WO2021237685A1 - Resolution of new radio registration failure - Google Patents

Resolution of new radio registration failure Download PDF

Info

Publication number
WO2021237685A1
WO2021237685A1 PCT/CN2020/093289 CN2020093289W WO2021237685A1 WO 2021237685 A1 WO2021237685 A1 WO 2021237685A1 CN 2020093289 W CN2020093289 W CN 2020093289W WO 2021237685 A1 WO2021237685 A1 WO 2021237685A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
codebook
incorrect
determining
codebook configuration
Prior art date
Application number
PCT/CN2020/093289
Other languages
French (fr)
Inventor
Tianya LIN
Hao Zhang
Jian Li
Jianfu ZHANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/093289 priority Critical patent/WO2021237685A1/en
Publication of WO2021237685A1 publication Critical patent/WO2021237685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for resolving New Radio registration failure.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining, while registered in a non-standalone (NSA) mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for a New Radio (NR) data service to the cell.
  • the method may include adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE.
  • NSA non-standalone
  • a UE for wireless communication may include memory and one or more processors coupled to the memory.
  • the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory.
  • the memory may include instructions executable by the one or more processors to cause the UE to determine, while registered in an NSA mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for an NR data service to the cell, and add the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE.
  • an apparatus for wireless communication may include means for determining, while registered in an NSA mode, that a codebook configuration for a cell is incorrect for the apparatus, based at least in part on transmitting a registration request for an NR data service to the cell, and means for adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the apparatus.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of resolving New Radio registration failure, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • IoT Internet-of-Things
  • NB-IoT narrowband internet of things
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-4.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-4.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with resolving NR registration failure, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining, while registered in a non-standalone (NSA) mode, that a codebook configuration received from a cell is incorrect, based at least in part on transmitting a registration request for an NR data service to the cell, means for adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration received from the cell is incorrect, and/or the like.
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • An NSA network may be supported by existing LTE infrastructure and may provide access to the Internet for the UE.
  • a UE may attach to an LTE cell (e.g., LTE anchor cell) and transfer data in a packet switched data transfer state.
  • the UE may seek to enhance a user experience by accessing a 5G (NR) data service, which is faster and has additional capabilities.
  • the UE may access the NR data service by registering with an NR 5G cell. This may include establishing a radio resource control (RRC) connection with the NR 5G cell and transmitting a registration request for the NR data service.
  • RRC radio resource control
  • the UE may receive a registration failure message (e.g., RRC reconfiguration message) from the NR 5G cell.
  • the registration failure message may indicate that registration failed due to a codebook configuration mismatch.
  • a transmission configuration for a PUSCH may indicate to use a codebook
  • a usage configuration for an SRS (or for an SRS resource set) may indicate to not use a codebook, or the PUSCH does not use a codebook and the SRS uses a codebook.
  • a codebook is a set of predetermined weight matrix candidates for precoding, which increases a quality of signal reception by multiplying signals before transmission with weights.
  • the codebook may be used to increase spectral efficiency (number of data bits that can be transmitted per unit time and unit frequency band) for uplink transmissions by the UE.
  • the PUSCH and the SRS may use the same codebook.
  • Codebook-based precoding may accommodate up to 12 layers of multi-user multiple input multiple output uplink transmissions.
  • Non-codebook based transmissions are designed to assume that beam reciprocity (transmitting beam is based on information derived from received beam) is supported by the UE.
  • the UE may transmit another registration request and receive another registration failure message.
  • the UE may fail to obtain the NR data service and may waste time, power, processing resources, and signaling resources transmitting registration requests that are unsuccessful.
  • Some networks may configure a transmission configuration for a PUSCH to only be codebook-based, and this may cause a radio link failure for the UE.
  • the UE may resolve registration failure due to codebook configuration mismatches by barring the cell from registration requests for the NR data service for a period of time. For example, the UE may add the cell to a codebook bar cell list, or a list of cells to which the UE will not transmit registration requests for the NR data service. By using the codebook bar cell list, the UE may avoid repeated registration requests to a particular cell. If the UE determines that a cell is on the codebook bar cell list, the UE may reselect to an NR 5G cell that is not on the codebook bar cell list and transmit a registration request to that cell for the NR data service. As a result, the UE may resolve the registration failure, access the NR data service, and save time, power, processing resources, and signaling resources. In some aspects, cells on the codebook bar cell list may be removed from the list after a specified amount of time.
  • Fig. 3 is a diagram illustrating an example 300 of resolving NR registration failure, in accordance with various aspects of the present disclosure.
