WO2018168955A1 - 細胞のin vivoでの特性を反映した細胞の反応の評価 - Google Patents

細胞のin vivoでの特性を反映した細胞の反応の評価 Download PDF

Info

Publication number
WO2018168955A1
WO2018168955A1 PCT/JP2018/010054 JP2018010054W WO2018168955A1 WO 2018168955 A1 WO2018168955 A1 WO 2018168955A1 JP 2018010054 W JP2018010054 W JP 2018010054W WO 2018168955 A1 WO2018168955 A1 WO 2018168955A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
rigidity
support
vivo
Prior art date
Application number
PCT/JP2018/010054
Other languages
English (en)
French (fr)
Inventor
真幸 森島
真理 船木
Original Assignee
メカノジェニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メカノジェニック株式会社 filed Critical メカノジェニック株式会社
Priority to JP2019506235A priority Critical patent/JPWO2018168955A1/ja
Publication of WO2018168955A1 publication Critical patent/WO2018168955A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • Non-patent Document 1 It is known that cells existing in a living body recognize and respond to the surrounding physical environment (Non-patent Document 1).
  • Non-Patent Document 2 describes that mesenchymal stem cells are induced into muscle cells and osteoblasts by culturing them in a gel matrix having the same rigidity as the microenvironment of living tissue.
  • Patent Documents 1 and 2 describe that mesenchymal stem cells are induced to a dormant state by culturing them on a gel matrix having the same rigidity as the microenvironment of living tissue.
  • a cell changes a state and the direction of differentiation according to the microenvironment of the surrounding tissue which the cell contacts.
  • JP 2010-532167 A Special table 2010-532166
  • An object of the present invention is to provide an evaluation system capable of expressing in vitro a cell reaction closer to a cell reaction occurring in a living body based on the above-mentioned problem newly found by the inventor. .
  • the present inventor has cultivated cells on a gel or gel matrix having the same rigidity as the microenvironment of the living tissue from which the cells are derived, so It was found that a cell reaction closer to the reaction can be expressed in vitro.
  • the support In order to express the in vivo characteristics of cells in vitro, the support has a rigidity reflecting the rigidity of the surrounding environment recognized by the cells in vivo, and the rigidity is 100 kPa or less in terms of shear modulus Contacting the cells; maintaining the properties of cells that have been introduced and / or expressed in vitro with the properties of cells in vivo; Inputting a signal into a cell in which said property is introduced and / or maintained; Measuring a cell's response to an input signal; (However, the cells do not include mesenchymal stem cells).
  • Item 2. Item 2.
  • the method according to Item 1 wherein the signal is input to the cell by loading the cell with at least one factor selected from the group consisting of a chemical factor, a physical factor, and a biological factor.
  • the chemical factor is at least one selected from the group consisting of compounds, ions, gases, nucleic acids, carbohydrates, lipids, glycoproteins, glycolipids, lipoproteins, amino acids, peptides, proteins, polyphenols, cytokines, and chemokines.
  • Item 3. The method according to Item 1 or 2.
  • the method according to Item 1 or 2 wherein the physical factor is at least one selected from the group consisting of rigidity, pressure, tension, light, radiation, oxygen concentration, pH, and temperature of the environment surrounding the cell.
  • Item 3 The method according to Item 1 or 2, wherein the biological factor is at least one selected from bacteria, fungi, viruses, allergens, human cells, non-human animal cells, and components contained therein.
  • Item 6. Item 6. The method according to any one of Items 1 to 5, wherein the cell is a hepatocyte, and the rigidity of the support is 0.2 to 5 kpa.
  • Item 7. Item 7. The method according to Item 6, wherein the cell response indicates induction of drug-metabolizing enzyme, non-alcoholic steatohepatitis mechanism, or idiopathic liver injury.
  • Item 8. Item 6. The method according to any one of Items 1 to 5, wherein the cell response is the efficacy or toxicity of the factor.
  • Item 9. Item 6.
  • the support has a rigidity reflecting the rigidity of the surrounding environment recognized by the cells in vivo, and the rigidity is 100 kPa or less in terms of shear modulus Contacting the cells; maintaining the properties of cells that have been introduced and / or expressed in vitro with the properties of cells in vivo; Inputting a signal into a cell in which said property is introduced and / or maintained; Contacting a cell with a candidate substance for preventing, treating or ameliorating a disease or disorder prior to the input of a signal, simultaneously with the input of the signal or after the input of the signal; Measuring a cell's response to an input signal; A method for screening a candidate substance for preventing, treating or ameliorating a disease or disorder (however, the cells do not include mesenchymal stem cells).
  • Item 13 The method according to Item 12, wherein the signal is input to the cell by loading the cell with at least one factor selected from the group consisting of a chemical factor, a physical factor, and a biological factor.
  • the chemical factor is at least one selected from the group consisting of compounds, ions, gases, nucleic acids, carbohydrates, lipids, glycoproteins, glycolipids, lipoproteins, amino acids, peptides, proteins, polyphenols, cytokines, and chemokines.
  • the physical factor is at least one selected from the group consisting of rigidity, pressure, tension, light, radiation, oxygen concentration, pH, and temperature of the environment surrounding the cell.
  • the biological factor is at least one selected from bacteria, fungi, viruses, allergens, human cells, non-human animal cells, and components contained therein.
  • Item 17. The method according to any one of Items 12 to 16, wherein the cell is a hepatocyte and the rigidity of the support is 0.2 to 5 kPa.
  • Item 17 wherein the cell response indicates induction of drug-metabolizing enzyme, non-alcoholic steatohepatitis mechanism, or idiopathic liver injury.
  • Item 19. Item 17. The method according to any one of Items 12 to 16, wherein the cellular response is the efficacy or toxicity of the factor.
  • Item 20. Item 17. The method according to any one of Items 12 to 16, wherein the cell is a cardiomyocyte, and the rigidity of the support is 5 to 100 kPa.
  • Item 21 Item 21. The method according to Item 20, wherein the chemical factor is an oxidative stress inducer and the cellular response is an oxidative stress response.
  • Item 22. Item 21. The method according to Item 20, wherein the oxidative stress inducer is glucose.
  • Item 23 In order to express the in vivo characteristics of the cells in vitro, a support having a rigidity reflecting the rigidity of the surrounding environment recognized by the cells in vivo and having a shear elastic modulus of 100 kPa or less is provided.
  • Item 24. Item 24. The kit according to Item 23, further comprising a cell suitable for performing an evaluation or screening of a target cell response.
  • A is a figure which shows the rigidity of the microenvironment with which the typical cell is contacting in the living body.
  • B is a diagram showing the rigidity of normal tissue or abnormal tissue (quoted from data from Soft Matter, 2007, 3, 299-306. And Am J Physiol Gastroint Liver Physiol 293: G1147-G1154, 2007.) It is a figure describing an example of a method for producing a polyacrylamide support (the figure is quoted from Cell, 2006, Vol. 126, pp. 677-689). It is a graph which shows the change of the rigidity of the polyacrylamide gel according to the mixing ratio of acrylamide and bisacrylamide (cited from Cell Motil Cytoskeleton. 2005 Jan; 60 (1): 24-34.).
  • FIG. It is a figure showing the mitochondrial membrane potential of the cultured cardiomyocytes at normal glucose concentration and 15 mM glucose concentration. It is a figure showing the mitochondrial membrane potential of the cultured cardiomyocytes at normal glucose concentration and 15 mM glucose concentration.
  • A indicates ROS accumulation.
  • B shows mitochondrial membrane potential. It is a figure which shows the comparison of the rifampicin reactivity of the primary culture hepatocyte on a support body of 500 Pa, and a three-dimensional culture Spheroid. It is a figure which shows the effect of the support body of 500 Pa in idiopathic drug-induced liver injury. It is the figure which expressed the accumulation
  • FIG. 2 is a graph showing the inflammation-inducing action of hepatocytes on macrophages evaluated by the amount of TNF- ⁇ .
  • the evaluation method evaluates a cell response to a signal input to the cell in vitro.
  • the evaluation method includes a step of bringing a cell into contact with a support having rigidity that reflects the rigidity of the surrounding environment that the cell recognizes in vivo.
  • the evaluation method includes a step of using cells that have introduced and / or expressed in vivo cell characteristics in vitro and maintaining the characteristics in vitro.
  • the evaluation method includes a step of inputting a signal to a cell in which the characteristic is introduced and / or maintained.
  • the evaluation method includes a step of measuring a cell response to an input signal.
  • the cell in the evaluation method, by bringing a cell into contact with the support under the above conditions, the cell can express the original characteristic of the cell in vivo or a characteristic close to the characteristic in vivo.
  • the cell is not limited as long as it originates from a living organism.
  • mammalian cells avian cells, insect cells, amphibian cells, fish cells and the like can be mentioned.
  • Mammalian cells are preferably cells derived from humans, monkeys, sheep, goats, cattle, horses, pigs, cats, dogs, rabbits, mice, rats, guinea pigs, and the like.
  • the avian cell is a cell derived from a chicken.
  • the cell is a cell that can be cultured in vitro.
  • the cell may be a cultured cell line.
  • the cell may be a cell collected from a living body when culturing a primary cultured cell or the like.
  • the cell may be a cell obtained by infecting a primary cultured cell or the like with a virus and acquiring a certain proliferation ability (having a higher proliferation ability or frequency of division than the primary culture cell, preferably immortalization).
  • a primary cultured cell refers to any cell that has been subcultured after collection of the cell or tissue, until the culture starts and the proliferation ability ceases.
  • primary cultured cells include hepatocytes, muscle cells (including cardiomyocytes, smooth muscle cells, skeletal muscle cells) and liver non-parenchymal cells, neurons, glial cells, vascular endothelial cells, lymphatic endothelial cells, octopus podocytes Mesangial cells, tubule cells, skin epithelial cells, mucosal epithelial cells, corneal epithelial cells, photoreceptors, bipolar cells, horizontal cells, Muller cells, alveolar epithelial cells, bronchial epithelial cells, esophageal epithelial cells, gastrointestinal epithelial cells, Examples thereof include mammary gland cells, duct epithelial cells, pancreatic islet cells, pancreatic duct cells, adipocytes, macrophages, monocyte cells, fibroblasts, and precursor cells thereof, and cells after mutation.
  • the cells exclude mesenchymal stem cells. More preferably, stem cells such as somatic stem cells and
  • the cells include cells differentiated into specific cells from pluripotent stem cells (including embryonic stem cells, induced pluripotent stem cells, etc.). In addition, cells differentiated into specific cells from tissue stem cells such as mesenchymal stem cells are also included. For example, a method for differentiating embryonic stem cells into mesenchymal stem cells is disclosed in Stem Cell Rev and Rep (2017) 13: 68-78. A method for differentiating mesenchymal stem cells into hepatocytes is disclosed in World J Stem Cells 2011 December 26; 3 (12): 113-121.
  • the cells may be normal cells or abnormal cells such as diseased cells.
  • collected from the genetically modified animal and the disease model animal may be sufficient.
  • the ambient environment that the cell recognizes in vivo is the environment around the target cell in the tissue from which the cell is collected if the cell is a primary cultured cell or the like. If the cell is a cultured cell line, it is the microenvironment of the tissue that would have been placed if the cell was originally in vivo.
  • the tissue may be normal or have some abnormality, such as a disease or disorder. For example, when a cell is collected from a lesion, the tissue means a tissue in the lesion.
  • the microenvironment is generally used as a term indicating a state of a cell surrounding that controls the behavior of the cell through biophysical or biochemical factors.
  • the rigidity of the surrounding environment recognized by the cells in the living body may be the rigidity of the tissue itself, or may be the environment of the micro environment itself in contact with the cells in the tissue.
  • ⁇ Rigidity is not limited as long as it represents hardness. Preferably, it is represented by shear modulus (displacement modulus). There are several measuring methods based on various different principles (Sportsmedicine, 2014, No. 166, 1-30). The rigidity can be measured, for example, by the following method.
  • the structure or support is regarded as an elastic regular quadrangular column and shear stress S acts on the bottom surface and a plane parallel thereto, the side surface of the regular quadrangular column is deformed into a rhombus with an apex angle of 90 ° ⁇ ⁇ .
  • S shear stress
  • the dynamic stiffness of the tissue is measured with a strain-controlled rheometrics fluids spectrometer III (Rheometrics, Piscataway, NJ).
  • the stiffness (G ′) which is a value representing elastic resistance, is calculated from the shear stress of the same phase at a vibration (1 rad / s) shear strain of 2%.
  • G ′ a value representing elastic resistance
  • a stainless steel punch for example, a sample having a thickness of 5 to 10 mm and a diameter of 5 to 10 mm is cut out and placed between the plates.
  • the short-term G ′ ( ⁇ ) is measured by oscillating at a shear strain of 2%.
  • FIG. 1A shows the rigidity of the microenvironment with which typical cells are in contact.
  • FIG. 1B shows the rigidity of a typical tissue in a normal state and an abnormal state.
  • the liver, blood vessels, and the like become stiff due to fibrosis and calcification.
  • the rigidity of the microenvironment can be measured using an atomic force microscope (AFM) described in, for example, Biophysical Journal, Volume 93, December 2007, p4453-4461.
  • AFM atomic force microscope
  • the support is not limited as long as it can reflect the rigidity of the surrounding environment that cells recognize in vivo.
  • a gel and a gel matrix can be mentioned.
  • Supports include those that can provide a two-dimensional culture environment and those that can provide a three-dimensional culture environment.
  • the gel examples include a gel having a skeleton composed of a gelling agent such as agarose, acrylamide, collagen, fibrin, silicone, glycosaminoglycan, carrageenan, and locust bean gum.
  • a gelling agent such as agarose, acrylamide, collagen, fibrin, silicone, glycosaminoglycan, carrageenan, and locust bean gum.
  • Preferred examples of the gelling agent include acrylamide, collagen, and fibrin.
  • Acrylamide is particularly preferable because it can produce both a low-rigidity gel and a high-rigidity gel and can easily adjust the rigidity of the gel.
  • Collagen is preferable because it can express an environment close to that in the living body.
  • the gel can be prepared by a known method.
  • Gelling agents such as agarose, acrylamide, collagen, fibrin, silicone, glycosaminoglycan, carrageenan, and locust bean gum are suitably used for preparing a gel for two-dimensional culture.
  • a gelling agent for three-dimensional culture collagen, fibrin, silicone, glycosaminoglycan, VitroGel TM 3D, VitroGel TM 3D-RGB (TheWell Bioscience), BD Matrigel TM matrix (BD Bioscience), etc. are used. be able to.
  • the gel matrix contains components other than the gel.
  • components other than the gel include an adhesion protein and an adhesion protein crosslinking agent for crosslinking the adhesion protein to the gel.
  • the gel matrix is preferably coated on its surface with adhesion proteins. Gels such as polyacrylamide gels and silicone gels that are not biologically derived are preferably used as the gel matrix.
  • adhesion protein examples include at least one selected from the group consisting of collagen, fibronectin, integrin, cadherin, laminin, proteoglycan and the like.
  • at least one selected from the group consisting of collagen, fibronectin, and a mixture of collagen and fibronectin can be used.
  • the mixing ratio of collagen and fibronectin is a mass (g) ratio, and is 15 to 3, preferably 10 to 5, with respect to fibronectin 1.
  • limit especially as collagen Preferably it is type I collagen or type IV collagen.
  • the collagen those derived from human, rat, mouse, kangaroo, cow and fish (for example, shark) can be used.
  • Collagen may be produced by gene recombination.
  • fibronectin those derived from fish, human, cow, kangaroo, mouse, rat and the like can be preferably used.
  • Fibronectin may be produced by gene recombination.
  • Heterobifunctional crosslinking agent can be used as the adhesive protein crosslinking agent.
  • the heterobifunctional cross-linking agent is preferably sulfo-SANPAH (sulfosuccinimidyl 6 (4′-azido-2′-nitrophenyl-amino) hexanoate, Pierce No. 22589), or acrylic acid N-hydroxysuccinimide ester (NHS).
  • the preparation method of the gel matrix is not particularly limited.
  • it can be prepared by mixing components other than the gel and gelling.
  • Collagen final concentration of about 0.3 to 1.0 mg / ml
  • collagen final concentration of about 0.3 to 1.0 mg / ml
  • fibronectin final concentration of 0.05 to 0.5 mg / ml
  • a heterobifunctional cross-linking agent final concentration of 0.5 to 3 mg / ml
  • an acrylamide solution including bisacrylamide
  • ammonium persulfate, N, N, N ′, N '-Tetramethylethylenediamine (TEMED) is added for gelation.
  • TEMED ammonium persulfate
  • a polyacrylamide gel is prepared. For example, 0.2 to 1 mg / ml heterobifunctional cross-linking agent is added to dimethyl sulfoxide (DMSO) and a HEPES buffer. And the solution is dropped onto the gel surface with a pipette. Subsequently, the polyacrylamide gel is placed, for example, 6 inches below the ultraviolet lamp and irradiated for 8-15 minutes. Next, the gel after ultraviolet irradiation is washed.
  • DMSO dimethyl sulfoxide
  • HEPES buffer a HEPES buffer
  • the polyacrylamide gel is placed, for example, 6 inches below the ultraviolet lamp and irradiated for 8-15 minutes.
  • FIG. 2 shows a schematic diagram for preparing a polyacrylamide gel coated with an adhesion protein.
  • the stiffness of the support reflects the stiffness of the surrounding environment that the cells recognize in vivo. “Reflecting the rigidity of the surrounding environment” intends that the rigidity of the support is included in the range of the rigidity of the surrounding environment, or that the rigidity of the support is comparable to the rigidity of the surrounding environment. Accordingly, the rigidity of the support is determined according to the rigidity of the tissue from which the cells are derived, and is 100 kPa or less, 50 kPa or less, 10 kPa or less, 5 kPa or less, 1 kPa or less, 500 Pa or less. The stiffness of the support preferably depends on the stiffness of the gel.
  • the rigidity of the gel can be adjusted by the concentration of the gelling agent in the gel preparation solution containing the gelling agent of each gel.
  • the rigidity of a gel can also be adjusted with the mixing ratio of a gelling agent and a gel crosslinking agent.
  • the gelling agent is acrylamide
  • a gel having a rigidity of 10 Pa to 100,000 Pa can be prepared.
  • the gelling agent is collagen
  • a gel having a rigidity of 1 Pa to 1 kPa can be prepared.
