by connecting to the NR cell.
  • the SCG may fail right after being added.
  • signals from the NR cell may have a poor signal-to-noise ratio (SNR) or signal-to-noise-plus-interference ratio (SINR) due to severe interference, or there may be a significant drop in reference signal received power (RSRP) .
  • SNR signal-to-noise ratio
  • SINR signal-to-noise-plus-interference ratio
  • the UE may determine that the SCG failed because there is a random access problem.
  • the UE transmits a random access preamble to establish an RRC connection, no response may be received during an expected time period and/or after a certain quantity of attempts.
  • the UE may transmit an SCG failure information NR message that indicates a random access problem as a failure type.
  • the UE is not able to transfer any data.
  • the UE may be trapped in a procedure loop of performing an RRC connection reconfiguration process to add the SCG and determining that a random access problem caused the SCG to fail.
  • the UE is not able to transfer data and wastes power, processing resources, and signaling resources by repeatedly adding an SCG that fails.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure.
  • Fig. 4 includes some signals that are in the signaling diagram shown in Fig. 3.
  • the UE may address SCG failure by falling back to an NSA mode (e.g., LTE only mode) after a random access problem occurs a specified quantity of times.
  • the UE may perform a detach and attach procedure with the LTE cell, indicating no DCNR support. Additionally, or alternatively, the UE may perform a TAU procedure with the LTE cell, indicating no DCNR support. The UE may then transmit a service request to the LTE cell and reenter a PS data transfer state. As a result, the UE may restore data connectivity after one or more random access problems with an NR cell.
  • an NSA mode e.g., LTE only mode
  • Fig. 4 shows performing the detach and attach procedure to restore data connectivity.
  • the UE may determine that a count of random access failures satisfies a failure count threshold (e.g., Max_Failure) .
  • the count of random access failures may include counting SCG failure messages that the UE transmits with a random access problem failure type. If the count does not satisfy the failure count threshold, the UE may repeat the procedure for adding the SCG.
  • the count of random access failures is determined during a timer that is set to a particular duration of time and/or is reset when Internet access is restored.
  • the UE may exit the procedure loop and perform a detach and attach procedure to fall back to the NSA network from the NR cell. For example, as shown by reference number 410, the UE may transmit a detach request, and as shown by reference number 415, the UE may receive a detach accept message. The UE may then attempt a new attachment to the LTE cell. As shown by reference number 420, the UE may transmit an attach request to the LTE cell. The UE may transmit the attach request based at least in part on receiving the detach accept message. The request may indicate no support for DCNR. As shown by reference number 425, the UE may receive an attach accept message. In some aspects, the attach request may involve or may follow a random access channel procedure.
  • the detach and attach procedure may avoid adding the SCG.
  • the UE may transmit a service request to the LTE cell, as shown by reference number 430.
  • the UE may reenter a PS data transfer state, as shown by reference number 435, and transfer data.
  • the UE is able to transfer data and saves power, processing resources, and signaling resources by not repeatedly adding an SCG that will fail.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure.
  • Fig. 5 includes some signals that are in the signaling diagram shown in Fig. 3.
  • Fig. 5 shows performing a TAU procedure to restore data connectivity. For example, if the count does satisfy the failure count threshold, the UE may exit the procedure loop and perform a TAU procedure with the LTE cell to fall back to the NSA network.
  • the TAU procedure is a procedure applicable to LTE networks and normally updates a location of the UE within an LTE network. If the NR cell and the LTE cell are maintained by the same operator, the UE does not need a new registration and a TAU procedure is sufficient to attach the UE to the LTE cell. By falling back to the LTE cell, the UE may avoid repeated SCG failures, and the UE may restore data connectivity.
  • the UE may transmit a TAU request to the LTE cell, as shown by reference number 505, and receive a TAU accept message, as shown by reference number 510.
  • the TAU request may include information related to evolved packet system bearers, UE identification information, a UE capability, and/or the like.
  • the TAU request may indicate no UE capability for DCNR, which may enable the UE to return to a PS data transfer state with the NSA network.
  • the UE may transmit a service request to the LTE cell to be able to transfer data, as shown by reference number 520.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like) performs operations associated with restoring data connectivity after random access problems in an NSA network.
  • the UE e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like
  • performs operations associated with restoring data connectivity after random access problems in an NSA network e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like.
  • process 600 may include determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG (block 610) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 600 may include performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold (block 620) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • determining that the count of random access failures satisfies the failure count threshold includes determining a random access failure based at least in part on determining that no response is received after transmitting a random access preamble.
  • determining that the count of random access failures satisfies the failure count threshold includes determining that the count of random access failures satisfies the failure count threshold before expiration of a timer.
  • performing the detach and attach procedure includes transmitting a detach request to the cell and transmitting an attach request to the cell based at least in part on receiving a detach accept message from the cell.
  • the attach request indicates that the UE does not support DCNR.
  • process 600 includes transmitting a service request to the cell.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 700 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like) performs operations associated with restoring data connectivity after random access problems in an NSA network.
  • the UE e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like
  • performs operations associated with restoring data connectivity after random access problems in an NSA network e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like.
  • process 700 may include determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG (block 710) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 700 may include performing a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold (block 720) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • determining that the count of random access failures satisfies the failure count threshold includes determining a random access failure based at least in part on determining that no response is received after transmitting a random access preamble.
  • determining that the count of random access failures satisfies the failure count threshold includes determining that the count of random access failures satisfies the failure count threshold before expiration of a timer.
  • performing the TAU procedure includes transmitting a TAU request to the cell and receiving a TAU accept message.
  • the TAU request indicates that the UE does not support DCNR.
  • process 700 includes transmitting a service request to the cell.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software.
  • a processor is implemented in hardware, software, and/or a combination of hardware and software.
  • Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group. The UE may perform a detach and attach procedure or a tracking area update procedure with the cell based at least in part, on the determining that the count of random access failures satisfies the failure count threshold. Numerous other aspects are provided.