  • Fig. 3 shows a signaling diagram for a UE (e.g., a UE 120 depicted in Figs. 1 and 2) registered in an NSA mode.
  • a UE e.g., a UE 120 depicted in Figs. 1 and 2 registered in an NSA mode.
  • the UE may determine to register with an NR 5G cell (e.g., Cell 1) .
  • the UE may have established an RRC connection with the NR 5G cell.
  • the UE may determine whether Cell 1 is in a codebook bar cell list. If the UE determines that Cell 1 is in the codebook bar cell list, the UE may reselect to and transmit a registration request to another cell (e.g., Cell 2) , as shown by reference number 335.
  • the UE may receive a registration accept message (codebook match) from Cell 2, as shown by reference number 340.
  • the UE may access the NR data service with Cell 2.
  • the UE may transmit a registration request to Cell 1, as shown by reference number 315. However, there may be an issue with Cell 1, and the UE may determine that a codebook configuration for the cell is incorrect for the UE. For example, the UE may receive a registration failure message, indicating a codebook mismatch, as shown by reference number 320. In some aspects, the UE may receive codebook configuration information from Cell 1 and determine that a codebook configuration for the cell is incorrect for the UE based at least in part on a result of comparing a codebook configuration received for a PUSCH and a codebook configuration received for an SRS. The UE may receive the codebook configuration (or information indicating the codebook configuration) for the PUSCH in the same RRC message or a different RRC message as the codebook configuration for the SRS.
  • a codebook configuration is incorrect if there is a mismatch between codebook usage (codebook or non-codebook) for the PUSCH and codebook usage (codebook or non-codebook) for the SRS (or SRS resource sets) . If there is a codebook configuration mismatch (one of the PUSCH or the SRS is codebook, the other is non-codebook) , the UE may add Cell 1 to the codebook bar cell list, as shown by reference number 325. As shown by reference number 330, the UE may determine to reselect to another cell (Cell 2) based at least in part on adding Cell 1 to the codebook bar cell list.
  • Cell 2 another cell
  • the UE may transmit a registration request to Cell 2, as shown by reference number 335, and receive a registration accept message (codebook match) , as shown by reference number 340. In some aspects, this may involve establishing an RRC connection to Cell 2.
  • the UE may remove a cell from the codebook bar cell list upon expiration of a timer for being on the codebook bar cell list.
  • the timer may be set to a specified time duration.
  • the UE may remove a cell from the codebook bar cell list based at least in part on an instruction from a base station to remove the cell.
  • all cells may be removed from the codebook bar cell list if the UE is powered off, rebooted, or if a subscriber identification module (SIM) card is removed from the UE.
  • SIM subscriber identification module
  • Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
  • Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 400 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with resolving NR registration failure.
  • the UE e.g., UE 120 and/or the like
  • process 400 may include determining, while registered in an NSA mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for an NR data service to the cell (block 410) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • process 400 may include adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE (block 420) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the determining that the codebook configuration is incorrect includes receiving a registration failure message from the cell indicating an incorrect codebook configuration for the UE.
  • the determining that the codebook configuration is incorrect includes receiving a registration failure message from the cell indicating a codebook configuration mismatch.
  • the determining that the codebook configuration is incorrect includes determining that a codebook configuration received for a physical uplink shared channel (PUSCH) does not match a codebook configuration received for a sounding reference signal (SRS) .
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • the determining that the codebook configuration received for the PUSCH does not match the codebook configuration received for the SRS includes determining that a transmission configuration for the PUSCH indicates to use a codebook and a usage configuration for the SRS indicates not to use a codebook.
  • the determining that the codebook configuration received for the PUSCH does not match the codebook configuration received for the SRS includes determining that a transmission configuration for the PUSCH indicates not to use a codebook and a usage configuration for the SRS indicates to use a codebook.
  • process 400 includes removing the cell from the list based at least in part on receiving an instruction to remove the cell from the list.
  • process 400 includes removing the cell from the list based at least in part on expiration of a specified time duration for being on the list.
  • process 400 includes removing all cells from the list based at least in part on one of the UE powering off or removal of a subscriber identification module from the UE.
  • process 400 includes transmitting a registration request for an NR data service to another cell that is not on the list based at least in part on adding the cell to the list.
  • process 400 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
  • the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software.
  • a processor is implemented in hardware, software, and/or a combination of hardware and software.
  • Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine, while registered in a non-standalone mode, that a codebook configuration received from a cell is incorrect, based at least in part on transmitting a registration request for a New Radio (NR) data service to the cell. The UE may add the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration received from the cell is incorrect. Numerous other aspects are provided.