  • the gelling agent is fibrin
  • a rigid gel having a viscosity of 50 Pa to 4 kPa can be prepared.
  • the gelling agent is silicone, a gel having a rigidity of 400 Pa to 300 kPa can be prepared.
  • a gel having a desired rigidity can be obtained by changing the concentration of total acrylamide (total amount of acrylamide and bisacrylamide) contained in the gel preparation solution.
  • the total acrylamide concentration in the gel preparation may be 0.5-50% by weight depending on the desired stiffness.
  • FIG. 3 shows the rigidity according to the concentration of acrylamide and bisacrylamide.
  • the rigidity of a polyacrylamide gel prepared from a 3% by mass acrylamide solution is about 50 to 300 Pa.
  • the acrylamide: bisacrylamide ratio of the acrylamide gel is preferably in the range of 100: 1 to 5: 1 by mass ratio.
  • the mixing ratio of acrylamide with respect to 1 part by mass of bisacrylamide can be selected from 100, 90, 80, 70, 60, 50, 40, 30, 20, 15, 10, 5 parts by mass.
  • Examples of the solvent for the acrylamide solution include water, PBS, 150 mM NaCl-added Tris-HCl buffer, a cell culture medium to which no serum is added or serum is added.
  • Acrylamide can be gelled using ammonium persulfate and TEMED. Addition amounts of ammonium persulfate and TEMED are known. For example, ammonium persulfate and TEMED may be added in an amount of about 15 ⁇ l of 10% ammonium persulfate and about 4.5 ⁇ l of TEMED per 1,500 ⁇ l of acrylamide solution regardless of the total acrylamide concentration.
  • Fibrin gel can be prepared by reacting fibrinogen with thrombin and calcium ions in vitro.
  • the fibrinogen content contained in the fibrin gel preparation may be 1 to 50 mg / mL.
  • salmon fibrinogen Searun Holdings, Freeport, ME
  • 50 mM Tris-HCl buffer pH 7.4
  • 150 mM NaCl at a concentration of 3 mg / mL or 18 mg / mL.
  • Add 2 units / mL fish thrombin (Searun Holdings) to 400 ⁇ l fibrinogen solution.
  • the fibrin gel prepared from the 3 mg / mL and 18 mg / mL fibrinogen solutions has a rigidity of about 250 Pa and 2150 Pa, respectively.
  • Fibrinogen can be a fibrinogen derived from a variable temperature animal or a constant temperature animal.
  • a fish is preferable, and a salmon is more preferable.
  • the homeothermic animal is preferably a mammal, more preferably a human or a cow. Fibrinogen may be produced by gene recombination.
  • Examples of the solvent for preparing the fibrinogen solution include water, PBS, 150 mM NaCl-added Tris-HCl buffer, cell culture medium to which serum is not added or serum is added, and the like.
  • the thrombin added to polymerize fibrinogen into fibrin is not limited as long as fibrinogen can be polymerized. Fibrinogen and thrombin are preferably the same species.
  • calcium ions can be added to promote fibrinogen polymerization by thrombin. Calcium ions are supplied from, for example, calcium chloride.
  • the collagen gel can be prepared by adding a cross-linking agent to the collagen solution and allowing to stand, for example, at 3 to 8 ° C. for 12 to 24 hours.
  • the collagen content contained in the collagen solution can be 0.05 mass% to 0.8 mass%.
  • a gel having a rigidity of about 60 to 100 kPa in terms of compressive modulus (20 to 33 kPa in terms of shear modulus) can be prepared.
  • Collagen is not limited as long as a gel can be prepared, but is preferably type I collagen or type IV collagen.
  • Type I collagen is preferred as the collagen.
  • the collagen those derived from human, rat, mouse, kangaroo, cow and fish (for example, shark) can be used.
  • Collagen may be produced by gene recombination.
  • the solvent for preparing the collagen solution is preferably an acidic (pH about 1 to 4, preferably about pH 2.5 to 3.5) aqueous solution.
  • an acidic (pH about 1 to 4, preferably about pH 2.5 to 3.5) aqueous solution for example, 10 ⁇ 3 mol of diluted hydrochloric acid can be used as the solvent. Collagen dissolved in dilute hydrochloric acid may be neutralized.
  • Cross-linking agents include N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide (EDC), glutaraldehyde, 1,4-dibutandiol etheryl (BDDDGE), N-hydroxysuccinimide (NHS) and water-soluble carbodiimide (NHS). Selected from etc. Preferably, it is WSC.
  • EDC N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide
  • BDDDGE 1,4-dibutandiol etheryl
  • NHS N-hydroxysuccinimide
  • NHS water-soluble carbodiimide
  • Silicone gel can be obtained from Shin-Etsu Silicone (Shin-Etsu Chemical Co., Ltd.) or the like.
  • KE-104Gel Cat-104 complex elastic modulus 2 ⁇ 10 4 N / m 2
  • KE-1051J complex elastic modulus 2 ⁇ 10 4 N / m 2
  • KE-1052 A / B
  • complex elastic modulus 2 ⁇ 10 4 N / m 2 KE-110Gel Cat-110
  • complex elastic modulus 2 ⁇ 10 4 N / m 2 KE-1056 (complex elastic modulus 4 ⁇ 10 3 N / m) 2 ), FE-57 (complex elastic modulus 3 ⁇ 10 4 N / m 2 ) and the like.
  • 1 N / m 2 is approximately 0.3 Pa.
  • the cells are brought into contact with the support.
  • Expression means that a state closer to the characteristics of a cell in vivo (for example, the response of the cell to the input of a signal) is derived in vitro.
  • Preferably expression is reproducible.
  • the in vivo characteristics have been brought out is, for example, between cells cultured in a petri dish or the like and cells cultured using a support having rigidity reflecting the rigidity of the surrounding environment recognized by the cells in vivo.
  • the response to the input of the signal was compared, and it was determined that in vivo characteristics were extracted (expressed) when the responsiveness of the cells cultured on the support was closer to the response of the cells in vivo. can do. Evaluation of signals and responsiveness to signals will be described later.
  • Contacting the cell and the support includes temporarily contacting the cell and the support, or continuing contact for a certain time.
  • contacting the cell with the support includes culturing the cell on the support. It is preferable that the primary cultured cells and the like are brought into contact with a rigid support reflecting the rigidity of the surrounding environment recognized by the cells in the living body without being brought into contact with a rigid rigidity such as a plastic petri dish after being collected. This is because when cells are brought into contact with a hard support such as plastic, the in vivo characteristics of the cells may be lost at that time.
  • the contact is preferably performed in an environment where cells can be cultured.
  • the contact is performed in the presence of a culture medium corresponding to the cells.
  • the culture medium may be selected according to the cells. For example, Minimum Essential Medium (MEM), Eagle MEM, ⁇ -MEM, high glucose (4.5 g / L) -containing DMEM, low glucose (1.0 g / L) Containing DMEM, Iskov modified Dulbecco medium (IMDM), Glasgow MEM (GMEM), RPMI-1640, McCoy 5A medium, MCDB medium, Ham's F-12, Ham's F-10, Williams Medium E and mixed media thereof Etc.
  • the culture medium may contain about 5 to 30% serum as necessary.
  • the culture medium may contain an antibiotic.
  • at least one selected from fatty acids, albumin, cell growth factors, amino acids, nucleic acids, and vitamins may be additionally added to the culture medium.
  • the contact between the cell and the support is carried out at a temperature of, for example, 25 to 38 ° C., preferably in the presence of 4 to 10% carbon dioxide gas, depending on the type of cell.
  • the support is preferably washed or equilibrated with PBS, Hank's buffer salt, culture medium for target cells (serum or the like may be included), and then contacted with the cells.
  • the evaluation method also includes maintaining the characteristics of the expressed in vivo cells in vitro. Maintaining the properties of the expressed cells in vitro may include using the support to grow the cells in the presence of a culture medium. In addition, maintaining the characteristics of the expressed cells in vitro may include passaging the cells.
  • the cells in contact with the support are maintained using the above-mentioned culture medium, depending on the cell type, for example, at a temperature of 25 to 38 ° C., preferably in the presence of 4 to 10% carbon dioxide gas.
  • a state where there is no input of signals other than signals necessary for introduction and / or maintenance of cell characteristics in vivo is also referred to as a “basal state”.
  • the basal state is preferably obtained by bringing the cell into contact with a support having a rigidity reflecting the rigidity of the surrounding environment recognized by the cell in vivo, and preferably in a state in which the cell is in contact with the support in the presence of a culture medium.
  • the evaluation method includes a step of inputting a signal to a cell in which the characteristics are introduced and / or maintained.
  • the signal is not limited as long as it elicits a reaction that is to be evaluated using cells.
  • the signal is preferably an external stimulator.
  • External stimuli include chemical factors, physical factors, biological factors and combinations thereof.
  • Chemical factors include compounds, ions, gases, nucleic acids, carbohydrates, lipids, glycoproteins, glycolipids, lipoproteins, amino acids, peptides, proteins (including antibodies), polyphenols, cytokines, and chemokines. It is preferable that it is at least one selected. More preferably, the chemical factor is an oxidative stress inducer.
  • Oxidative stress is preferably high glucose load (7 mM to 30 mM, preferably 10 mM to 20 mM, more preferably 10 mM to 15 mM in final concentration), high fatty acid load (preferably saturated or unsaturated fatty acid having 14 to 18 carbon atoms, More preferably, oleic acid, palmitic acid or a mixture thereof is added at a final concentration in the range of 0.01 mM to 10 mM, preferably in the range of 0.1 mM to 7 mM, hydrogen peroxide (final concentration of 1 ⁇ M to 100 ⁇ M, preferably 5 ⁇ M). To 80 ⁇ M, more preferably 10 ⁇ M to 50 ⁇ M).
  • the physical factor is preferably at least one selected from the group consisting of rigidity, pressure, tension, light, radiation, oxygen concentration, pH, and temperature of the surrounding environment of the cell.
  • Biological factors include bacteria, fungi, viruses, allergens (pollen, animal skin, ticks, etc.), human cells, non-human animal cells (preferably non-human mammalian cells), and components contained therein (lipopoly Saccharides, allergen extracts, bacterial extracts, fungal extracts, virus capsid proteins, virus core proteins, virus envelope proteins, vaccine components, etc.), extracellular secretory vesicles (conditioning medium, cell culture supernatant, etc.) It is preferable that it is at least one kind selected.
  • the above signals can be input to the cells for a necessary period at a concentration or intensity depending on the type of each signal.
  • a physical factor the above-mentioned culture medium is used. Except for the case where the physical factor is a temperature, depending on the type of cell, for example, preferably at a temperature of 25 to 38 ° C. Is carried out in the presence of 4-10% carbon dioxide.
  • each factor is added to a culture medium containing cells and a support. Depending on the type of cells, for example, at a temperature of 25-38 ° C., preferably 4-10. The cells are brought into contact with each factor in the presence of% carbon dioxide.
  • the signal input may be transient, may continue for a certain period, or may be intermittent.
  • the culture medium used when contacting the cell with the chemical agent may be a culture medium used when contacting the cell and the support, and is used when contacting the cell and the support according to the signal. A culture medium different from the culture medium to be used may be used.
  • the evaluation method includes a step of measuring a cell response to the input signal.
  • the measurement method can be measured by a method according to the input signal. For example, genome modification (including DNA modification and histone modification), DNA mutation, RNA expression / degradation, protein expression / degradation, protein phosphorylation, enzyme activity, lipid metabolism, sugar metabolism, generation of active oxygen Detoxification reaction (eg, activation of P450), activation of stress response protein (such as heat shock protein), expression or release, activation of deinger signal protein (such as HMGB1), expression or release, phagocytic reaction, apoptotic reaction, Cellular responses can be evaluated by measuring ubiquitination, mitochondrial function, endoplasmic reticulum function, immune response, and the like.
  • the cell reaction can also be evaluated by staining the cells with a staining substance and observing them with a microscope or the like. These measuring methods are known. Evaluation of the response of the cell includes evaluating that the input signal works favorably on the cell and / or evaluating that it adversely affects the cell. In addition, evaluating the cellular response includes elucidating the mechanism of the cellular response to the input signal.
  • a candidate substance for preventing, treating or ameliorating a disease or disorder may be used as a physical factor, chemical factor or biological factor. Further, the cell response may be evaluated by combining the input of a signal (preferably an input of a signal that causes damage to the cell) and the addition of a candidate substance for preventing, treating, or improving the disease or disorder. . That is, the evaluation method can also be used as a screening method for candidate substances for preventing, treating or ameliorating a disease or disorder.
  • a method for screening a candidate substance for preventing, treating or ameliorating a disease or disorder has a rigidity reflecting the rigidity of the surrounding environment recognized by a cell in vivo, and the rigidity is 100 kPa or less in terms of shear modulus.
  • a step of contacting a support with a cell a step of in vivo introducing and / or maintaining the characteristics of a cell that has been introduced and / or expressed in vitro, and the property is introduced and / or maintained.
  • a step of measuring a response of a cell to an input signal When the cell response to the input signal is measured, the response of the cell not in contact with the candidate substance and the cell in contact with the candidate substance are compared.
  • the candidate substance is suggested or determined to be able to prevent, treat or ameliorate the disease or disorder.
  • the myocyte injury model evaluation method relates to an evaluation method using muscle cells.
  • the present invention also relates to a myocyte injury model and a screening method for candidate substances for preventing, treating or improving myocyte injury.
  • the description in the section of the evaluation method is incorporated herein.
  • Muscle cells refer to cardiomyocytes, smooth muscle cells or skeletal muscle cells. Preferred examples include primary cultured muscle cells, smooth muscle cells, and skeletal muscle cells. The animal from which the myocytes are collected is not particularly limited, and examples thereof include the animals described in the evaluation method section.
  • a myocyte disorder preferably derived from metabolism and inflammation.
  • the “muscle cell disorder derived from metabolism and inflammation” means, for example, cardiomyocytes, smooth muscle cells or skeletals among cell disorders derived from hyperglycemia, mitochondrial metabolism abnormality, oxidative stress, endoplasmic reticulum stress, lipid metabolism abnormality, etc. This refers to cell damage that occurs in muscle cells.
  • cardiomyocyte disorders in hyperglycemia include increased oxidative stress, mitochondrial dysfunction (metabolic abnormalities), lipid metabolism abnormalities, angiotensin aldosterone activation, calcium homeostasis and ionic metabolism abnormalities, etc.
  • Mitochondrial dysfunction (metabolic abnormality) first increases the concentration of reactive oxygen species (ROS) derived from mitochondria, which causes damage to the mitochondria, which causes a decrease in membrane potential in the mitochondria.
  • ROS reactive oxygen species
  • Abnormal lipid metabolism means that ATP production in mitochondria is impaired, energy production using long-chain fatty acid as a substrate is inhibited, and cardiac contraction effect is reduced (Monthly Diabetes, 2013/2, Vol. 5, No. .2, 6-7).
  • the “muscle cell damage model” is an in vitro damage model using primary cultured cardiomyocytes, smooth muscle cells or skeletal muscle cells.
  • the muscle cells are brought into contact with the same physical environment as the in vivo myocytes (the rigidity of the support reflects the stiffness of the surrounding environment of the in vivo myocytes), and the physiological function is It includes muscle cells that have been introduced or maintained so as to have properties similar to those of vivo muscle cells.
  • the myocyte injury model includes a myocyte in which a signal is input to a myocyte that has been introduced or maintained so as to have characteristics similar to those of an in vivo myocyte.
  • the signal is high glucose or hydrogen peroxide
  • the myocyte damage model includes a myocyte damage model in which cell damage is caused by a high glucose load.
  • the accumulation amount of oxidative stress is small in the basal state, but oxidative stress accumulates upon receiving a signal input (preferably high glucose load).
  • This reaction can be reversible when subjected to high glucose load on a rigid support that reflects the stiffness of in vivo myocardial tissue or skeletal muscle tissue.
  • a signal input preferably high glucose load
  • This reaction can be reversible when subjected to high glucose load on a rigid support that reflects the stiffness of in vivo myocardial tissue or skeletal muscle tissue.
  • it is irreversible on a very rigid support such as glass, and the cells undergo apoptosis due to the accumulation of oxidative stress.
  • the support described in the section of the evaluation method can be used.
  • the culture medium for contacting or maintaining the myocytes with the support is, for example, 5 to 20% (preferably 8 to 12%, more preferably 5 to 10%) fetal bovine serum-added DMEM ( Low glucose) and the like.
  • the conditions for maintaining the muscle cells in contact with the support or on the support follow the conditions described in the section of the evaluation method.
  • the rigidity of the support body in contact with the muscle cells is preferably about 5 kPa to 100 kPa, which is the same as that of the heart or skeletal muscle tissue. More preferred is 10 kPa to 30 kPa, and still more preferred is 10 kPa to 15 kPa. More preferably, 15 kPa can be mentioned.
  • High glucose means that glucose in the culture medium is added at a high concentration.
  • the glucose concentration in the culture medium it is preferable to use a glucose concentration of 10 to 25 mM or 10 to 15 mM corresponding to the blood glucose level of a general human diabetic patient.
  • a glucose concentration 10 to 25 mM or 10 to 15 mM corresponding to the blood glucose level of a general human diabetic patient.
  • ROS mitochondrial membrane potential
  • oxidative stress is accumulated even if the glucose concentration is about 10 mM.
  • primary cultured cardiomyocytes cultured on a 15 kPa support are stable and difficult to dedifferentiate.
  • the accumulation of oxidative stress in the present invention refers to the accumulation (concentration increase) of intracellular ROS, and the change (responsiveness) of the accumulation amount can be detected by a ROS labeling reagent.
  • Various reagents are commercially available as ROS labeling reagents, and can be appropriately used according to the purpose.
  • Preferable examples include fluorescein derivatives such as H2DCFDA, carboxy-H2DCFDA, and chloromethyl-H2DCFDA.
  • the increase in the concentration of reactive oxygen species can be measured using a known kit for measuring reactive oxygen species.