Description

RESTORATION OF DATA CONNECTIVITY AFTER RANDOM ACCESS PROBLEM IN NON-STANDALONE NETWORK
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for restoring data connectivity after a random access problem in a non-standalone network.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level.  New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining, while registered with a non-standalone (NSA) network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group (SCG) . The method may include performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
In some aspects, a method of wireless communication, performed by a UE, may include determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG. The method may include performing a tracking area update (TAU) procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
In some aspects, a UE for wireless communication may include memory and one or more processors coupled to the memory. For example, the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory. The memory may include instructions executable by the one or more processors to cause the UE to determine, while registered with an NSA network, that a  count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and perform a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
In some aspects, a UE for wireless communication may include memory and one or more processors coupled to the memory. For example, the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory. The memory may include instructions executable by the one or more processors to cause the UE to determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group, and perform a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the UE to determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and perform a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a UE, may cause the UE to determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and perform a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
In some aspects, an apparatus for wireless communication may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and means for performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
In some aspects, an apparatus for wireless communication may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, and means for performing a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of a random access problem in a non-standalone (NSA) network, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure.
Fig. 5 is a diagram illustrating an example of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure.
Fig. 6 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
Fig. 7 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three)  cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing,  smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure  (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may  condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to  controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 4-7.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with restoring data connectivity after a random access problem in a non-standalone (NSA) network, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 600 of Fig. 6, process 700 of Fig. 7, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group (SCG) , means for performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor  280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, UE 120 may include means for determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, means for performing a tracking area update (TAU) procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of a random access problem in an NSA network, in accordance with various aspects of the present disclosure. Fig. 3 shows a signaling diagram for a UE (e.g., a UE 120 depicted in Figs. 1 and 2) registered in the NSA network.
The NSA network may be supported by existing LTE infrastructure and provide access to the Internet for the UE. As shown by reference number 305, the UE may attach to an LTE cell and transfer data in a packet switched (PS) data transfer state.
The UE may seek to enhance a user experience by accessing a 5G (NR) data service, which is faster and has additional capabilities. The UE may have prepared to access the NR data service by indicating support for dual connectivity with New Radio (DCNR) when the UE attached to the LTE cell. The UE may access the NR data service by adding an SCG provided by an NR cell. To add the SCG, the UE may transmit a service request or an NR measurement report to the LTE cell. The LTE cell may use a radio resource control (RRC) connection reconfiguration process to connect the UE to the NR cell. For example, as shown by reference number 310, the network may transmit an RRC connection reconfiguration message identifying the NR cell. As shown by reference number 315, the UE may transmit an RRC connection reconfiguration complete message. The UE has now added the SCG for the NR data service by connecting to the NR cell. However, the SCG may fail right after being added. As shown by reference number 320, signals from the NR cell may have a poor signal-to-noise ratio (SNR) or signal-to-noise-plus-interference ratio (SINR) due to  severe interference, or there may be a significant drop in reference signal received power (RSRP) .
The UE may determine that the SCG failed because there is a random access problem. When the UE transmits a random access preamble to establish an RRC connection, no response may be received during an expected time period and/or after a certain quantity of attempts. As shown by reference number 325, the UE may transmit an SCG failure information NR message that indicates a random access problem as a failure type. As shown by reference number 330, the UE is not able to transfer any data. The UE may be trapped in a procedure loop of performing an RRC connection reconfiguration process to add the SCG and determining that a random access problem caused the SCG to fail. The UE is not able to transfer data and wastes power, processing resources, and signaling resources by repeatedly adding an SCG that fails.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure. Fig. 4 includes some signals that are in the signaling diagram shown in Fig. 3.