Description

RESOLUTION OF NEW RADIO REGISTRATION FAILURE
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for resolving New Radio registration failure.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .  NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining, while registered in a non-standalone (NSA) mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for a New Radio (NR) data service to the cell. The method may include adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE.
In some aspects, a UE for wireless communication may include memory and one or more processors coupled to the memory. For example, the one or more processors may be operatively, electronically, communicatively, or otherwise coupled to the memory. The memory may include instructions executable by the one or more processors to cause the UE to determine, while registered in an NSA mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for an NR data service to the cell, and add the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE.
In some aspects, an apparatus for wireless communication may include means for determining, while registered in an NSA mode, that a codebook configuration for a cell is incorrect for the apparatus, based at least in part on transmitting a  registration request for an NR data service to the cell, and means for adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the apparatus.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of resolving New Radio registration failure, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example process performed, for example, by a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the  example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered  Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received  from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-4.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-4.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with resolving NR registration failure, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor  280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 400 of Fig. 4, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for determining, while registered in a non-standalone (NSA) mode, that a codebook configuration received from a cell is incorrect, based at least in part on transmitting a registration request for an NR data service to the cell, means for adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration received from the cell is incorrect, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
An NSA network may be supported by existing LTE infrastructure and may provide access to the Internet for the UE. A UE may attach to an LTE cell (e.g., LTE anchor cell) and transfer data in a packet switched data transfer state. The UE may seek to enhance a user experience by accessing a 5G (NR) data service, which is faster and has additional capabilities. The UE may access the NR data service by registering with an NR 5G cell. This may include establishing a radio resource control (RRC) connection with the NR 5G cell and transmitting a registration request for the NR data service. However, the UE may receive a registration failure message (e.g., RRC reconfiguration message) from the NR 5G cell. The registration failure message may  indicate that registration failed due to a codebook configuration mismatch. For example, a transmission configuration for a PUSCH may indicate to use a codebook, and a usage configuration for an SRS (or for an SRS resource set) may indicate to not use a codebook, or the PUSCH does not use a codebook and the SRS uses a codebook. A codebook is a set of predetermined weight matrix candidates for precoding, which increases a quality of signal reception by multiplying signals before transmission with weights. The codebook may be used to increase spectral efficiency (number of data bits that can be transmitted per unit time and unit frequency band) for uplink transmissions by the UE. The PUSCH and the SRS may use the same codebook. Codebook-based precoding may accommodate up to 12 layers of multi-user multiple input multiple output uplink transmissions. Non-codebook based transmissions are designed to assume that beam reciprocity (transmitting beam is based on information derived from received beam) is supported by the UE. The UE may transmit another registration request and receive another registration failure message. The UE may fail to obtain the NR data service and may waste time, power, processing resources, and signaling resources transmitting registration requests that are unsuccessful. Some networks may configure a transmission configuration for a PUSCH to only be codebook-based, and this may cause a radio link failure for the UE.
According to various aspects described herein, the UE may resolve registration failure due to codebook configuration mismatches by barring the cell from registration requests for the NR data service for a period of time. For example, the UE may add the cell to a codebook bar cell list, or a list of cells to which the UE will not transmit registration requests for the NR data service. By using the codebook bar cell list, the UE may avoid repeated registration requests to a particular cell. If the UE determines that a cell is on the codebook bar cell list, the UE may reselect to an NR 5G cell that is not on the codebook bar cell list and transmit a registration request to that cell for the NR data service. As a result, the UE may resolve the registration failure, access the NR data service, and save time, power, processing resources, and signaling resources. In some aspects, cells on the codebook bar cell list may be removed from the list after a specified amount of time.