  • Mitochondrial metabolic disorders refers to a diverse group of diseases caused by dysfunction of the mitochondrial respiratory chain. The disease is caused by mutations in nuclear DNA or mitochondrial DNA (mtDNA), affecting multiple internal organs and causing significant nerve and muscle damage. Major symptoms of mitochondrial metabolism include eyelid drooping, extraocular muscle palsy, proximal myopathy and exercise intolerance, cardiomyopathy, sensorineural hearing loss, optic nerve atrophy, retinitis pigmentosa, and diabetes. Symptoms to the central nervous system include variable encephalopathy, epilepsy, dementia, migraine, stroke-like seizures, ataxia, and convulsions.
  • Oxidative stress refers to a state in which the oxidative damage power of reactive oxygen species (ROS) generated in vivo exceeds the antioxidant capacity of the antioxidant system in vivo.
  • ROS reactive oxygen species
  • Lipids, proteins / enzymes responsible for structure and function, and genetic DNA responsible for genetic information are oxidized and damaged. As a result, the structure and function of the living body are disturbed, causing disease, premature aging, and becoming susceptible to cancer and lifestyle-related diseases.
  • “Abnormal lipid metabolism” refers to a state in which lipid contained in blood is excessive or insufficient. Generally refers to hyperlipidemia.
  • the dyslipidemia (hyperlipidemia) is classified into types such as hypercholesterolemia, high LDL cholesterolemia, low HDL cholesterolemia, and hypertriglyceridemia.
  • “Muscle cell disorders derived from metabolism or inflammation” include metabolic diseases related to lifestyle-related diseases such as obesity, diabetes, dyslipidemia, and hypertension, and autoimmunity such as asthma and rheumatoid arthritis, allergies, immunodeficiencies, etc. It refers to a myocyte disorder derived from. Particularly preferred are myocyte disorders derived from metabolic diseases related to lifestyle-related diseases such as hypertension.
  • a myocyte injury model is input by bringing a myocyte into contact with a candidate substance for preventing, treating or ameliorating myocyte injury before or after inputting a signal, or after inputting a signal.
  • candidate substance for preventing, treating or ameliorating myocyte injury before or after inputting a signal, or after inputting a signal.
  • Candidate substances for preventing, treating or ameliorating a disease or disorder can be screened by measuring the response of cells to the signal. Details of the screening method are as follows. The description in the section of screening method is incorporated herein.
  • a candidate substance for preventing, treating or ameliorating metabolic and inflammatory myocyte damage using muscular cell damage model with increased oxidative stress Drugs can be evaluated and created.
  • Drugs can be evaluated and created.
  • the screening method can also be used for screening candidate substances for the prevention, treatment or improvement of sarcopenia or locomotive syndrome in patients with increased oxidative stress, particularly diabetic patients.
  • One aspect of the hepatocyte injury model evaluation method relates to an evaluation method using hepatocytes.
  • the evaluation method includes evaluation of hepatocellular injury (particularly idiopathic drug-induced liver injury), analysis method of non-alcoholic steatohepatitis, and screening method of candidate substances for preventing, treating or improving hepatocellular injury. including.
  • hepatocellular injury particularly idiopathic drug-induced liver injury
  • analysis method of non-alcoholic steatohepatitis analysis method of non-alcoholic steatohepatitis
  • screening method of candidate substances for preventing, treating or improving hepatocellular injury. including.
  • Hepatocyte refers to a cell derived from the liver parenchyma. Preferred examples include primary cultured hepatocytes. The animal from which hepatocytes are collected is not particularly limited, and can include the animals described in the section of the evaluation method.
  • “Evaluation of hepatocyte damage” means evaluation of hepatocyte damage in vitro using primary cultured hepatocytes.
  • Hepatocytes used for the evaluation of hepatocellular injury are the same as in vivo hepatocytes in vitro (the surrounding environment recognized by hepatocytes in normal or abnormal liver tissues where the stiffness of the support is in vivo) Hepatocytes are brought into contact with the environment (reflecting stiffness) and include cells that have been introduced or maintained so that their physiological function is similar to that of in vivo hepatocytes.
  • hepatocytes used for evaluation of hepatocellular injury include hepatocytes that have been input or maintained so as to have characteristics similar to those of in vivo hepatocytes, in which a signal is input.
  • the stiffness of the surrounding environment recognized by hepatocytes in normal or abnormal liver tissue in vivo is about 0.2 to 5 kpa. Therefore, the rigidity of the support is preferably within this range.
  • the rigidity of the liver tissue is increased by fibrosis or the like as shown in FIG. 1B.
  • the stiffness of the microenvironment of normal liver tissue is about 0.2 to 0.7 kPa, preferably about 0.3 to 0.6 kPa. Therefore, when using normal hepatocytes and evaluating normal cell responses, or when evaluating normal cell responses at an early stage of abnormalities, use this rigid support. It is preferable to do.
  • a support having a rigidity of 0.7 kPa or more and about 2 to 3 kPa can be used.
  • the culture medium for contacting or maintaining the hepatocytes with the support is, for example, 5 to 20% (preferably 8 to 12%) fetal bovine serum and Hepatocyte Maintenance Supplement Pack (Thermo Fisher Co., Ltd.). Addition Williams Medium E etc. can be used.
  • the conditions for contacting or maintaining the hepatocytes on the support are in accordance with the conditions described in the evaluation method section.
  • the signal is preferably a signal that causes induction of drug-metabolizing enzymes, idiopathic drug-induced liver injury or non-alcoholic steatohepatitis.
  • Signals that cause idiopathic drug-induced liver injury are, for example, chemical factors or biological factors. In particular, it may be a candidate substance administered to a human or animal to prevent, treat or ameliorate a disease or disorder.
  • a method for measuring a cell response to an input signal can be selected according to the signal. For example, measurement of the detoxification function of hepatocytes (measurement of the activity of P450 family such as CYP3A4), method of measuring the accumulation of oxidative stress, method of measuring the expression of proteins released into the critical state of cells such as HMGB1 Can be mentioned.
  • a signal is idiopathic if the measurement of the response of the cell to the input signal determines that the cell is or can be damaged compared to a cell that did not receive the signal. It can be determined to cause drug-induced liver injury.
  • the signal that induces drug-metabolizing enzymes or idiopathic drug-induced liver injury is, for example, a chemical factor or a biological factor.
  • it may be a drug or a candidate substance administered to a human or animal to prevent, treat or improve a disease or disorder.
  • a method for measuring a cell response to an input signal can be selected according to the signal. For example, measurement of detoxification function of hepatocytes (measurement of activity of P450 family such as CYP3A4), method of measuring accumulation of oxidative stress, method of measuring expression of proteins expressed in critical state of cells such as HMGB1 Can be mentioned.
  • a signal is idiopathic if the measurement of the response of the cell to the input signal determines that the cell is or can be damaged compared to a cell that did not receive the signal. It can be determined to cause drug-induced liver injury.
  • the signal can be input to the cell for a required period at a concentration or intensity depending on the type of each signal.
  • the signal preferably indicates the mechanism of non-alcoholic steatohepatitis.
  • the signal indicating the mechanism causing nonalcoholic steatohepatitis is, for example, a chemical factor or a biological factor.
  • carbohydrates and / or lipids that can cause overnutrition causing adult diseases can be used.
  • the carbohydrate is preferably fructose
  • the lipid is preferably a fatty acid (preferably a saturated or unsaturated fatty acid having 14 to 18 carbon atoms), particularly a saturated fatty acid.
  • Carbohydrates or lipids may be added to the culture medium containing hepatocytes at a final concentration in the range of 0.01 mM to 10 mM, preferably in the range of 0.1 mM to 7 mM, if necessary.
  • the culture medium is preferably a low glucose (5 mM) -containing culture medium containing about 5% fetal calf serum.
  • the contact period between the cells and the signal is about 4 hours to 30 days, preferably about 1 to 7 days, and about 1 to 3 days.
  • a method for measuring a cell response to an input signal can be selected according to the signal. Examples thereof include microscopic observation of lipid droplet accumulation in hepatocytes, a method for measuring accumulation of oxidative stress, and a method for measuring expression and release of proteins released into a critical state of cells such as HMGB1.
  • the measurement of the response of the cell to the input signal is determined to cause nonalcoholic steatohepatitis or can cause nonalcoholic steatohepatitis compared to cells that did not receive the signal Can be determined that the signal causes non-alcoholic steatohepatitis.
  • the signal can be input to the cell for a required period at a concentration or intensity depending on the type of each signal.
  • the candidate signal for preventing, treating or ameliorating hepatocellular injury is contacted with the hepatocyte, and the input signal
  • Candidate substances for preventing, treating or ameliorating a disease or disorder can be screened by measuring the response of cells to. Details of the screening method are as follows. The description in the section of screening method is incorporated herein.
  • Kit In the present invention, the above-described 1. ⁇ 4. And the kit for realizing the cell reaction evaluation method, the screening method, the myocyte damage model, and the hepatocyte damage model described above.
  • the kit is used in vivo so that the cells necessary for carrying out the cell response evaluation method, screening method, myocyte injury model, and hepatocyte injury model express in vivo characteristics in vivo. It includes a support (the support described in the above 1 to 4) having a rigidity reflecting the rigidity of the surrounding environment to be recognized and having a shear elastic modulus of 100 kPa or less.
  • the kit may also contain cells suitable for carrying out the target cell reaction evaluation method, screening method, myocyte injury model, and hepatocyte injury model.
  • the kit may contain a medium suitable for the cells, additives such as cytokines and inhibitors, antibiotics, buffers and the like.
  • additives such as cytokines and inhibitors, antibiotics, buffers and the like.
  • the dynamic rigidity of the support was measured with a strain-controlled rheometrics-fluids-spectrometer-III (Rheometrics, Piscataway, NJ).
  • the stiffness (G ′) which is a value representing elastic resistance, was calculated from the shear stress of the same phase at a vibration (1 rad / s) shear strain of 2%.
  • the short-term rigidity G ′ ( ⁇ ) was measured by vibrating at a strain of 2%.
  • a steady strain of 10% was applied, the sample was relaxed for 30 seconds, and the long-term rigidity G ′ (t) was measured. The results are shown in FIG.
  • a copolymer of acrylamide and bisacrylamide was prepared, and a polyamide gel support of 15 kPa (for muscle cell culture) or 500 Pa (for hepatocytes) was prepared.
  • a mixed solution of acrylamide and bisacrylamide was polymerized using N, N, N, N-tetramethylethylenediamine and 10% ammonium persulfate. The solution was placed on a glass plate having a diameter of 22 mm and pretreated with 3-aminopropyltrimethoxysilane and glutaraldehyde.
  • polyacrylamide gel does not have cell adhesion
  • 50 mM HEPES buffer solution of N-sulfosuccinimidyl-6- (4′-azido-2′-nitrophenylamino) hexanoate (0.5 mg / ml) as a cross-linking agent (PH 8) was dropped and coated. The top was covered with a cover glass, and then the cover glass was removed.
  • the gel for muscle cell culture was coated with a mixed solution of 0.05 mg / ml fibronectin and 0.1 mg / ml type I collagen.
  • the gel for hepatocyte culture was coated with a solution of 0.1 mg / ml type I collagen (rat hepatocytes) or type IV collagen (human hepatocytes).
  • Covering the gel with the adhesive protein was performed by covering the gel containing the heterobifunctional cross-linking agent with a solution containing the adhesive protein, and allowing the adhesive protein to bind to the heterobifunctional cross-linking agent.
  • Example 1 Functional evaluation of primary cultured cardiomyocytes cultured in the same rigid support environment (15 kPa) as in vivo
  • Culture of primary cultured cardiomyocytes on a 15 kPa polyamide gel support As shown in FIG.
  • newborn ventricles from Wistar rats 1 to 3 days old were collected and digested with type IV collagenase and dispase.
  • Enzymatically isolated cells were seeded in plastic culture dishes and cultured at 37 ° C. in a cell culture incubator containing 5% carbon dioxide for 40 minutes.
  • the coexisting fibroblasts were fixed on the bottom of the culture dish and removed, then the supernatant was collected, centrifuged, and the collected cardiomyocytes were seeded on the polyacrylamide support, and 5 mM glucose (corresponding to normoglycemia) And 5% FCS-containing DMEM (low glucose) (containing L-glutamine and phenol red).
  • Example 2 Functional evaluation of primary cultured cardiomyocytes loaded with high glucose in the same rigid environment (15 kPa) as in vivo (1) Method As in Example 1, cardiomyocytes were cultured on a 15 kPa support. Finally, the medium was changed to a medium having a glucose concentration of 5 mM to 25 mM and cultured for 1-2 days. The cytoskeleton was evaluated by fluorescent immunostaining using ⁇ -actinin antibody and Phalloidin binding to F-actin that were fluorescently labeled.
  • Example 3 Functional evaluation of primary cultured cardiomyocytes loaded with hydrogen peroxide in the same rigid environment (15 kPa) as in vivo (1) Method After isolating primary cultured cardiomyocytes as in Example 1, 1-2 The cells were cultured in DMEM supplemented with 10% FCS containing normal concentration of glucose (5 mM) for a day, and finally hydrogen peroxide was loaded for 1 hour (10 ⁇ M, 50 ⁇ M). The cytoskeleton was evaluated by fluorescent immunostaining using an ⁇ -actinin antibody.
  • Example 4 Effect of 15 mM glucose concentration on ROS of primary cultured cardiomyocytes To confirm events that lead to chronic complications in cardiomyocytes, 10-15 mM glucose concentration, a common hyperglycemia in type 2 diabetic patients, was The effect on mitochondria was compared between cultured cardiomyocytes on a 15 kPa gel and cultured cardiomyocytes on glass.
  • N-acetylcysteine (NAC) was used as a scavenger for ROS.
  • NAC N-acetylcysteine
  • CM-H2DCFDA is a fluorescent indicator of ROS having cell membrane permeability, and is known to increase green fluorescence when oxidized by intracellular ROS, particularly hydrogen peroxide and hydroxy radicals.
  • CM-H2DCFDA dye was incorporated into cardiomyocytes (37 ° C., 50 minutes). Thereafter, green light emission (wavelength: 535 nm) when excited with blue light (wavelength: 485 nm) is acquired as a fluorescent image on a confocal laser microscope (Nikon).
  • Example 5 Effect of 15 mM glucose concentration on mitochondrial membrane potential of primary cultured cardiomyocytes
  • JC-I staining is evaluated by JC-I staining.
  • the JC-1 dye which is a probe for detecting the mitochondrial membrane potential, is positively charged and accumulates inside the electronegative mitochondria.
  • Mitochondrial membrane potential-dependent accumulation inside the mitochondria by JC-I dye is indicated by a fluorescence wavelength shift from green (about 529 nm) to red (about 590 nm). That is, when the mitochondria are damaged, the accumulation of JC-I dye inside the mitochondria decreases, so the ratio of red color decreases and green becomes dominant. From this, the membrane potential of mitochondria can be shown by a decrease in the red / green fluorescence intensity ratio (Circulation.2005; 111: p2752-2759).
  • JC-1 dye was incorporated (37 ° C., 30 minutes), and fluorescence images were acquired and evaluated with a confocal laser microscope.
  • cultured cardiomyocytes on a 15 kPa gel support have a higher mitochondrial activity in the basal state than a glass support, and the mitochondrial activity decreases in response to ROS accumulation accompanying an increase in glucose concentration. It shows that myocardial cells are close to the behavior when exposed to oxidative stress. This difference will be discussed together with the results of the following apoptosis assay.
  • Example 6 Effect of different culture supports on apoptosis (cell death) of primary cultured cardiomyocytes (1) Method Comparison of differences in apoptosis of primary cultured cardiomyocytes on 15 kPa gel support and glass support Therefore, TUNEL (terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling) assay was performed using In situ Cell Death Detection kit-FITC (Roche). The TUNEL assay is a general method for detecting DNA fragments derived in the apoptotic signal transduction pathway (Cell Death and Disease (2014) 5, e1479; doi: 10.1038 / cddis. 2014.430).
  • TUNEL positive nuclei / total number of nuclei dead cells per field of view
  • cardiomyocytes were loaded with high glucose, TUNEL dye was incorporated and reacted (37 ° C., 60 minutes). After that, it was sealed with a fluorescence degradation inhibitor containing DAPI, and an image was acquired and analyzed with an upright fluorescence microscope.
  • TUNEL positive cells on 15 kPa gel support As shown in FIGS. 14 and 15, TUNEL positive nuclei in cultured cardiomyocytes on 15 kPa gel support are cultured on glass support. There were significantly fewer than cardiomyocytes.
  • FIG. 15 which quantifies FIGS. 13 to 14, it is shown that apoptosis on a 15 ⁇ kPa gel support is less likely to occur than on a glass support. It was suggested that obstacles could be reduced and better condition could be maintained. Furthermore, when ROS accumulates with hyperglycemia in cardiomyocytes on glass supports, irreversible damage occurs, mitochondrial membrane potential decreases, and apoptosis begins. Therefore, even if it is removed with a ROS remover, apoptosis is not suppressed. On the other hand, in myocardial cells on a 15 kPa gel support, the damage caused by the accumulation of ROS is reversible and cell death is unlikely to occur. It was. Thus, the cardiomyocyte model of the present invention can reduce irreversible cell damage related to oxidative stress during long-term culture, and is a model suitable for evaluating the influence of chronic oxidative stress load on cardiomyocytes. it is conceivable that.
  • Example 7 Evaluation of mitochondrial membrane potential of cultured cardiomyocytes when ROS remover was administered after high glucose load (1) Method The same procedure as in Example 5 was performed. Primary cultured cardiomyocytes on 15 kPa gel support and glass support were cultured and subjected to high glucose load (15 mM, 24 hours). After that, the culture solution is replaced with an ROS remover or normal glucose concentration (5 mM) and cultured for 24 hours, and then the JC-1 dye is incorporated (37 ° C, 30 minutes) with a confocal laser microscope. was obtained and evaluated.
  • Example 8 Effect of hyperglycemia in skeletal muscle cells
  • the effect of 10-15 mM glucose concentration which is common hyperglycemia in type 2 diabetic patients, on mitochondria
  • (1) Method Rat skeletal myoblasts were obtained from Cosmo Bio. Using the differentiation medium provided with the cells (contents not shown), the cells were differentiated into skeletal muscle cells according to the protocol designated by Cosmo Bio. The skeletal muscle cells were seeded on a cover glass prepared in the same manner as described in Example 1 or on a 15 kPa gel.
  • Hyperglycemia treatment and ROS removal agent (NAC) treatment were performed by the method described in Example 5, ROS accumulation was stained with the fluorescent reagent CM-H2DCFDA (FIG. 17A), and mitochondrial membrane potential was stained with JC-1 (FIG. 17B). ).