According to various aspects described herein, the UE may address SCG failure by falling back to an NSA mode (e.g., LTE only mode) after a random access problem occurs a specified quantity of times. In some aspects, the UE may perform a detach and attach procedure with the LTE cell, indicating no DCNR support. Additionally, or alternatively, the UE may perform a TAU procedure with the LTE cell, indicating no DCNR support. The UE may then transmit a service request to the LTE cell and reenter a PS data transfer state. As a result, the UE may restore data connectivity after one or more random access problems with an NR cell.
Fig. 4 shows performing the detach and attach procedure to restore data connectivity. As shown by reference number 405, the UE may determine that a count of random access failures satisfies a failure count threshold (e.g., Max_Failure) . In some aspects, the count of random access failures may include counting SCG failure messages that the UE transmits with a random access problem failure type. If the count does not satisfy the failure count threshold, the UE may repeat the procedure for adding the SCG. In some aspects, the count of random access failures is determined during a  timer that is set to a particular duration of time and/or is reset when Internet access is restored.
In some aspects, if the count does satisfy the failure count threshold, the UE may exit the procedure loop and perform a detach and attach procedure to fall back to the NSA network from the NR cell. For example, as shown by reference number 410, the UE may transmit a detach request, and as shown by reference number 415, the UE may receive a detach accept message. The UE may then attempt a new attachment to the LTE cell. As shown by reference number 420, the UE may transmit an attach request to the LTE cell. The UE may transmit the attach request based at least in part on receiving the detach accept message. The request may indicate no support for DCNR. As shown by reference number 425, the UE may receive an attach accept message. In some aspects, the attach request may involve or may follow a random access channel procedure.
The detach and attach procedure may avoid adding the SCG. After attaching to the NSA network, the UE may transmit a service request to the LTE cell, as shown by reference number 430. The UE may reenter a PS data transfer state, as shown by reference number 435, and transfer data. The UE is able to transfer data and saves power, processing resources, and signaling resources by not repeatedly adding an SCG that will fail.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
Fig. 5 is a diagram illustrating an example 500 of restoring data connectivity after a random access problem in an NSA network, in accordance with various aspects of the present disclosure. Fig. 5 includes some signals that are in the signaling diagram shown in Fig. 3.
Fig. 5 shows performing a TAU procedure to restore data connectivity. For example, if the count does satisfy the failure count threshold, the UE may exit the procedure loop and perform a TAU procedure with the LTE cell to fall back to the NSA network. The TAU procedure is a procedure applicable to LTE networks and normally updates a location of the UE within an LTE network. If the NR cell and the LTE cell are maintained by the same operator, the UE does not need a new registration and a TAU procedure is sufficient to attach the UE to the LTE cell. By falling back to the LTE cell, the UE may avoid repeated SCG failures, and the UE may restore data connectivity.
In more detail, the UE may transmit a TAU request to the LTE cell, as shown by reference number 505, and receive a TAU accept message, as shown by reference number 510. The TAU request may include information related to evolved packet system bearers, UE identification information, a UE capability, and/or the like. The TAU request may indicate no UE capability for DCNR, which may enable the UE to return to a PS data transfer state with the NSA network. As shown by reference number 515, the UE may transmit a service request to the LTE cell to be able to transfer data, as shown by reference number 520.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
Fig. 6 is a diagram illustrating an example process 600 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 600 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like) performs operations associated with restoring data connectivity after random access problems in an NSA network.
As shown in Fig. 6, in some aspects, process 600 may include determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG (block 610) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold (block 620) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may perform a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, determining that the count of random access failures satisfies the failure count threshold includes determining a random access failure based  at least in part on determining that no response is received after transmitting a random access preamble.
In a second aspect, alone or in combination with the first aspect, determining that the count of random access failures satisfies the failure count threshold includes determining that the count of random access failures satisfies the failure count threshold before expiration of a timer.
In a third aspect, alone or in combination with one or more of the first and second aspects, performing the detach and attach procedure includes transmitting a detach request to the cell and transmitting an attach request to the cell based at least in part on receiving a detach accept message from the cell.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the attach request indicates that the UE does not support DCNR.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 600 includes transmitting a service request to the cell.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 700 is an example where the UE (e.g., a UE 120 depicted in Figs. 1 and 2, the UE depicted in Figs. 4 and 5, and/or the like) performs operations associated with restoring data connectivity after random access problems in an NSA network.
As shown in Fig. 7, in some aspects, process 700 may include determining, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG (block 710) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine, while registered with an NSA network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding an SCG, as described above.