Fig. 3 is a diagram illustrating an example 300 of resolving NR registration failure, in accordance with various aspects of the present disclosure. Fig. 3 shows a signaling diagram for a UE (e.g., a UE 120 depicted in Figs. 1 and 2) registered in an NSA mode.
As shown by reference number 305, the UE may determine to register with an NR 5G cell (e.g., Cell 1) . The UE may have established an RRC connection with the NR 5G cell. As shown by reference number 310, the UE may determine whether Cell 1 is in a codebook bar cell list. If the UE determines that Cell 1 is in the codebook bar cell list, the UE may reselect to and transmit a registration request to another cell (e.g., Cell 2) , as shown by reference number 335. The UE may receive a registration accept message (codebook match) from Cell 2, as shown by reference number 340. The UE may access the NR data service with Cell 2.
In some aspects, if the UE determines that Cell 1 is not in the codebook bar cell list, the UE may transmit a registration request to Cell 1, as shown by reference number 315. However, there may be an issue with Cell 1, and the UE may determine that a codebook configuration for the cell is incorrect for the UE. For example, the UE may receive a registration failure message, indicating a codebook mismatch, as shown by reference number 320. In some aspects, the UE may receive codebook configuration information from Cell 1 and determine that a codebook configuration for the cell is incorrect for the UE based at least in part on a result of comparing a codebook configuration received for a PUSCH and a codebook configuration received for an SRS. The UE may receive the codebook configuration (or information indicating the codebook configuration) for the PUSCH in the same RRC message or a different RRC message as the codebook configuration for the SRS.
In some aspects, a codebook configuration is incorrect if there is a mismatch between codebook usage (codebook or non-codebook) for the PUSCH and codebook usage (codebook or non-codebook) for the SRS (or SRS resource sets) . If there is a codebook configuration mismatch (one of the PUSCH or the SRS is codebook, the other is non-codebook) , the UE may add Cell 1 to the codebook bar cell list, as shown by reference number 325. As shown by reference number 330, the UE may determine to reselect to another cell (Cell 2) based at least in part on adding Cell 1 to the codebook bar cell list. For example, as described earlier, the UE may transmit a registration request to Cell 2, as shown by reference number 335, and receive a registration accept message (codebook match) , as shown by reference number 340. In some aspects, this may involve establishing an RRC connection to Cell 2.
In some aspects, the UE may remove a cell from the codebook bar cell list upon expiration of a timer for being on the codebook bar cell list. The timer may be set to a specified time duration. In some aspects, the UE may remove a cell from the  codebook bar cell list based at least in part on an instruction from a base station to remove the cell. In some aspects, all cells may be removed from the codebook bar cell list if the UE is powered off, rebooted, or if a subscriber identification module (SIM) card is removed from the UE.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with respect to Fig. 3.
Fig. 4 is a diagram illustrating an example process 400 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 400 is an example where the UE (e.g., UE 120 and/or the like) performs operations associated with resolving NR registration failure.
As shown in Fig. 4, in some aspects, process 400 may include determining, while registered in an NSA mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for an NR data service to the cell (block 410) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine, while registered in an NSA mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for an NR data service to the cell, as described above.
As further shown in Fig. 4, in some aspects, process 400 may include adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE (block 420) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may add the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE, as described above.
Process 400 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the determining that the codebook configuration is incorrect includes receiving a registration failure message from the cell indicating an incorrect codebook configuration for the UE.
In a second aspect, alone or in combination with the first aspect, the determining that the codebook configuration is incorrect includes receiving a  registration failure message from the cell indicating a codebook configuration mismatch.
In a third aspect, alone or in combination with one or more of the first and second aspects, the determining that the codebook configuration is incorrect includes determining that a codebook configuration received for a physical uplink shared channel (PUSCH) does not match a codebook configuration received for a sounding reference signal (SRS) .