  • FIG. 17 in cultured skeletal muscle cells, as in cultured cardiomyocytes, ROS accumulation at normal glucose concentration is greater when cultured on a 15 kPa gel support than when cultured on a glass support. It was found that the mitochondrial membrane potential was significantly lower and that the culture on the 15 kPa gel support was significantly higher than the culture on the glass support.
  • Example 9 Comparison of rifampicin reactivity between primary cultured hepatocytes on 500 Pa support and three-dimensional cultured Spheroid (1) Method In human primary cultured hepatocytes, the most in vivo functions of conventional primary cultured hepatocytes We evaluated the presence or absence of the superiority of the support of 500 Pa that matches the stiffness of normal liver tissue over spheroid culture, which is thought to be able to faithfully reflect the above. Human primary hepatocytes were seeded on a 500 Pa support surface coated with type IV collagen or glass that is usually used in cell culture but has high non-physiological rigidity, and cultured in the same manner as in Example 9.
  • spheroids were formed from primary human cultured hepatocytes using Cell-able (Sumitomo Bakelite). After culturing for 12 days, rifampicin known to induce CYP3A4 was used and stimulated with 0 or 40 ⁇ M rifampicin for 46 hours. Increase of CYP3A4 activity by rifampicin by measuring CYP3A4 activity with P450-Glo CYP3A4 Assay (Luciferin-IPA) (Promega), dividing by cell number, and dividing CYP3A4 activity upon rifampicin stimulation by ground-state CYP3A4 activity I asked for a degree.
  • Example 10 Prediction of idiopathic drug-induced liver injury Diclofenac, troglitazone, ranitidine and the like are known to cause idiopathic drug-induced liver injury. On the other hand, acetaminophen, ethanol, etc. show hepatotoxicity when taken in excess, but do not cause idiopathic drug liver injury. The following experiment was conducted to search for an evaluation system for screening the risk of idiopathic drug liver injury.
  • HMGB1 concentration released into the culture medium after 24 hours of incubation with acetaminophen (known as a compound that does not cause idiopathic drug-induced liver injury) or acetaminophen (known as a compound that does not cause idiopathic drug-induced liver injury) was quantified by ELISA using HMGB1 ELISA Kit2 (Sinotest).
  • HMGB1 can be a marker for predicting the occurrence of idiopathic drug-induced liver injury by the compound, and primary cultured hepatocytes cultured on a support equivalent to the stiffness of normal liver tissue are useful in the prediction. Was suggested (FIG. 19).
  • Example 11 Mechanism 1 of non-alcoholic steatohepatitis
  • Nonalcoholic steatohepatitis is thought to be caused by damage to hepatocytes, even if hepatocytes do not die due to lifestyle.
  • the following experiment was conducted.
  • the cell viability was confirmed by trypan blue staining. Those with a survival rate of 75% or less were excluded.
  • the number of cells is counted and cells are spread on a 500 Pa support or glass support at 3.5x10 ⁇ 5 cells / well (6-well plate), 5% FCS and Hepatocyte Maintenance Supplement Pack (Thermo Fisher CM4000) The cells were cultured in D-MEM (low glucose) (containing L-glutamine and phenol red) for 3 days.
  • D-MEM low glucose
  • fructose 5.5 mM
  • palmitic acid 0.5 mM
  • lipid droplet staining and ROS 24 hours later.
  • the culture medium was replaced with 10% FCS-added DMEM containing 5 mM glucose. None was added to the control. In the control group, 10% bovine serum albumin used for dissolving lipid was added.
  • LipiDye is a fluorescent dye that stains intracellular lipid droplets with high sensitivity (reference: Yamaguchi E, et al., Angew. Chem. Int. Ed., 54: 4539-4543 (2015)).
  • LipiDye was diluted with DMEM (without FCS and antibiotics added) to a final concentration of 1 ⁇ M, and added to each 6-well dish at 1-2 ml. After incubating at 37 ° C. for 2 hours, washed once with HBSS (+), the sample was observed with a Nikon A1 confocal laser microscope.
  • the control of primary cultured hepatocytes cultured on a glass support was compared with the control of primary cultured hepatocytes cultured on a 500 Pa support. Many accumulations of ROS were observed. Even in primary cultured hepatocytes cultured on a glass support, accumulation of ROS was observed in cells to which a mixture of palmitic acid and palmitic acid-oleic acid was added. However, the primary cultured hepatocytes cultured on a 500 Pa support rather than these cells, and the cells to which fructose, palmitic acid, oleic acid-palmitic acid mixed solution were added, were cultured on the glass support. There was more ROS accumulation than primary cultured hepatocytes.
  • Example 12 Mechanism 2 of non-alcoholic steatohepatitis In order to elucidate the mechanism of nonalcoholic steatohepatitis, the following experiment was conducted.
  • rat primary cultured hepatocytes were analyzed using a polyacrylamide gel of 500 Pa that matches the hardness of normal liver tissue. Or cultured on glass that is normally used in cell culture but has non-physiologically high hardness. In order to promote cell adhesion, the surface of each culture support was coated with type IV collagen. On the next day, 10 6 cells / well of mouse peritoneal macrophages were added to wells containing rat primary cultured hepatocytes, and co-culture was started.
  • Mouse peritoneal macrophages were stimulated with thioglyconate and peritoneal macrophages were collected by the method described in “Investigation of gene transfer into mouse primary peritoneal macrophages” of invitrogen. Specifically, 2 ml of 5% thioglycollate medium (Sigma) was injected into the abdominal cavity of C57 / BL6J mice, and decapitated 3.5 days later, using a syringe and a syringe needle with a total of 15 ml of PBS (7 ml + 8 ml). The peritoneal macrophages were collected by washing the peritoneal cavity twice.
  • the collected peritoneal washing solution was centrifuged at 1000 rpm, 4 ° C. for 5 minutes, washed twice with PBS, and the number of cells was calculated. Fructose stimulation was applied 24 hours after the start of the same hepatocyte-macrophage co-culture, and the culture medium was collected 24 hours later, and the amount of TNF ⁇ secretion was measured by ELISA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

発明者が今回新たに見出した前記課題に基づき、生体内で起こっている細胞の反応に、より近い細胞の反応をin vitroで発現できる評価系を提供する。 細胞のin vivoでの特性をin vitroで発現するために、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kpa以下である支持体と細胞とを接触させる工程と、in vivoの細胞の特性をin vitroで導入及び/又は発現した細胞の特性をin vitroで維持する工程と、前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程と、入力されたシグナルに対する細胞の反応を測定する工程と、を含む、細胞の反応の評価方法を提供する。

Description

細胞のin vivoでの特性を反映した細胞の反応の評価
 細胞のin vivoでの特性を反映した細胞の反応の評価が開示される。
 生体内に存在する細胞は周辺の物理的環境を認識し応答していることが知られている(非特許文献1)。
 非特許文献2には、間葉系幹細胞を生体組織の微小環境と同じ剛性を有するゲルマトリックスで培養することにより、筋系細胞や骨芽細胞に誘導したことが記載されている。また、特許文献1及び2には、間葉系幹細胞を生体組織の微小環境と同じ剛性を有するゲルマトリックス上で培養することにより、休眠状態に誘導したことが記載されている。
 このように、細胞は、その細胞が接する周辺組織の微小環境に応じて、状態や分化の方向性を変える。
特表2010-532167号公報 特表2010-532166号公報
長山和亮、松本健郎、「細胞のバイオメカニクス」、人工臓器第42巻3号2013年、205-208頁 Cell, 2006, Vol.126, pp.677-689
 in vitroで培養した細胞は、薬理試験等の試験に幅広く使用されている。しかし、その培養には、細胞の支持体として、その細胞が存在している組織の微小環境とはかけ離れた、非常に硬い剛性を有するプラスチックのシャーレが使用されている。
 発明者らの検討により、このような人工的な剛性条件では、本来生体内で細胞に起きている反応が観察できない場合があることが明らかとなった。
 本発明は、発明者が今回新たに見出した前記課題に基づき、生体内で起こっている細胞の反応に、より近い細胞の反応をin vitroで発現できる評価系を提供することを一課題とする。
 本発明者は、鋭意研究を重ねたところ、細胞を、その細胞が由来する生体組織の微小環境と同じ剛性を有するゲル、又はゲルマトリックス上で培養することにより、生体内で起こっている細胞の反応に、より近い細胞の反応をin vitroで発現できることを見出した。
 本発明は、当該知見に基づいて完成されたものであり、以下の態様を含む。
項1.細胞のin vivoでの特性をin vitroで発現するために、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体と細胞とを接触させる工程と、
in vivoの細胞の特性をin vitroで導入及び/又は発現した細胞の特性をin vitroで維持する工程と、
前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程と、
入力されたシグナルに対する細胞の反応を測定する工程と、
を含む、細胞の反応の評価方法(ただし、前記細胞に間葉系幹細胞は含まない)。
項2.前記シグナルは、化学的因子及、物理的因子及び生物学的因子よりなる群から選択される少なくとも一つの因子を細胞に負荷することによって細胞に入力される、項1に記載の方法。
項3.化学的因子が、化合物、イオン、気体、核酸、糖質、脂質、糖タンパク質、糖脂質、リポタンパク質、アミノ酸、ペプチド、タンパク質、ポリフェノール類、サイトカイン類及びケモカインよりなる群から選択される少なくとも一種である、項1又は2に記載の方法。
項4.物理的因子が、細胞の周囲環境の剛性、圧力、張力、光、放射線、酸素濃度、pH及び温度よりなる群から選択される少なくとも一種である、項1又は2に記載の方法。
項5.生物学的因子が、細菌、真菌、ウイルス、アレルゲン、ヒト細胞、ヒト以外の動物細胞及びこれらに含まれる成分より選択される少なくとも一種である、項1又は2に記載の方法。
項6.細胞が肝細胞であり、支持体の剛性が0.2~5kpaである、項1~5のいずれか一項に記載の方法。
項7.細胞の反応が薬物代謝酵素の誘導、非アルコール性脂肪肝炎のメカニズム、又は特発性肝障害を示す、項6に記載の方法。
項8.細胞の反応が前記因子の効能又は毒性である、項1~5のいずれか一項に記載の方法。
項9.細胞が心筋細胞であり、支持体の剛性が5~100kpaである、項1~5のいずれか一項に記載の方法。
項10.化学的因子が酸化ストレス誘導物質であり、細胞の反応が酸化ストレス応答である、項9に記載の方法。
項11.酸化ストレス誘導物質がグルコースである、項10に記載の方法。
項12.細胞のin vivoでの特性をin vitroで発現するために、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体と細胞とを接触させる工程と、
in vivoの細胞の特性をin vitroで導入及び/又は発現した細胞の特性をin vitroで維持する工程と、