As further shown in Fig. 7, in some aspects, process 700 may include performing a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold (block 720) . For example, the UE (e.g., using receive processor 258, transmit processor 264,  controller/processor 280, memory 282, and/or the like) may perform a TAU procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold, as described above.
Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, determining that the count of random access failures satisfies the failure count threshold includes determining a random access failure based at least in part on determining that no response is received after transmitting a random access preamble.
In a second aspect, alone or in combination with the first aspect, determining that the count of random access failures satisfies the failure count threshold includes determining that the count of random access failures satisfies the failure count threshold before expiration of a timer.
In a third aspect, alone or in combination with one or more of the first and second aspects, performing the TAU procedure includes transmitting a TAU request to the cell and receiving a TAU accept message.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the TAU request indicates that the UE does not support DCNR.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 700 includes transmitting a service request to the cell.
Although Fig. 7 shows example blocks of process 700, in some aspects, process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, software, and/or a combination of hardware and software. Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules,  applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, software, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is  used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (18)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  2. The method of claim 1, wherein determining that the count of random access failures satisfies the failure count threshold includes determining a random access failure based at least in part on determining that no response is received after transmitting a random access preamble.
  3. The method of claim 1, wherein determining that the count of random access failures satisfies the failure count threshold includes determining that the count of random access failures satisfies the failure count threshold before expiration of a timer.
  4. The method of claim 1, wherein performing the detach and attach procedure includes transmitting a detach request to the cell and transmitting an attach request to the cell based at least in part on receiving a detach accept message from the cell.
  5. The method of claim 4, wherein the attach request indicates that the UE does not support dual connectivity with New Radio.
  6. The method of claim 1, further comprising transmitting a service request to the cell.
  7. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    performing a tracking area update (TAU) procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  8. The method of claim 7, wherein determining that the count of random access failures satisfies the failure count threshold includes determining a random access failure based at least in part on determining that no response is received after transmitting a random access preamble.
  9. The method of claim 7, wherein determining that the count of random access failures satisfies the failure count threshold includes determining that the count of random access failures satisfies the failure count threshold before expiration of a timer.
  10. The method of claim 7, wherein performing the TAU procedure includes transmitting a TAU request to the cell and receiving a TAU accept message.
  11. The method of claim 10, wherein the TAU request indicates that the UE does not support dual connectivity with New Radio.
  12. The method of claim 7, further comprising transmitting a service request to the cell.
  13. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors coupled to the memory, the memory including instructions executable by the one or more processors to cause the UE to:
    determine, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    perform a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  14. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors coupled to the memory, the memory including instructions executable by the one or more processors to cause the UE to:
    determine, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    perform a tracking area update procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  15. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    determine, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    perform a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  16. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    determine, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    perform a tracking area update procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  17. An apparatus for wireless communication, comprising:
    means for determining, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    means for performing a detach and attach procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
  18. An apparatus for wireless communication, comprising:
    means for determining, while registered with a non-standalone network, that a count of random access failures for a cell satisfies a failure count threshold, based at least in part on adding a secondary cell group; and
    means for performing a tracking area update procedure with the cell based at least in part on the determining that the count of random access failures satisfies the failure count threshold.
PCT/CN2020/089954 2020-05-13 2020-05-13 Restoration of data connectivity after random access problem in non-standalone network WO2021226859A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089954 WO2021226859A1 (en) 2020-05-13 2020-05-13 Restoration of data connectivity after random access problem in non-standalone network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/089954 WO2021226859A1 (en) 2020-05-13 2020-05-13 Restoration of data connectivity after random access problem in non-standalone network