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the determining that the codebook configuration received for the PUSCH does not match the codebook configuration received for the SRS includes determining that a transmission configuration for the PUSCH indicates to use a codebook and a usage configuration for the SRS indicates not to use a codebook.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the determining that the codebook configuration received for the PUSCH does not match the codebook configuration received for the SRS includes determining that a transmission configuration for the PUSCH indicates not to use a codebook and a usage configuration for the SRS indicates to use a codebook.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 400 includes removing the cell from the list based at least in part on receiving an instruction to remove the cell from the list.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 400 includes removing the cell from the list based at least in part on expiration of a specified time duration for being on the list.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, process 400 includes removing all cells from the list based at least in part on one of the UE powering off or removal of a subscriber identification module from the UE.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 400 includes transmitting a registration request for an NR data service to another cell that is not on the list based at least in part on adding the cell to the list.
Although Fig. 4 shows example blocks of process 400, in some aspects, process 400 may include additional blocks, fewer blocks, different blocks, or differently  arranged blocks than those depicted in Fig. 4. Additionally, or alternatively, two or more of the blocks of process 400 may be performed in parallel.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, software, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, software, and/or a combination of hardware and software. Software is to be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and/or the like, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, software, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers  to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (13)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining, while registered in a non-standalone mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for a New Radio (NR) data service to the cell; and
    adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE.
  2. The method of claim 1, wherein the determining that the codebook configuration is incorrect includes receiving a registration failure message from the cell indicating an incorrect codebook configuration for the UE.
  3. The method of claim 1, wherein the determining that the codebook configuration is incorrect includes receiving a registration failure message from the cell indicating a codebook configuration mismatch.
  4. The method of claim 1, wherein the determining that the codebook configuration is incorrect includes determining that a codebook configuration received for a physical uplink shared channel (PUSCH) does not match a codebook configuration received for a sounding reference signal (SRS) .
  5. The method of claim 4, wherein the determining that the codebook configuration received for the PUSCH does not match the codebook configuration received for the SRS includes determining that a transmission configuration for the PUSCH indicates to use a codebook and a usage configuration for the SRS indicates not to use a codebook.
  6. The method of claim 4, wherein the determining that the codebook configuration received for the PUSCH does not match the codebook configuration received for the SRS includes determining that a transmission configuration for the PUSCH indicates  not to use a codebook and a usage configuration for the SRS indicates to use a codebook.
  7. The method of claim 1, further comprising removing the cell from the list based at least in part on receiving an instruction to remove the cell from the list.
  8. The method of claim 1, further comprising removing the cell from the list based at least in part on expiration of a specified time duration for being on the list.
  9. The method of claim 1, further comprising removing all cells from the list based at least in part on one of the UE powering off or removal of a subscriber identification module from the UE.
  10. The method of claim 1, further comprising transmitting a registration request for an NR data service to another cell that is not on the list based at least in part on adding the cell to the list.
  11. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    determine, while registered in a non-standalone mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for a New Radio (NR) data service to the cell; and
    add the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the UE.
  12. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory including instructions executable by the one or more processors to cause the UE to:
    determine, while registered in a non-standalone mode, that a codebook configuration for a cell is incorrect for the UE, based at least in part on transmitting a registration request for a New Radio (NR) data service to the cell; and
    add the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration received from the cell is incorrect.
  13. An apparatus for wireless communication, comprising:
    means for determining, while registered in a non-standalone mode, that a codebook configuration for a cell is incorrect for the apparatus, based at least in part on transmitting a registration request for a New Radio (NR) data service to the cell; and
    means for adding the cell to a list of one or more cells to which registration requests for the NR data service are barred, based at least in part on determining that the codebook configuration for the cell is incorrect for the apparatus.
PCT/CN2020/093289 2020-05-29 2020-05-29 Resolution of new radio registration failure WO2021237685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093289 WO2021237685A1 (en) 2020-05-29 2020-05-29 Resolution of new radio registration failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093289 WO2021237685A1 (en) 2020-05-29 2020-05-29 Resolution of new radio registration failure