前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程と、
シグナルの入力に先立って、シグナルの入力と同時に、又はシグナルの入力の後に、疾患、又は障害を予防、治療又は改善するための候補物質と細胞とを接触させる工程と、
入力されたシグナルに対する細胞の反応を測定する工程と、
を含む、疾患、又は障害を予防、治療又は改善するための候補物質のスクリーニング方法(ただし、前記細胞に間葉系幹細胞は含まない)。
項13.前記シグナルは、化学的因子及、物理的因子及び生物学的因子よりなる群から選択される少なくとも一つの因子を細胞に負荷することによって細胞に入力される、項12に記載の方法。
項14.化学的因子が、化合物、イオン、気体、核酸、糖質、脂質、糖タンパク質、糖脂質、リポタンパク質、アミノ酸、ペプチド、タンパク質、ポリフェノール類、サイトカイン類及びケモカインよりなる群から選択される少なくとも一種である、項12又は13に記載の方法。
項15.物理的因子が、細胞の周囲環境の剛性、圧力、張力、光、放射線、酸素濃度、pH及び温度よりなる群から選択される少なくとも一種である、項12又は13に記載の方法。
項16.生物学的因子が、細菌、真菌、ウイルス、アレルゲン、ヒト細胞、ヒト以外の動物細胞及びこれらに含まれる成分より選択される少なくとも一種である、項12又は13に記載の方法。
項17.細胞が肝細胞であり、支持体の剛性が0.2~5kPaである、項12~16のいずれか一項に記載の方法。
項18.細胞の反応が薬物代謝酵素の誘導、非アルコール性脂肪肝炎のメカニズム、又は特発性肝障害を示す、項17に記載の方法。
項19.細胞の反応が前記因子の効能又は毒性である、項12~16のいずれか一項に記載の方法。
項20.細胞が心筋細胞であり、支持体の剛性が5~100kPaである、項12~16のいずれか一項に記載の方法。
項21.化学的因子が酸化ストレス誘導物質であり、細胞の反応が酸化ストレス応答である、項20に記載の方法。
項22.酸化ストレス誘導物質がグルコースである、項20に記載の方法。
項23.細胞のin vivoでの特性をin vitroで発現するために、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体を含む、請求項12~22に記載の細胞の反応の評価方法、又は請求項1~11に記載のスクリーニング方法を実施するためのキット。
項24.さらに目的とする細胞の反応の評価又はスクリーニングを実施するために適した細胞を含む、項23に記載のキット。
 シグナルの入力に対する生体内で起こっている細胞の反応に、より近い細胞の反応をin vitroで発現できる。
Aは、代表的な細胞が生体内で接している微小環境の剛性を示す図である。Bは、正常組織又は異常組織の剛性を示す図である(Soft Matter, 2007, 3, 299-306.及びAm J Physiol Gastrointest Liver Physiol 293: G1147-G1154, 2007.からデータを引用) ポリアクリルアミド支持体の作製方法の一例を記載した図である(図は、Cell, 2006, Vol.126, pp.677-689より引用)。 アクリルアミドとビスアクリルアミドの混合割合に応じたポリアクリルアミドゲルの剛性の変化を示すグラフである(Cell Motil Cytoskeleton. 2005 Jan;60(1):24-34.より引用)。 本発明のポリアクリルアミド支持体を用いた心筋細胞障害モデルの作製方法の一例を記載した図である。 心筋細胞が整列した筋線維分節の構造を形成するには、生理学的な剛性を持った支持体が必要であることを示した図である。 25mMの高グルコース濃度に心筋細胞を曝露し、その細胞の応答を表した図である。 本発明の細胞モデルにおける、過酸化水素投与による酸化ストレス負荷時の細胞骨格構造を、ガラス上の培養心筋細胞と15kPaゲル上の培養心筋細胞とで比較した図である。 初代培養心筋細胞に対する培養支持体の影響を見るため、高グルコール負荷時のROS蓄積の変化とその影響、活性酸素種(ROS)除去剤の効果を評価する実験方法の概要を表した図である。 正常なグルコース濃度におけるROSの蓄積量は、ガラス支持体よりも15kPaゲル支持体で培養された心筋細胞で顕著に低い値を示していること、ROS除去剤の効果が15kPaでより高いことを表した図である。 正常グルコース濃度と15mMグルコース濃度での培養心筋細胞のミトコンドリア膜電位を表した図である。 正常グルコース濃度と15mMグルコース濃度での培養心筋細胞のミトコンドリア膜電位を表した図である。 培養心筋細胞中のアポトーシス細胞をTUNELアッセイで評価した図である。 ガラス支持体上で心筋細胞を正常グルコース濃度又は高グルコース濃度に曝露した場合の、TUNELアッセイの結果を示す。 15kPaゲル支持体上で心筋細胞を正常グルコース濃度又は高グルコース濃度に曝露した場合の、TUNELアッセイの結果を示す。 図13及び図14のアポトーシス核の存在比率をグラフで表した図である。 高グルコース負荷後にROS除去剤を投与し、ROS除去による治療効果をミトコンドリア膜電位で評価する実験方法の概要とその結果を表した図である。 骨格筋細胞に高グルコース負荷を行った結果を示す。AはROSの蓄積を示す。Bは、ミトコンドリア膜電位を示す。 500Paの支持体上の初代培養肝細胞と三次元培養Spheroidのリファンピシン反応性の比較を示す図である。 特発性薬剤性肝障害における500Paの支持体の効果を示す図である。 非アルコール性脂肪肝炎の症状の1つである細胞内の脂肪滴の蓄積を支持体上で培養した初代培養肝細胞で発現した図である。 非アルコール性脂肪肝炎の症状の1つである細胞内のROSの蓄積を支持体上で培養した初代培養肝細胞で発現した図である。 肝細胞のマクロファージに対する炎症惹起作用をTNF-αの量で評価した図である。
1.細胞の反応の評価方法
 細胞の反応の評価方法(以下、単に「評価方法」とする)について説明する。
 評価方法は、in vitroで細胞に入力されるシグナルに対する細胞の反応を評価する。評価方法は、細胞を、その細胞が生体内で認識する周囲環境の剛性を反映した剛性を有する支持体と接触させる工程を含む。評価方法は、in vivoの細胞の特性をin vitroで導入及び/又は発現している細胞を用い、その特性をin vitroで維持する工程を含む。評価方法は、前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程を含む。評価方法は、入力されたシグナルに対する細胞の反応を測定する工程を含む。
 評価方法は、細胞を前記条件の支持体と接触させることにより、細胞は、in vitroにおいて、in vivoにおけるその細胞の本来の特性を、又はその特性に近い特性を発現することができる。
 細胞は、生物に由来する限り制限されない。例えば哺乳類細胞、鳥類細胞、昆虫細胞、両生類細胞、魚類細胞等を挙げることができる。哺乳類細胞として好ましくは、ヒト、サル、ヒツジ、ヤギ、ウシ、ウマ、ブタ、ネコ、イヌ、ウサギ、マウス、ラット及びモルモット等に由来する細胞である。鳥類細胞として好ましくは、ニワトリに由来する細胞である。好ましくは、細胞はin vitroで培養可能な細胞である。細胞は、培養細胞株であってもよい。細胞は、初代培養細胞等の培養にあたって生体から採取された細胞であってもよい。細胞は、初代培養細胞等にウイルスを感染させ、一定の増殖能力(初代培養細胞よりも高い増殖能力又は分裂回数を有する、好ましくは不死化)を獲得させた細胞であってもよい。初代培養細胞は、細胞又は組織を採取後、培養を開始し増殖能がなくなるまでの間の、継代中のいずれかの細胞をいう。初代培養細胞として、例えば、肝細胞、筋細胞(心筋細胞、平滑筋細胞、骨格筋細胞を含む)及び肝非実質細胞、神経細胞、グリア細胞、血管内皮細胞、リンパ管内皮細胞、タコ足細胞、メサンギウム細胞、尿細管細胞、皮膚上皮細胞、粘膜上皮細胞、角膜上皮細胞、視細胞、双極細胞、水平細胞、ミュラー細胞、肺胞上皮細胞、気管支上皮細胞、食道上皮細胞、消化管上皮細胞、乳腺細胞、乳管上皮細胞、膵島細胞、膵管細胞、脂肪細胞、マクロファージ、単球細胞、線維芽細胞、およびこれらの前駆細胞、変異後の細胞を挙げることができる。好ましくは細胞からは、間葉系幹細胞が除かれる。より好ましくは細胞からは、体性幹細胞、胚性幹細胞等の幹細胞は除かれる。
 細胞には、多能性幹細胞(胚性幹細胞、人工多能性幹細胞等を含む。)から特定の細胞に分化させた細胞も含まれる。また、間葉系幹細胞等の組織幹細胞から特定の細胞に分化させた細胞も含まれる。例えば胚性幹細胞から間葉系幹細胞に分化させる方法は、Stem Cell Rev and Rep (2017) 13:68-78に開示されている。間葉系幹細胞から肝細胞に分化させる方法は、World J Stem Cells 2011 December 26; 3(12): 113-121に開示されている。
 細胞は、正常な細胞であっても疾病細胞等の異常を有する細胞であってもよい。また、遺伝子組換え動物、及び疾患モデル動物から採取された細胞であってもよい。
 細胞が生体内で認識する周囲環境は、細胞が、初代培養細胞等であれば、その細胞を採取した組織における目的の細胞の周囲の環境である。細胞が、培養細胞株であれば、その細胞が本来生体内にあるとすれば、置かれていたはずの組織の微小環境である。組織は、正常であっても疾患、又は障害等の何らかの異常を有していてもよい。例えば病巣から細胞を採取する場合には、組織はその病巣部の組織を意味する。微小環境とは、一般的に、生物物理学的あるいは生化学的な因子などを通じて細胞の挙動を制御する、細胞の周囲の状態を示す用語として使用されている。
 細胞が生体内で認識する周囲環境の剛性は、組織そのものの剛性であってもよく、組織内において細胞が接している微小環境そのものの環境であってもよい。
 剛性は、硬さを表す限り制限されない。好ましくは、剪断弾性率(ずれ弾性率)で表される。測定方法としては様々な異なる原理でいくつかの手法が存在する(Sportsmedicine,2014,No.166,1~30)。剛性は、例えば次の方法で測定することができる。
 組織又は支持体を弾性体の正四角柱と見做して、底面とそれに平行な面に剪断応力Sが働くと、正四角柱の側面が頂角90°±γの菱形に変形する。このとき、フックの法則が成り立つ範囲でS=G’γという比例関係があり、その係数Gを剛性率とよぶ。
 具体的には、ひずみ制御型rheometrics fluids spectrometer III(Rheometrics, Piscataway, NJ)で組織の動的剛性率を測定する。振動(1rad/s)剪断ひずみ2%で、同位相の剪断応力から弾性抵抗を表す値である剛性率G’を計算で求める。例えばステンレスパンチを使用して、例えば厚さ5~10mm、直径5~10mmの試料を切り出し、プレート間に配置する。剪断ひずみ2%で振動させて短期G’(ω)を測定する。また、定常ひずみ10%を適用し、試料を30秒間弛緩させて、長期剛性率G’(t)を測定する。単位はパスカル(Pa)で表す。支持体の動的剛性率を測定する場合には、プレート間で直接支持体を形成させ、組織と同様の振動剪断ひずみ及び同位相の剪断応力から剛性率G’を計算で求める。ガラスやプラスチックの動的剛性率は、プレートに試料を接着剤で固定して測定した。
 表1に、さまざまなタイプの正常組織の剛性をあげておく。また、図1Aには、代表的な細胞が接している微小環境の剛性を示す。また、図1Bには代表的な組織の正常状態、異常状態における剛性を示す。肝臓、血管等は線維化や石灰化により剛性が高くなる。
Figure JPOXMLDOC01-appb-T000001
 また、微小環境の剛性は、例えばBiophysical Journal, Volume 93, December 2007, p4453-4461等に記載されている原子間力顕微鏡(AFM:Atomic Force Microscope)を用いて測定することができる。
 支持体は、細胞が生体内で認識する周囲環境の剛性を反映できる限り制限されない。例えば、ゲル、及びゲルマトリックスを挙げることができる。支持体には、二次元での培養環境を提供できるもの、及び三次元での培養環境を提供できるものが含まれる。
 ゲルとしては、アガロース、アクリルアミド、コラーゲン、フィブリン、シリコーン、グリコサミノグリカン、カラギーナン、及びローカストビーンガム等のゲル化剤から構成される骨格を有するゲルを挙げることができる。ゲル化剤として好ましくは、アクリルアミド、コラーゲン、及びフィブリン等である。アクリルアミドは、剛性の低いゲル及び高いゲルの両方を作製でき、ゲルの剛性を調整しやすい点から特に好ましい。また、コラーゲンは、生体内の環境に近い環境を発現できることから好ましい。ゲルは公知の方法により調製することができる。アガロース、アクリルアミド、コラーゲン、フィブリン、シリコーン、グリコサミノグリカン、カラギーナン、及びローカストビーンガム等のゲル化剤は二次元培養用のゲルの調製に好適に用いられる。三次元培養用のゲル化剤としては、コラーゲン、フィブリン、シリコーン、グリコサミノグリカン、VitroGelTM 3D、VitroGelTM 3D-RGB(TheWell BIOSIENCE社)、BDマトリゲルTMマトリクス(BD Bioscience社)等を使用することができる。
 ゲルマトリックスは、前記ゲル以外の成分を含む。ゲル以外の成分としては、接着タンパク質、及び接着タンパク質をゲルに架橋させるための接着タンパク質架橋剤を挙げることができる。ゲルマトリックスは、好ましくはその表面が接着タンパク質によってコーティングされる。ポリアクリルアミドゲル、及びシリコーンゲル等のゲル化剤が生物由来でないゲルは、ゲルマトリックスとして使用することが好ましい。
 接着タンパク質としては、コラーゲン、フィブロネクチン、インテグリン、カドヘリン、ラミニン及びプロテオグリカン等よりなる群から選択される少なくとも一種を挙げることができる。好ましくはコラーゲン、フィブロネクチン、及びコラーゲンとフィブロネクチンとを混合物よりなる群から選択される少なくとも一種を用いることができる。コラーゲンとフィブロネクチンとの混合割合は、質量(g)割合で、フィブロネクチン1に対してコラーゲン15~3、好ましくは10~5である。コラーゲンとしては特に制限されないが、好ましくは、I型コラーゲン、又はIV型コラーゲンである。コラーゲンは、ヒト、ラット、マウス、カンガルー、ウシ及び魚(例えばサメ)等由来のものを使用することができる。コラーゲンは遺伝子組換えによって作製されたものでもよい。フィブロネクチンとして好ましくは、魚、ヒト、ウシ、カンガルー、マウス及びラット等由来のものを使用することができる。フィブロネクチンは、遺伝子組換えによって作製されたものでもよい。
 接着タンパク質架橋剤としては、ヘテロ二官能性架橋剤を使用することができる。ヘテロ二官能性架橋剤として好ましくは、スルホ-SANPAH(スルホスクシンイミジル6(4’-アジド-2’-ニトロフェニル-アミノ)ヘキサノエート、Pierce No.22589)、又はアクリル酸N-ヒドロキシスクシンイミドエステル(NHS)である。
 ゲルマトリックスの調製方法は、特に制限されないが、例えば、ゲルを調製する際に、ゲル以外の成分を混合してゲル化することにより調製することができる。コラーゲン(終濃度で0.3~1.0 mg/ml程度)、又はコラーゲン(終濃度で0.3~1.0 mg/ml程度)とフィブロネクチン(終濃度で0.05~0.5mg/ml)との混合物ならびに、ヘテロ二官能性架橋剤(終濃度で0.5~3mg/ml)程度をアクリルアミド溶液(ビスアクリルアミドを含む)に混合し、過硫酸アンモニウム、N,N,N’,N’-テトラメチルエチレンジアミン(TEMED)を添加してゲル化させる。
 ゲルを接着タンパク質でコーティングしてゲルマトリックスを調製する方法としては、はじめにポリアクリルアミドゲルを作製し、例えば0.2~1mg/mlのヘテロ二官能性架橋剤をジメチルスルホオキサイド(DMSO)及びHEPESバッファーの混合液に溶解し、この溶液をピペットでゲル表面に滴下する。続いて、ポリアクリルアミドゲルを、例えば、紫外線ランプの6インチ下に配置し、8~15分間照射する。次に、紫外線照射後のゲルを洗浄する。最後の洗浄液を吸引した後、例えば0.01~0.2 mg/mlのフィブロネクチン溶液及び/又は0.05~0.2 mg/mlのコラーゲンをピペットでポリアクリルアミドゲルの上に滴下する。次に、ゲルを例えば3~8℃で3~5時間程度インキュベートする。図2に接着タンパク質でコーティングされたポリアクリルアミドゲルの調製するための模式図を示す。
 支持体の剛性は、細胞が生体内で認識する周囲環境の剛性を反映する。「周囲環境の剛性を反映する」とは、支持体の剛性が、周囲環境の剛性の範囲に含まれる、或いは支持体の剛性が、周囲環境の剛性と同程度であることを意図する。したがって、支持体の剛性は、細胞が由来する組織の剛性に応じて決定され、100kPa以下、50kPa以下、10kPa以下、5kPa以下、1kPa以下、500Pa以下である。支持体の剛性は、好ましくはゲルの剛性に依存する。ゲルの剛性は、各ゲルのゲル化剤を含むゲル調製液中のゲル化剤濃度によって調整することができる。また、ゲル化剤がゲル化する際にゲル架橋剤を必要とする場合には、ゲル化剤とゲル架橋剤の混合割合によってもゲルの剛性を調整することができる。例えば、ゲル化剤がアクリルアミドの場合は、10Pa~100,000Paの剛性のゲルを調製することができる。ゲル化剤がコラーゲンの場合は、1Pa~1kPaの剛性のゲルを調製することができる。ゲル化剤がフィブリンの場合は、50Pa~4kPaの剛性のゲルを調製することができる。ゲル化剤がシリコーンの場合は、400Pa~300kPaの剛性のゲルを調製することができる。
 例えば、ゲルがポリアクリルアミドゲルである場合、ゲル調製液に含まれる総アクリルアミド(アクリルアミド及びビスアクリルアミドの総量)の濃度を変化させることにより所望の剛性のゲルを得ることができる。ゲル調製液に含まれる総アクリルアミドの濃度は、所望の剛性に応じて0.5~50質量%とすることができる。図3にアクリルアミドとビスアクリルアミドの濃度に応じた剛性を示す。例えば3質量%のアクリルアミド溶液から調製されるポリアクリルアミドゲルの剛性は、50~300Pa程度である。
 アクリルアミドゲルのアクリルアミド:ビスアクリルアミド比は質量比で100:1から5:1の範囲であることが好ましい。ビスアクリルアミド1質量部に対するアクリルアミドの混合比は、100、90、80、70、60、50、40、30、20、15、10、5質量部から選択することができる。
 アクリルアミド溶液の溶媒としては、水、PBS、150mM NaCl加Tris-HClバッファー、血清を添加していない又は血清が添加された細胞培養用培地等を挙げることができる。アクリルアミドは、過硫酸アンモニウム及びTEMEDを使ってゲル化させることができる。過硫酸アンモニウム及びTEMEDの添加量は公知である。例えば、過硫酸アンモニウム及びTEMEDの添加量は総アクリルアミド濃度を問わず、アクリルアミド溶液1,500μlあたり10%過硫酸アンモニウムを15μl程度、TEMEDを4.5μl程度添加することができる。
 フィブリンゲルは、in vitroでフィブリノーゲンにトロンビンとカルシウムイオンを作用させて調製することができる。フィブリンゲル調製液に含まれるフィブリノーゲンの含有量は、1~50mg/mLとすることができる。例えば、サケフィブリノーゲン(Searun Holdings, Freeport, ME)を水で再水和し、150mMのNaClを含む50mMのTris-HClバッファー(pH7.4)にて3mg/mL、又は18mg/mL濃度で調製したフィブリノーゲン溶液400μlに2単位/mLの魚トロンビン(Searun Holdings)を添加する。3mg/mLと18mg/mLのフィブリノーゲン溶液から調製したフィブリンゲルの剛性は、それぞれ250Paと2150Pa程度となる。