Publications (1)

Publication Number Publication Date
WO2021226859A1 true WO2021226859A1 (en) 2021-11-18

Family

ID=78526166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089954 WO2021226859A1 (en) 2020-05-13 2020-05-13 Restoration of data connectivity after random access problem in non-standalone network

Country Status (1)

Country Link
WO (1) WO2021226859A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3462804A1 (en) * 2017-09-28 2019-04-03 INTEL Corporation Signaling radio bearer type 3 (srb3) and secondary cell group (scg) failure handling
US20190124572A1 (en) * 2017-10-20 2019-04-25 Comcast Cable Communications, Llc Non-Access Stratum Capability Information
WO2019099463A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Supplementary uplink in wireless systems
EP3582541A1 (en) * 2017-03-23 2019-12-18 LG Electronics Inc. -1- Method and device for indicating type of bearer used for next message in wireless communication system
CN110679179A (en) * 2017-06-02 2020-01-10 鸿颖创新有限公司 Method, device and system for service-driven mobility management
WO2020017886A1 (en) * 2018-07-17 2020-01-23 Samsung Electronics Co., Ltd. Method and system for providing simultaneous voice and data services in en-dc capable user equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3582541A1 (en) * 2017-03-23 2019-12-18 LG Electronics Inc. -1- Method and device for indicating type of bearer used for next message in wireless communication system
CN110679179A (en) * 2017-06-02 2020-01-10 鸿颖创新有限公司 Method, device and system for service-driven mobility management
EP3462804A1 (en) * 2017-09-28 2019-04-03 INTEL Corporation Signaling radio bearer type 3 (srb3) and secondary cell group (scg) failure handling
US20190124572A1 (en) * 2017-10-20 2019-04-25 Comcast Cable Communications, Llc Non-Access Stratum Capability Information
WO2019099463A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Supplementary uplink in wireless systems
WO2020017886A1 (en) * 2018-07-17 2020-01-23 Samsung Electronics Co., Ltd. Method and system for providing simultaneous voice and data services in en-dc capable user equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI; HISILICON: "Backhaul RLF Recovery", 3GPP DRAFT; R2-2000522, vol. RAN WG2, 14 February 2020 (2020-02-14), pages 1 - 8, XP051849103 *

Similar Documents

Publication Publication Date Title
EP3874863A1 (en) Configuration of resource patterns for integrated access and backhaul
EP3967091A1 (en) Scheduling configuration for multi-panel operation based on user equipment multi-panel capability
WO2021056008A1 (en) Transmission of a beam failure recovery request via a secondary cell used for carrier aggregation
WO2021056012A1 (en) Beam failure detection reference signal selection for secondary cells
WO2021237547A1 (en) Attach request for disabling new radio with dual subscriber identity modules
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021223053A1 (en) Handling repeated radio link failure associated with a dual connectivity mode
WO2021138753A1 (en) Techniques for indicating a multi-subscriber identity module capability of a device to a network
WO2021102465A1 (en) Techniques for sidelink channel state information reporting
WO2021055351A1 (en) Prioritizing procedures for transmission of a beam failure recovery request via a secondary cell used for carrier aggregation
WO2020167555A1 (en) Access barring and radio resource control connection in new radio to long-term evolution voice fallback
WO2021226859A1 (en) Restoration of data connectivity after random access problem in non-standalone network
WO2021217677A1 (en) Restoration of data connectivity after radio link failure in standalone network
WO2021237683A1 (en) Resolution of radio link failure due to user equipment capability
WO2021203346A1 (en) New radio data connectivity from non-standalone network
WO2021207917A1 (en) Restoration of data connectivity after failure by rrc connection releases in non-standalone network
WO2021212452A1 (en) Restoration of data connectivity upon bearer removal after handover
WO2021223202A1 (en) Restoration of data service with dual subscriber identity modules
WO2021237685A1 (en) Resolution of new radio registration failure
WO2021243689A1 (en) Recovery from radio link failure
WO2021217473A1 (en) Restoration of data connectivity after radio link failure in standalone network
WO2021232179A1 (en) Restoration of vehicle to everything service
WO2021237684A1 (en) Resolution of new radio registration failure for dual subscriber identity modules
WO2021208074A1 (en) Data service with dual subscriber information modules
WO2021232331A1 (en) Restoration of new radio data service for dual subscriber identity modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935326

Country of ref document: EP

Kind code of ref document: A1