Publications (1)

Publication Number Publication Date
WO2021237685A1 true WO2021237685A1 (en) 2021-12-02

Family

ID=78745484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093289 WO2021237685A1 (en) 2020-05-29 2020-05-29 Resolution of new radio registration failure

Country Status (1)

Country Link
WO (1) WO2021237685A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018013405A1 (en) * 2016-07-15 2018-01-18 Qualcomm Incorporated Registration rejection due to cellular internet of things feature incompatibility
CN110149714A (en) * 2018-02-13 2019-08-20 电信科学技术研究院有限公司 A kind of ascending transmission method, user equipment and the network equipment
US20200053657A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Uplink transmission power allocation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018013405A1 (en) * 2016-07-15 2018-01-18 Qualcomm Incorporated Registration rejection due to cellular internet of things feature incompatibility
CN110149714A (en) * 2018-02-13 2019-08-20 电信科学技术研究院有限公司 A kind of ascending transmission method, user equipment and the network equipment
US20200053657A1 (en) * 2018-08-09 2020-02-13 Lenovo (Singapore) Pte. Ltd. Uplink transmission power allocation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO INC.: "Codebook and non-codebook based transmission for uplink", 3GPP DRAFT; R1-1705717_CODEBOOK AND NON-CODEBOOK BASED TRANSMISSION FOR UPLINK_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170403 - 20170407, 25 March 2017 (2017-03-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051252133 *

Similar Documents

Publication Publication Date Title
WO2021073289A1 (en) Enhanced physical uplink control channel spatial relation information in mac ce
US11871422B2 (en) Frequency allocation for channel state information reference signals
US11641649B2 (en) Transmission of a beam failure recovery request via a secondary cell used for carrier aggregation
WO2021243690A1 (en) Public land mobile network search after protocol data unit rejection
US11533219B2 (en) Prioritizing procedures for transmission of a beam failure recovery request via a secondary cell used for carrier aggregation
WO2021237547A1 (en) Attach request for disabling new radio with dual subscriber identity modules
WO2021253262A1 (en) Processing of two-stage downlink control information
WO2021226982A1 (en) Measurement report offset increase for avoiding ping-pong between long term evolution cells in non-stand-alone mode
WO2021243688A1 (en) Reference signal orthogonality
EP4097856A1 (en) Techniques for indicating beams for user equipment beam reporting
WO2021237685A1 (en) Resolution of new radio registration failure
EP3909170A1 (en) Feedback transmission using multiple access signatures
WO2021237684A1 (en) Resolution of new radio registration failure for dual subscriber identity modules
WO2021237683A1 (en) Resolution of radio link failure due to user equipment capability
WO2021226859A1 (en) Restoration of data connectivity after random access problem in non-standalone network
WO2021237641A1 (en) Resolution of secondary cell group releases for dual subscriber identity modules
WO2021223202A1 (en) Restoration of data service with dual subscriber identity modules
WO2021243689A1 (en) Recovery from radio link failure
WO2021212299A1 (en) Data service with dual subscriber identity modules
WO2021208074A1 (en) Data service with dual subscriber information modules
WO2021212452A1 (en) Restoration of data connectivity upon bearer removal after handover
WO2021203346A1 (en) New radio data connectivity from non-standalone network
WO2021203339A1 (en) Flexible time division duplexing configuration
WO2021232179A1 (en) Restoration of vehicle to everything service
WO2021232331A1 (en) Restoration of new radio data service for dual subscriber identity modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937251

Country of ref document: EP

Kind code of ref document: A1