 フィブリノーゲンは、変温動物又は恒温動物由来のフィブリノーゲンを使用することができる。変温動物として、好ましくは魚であり、より好ましくはサケである。恒温動物として、好ましくは哺乳動物であり、よし好ましくはヒト又はウシである。フィブリノーゲンは、遺伝子組換えにより作製されたものを使用してもよい。
 フィブリノーゲン溶液を調製する溶媒は、水、PBS、150mM NaCl加Tris-HClバッファー、血清を添加していない又は血清が添加された細胞培養用培地等を挙げることができる。
 フィブリノーゲンをフィブリンに重合するために添加するトロンビンは、フィブリノーゲンを重合できる限り制限されない。フィブリノーゲンとトロンビンは同種であることが好ましい。また、トロンビンによるフィブリノーゲンの重合を促進するためにカルシウムイオンを添加することができる。カルシウムイオンは、例えば塩化カルシウム等から供給される。
 コラーゲンゲルは、コラーゲン溶液に架橋剤を添加し、例えば3~8℃に12~24時間静置することにより調製することができる。コラーゲン溶液に含まれるコラーゲン含有量は、0.05質量%~0.8質量%とすることができる。0.55質量%のコラーゲン溶液を用いることにより、圧縮弾性率で60~100kPa(剪断弾性率で20~33kPa)程度の剛性のゲルを調製することができる。
 コラーゲンは、ゲルを調製できる限り制限されないが、I型コラーゲン又はIV型コラーゲンであることが好ましい。コラーゲンとしてI型コラーゲンが好ましい。コラーゲンは、ヒト、ラット、マウス、カンガルー、ウシ及び魚(例えばサメ)等由来のものを使用することができる。コラーゲンは遺伝子組換えによって作製されたものでもよい。
 コラーゲン溶液を調製する溶媒は、酸性(pH 1~4程度、好ましくはpH 2.5~3.5程度)水溶液であることが好ましい。例えば、溶媒として10-3モルの希塩酸を溶媒として用いることができる。希塩酸に溶解したコラーゲンは、中和してもよい。
 架橋剤は、N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC)、グルタルアルデヒド、1,4-dibutandiol diglycidyl ether (BDDGE)、N-ヒドロキシスクシイミド(NHS)及び水溶性カルボジイミド(WSC)等から選択される。好ましくは、WSCである。コラーゲンと架橋剤の混合割合は、公知である。
 シリコーンゲルは、信越シリコーン(信越化学株式会社)等から入手することができる。例えば、KE-104Gel Cat-104(複素弾性率2×10N/m)、KE-1051J(A/B)(複素弾性率2×10N/m)、KE-1052(A/B)(複素弾性率2×10N/m)、KE-110Gel Cat-110(複素弾性率2×10N/m)、KE-1056(複素弾性率4×10N/m)、FE-57(複素弾性率3×10N/m)等を挙げることができる。複素弾性率は、剪断弾性率に換算すると、1N/mが、およそ0.3 Paとなる。
 細胞のin vivoでの特性をin vitroで発現するために細胞と支持体を接触させる。発現とは、細胞のin vivoでの特性(例えば、シグナルの入力に対する細胞の応答)により近い状態をin vitroで引き出すことをいう。好ましくは、発現は再現である。in vivoでの特性が引き出されたか否かは、例えば、シャーレ等で培養した細胞と、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有する支持体を用いて培養した細胞との間で、シグナルの入力に対する応答を比較し、前記支持体上で培養した細胞において応答性が生体内の細胞の応答により近い場合にin vivoでの特性が引き出された(発現された)と決定することができる。シグナル及びシグナルに対する応答性の評価については、後述する。
 細胞と支持体を接触させることは、細胞と支持体が一時的に接触すること、又は一定時間接触し続けることを含む。また、細胞と支持体を接触させることには、支持体上で細胞を培養することを含む。初代培養細胞等は、特に採取されてから、プラスチックシャーレ等の硬い剛性に接触させずに、細胞が生体内で認識する周囲環境の剛性を反映した剛性の支持体と接触させることが好ましい。プラスチック等の硬い支持体に細胞を接触させると、その時点で細胞のin vivoでの特性が失われる畏れがあるためである。
 接触は、細胞を培養することができる環境下で行うことが好ましい。例えば、細胞に応じた培養培地の存在下で接触させる。培養培地は、細胞に応じて選択すればよく、例えば、Minimum Essential培地(MEM)、イーグルMEM、α-MEM、高グルコース(4.5g/L) 含有DMEM、低グルコース(1.0g/L)含有DMEM、イスコフ改変ダルベッコ培地(IMDM)、Glasgow MEM(GMEM)、RPMI-1640、マッコイ5A培地、MCDB培地、Ham’s F-12、Ham’s F-10、Williams Medium E及びこれらの混合培地等を挙げることができる。培養培地は、必要に応じて、5~30%程度の血清を含んでいてもよい。血清はウシ胎児血清、ヒト血清及びウマ血清等を使用することができる。また、培養培地は、抗生物質を含んでいてもよい。培養培地には、細胞の増殖を助けるために、脂肪酸、アルブミン、細胞増殖因子、アミノ酸、核酸、及びビタミン類から選択される少なくとも一種を付加的に添加的に添加してもよい。
 細胞と支持体との接触は、細胞の種類に応じて、例えば25~38℃の温度下で、好ましくは4~10%の炭酸ガス存在下で行われる。
 支持体は、PBS、ハンクス緩衝塩、目的細胞の培養培地(血清等は含んでいても含まなくてもよい)で、洗浄又は平衡化してから細胞と接触させることが好ましい。
 評価方法は、前記支持体と接触した細胞は、in vivoの特性がin vitroで導入(発現)される。また、評価方法は、発現したin vivo細胞の特性をin vitroで維持することを含む。発現した細胞の特性をin vitroで維持することには、支持体を用いて細胞を培養培地存在下で増殖させることが含まれていてもよい。また、発現した細胞の特性をin vitroで維持することには、細胞を継代することを含んでいてもよい。支持体と接触した細胞の維持は、上述の培養培地を使用し、細胞の種類に応じて、例えば25~38℃の温度下で、好ましくは4~10%の炭酸ガス存在下で行われる。in vivoにおける細胞の特性の導入及び/又は維持に必要なシグナル以外のシグナルの入力がない状態を「基底状態」ともいう。基底状態は、好ましくは、その細胞が生体内で認識する周囲環境の剛性を反映した剛性を有する支持体と細胞を接触させて、好ましくは培養培地存在下で支持体と接触した状態の細胞を維持することで、in vivo細胞の特性がin vitroで安定化した状態にあることをいう。
 評価方法は、前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程を含む。シグナルは、細胞を使って評価したい反応を惹起するものである限り、制限されない。シグナルは、外的刺激因子であることが好ましい。外的刺激因子には、化学的因子、物理的因子、生物学的因子及びこれらの組み合わせを含む。化学的因子としては、化合物、イオン、気体、核酸、糖質、脂質、糖タンパク質、糖脂質、リポタンパク質、アミノ酸、ペプチド、タンパク質(抗体を含む)、ポリフェノール類、サイトカイン類及びケモカインよりなる群から選択される少なくとも一種であることが好ましい。化学的因子としてさらに好ましくは、酸化ストレス誘導物質である。酸化ストレスは、好ましくは高グルコース負荷(終濃度で7mM~30mM、好ましくは10mM~20mM、より好ましくは10mM~15mM)、高脂肪酸負荷(好ましくは炭素数14~18の飽和又は不飽和の脂肪酸、より好ましくはオレイン酸、パルミチン酸又はこれらの混合液を終濃度で0.01mM~10mMの範囲、好ましくは0.1mM~7mMの範囲)、過酸化水素(終濃度で1μM~100μM、好ましくは5μM~80μM、より好ましくは10μM~50μM)を挙げることができる。物理的因子としては、細胞の周囲環境の剛性、圧力、張力、光、放射線、酸素濃度、pH及び温度よりなる群から選択される少なくとも一種であることが好ましい。生物学的因子が、細菌、真菌、ウイルス、アレルゲン(花粉、動物皮膚、及びダニ等)、ヒト細胞、ヒト以外の動物細胞(好ましくはヒト以外の哺乳類細胞)及びこれらに含まれる成分(リポポリサッカライド、アレルゲン抽出物、細菌抽出物、真菌抽出物、ウイルスカプシドタンパク質、ウイルスコアタンパク質、ウイルスエンベロープタンパク質、ワクチン成分等)、細胞外分泌小胞(コンディショニングメディウム、細胞培養上清等であってもよい)より選択される少なくとも一種であることが好ましい。
 上記シグナルは、それぞれのシグナルの種類に応じた濃度又は強さで必要な期間、細胞に入力することができる。シグナルを入力する際は、物理的因子の場合、上述の培養培地を使用し、物理的因子が温度である場合を除き、細胞の種類に応じて、例えば25~38℃の温度下で、好ましくは4~10%の炭酸ガス存在下で行われる。化学的因子、及び生物学因子の場合には、細胞と支持体を含む培養培地に各因子を添加し、細胞の種類に応じて、例えば25~38℃の温度下で、好ましくは4~10%の炭酸ガス存在下で細胞と各因子を接触させる。シグナルの入力は、一過性でも、一定期間継続していても、断続的であってもよい。細胞と化学的因子を接触させる際に使用される培養培地は、細胞と支持体を接触させる際に用いられる培養培地であってもよく、シグナルに応じて細胞と支持体を接触させる際に用いられる培養培地と異なる培養培地を用いてもよい。
 評価方法は、入力されたシグナルに対する細胞の反応を測定する工程を含む。測定方法は、入力されたシグナルに応じた方法で測定することができる。例えば、ゲノムの修飾(DNA修飾及びヒストン修飾を含む)、DNAの変異、RNAの発現や分解、タンパク質の発現や分解、タンパク質のリン酸化、酵素活性、脂質代謝、糖代謝、活性酸素の発生量、解毒反応(例えばP450の活性化)、ストレス応答タンパク質(ヒートショックタンパク質等)の活性化、発現又は放出、デインジャーシグナルタンパク質(HMGB1等)の活性化、発現又は放出、貪食反応、アポトーシス反応、ユビキチン化、ミトコンドリア機能、小胞体機能、免疫応答等を測定することにより細胞の反応を評価することができる。また、細胞の反応は細胞を染色物質等で染色して顕微鏡等で観察することによっても評価することができる。これらの測定方法は、公知である。細胞の反応の評価には、入力されたシグナルが、細胞に好適に働くことを評価すること、及び/又は細胞に悪影響を及ぼすと評価することが含まれる。また、細胞の反応を評価することには、入力されたシグナルに対する細胞の反応のメカニズムを解明することが含まれる。
2.スクリーニング方法
 評価方法において、物理的因子、化学的因子又は生物学的因子として、例えば疾患、又は障害を予防、治療又は改善するための候補物質を用いてもよい。また、シグナルの入力(好ましくは細胞に障害を来すシグナルの入力)と、疾患、又は障害を予防、治療又は改善するための候補物質の添加を組み合わせて細胞の反応の評価を行ってもよい。すなわち評価方法は、疾患、又は障害を予防、治療又は改善するための候補物質のスクリーニング方法としても使用できる。
 疾患、又は障害を予防、治療又は改善するための候補物質のスクリーニング方法は、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体と細胞とを接触させる工程と、in vivoの細胞の特性をin vitroで導入及び/又は発現した細胞の特性をin vitroで維持する工程と、前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程と、シグナルの入力に先立って、シグナルの入力と同時に、又はシグナルの入力の後に、疾患、又は障害を予防、治療又は改善するための候補物質と細胞とを接触させる工程と、入力されたシグナルに対する細胞の反応を測定する工程と、を含む方法である。入力されたシグナルに対する細胞の反応を測定した際に、候補物質と接触していない細胞と候補物質と接触した細胞の反応を比較して、候補物質と接触した細胞において細胞の反応が改善していると決定された時に、前記候補物質は、疾患、又は障害を予防、治療又は改善することができることが示唆又は決定される。本項における用語の説明は、評価方法の項の説明を援用する。
3.筋細胞障害モデル
 評価方法の一態様は、筋細胞を使用した評価方法に関する。また、筋細胞障害モデル、及び筋細胞障害を予防、治療又は改善するための候補物質のスクリーニング方法に関する。評価方法の項に記載された用語で、本項でも使用される用語については、評価方法の項の説明をここに援用する。
 「筋細胞」とは、心筋細胞、平滑筋細胞又は骨格筋細胞のことをいう。好ましくは初代培養の筋細胞、平滑筋細胞又は骨格筋細胞を挙げることができる。筋細胞を採取する動物は、特に限定されるものではないが、評価方法の項で述べた動物を挙げることができる。
 筋細胞を用いた評価方法では、好ましくは代謝と炎症に由来する筋細胞障害を評価することができる。「代謝と炎症に由来する筋細胞障害」とは、例えば高血糖やミトコンドリア代謝異常、酸化ストレス、小胞体ストレス、脂質代謝異常等に由来する細胞障害の中で、心筋細胞、平滑筋細胞又は骨格筋細胞に発生する細胞障害のことをいう。例えば高血糖における心筋細胞の障害としては、酸化ストレスの増加、ミトコンドリアの機能不全(代謝異常)、脂質代謝異常、アンギオテンシン・アルドステロン活性化、カルシウム恒常性とイオン代謝の異常等があり、それらの結果として例えば高グルコース負荷による糖尿病性の心筋症に至るとされている(愛媛県立医療技術大学紀要第11巻第1号P.1-7、2014年)。ミトコンドリアの機能不全(代謝異常)とは、まずミトコンドリア由来の活性酸素種(Reactive Oxygen Species:ROS)の濃度が増加し、ミトコンドリアが障害を受け、その障害によりミトコンドリアでの膜電位の低下を引き起こす。その結果、心筋でのインスリン抵抗性が発症する原因となっている(心臓、Vol.42、No.4(2010)564-572)。脂質代謝異常とは、ミトコンドリアにおけるATP産生が障害を受け、長鎖脂肪酸を基質とするエネルギー産生が阻害され、心収縮効果が低下することをいう(月刊糖尿病、2013/2、Vol.5、No.2、6-7)。
 「筋細胞障害モデル」とは、初代培養の心筋細胞、平滑筋細胞又は骨格筋細胞を用いたin vitroでの障害モデルのことである。in vitroにおいて、in vivoの筋細胞と同じ物理的な(支持体の剛性がin vivoの筋細胞の周囲環境の剛性を反映している)環境に筋細胞を接触させ、生理学的な機能がin vivoの筋細胞に近い特性となるように導入、又は維持された筋細胞を含む。また、筋細胞障害モデルには、in vivoの筋細胞に近い特性となるように導入、又は維持された筋細胞に、シグナルを入力した筋細胞を含む。好ましくは、前記シグナルは、高グルコース又は過酸化水素であり、筋細胞障害モデルには、高グルコース負荷により細胞障害を惹起した筋細胞障害モデルを含む。筋細胞障害モデルは基底状態では、酸化ストレスの蓄積量は少ないが、シグナルの入力(好ましくは高グルコース負荷)を受けることにより酸化ストレスが蓄積する。この反応は、in vivoの心筋組織或いは骨格筋組織の剛性を反映している剛性を有する支持体上で、高グルコース負荷を行った場合可逆的でありうる。しかし、ガラス等の非常に剛性の高い支持体上では不可逆的であり、酸化ストレスの蓄積により、細胞がアポトーシスを起こす。
 支持体は、評価方法の項に記載のものを使用することができる。
 「剛性」の定義は、評価方法の項の説明にしたがう。
 筋細胞を支持体と接触させるとき、或いは支持体上で維持するための培養培地は、例えば5~20%(好ましくは8~12%、より好ましくは5~10%)ウシ胎児血清加DMEM(低グルコース)等を使用することがでる。筋細胞を支持体と接触させるとき、或いは支持体上で維持するための条件は、評価の方法の項に記載した条件にしたがう。
 筋細胞が接する支持体の剛性は、心臓や骨格筋組織と同程度の5kPa~100kPa程度であることが好ましい。より好ましくは10kPa~30kPa、さらに好ましくは10kPa~15kPaを挙げることができる。更に好ましくは15kPaを挙げることができる。
 高グルコースとは、培養培地のグルコースが高濃度に添加されていることをいう。培養培地のグルコースの濃度は、ヒトの一般的な糖尿病患者の血糖値に相当する10~25mM、又は10~15mMのグルコース濃度を用いることが好ましい。ガラス支持体上で筋細胞を培養した場合、グルコース濃度が、10mM、15mMであっても、心筋細胞のミトコンドリア膜電位やROSに対する影響は検知されない。しかし、心臓組織の剛性を反映した剛性を有する支持体上で培養すれば、グルコース濃度が10mM程度であっても酸化ストレスが蓄積される。また、15kPaの支持体上で培養された初代培養心筋細胞は、安定しており、脱分化が起こり難くなっている。
 本発明の酸化ストレスの蓄積とは、細胞内のROSの蓄積(濃度上昇)のことをいい、その蓄積量の変化(応答性)は、ROSの標識試薬によって検知することができる。ROSの標識試薬としては各種の試薬が市販されており、適宜、目的に応じて使用することができる。好ましいものとしては、例えばH2DCFDA、カルボキシ-H2DCFDA、クロロメチル-H2DCFDA等のフルオレセイン誘導体を挙げることができる。活性酸素種の濃度上昇は、公知の活性酸素種を測定するキットを用いて測定することができる。
 「ミトコンドリア代謝異常」とは、ミトコンドリアの呼吸鎖の機能障害によって引き起こされる多様な疾患群のことをいう。この疾患は細胞核内DNA、又はミトコンドリアDNA(mtDNA)における変異によって引き起こされ、複数の内臓器官に影響を及ぼし,顕著な神経と筋肉障害を引き起こす。ミトコンドリア代謝異常の主だった症状は眼瞼下垂、外眼筋麻痺、近位筋障害と運動不耐性、心筋症、感音難聴、視神経萎縮、網膜色素変性、糖尿病などが挙げられる。中枢神経への症状は変動性脳症、てんかん、認知症、偏頭痛、脳卒中様発作、運動失調、痙攣などが挙げられる。
 「酸化ストレス」とは、生体内で生成する活性酸素種(ROS)の酸化損傷力が生体内の抗酸化システムの抗酸化能力を上回った状態のことをいう。ROSは、本来、エネルギー生産、侵入異物攻撃、不要な細胞の処理、細胞情報伝達などに際して生産されるが、生体内の抗酸化システムで捕捉しきれない余剰なROSが生じる場合には、生体の構造や機能を担っている脂質、蛋白質・酵素や、遺伝情報を担う遺伝子DNAが酸化され損傷する。その結果、生体の構造や機能が乱れ、病気を引き起こし、老化が早まり、癌や、生活習慣病になりやすくなる。
 「脂質代謝異常」とは、血液中に含まれる脂質が過剰、もしくは不足している状態のことをいう。一般的には、高脂血症のことをいう。脂質代謝異常症(高脂血症)としては、高コレステロール血症、高LDLコレステロール血症、低HDLコレステロール血症、高トリグリセリド血症といった種類に区分されている。
 「代謝又は炎症に由来する筋細胞障害」には、例えば肥満・糖尿病・脂質異常症・高血圧などの生活習慣病に関する代謝性疾患、及び例えばぜんそくや関節リュウマチなどの自己免疫、アレルギー、免疫不全などに由来する筋細胞障害のことをいう。特に、好ましいものとして、高血圧などの生活習慣病に関する代謝性疾患に由来する筋細胞障害を含む。
 筋細胞障害モデルは、シグナルの入力に先だって、シグナルの入力と同時に、又はシグナルの入力を行った後に、筋細胞障害を予防、治療又は改善するための候補物質と筋細胞を接触させ、入力されたシグナルに対する細胞の反応を測定することにより、疾患、又は障害を予防、治療又は改善するための候補物質をスクリーニングすることができる。スクリーニング方法の詳細は、2.スクリーニング方法の項の記載をここに援用する。
 酸化ストレスが亢進した筋細胞障害モデルと、それを用いた代謝と炎症性の筋細胞障害を予防、治療又は改善するための候補物質のスクリーニングにより、糖尿病性の心筋疾患及び骨格筋疾患に有効な薬剤を評価し、創出することができる。更に、糖尿病性の筋細胞障害モデルを用いて、心筋細胞における慢性合併症と心不全に対する発症メカニズムの解析が容易になり、糖尿病患者の心臓合併症の早期治療と病状に応じた薬剤の選択が評価できる。前記スクリーニング方法は、酸化ストレスが亢進した患者、特に糖尿病患者等のサルコペニアやロコモーテイブ症候群の予防、治療又は改善するための候補物質のスクリーニングにも利用できる。
4.肝細胞障害モデル
 評価方法の一態様は、肝細胞を使用した評価方法に関する。また、評価方法は、肝細胞障害(特に特発性薬剤性肝障害)の評価、非アルコール性脂肪肝炎のメカニズムの解析方法、及び肝細胞障害を予防、治療又は改善するための候補物質のスクリーニング方法を含む。評価方法の項に記載された用語で、本項でも使用される用語については、評価方法の項の説明をここに援用する。
 「肝細胞」とは、肝臓の実質由来の細胞のことをいう。好ましくは初代培養の肝細胞を挙げることができる。肝細胞を採取する動物は、特に限定されるものではないが、評価方法の項で述べた動物を挙げることができる。
「肝細胞障害の評価」とは、初代培養の肝細胞を用いたin vitroでの肝細胞の障害の評価を意味する。肝細胞障害の評価に用いられる肝細胞は、in vitroにおいて、in vivoの肝細胞と同じ物理的な(支持体の剛性がin vivoの正常又は異常な肝臓組織において肝細胞が認識する周囲環境の剛性を反映している)環境に肝細胞を接触させ、生理学的な機能がin vivoの肝細胞に近い特性となるように導入、又は維持された肝細胞を含む。また、肝細胞障害の評価に用いられる肝細胞には、in vivoの肝細胞に近い特性となるように導入、又は維持された肝細胞に、シグナルを入力した肝細胞を含む。
 支持体は、評価方法の項に記載のものを使用することができる。
 「剛性」の定義は、評価方法の項の説明にしたがう。
 in vivoの正常又は異常な肝臓組織において肝細胞が認識する周囲環境の剛性は、0.2~5kpa程度である。したがって、支持体の剛性もこの範囲であることが好ましい。肝臓組織の剛性は、図1Bに示すように線維化等によって高くなる。正常の肝臓組織の微小環境の剛性は、0.2~0.7kPa程度、好ましくは、0.3~0.6kPa程度である。したがって、正常な肝細胞を使用し、正常な細胞の反応を評価する場合、或いは正常な組織が異常を来す段階の初期における細胞の反応を評価する場合には、この剛性の支持体を使用することが好ましい。一方、異常な肝臓組織、例えば、腫瘍や線維化(例えば肝硬変)により組織が硬化した場合には、肝臓の剛性は高くなる。このような場合における細胞の反応を評価するためには、0.7kPa以上かつ2~3kPa程度の剛性の支持体を使用することができる。
 肝細胞を支持体と接触させるとき、或いは支持体上で維持するための培養培地は、例えば5~20%(好ましくは8~12%)ウシ胎児血清及びHepatocyte Maintenance Supplement Pack(サーモフィッシャー株式会社)添加Williams Medium E等を使用することがでる。肝細胞を支持体と接触させるとき、或いは支持体上で維持するための条件は、評価の方法の項に記載した条件にしたがう。
 シグナルは、好ましくは薬物代謝酵素の誘導、特発性薬物性肝障害又は非アルコール性脂肪肝炎の反応を引き起こすシグナルである。特発性薬物性肝障害を引き起こすシグナルは、例えば化学的因子、又は生物学的因子である。中でもヒトまたは動物に疾患、又は障害を予防、治療又は改善するために投与される候補物質であり得る。入力されたシグナルに対する細胞の反応を測定する方法は、シグナルに応じて選択できる。例えば、肝細胞の解毒機能の測定(CYP3A4等のP450ファミリーの活性測定)、酸化ストレスの蓄積を測定する方法、HMGB1等の細胞の危機的な状態に放出されるタンパク質の発現を測定する方法を挙げることができる。入力されたシグナルに対する細胞の反応の測定結果が、シグナルを入力されなかった細胞と比較して、細胞が傷害される、或いは細胞が傷害されうると決定された場合には、シグナルが、特発性薬物性肝障害を引き起こすと決定することができる。
 薬物代謝酵素の誘導、又は特発性薬物性肝障害を引き起こすシグナルは、例えば化学的因子、又は生物学的因子である。中でもヒトまたは動物に疾患、又は障害を予防、治療又は改善するために投与される薬剤やその候補物質であり得る。入力されたシグナルに対する細胞の反応を測定する方法は、シグナルに応じて選択できる。例えば、肝細胞の解毒機能の測定(CYP3A4等のP450ファミリーの活性測定)、酸化ストレスの蓄積を測定する方法、HMGB1等の細胞の危機的な状態に発現されるタンパク質の発現を測定する方法を挙げることができる。入力されたシグナルに対する細胞の反応の測定結果が、シグナルを入力されなかった細胞と比較して、細胞が傷害される、或いは細胞が傷害されうると決定された場合には、シグナルが、特発性薬物性肝障害を引き起こすと決定することができる。シグナルは、それぞれのシグナルの種類に応じた濃度又は強さで必要な期間、細胞に入力することができる。シグナルは、好ましくは、非アルコール性脂肪肝炎のメカニズムを示す。
 非アルコール性脂肪肝炎を引き起こすメカニズムを示すシグナルは、例えば化学的因子又は生物学的因子である。中でも成人病の原因である過栄養となりうる糖質及び/又は脂質であり得る。糖質として好ましくは、フルクトースであり、脂質として好ましくは脂肪酸(好ましくは炭素数14~18の飽和又は不飽和の脂肪酸)、特に飽和脂肪酸である。糖質又は脂質は、必要に応じて、終濃度で0.01mM~10mMの範囲、好ましくは0.1mM~7mMの範囲で肝細胞を含む培養培地に添加しうる。前記培養培地は、5%程度のウシ胎児血清を含む低グルコース(5mM)含有培養培地を使用することが好ましい。細胞と、シグナルの接触期間は、4時間~30日程度、好ましくは1日~7日程度、1日~3日程度である。入力されたシグナルに対する細胞の反応を測定する方法は、シグナルに応じて選択できる。例えば、肝細胞の脂肪滴蓄積の顕微鏡観察、酸化ストレスの蓄積を測定する方法、HMGB1等の細胞の危機的な状態に放出されるタンパク質の発現や放出等を測定する方法を挙げることができる。入力されたシグナルに対する細胞の反応の測定結果が、シグナルを入力されなかった細胞と比較して、非アルコール性脂肪肝炎が引き起こされる、或いは非アルコール性脂肪肝炎が引き起こされうると決定された場合には、シグナルが、非アルコール性脂肪肝炎を引き起こすと決定することができる。シグナルは、それぞれのシグナルの種類に応じた濃度又は強さで必要な期間、細胞に入力することができる。
 評価方法は、シグナルの入力に先だって、シグナルの入力と同時に、又はシグナルの入力を行った後に、肝細胞障害を予防、治療又は改善するための候補物質と肝細胞を接触させ、入力されたシグナルに対する細胞の反応を測定することにより、疾患、又は障害を予防、治療又は改善するための候補物質をスクリーニングすることができる。スクリーニング方法の詳細は、2.スクリーニング方法の項の記載をここに援用する。
 5.キット
 本発明には、上記1.~4.で述べた細胞の反応の評価方法、スクリーニング方法、筋細胞障害モデル、及び肝細胞障害モデルを実現するためのキットを含む。キットは、細胞の反応の評価方法、スクリーニング方法、筋細胞障害モデル、及び肝細胞障害モデルを実施するために必要な細胞が、in vivoにける特性をin vitroで発現するように、生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体(上記1.~4.で述べた支持体)を含む。また、キットは、目的とする細胞の反応の評価方法、スクリーニング方法、筋細胞障害モデル、及び肝細胞障害モデルを実施するために適した細胞を含んでいてもよい。この他、キットは、前記細胞に適した培地、サイトカインやインヒビター等の添加物、抗生物質、バッファー等を含んでいてもよい。上記1.~4.に記載の細胞の反応の評価方法、スクリーニング方法、筋細胞障害モデル、及び肝細胞障害モデルの説明は、ここに援用される。
 以下に実施例を示して、本発明を詳細に説明する。しかし、本発明は実施例に限定して解釈されるものではない。
1.実験例
(1)ポリアクリルアミドゲルの剛性
 ゲルの剛性を変化させるために、ポリマー質量を一定の7.5%とし、ビスアクリルアミド濃度を0.01%、0.03%または0.3%に変化させて、アクリルアミドおよびビスアクリルアミド(Fisher Biotech, Loughborough, Leicestershire, UK)溶液を調製した。アクリルアミド及びビスアクリルアミドを含む溶液を後述するひずみ制御型rheometrics fluids spectrometer IIIのプレート間に流し込み、過硫酸アンモニウム及びN,N,N’,N’-テトラメチルエチレンジアミン(TEMED)を添加してとのまま重合させ、動的剛性率を測定した。
 プレート間で重合させたポリアクリルアミドゲルについて、ひずみ制御型rheometrics fluids spectrometer III(Rheometrics, Piscataway, NJ)で支持体の動的剛性率を測定した。振動(1rad/s)剪断ひずみ2%で、同位相の剪断応力から弾性抵抗を表す値である剛性率G’を計算で求めた。ひずみ2%で振動させて短期剛性率G’(ω)を測定した。また、定常ひずみ10%を適用し、試料を30秒間弛緩させて、長期剛性率G’(t)を測定した。結果を図3に示す。
(2)ポリアクリルアミド支持体の作製方法
 0.1NのNaOHを200μlのピペットで滴下し、直径22 mmのガラス製カバーガラス(Fisherbrandカタログ番号12-545-101;Fisher Scientific, Pittsburgh, PA)の表面を5分間覆った。NaOH溶液を吸引し、3-APTMS(3-アミノプロピルトリメトキシシラン、Sigma社のNo.28-1778、Sigma, St. Louis, MO)200μlを3分間適用した。このガラス製カバーガラスを脱イオン水で十分にすすいで残っている3-APTMS溶液を洗い流し、0.5%vグルタルアルデヒド(Sigma社のNo.G7651)水溶液200μlを20分間カバーガラスに加えた。
 図2に示すように、アクリルアミドとビスアクリルアミドの共重合体を作成し、15kPa(筋細胞培養用)または500Pa(肝細胞用)のポリアミドゲル支持体を作製した。まず、アクリルアミドとビスアクリルアミドの混合溶液をN,N,N,N―テトラメチルエチレンジアミンと10%過硫酸アンモニウムを用いて重合させた。その溶液を、3-アミノプロピルトリメトキシシランとグルタルアルデヒドで前処理した直径22 mmのガラス板に載せた。ポリアクリルアミドゲルには細胞接着性がないため、架橋剤としてN-スルホサクシンイミドイル-6-(4’-アジド-2’-ニトロフェニルアミノ)ヘキサノエート(0.5mg/ml)の50mMのHEPESバッファー溶液(pH8)を滴下し被覆した。その上をカバーグラスで覆い、その後カバーグラスを除去した。次に、筋細胞培養用のゲルは、0.05mg/mlのフィブロネクチン及び0.1mg/mlのI型コラーゲンの混合液で被覆した。肝細胞培養用のゲルは、0.1mg/mlのI型コラーゲン(ラット肝細胞)又はIV型コラーゲン(ヒト肝細胞)の溶液で被覆した。接着タンパク質によるゲルの被覆は、ヘテロ二官能性架橋剤を含むゲルを接着タンパク質を含む溶液で覆い、接着タンパク質がヘテロ二官能性架橋剤と結合するまで静置することにより行った。
(3)ガラス支持体の調製
 カバーグラスを培養皿中に置き、0.05mg/mlのフィブロネクチン及び0.1mg/mlのI型コラーゲンの混合液またはIV型コラーゲン溶液を加えて、30分間UV照射の後、室温で2-3時間静置し、表面を被覆した。
2.実施例1:in vivoと同じ剛性支持体環境(15 kPa)で培養された初代培養心筋細胞の機能評価
(1)15 kPaのポリアミドゲル支持体での初代培養心筋細胞の培養
 図4に示すように、Wistarラットの生後1~3日の新生児の心室を採取し、IV型のコラゲナーゼとディスパーゼで消化した。酵素的に単離した細胞を、プラスチックの培養皿に播種し、37℃で5%炭酸ガスを含む細胞培養インキュベーター内で40分間培養した。そして共存する線維芽細胞を培養皿の底に定着させて除去した後に上清を回収、遠心分離して回収した心筋細胞を、上記ポリアクリルアミド支持体に播種し、5 mMグルコース(正常血糖に相当)を含む5%FCS加DMEM(低グルコース)(L-グルタミン、フェノールレッド含有)で培養した。
(2)結果
 図5に示すように、心筋収縮に寄与する細胞骨格系を評価した。ガラスの上では、心筋細胞は不整列なアクチン・ネットワークと筋線維分節を示した。生体の心臓の剛性に近い、15 kPaの支持体上で培養された場合にのみ、心筋細胞は整列した筋線維分節を作り上げて行くことが分かった。生理学的な剛性の15 kPaであれば、心筋細胞は細長い形状を形成することが示された。
 一方、心臓の生理学的な剛性ではない柔らかなゲルの上では、大きなアクチンを含む線維束の形状がすべて崩れてしまい、分散したアクチン・フィラメントを持った丸い形状の細胞になった。
 以上の結果は、心筋細胞が整列した筋線維分節の構造を形成するには、生理学的な剛性を持った支持体が必要であることを示している。
3.実施例2:in vivoと同じ剛性環境(15 kPa)で高グルコース負荷された初代培養心筋細胞の機能評価
(1)方法
 実施例1と同様に心筋細胞の培養を15 kPaの支持体上で行い、最後に5 mM~25 mMのグルコース濃度の培地に交換して1~2日の培養を行った。細胞骨格の評価は、α-アクチニン抗体と、F-アクチンに結合するPhalloidinを蛍光ラベルされたものを用いて蛍光免疫染色を行い評価した。
(2)結果
 図6に示すように、25 mMの高グルコース濃度で培養すると、細胞骨格構造(α-アクチニン、及びF-アクチン)は15 kPaゲル上の培養心筋細胞で崩壊したが、ガラス上の培養細胞ではその崩壊は認められなかった。また、高グルコース刺激と同様の浸透圧刺激を与える高マンニトール刺激では15 kPaゲル上の培養心筋細胞における細胞骨格構造の崩壊が見られず、高グルコースでの細胞骨格の崩壊は浸透圧による影響ではないことが明らかとなった。
 この結果は、心臓の生理的剛性である15 kPaゲル上の培養心筋細胞は、現実の高血糖の心筋細胞障害の実体を反映していると考えられた。
4.実施例3:in vivoと同じ剛性環境(15 kPa)で過酸化水素負荷された初代培養心筋細胞の機能評価
(1)方法
 実施例1と同様に初代培養心筋細胞を単離した後1~2日間正常な濃度(5 mM)のグルコースを含む10%FCS加DMEMで培養し、最後に1時間過酸化水素を負荷した(10μM、50μM)。細胞骨格の評価は、α-アクチニン抗体を用いて蛍光免疫染色を行い評価した。
(2)結果
 図7に示すように、10μM、50μMの過酸化水素を曝露すると、細胞骨格構造(α-アクチニン)は15 kPaゲル上の培養心筋細胞で崩壊したが、ガラス上ではその崩壊は認められなかった。高グルコース負荷で細胞骨格の崩壊が起きることの原因の一つに酸化ストレスの蓄積が考えられるため、過酸化水素を直接負荷したが、やはり高グルコース負荷と同様の変化がみられた。
5.実施例4:15 mMグルコース濃度が初代培養心筋細胞のROSに及ぼす影響
 心筋細胞における慢性合併症に繋がるイベントを確認するため、2型糖尿病患者のありふれた高血糖である10~15 mMグルコース濃度がミトコンドリアに及ぼす影響を、15 kPaのゲル上の培養心筋細胞と、ガラス上の培養心筋細胞とで比較することを行った。
(1)方法
 図8に示すような方法で行った。N-アセチルシステイン(NAC)をROSの除去剤(scavenger)として使用した。まず、新たに調製された初代培養心筋細胞のミトコンドリアにおけるROS蓄積を、蛍光試薬CM-H2DCFDAを指示薬として評価した。CM-H2DCFDAは、細胞膜透過性を有するROSの蛍光指示薬であり細胞内のROS、特に過酸化水素やヒドロキシラジカルによって酸化されることにより緑色の蛍光が増加することが知られている。
 15 mMグルコース負荷、あるいは15 mMグルコースにNACを併用負荷した初代培養心筋細胞を24時間培養した後に、CM-H2DCFDA色素を心筋細胞に取り込ませた(37℃、50分)。その後、共焦点レーザー顕微鏡(Nikon)上で、青色光(波長;485 nm)で励起した際の緑色発光(波長;535 nm)を蛍光画像として取得する。
(2)結果
 図9に示されるように、正常なグルコース濃度におけるROSの蓄積量は、ガラス支持体よりも15 kPaゲル支持体での培養心筋細胞で顕著に低い値を示した。一方、高グルコース濃度では、ガラス支持体と15 kPaゲル支持体上の培養心筋細胞は共にROS蓄積量が増加した。しかし、ROS除去剤であるNACの作用で15 kPa支持体上の培養心筋細胞では、ガラス上の培養心筋細胞に比較し、高グルコース負荷によるROS蓄積が極めて効率よく除去された。
 この結果は、15 kPaゲル上の培養心筋細胞が、ガラス培養群に比べ基底状態のROSの蓄積量が低く、高グルコース負荷で基底状態からの応答性が亢進しており、さらにROS除去剤に対して高い反応性を示すことを示している。
6.実施例5:15 mMグルコース濃度が初代培養心筋細胞のミトコンドリア膜電位に及ぼす影響
(1)方法
 ミトコンドリアの膜電位の評価は、JC-I染色により評価する。ミトコンドリア膜電位を検出するプローブであるJC-1色素は、正に荷電しているため、電気陰性的なミトコンドリア内部に蓄積する。JC-I色素によるミトコンドリア膜電位依存的なミトコンドリア内部への蓄積は、緑色(約529 nm)から赤色(約590 nm)への蛍光波長シフトによって示される。すなわち、ミトコンドリアが障害を受けた時には、JC-I色素のミトコンドリア内部への蓄積が減少するため、赤色の比率が低下し、緑色が支配的になってくる。このことから、ミトコンドリアの膜電位は、赤色/緑色の蛍光強度比の減少によって示すことができる(Circulation.2005;111:p2752-2759)。そこで、心筋細胞に24時間の高グルコース負荷を行った後、JC-1色素を取り込ませて(37℃、30分)共焦点レーザー顕微鏡で蛍光画像を取得し評価した。
(2)結果
 図10及び図11に示されるように、正常グルコース濃度でのミトコンドリア膜電位は、ガラス支持体での培養心筋細胞よりも、15 kPaゲル支持体上の培養心筋細胞の方がより顕著に高くなっていることが見出された。更に、15 kPaゲル支持体上の培養心筋細胞においては、中程度の高グルコース濃度(15 mM)でミトコンドリア膜電位が、有意に減少するが、ROS除去剤NAC(1 mM)によってROSを除去すると顕著に回復した。この結果は、ミトコンドリア内でのROS蓄積の結果と相関していた。一方でガラス上の培養心筋細胞では、高グルコース負荷で低下した膜電位がROS除去剤によって回復せず、ROS蓄積レベルとミトコンドリア膜電位の減少との間に相関性は見られなかった。即ち、ガラス支持体よりも、15 kPaゲル支持体上の培養心筋細胞の方が、基底状態におけるミトコンドリア活性が高く、かつグルコース濃度上昇に伴うROS蓄積に応じてミトコンドリア活性が低下し、生体内で心筋細胞が酸化ストレスに暴露された際の挙動に近いことを示している。この相違点については次のアポトーシスアッセイの結果と合わせて考察する。
7.実施例6:培養支持体の相違による初代培養心筋細胞のアポトーシス(細胞死)への影響
(1)方法
 15 kPaゲル支持体上とガラス支持体上での初代培養心筋細胞のアポトーシスの相違を比較するため、In situ Cell Death Detection  kit-FITC (Roche)を用いてTUNEL(terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labeling)アッセイを行った。なお、TUNELアッセイは、アポトーシスのシグナル伝達経路の中で派生してくるDNA断片を検知する一般的な方法である(Cell Death and Disease(2014)5, e1479; doi:10.1038/cddis. 2014.430)。DNAの断片化を起こした細胞をラベル化し緑色の蛍光として捕捉することができる。細胞核を染めるDAPI色素と二重染色することで、一視野あたりの死細胞(TUNEL陽性核/全核数)を算出することができる。心筋細胞を高グルコース負荷した後、TUNEL色素を取り込ませ反応させた(37℃、60分)。その後、DAPIを含んだ蛍光劣化防止剤で封入し正立蛍光顕微鏡で画像を取得して解析した。
(2)結果
a)培養支持体の相違による初代培養心筋細胞のアポトーシス確認
 図12に示すように、DNaseI処理によるTUNEL陽性核は、ガラス支持体と15 kPaゲル支持体のどちらでも同様に観察された。この結果から、15 kPaゲル支持体上でのアポトーシス細胞を評価できると考えられた。
b)ガラス支持体上の心筋細胞に対す高グルコース及びROS除外剤の効果
 図13及び図15に示すように、高グルコース濃度がアポトーシスにもたらす影響を、TUNELアッセイで評価した。その結果、ガラス支持体上での培養心筋細胞では正常グルコース濃度においてもアポトーシスを認め、高グルコース濃度に曝露するとアポトーシスが著明に誘導された。更にROS除外剤NAC(1 mM)を添加してもアポトーシスは抑制されなかった。
c)15 kPaゲル支持体上のTUNEL陽性細胞に対する高グルコースの影響
 図14及び図15に示すように、15 kPaゲル支持体上の培養心筋細胞中のTUNEL陽性核は、ガラス支持体上の培養心筋細胞と比較すると顕著に少なかった。
高グルコース濃度に曝露することにより、ガラス上でも15 kPaゲル支持体上でも正常血糖値に該当する5 mMグルコースの時よりTUNEL陽性核が増加した。しかし高グルコース濃度に曝露時にもガラス上の細胞に比較し、15 kPaゲル支持体上ではTUNEL陽性を示す核が少なかった。さらにこのグルコースの影響は、ROS除外剤のNAC(1 mM)を使用することにより、15 kPaゲル支持体上の培養心筋細胞では軽減された。
 図13~図14を定量化した図15に示されるように、15 kPaゲル支持体上での培養では、ガラス支持体上より、アポトーシスが起こり難いことを示しており、長期間培養時でも細胞障害が軽減され、より良い状態を維持できる可能性が示唆された。さらにガラス支持体上の心筋細胞では、高血糖に伴ってROSの蓄積が起きる際、不可逆的な障害が発生し、ミトコンドリア膜電位の低下、そしてアポトーシスが開始される。したがってROS除去剤で除去しても、アポトーシスが抑制されない。一方、15 kPaゲル支持体上の心筋細胞では、ROSの蓄積による障害が可逆的で、細胞死が起こりにくく、ROS除去剤でROSを除去することによって、ミトコンドリアの膜電位が回復することと考えられた。このように、本発明の心筋細胞モデルでは長期間培養時の酸化ストレスに関連した不可逆的な細胞障害を軽減でき、心筋細胞に対する慢性的な酸化ストレス負荷の影響を評価することにふさわしいモデルであると考えられる。
また既存の培養方法ではありふれた高血糖レベルのグルコース負荷(10~15 mM)では心筋細胞の変化をとらえることは不可能であったが、我々の実験システムではより敏感に、より正確に心筋細胞の挙動をとらえることができることが分かった。
8.実施例7:高グルコース負荷後にROS除去剤を投与した際の培養心筋細胞のミトコンドリア膜電位の評価
(1) 方法
 実施例5と同様に行った。15 kPaゲル支持体上とガラス支持体上での初代培養心筋細胞を培養し、高グルコース負荷を行った(15 mM、24時間)。その後、培養液をROS除去剤、あるいは正常グルコース濃度(5 mM)のものに交換して24時間培養した後JC-1色素を取り込ませて(37℃、30分)共焦点レーザー顕微鏡で蛍光画像を取得し評価した。
(2) 結果
 図16に示すように、15 kPaゲル上の培養心筋細胞のミトコンドリア膜電位は、高グルコース濃度(15 mM)による培養の後にROS除去剤の入った培養液に交換することで回復した。また、正常グルコース濃度の培養液に交換すると、部分的にミトコンドリア膜電位が回復することがわかった。一方、ガラス支持体上の心筋細胞のミトコンドリア膜電位は、ROS除去剤入りの培養液に交換、あるいは正常グルコース濃度の培養液に交換しても回復しないことがわかった。
 以上の結果より、15 kPaゲル上の心筋細胞は高グルコース負荷によりミトコンドリア膜電位が著しく低下するが、後からROS除去剤を投与することで正常レベルまで回復することが示された。この作用は、ガラス支持体上の心筋細胞ではみることができなかった。これまで、高グルコース負荷による酸化ストレスからミトコンドリア機能異常が生じると心臓はきわめて重大な影響を受けることが知られていたが、既存の細胞培養方法ではそれを正確に発現することが難しかった。しかし、我々の実験システムを利用することにより、細胞内ROSの除去が培養心筋細胞の代謝障害の治療に貢献できるという新たな可能性を見出した。
9.実施例8:骨格筋細胞における高血糖の影響
 骨格筋細胞における高血糖の影響を確認するため、2型糖尿病患者のありふれた高血糖である10~15 mMグルコース濃度がミトコンドリアに及ぼす影響を、15 kPaのゲル上の培養骨格筋細胞と、ガラス上の培養骨格筋細胞とで比較することを行った。
(1)方法
 ラット骨格筋芽細胞はコスモバイオから入手した。細胞と共に提供された分化用培地(内容非公開)を用い、コスモバイオ指定のプロトコールに則って骨格筋細胞に分化させた。この骨格筋細胞を実施例1に記載と同様の方法で準備したカバーグラス上、または15 kPaのゲル上に蒔いた。実施例5に記載の方法で高血糖処理およびROS除去剤(NAC)処理を行い、ROS蓄積を蛍光試薬CM-H2DCFDAによる染色(図17A)で、ミトコンドリア膜電位をJC-1による染色(図17B)で評価した。
(2)結果
 図17に示すように、培養心筋細胞と同様、培養骨格筋細胞においても正常グルコース濃度でのROS蓄積はガラス支持体での培養よりも15 kPaゲル支持体上の培養の方がより顕著に低く、またミトコンドリア膜電位は、ガラス支持体での培養よりも15 kPaゲル支持体上の培養の方がより顕著に高くなっていることが見出された。更に、15 kPaゲル支持体上の培養骨格筋細胞においては、中程度の高グルコース濃度(15 mM)でROSが優位に蓄積してミトコンドリア膜電位が有意に減少するが、ROS除去剤NAC(1 mM)によってROSが除去されると同時にミトコンドリア膜電位も顕著に回復した。一方ガラス支持体上の骨格筋細胞においてはROS除去剤によるROSの低下やミトコンドリア膜電位の回復は見られなかった。この結果は、培養心筋細胞の場合と同様に、ガラス支持体よりも15 kPaゲル支持体上の培養骨格筋細胞の方が、生体内で骨格筋細胞が酸化ストレスに暴露された際の挙動に近いことを示している。
10.実施例9:500 Paの支持体上の初代培養肝細胞と三次元培養Spheroidのリファンピシン反応性の比較
(1)方法
 ヒト初代培養肝細胞において、従来の初代培養肝細胞培養で最も生体内の機能を忠実に反映しうると考えられているスフェロイド培養に対し、正常肝組織の剛性に一致する500 Paの支持体の優位性の有無を評価した。IV型コラーゲンで表面をコーティングした500 Paの支持体または細胞培養で通常使用されるが非生理的に高い剛性であるガラスにヒト初代培養肝細胞を蒔き、実施例9と同様に培養した。またCell-able(住友ベークライト)を用い、ヒト初代培養肝細胞でスフェロイドを形成させた。12日間培養後、CYP3A4を誘導することで知られているリファンピシンを用い、0または40 μMのリファンピシンで46時間刺激した。CYP3A4活性をP450-Glo CYP3A4 Assay (Luciferin-IPA) (Promega)で測定して細胞数で除し、リファンピシン刺激時のCYP3A4活性を基底状態のCYP3A4活性で除することにより、リファンピシンによるCYP3A4活性の上昇度を求めた。
(2)結果
 ヒト初代培養細胞においてリファンピシン刺激によるCYP3A4活性上昇度は、500 Paの支持体が最高であった。したがって正常肝組織の剛性に近い支持体上での培養が、スフェロイドによる三次元培養に比較し、CYP3A4発現を誘導する薬剤刺激時でCYP3A4活性上昇において優位であることが示唆された(図18)。
11.実施例10:特発性薬剤性肝障害の予測
 ジクロフェナク、トログリタゾン、ラニチジン等は、特発性薬剤肝障害を起こすことが知られている。一方、アセトアミノフェン、エタノール等は、過剰摂取すれば肝毒性を示すものの、特発性薬剤肝障害を惹起することはない。特発性薬剤肝障害のリスクをスクリーニングするための評価系を探索するため、以下の実験を行った。
 (1)方法
 正常肝組織の硬度に一致する500 Paの支持体上で培養されている初代培養肝細胞は、細胞培養で通常使用されるが非生理的に高い硬度であるガラス上で培養されている初代培養肝細胞に比較し、生体内における肝細胞機能をより正確に発現すると想定される。そこで化合物による特発性薬剤性肝障害の発生予測において、500 Paの支持体上で培養されている初代培養肝細胞の優位性の証明を目指した。High-mobility group box 1 protein (HMGB1)は細胞死の過程で細胞外に放出され、免疫細胞を活性化する作用を持つ(Immunol Rev. 2017 Nov;280(1):74-82)。そこで特発性薬剤性肝障害の過程の早期検出マーカーに、肝細胞が放出するHMGB1が有用であるとの仮説を設定し、その証明を行った。
 ヒト初代培養肝細胞を実施例9に記載の方法と同様に2日間培養後、5%FCS加D-MEM (低グルコース)(L-グルタミン、フェノールレッド含有)に培養培地を交換し、ジクロフェナク(特発性薬剤性肝障害を起こしうる化合物として知られる)あるいはアセトアミノフェン(特発性薬剤性肝障害を起こさない化合物として知られる)を加えて24時間培養し、培養液中に放出されたHMGB1濃度をHMGB1 ELISA Kit2(シノテスト)を用いてELISAにて定量した。
(2)結果
 ジクロフェナクは250 μM以上の高濃度で、アセトアミノフェンは2.5 mM以上の高濃度で細胞毒性を示すことが報告されている(J Toxicol Sci. 2016;41(5):605-15)。特発性薬剤性肝障害を起こしうるジクロフェナク刺激の場合、500 Paの支持体において既報の毒性領域と一致して濃度依存性に肝細胞によるHMGB1放出が見られた。ガラスにおいては毒性領域より低濃度のジクロフェナクでHMGB1放出が見られた。また特発性薬剤性肝障害を起こさないアセトアミノフェン刺激の場合、500 Paの支持体、ガラス支持体のいずれでも毒性領域である高濃度でもHMGB1放出は見られなかった。したがってHMGB1は化合物による特発性薬剤性肝障害の発生を予測するマーカーになりうること、またその予測において正常肝組織の剛性と同等な支持体上で培養された初代培養肝細胞が有用であることが示唆された(図19)。
12.実施例11:非アルコール性脂肪肝炎のメカニズム1
 非アルコール性脂肪肝炎は、生活習慣が原因で肝細胞が死滅しないまでも、肝細胞が障害され引き起こされると考えられる。
 非アルコール性脂肪肝炎のメカニズムを解明するため、以下の実験を行った。
(1)方法
 ラットの初代培養肝細胞は以下の方法で採取した。
 5~6週齢のWistar rat(オス)に麻酔をした後、腹部を切開し門脈がよくみえるように結合組織類を剥離した。20 Gのサーフローで門脈をクランプし、クリップで固定した。37℃に加温したEGTA灌流液で灌流し肝臓の血液を洗い流した。肝臓が黄土色に変わった後、37℃に加温したコラゲナーゼ液で灌流した。十分にコラゲナーゼを作用させた後、肝臓を摘出しシャーレに移し、ハサミやメスで細断した。その後、遠心分離、セルストレイナーでろ過し、再度遠心分離した。沈殿に培養液を加えピペッティング後、トリパンブルー染色で細胞の生存率を確認した。生存率が75%以下のものは除外した。同時に細胞数のカウントも行い3.5x10^5個/well(6ウェルプレート)ずつ細胞を500 Paの支持体、またはガラス支持体に蒔き、5%FCS及び Hepatocyte Maintenance Supplement Pack(サーモフィッシャー株式会社CM4000)加D-MEM(低グルコース)(L-グルタミン、フェノールレッド含有)で3日間培養した。 その後、被験物質として、フルクトース(5.5mM)、パルミチン酸(0.5mM)、又はオレイン酸-パルミチン酸(0.5mM、OA:PA=2:1)を添加し、24時間後に脂肪滴染色、及びROSの定量を行った。被験物質を添加する際、培養培地は5 mMグルコースを含む10%FCS加DMEMに交換した。コントロールには何も加えなかった。コントロール群は脂質を溶解するときに使用した10%ウシ血清アルブミンを添加した。
 脂肪滴染色には、ライブセルイメージング用色素LipiDye(Lipid Droplet Green))を使用した。Lipidyeは細胞内の脂肪滴を高い感度で染色する蛍光色素である(参考文献;Yamaguchi E, et al., Angew. Chem. Int. Ed., 54: 4539-4543 (2015))。LipiDyeを最終濃度1 μMになるようにDMEM(FCS及び抗生剤未添加)で希釈し、6well dishに1-2mlずつ添加した。37℃で2時間インキュベーションし、HBSS(+)で1回洗浄後、Nikon A1 共焦点レーザー顕微鏡で観察した。
(2)結果
 図20に示すように脂肪滴の蓄積は、ガラス支持体上で培養された初代培養肝細胞においては、コントロール(control)と、フルクトース(fructose)、パルミチン酸(PA)、又はオレイン酸-パルミチン酸混合液(OA:PA(2:1))との間に差は認められなかった。一方500Paの支持体上で培養された初代培養肝細胞では、フルクトース、パルミチン酸、オレイン酸-パルミチン酸混合液を添加された細胞は、コントロールと比較して顕著な脂肪滴の蓄積が認められた。このことから、ガラス支持体では、細胞への脂肪の蓄積は観察できないが、正常肝組織の剛性と同等な支持体上で培養された初代培養肝細胞では、脂肪の蓄積をin vitroで発現できることが示された。
 また、ROSの蓄積に関しては、図21に示すように、ガラス支持体上で培養された初代培養肝細胞のコントロールは、500Paの支持体上で培養された初代培養肝細胞のコントロールと比較して、ROSの蓄積が多く認められた。ガラス支持体上で培養された初代培養肝細胞でもパルミチン酸、パルミチン酸-オレイン酸混合液を添加した細胞では、ROSの蓄積が認められた。しかし、これらの細胞よりも、500Paの支持体上で培養された初代培養肝細胞であって、フルクトース、パルミチン酸、オレイン酸-パルミチン酸混合液を添加された細胞は、ガラス支持体上で培養された初代培養肝細胞よりもROSの蓄積が多かった。
 このことから、ガラス支持体では、細胞へのROSの蓄積を十分に評価できないが、正常肝組織の剛性と同等な支持体上で培養された初代培養肝細胞では、ROSの蓄積をin vitroで発現できることが示された。
 以上の結果から、500Paの支持体上で培養された初代培養肝細胞は、非アルコール性脂肪肝炎の病態モデルとして非アルコール性脂肪肝炎のメカニズムの解明に使用できると考えられた。
13.実施例12:非アルコール性脂肪肝炎のメカニズム2
 非アルコール性脂肪肝炎のメカニズムを解明するため、以下の実験を行った。
(1)方法
 培養支持体の硬度の相違による、肝細胞のマクロファージに対する炎症惹起作用への影響を評価するため、ラット初代培養肝細胞を、正常肝組織の硬度に一致する500 Paのポリアクリルアミドゲル、または細胞培養で通常使用されるが非生理的に高い硬度であるガラス上で培養した。細胞の接着を促すため、それぞれの培養支持体の表面をIV型コラーゲンでコーティングした。翌日、ラット初代培養肝細胞を含むウェルに106個/ウェルのマウス腹腔マクロファージを加え、共培養を開始した。マウス腹腔マクロファージは、invitrogenの「マウス初代腹腔マクロファージへの遺伝子導入の検討」に記載の方法でチオグリコネート刺激、および腹腔マクロファージの採取を行った。具体的には、C57/BL6J マウス腹腔内に5%thioglycollate medium (Sigma) 2 mlを注入し、3.5日後に断頭の上、シリンジ及び注射針を用いて計15mlのPBS(7 ml+8 ml) にて2 回腹腔内を洗浄し腹腔マクロファージを回収した。回収した腹腔洗浄液は1000rpm、4℃、5 分間遠心後、PBSにて2 回洗浄し、細胞数を算定した。同肝細胞-マクロファージ共培養開始24時間後にフルクトース刺激を加え、その24時間後に培養液を採取してTNFα分泌量をELISAにて測定した。
(2)結果
 図22に示すように、500 Paのポリアクリルアミドゲルを用いた場合、マクロファージ共培養でTNFα分泌量が増加しており、マクロファージによるTNFα分泌を観測できた。フルクトース刺激による過栄養状態でTNFα分泌がさらに有意に増加しており、脂肪肝の状態を模倣した肝細胞がマクロファージを刺激し、マクロファージによるTNFα分泌を増加させたものと考えられた。一方ガラスを用いた場合でも、マクロファージ共培養でTNFα分泌量が増加しており、マクロファージによるTNFα分泌を観測できているが、フルクトース刺激によるTNFα分泌増加は見られなかった。
 これらのことから、500 Paのポリアクリルアミドゲル上で肝細胞に脂肪肝の状態を誘導する場合、マクロファージに炎症を惹起することが可能であり、非アルコール性肝炎の発生過程を体外でモデルできることが示唆された。 

Claims (24)

  1. 細胞のin vivoでの特性をin vitroで発現するために、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体と細胞とを接触させる工程と、
    in vivoの細胞の特性をin vitroで導入及び/又は発現した細胞の特性をin vitroで維持する工程と、
    前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程と、
    入力されたシグナルに対する細胞の反応を測定する工程と、
    を含む、細胞の反応の評価方法(ただし、前記細胞に間葉系幹細胞は含まない)。
  2. 前記シグナルは、化学的因子及、物理的因子及び生物学的因子よりなる群から選択される少なくとも一つの因子を細胞に負荷することによって細胞に入力される、請求項1に記載の方法。
  3. 化学的因子が、化合物、イオン、気体、核酸、糖質、脂質、糖タンパク質、糖脂質、リポタンパク質、アミノ酸、ペプチド、タンパク質、ポリフェノール類、サイトカイン類及びケモカインよりなる群から選択される少なくとも一種である、請求項1又は2に記載の方法。
  4. 物理的因子が、細胞の周囲環境の剛性、圧力、張力、光、放射線、酸素濃度、pH及び温度よりなる群から選択される少なくとも一種である、請求項1又は2に記載の方法。
  5. 生物学的因子が、細菌、真菌、ウイルス、アレルゲン、ヒト細胞、ヒト以外の動物細胞及びこれらに含まれる成分より選択される少なくとも一種である、請求項1又は2に記載の方法。
  6. 細胞が肝細胞であり、支持体の剛性が0.2~5kpaである、請求項1~5のいずれか一項に記載の方法。
  7. 細胞の反応が薬物代謝酵素の誘導、非アルコール性脂肪肝炎のメカニズム、又は特発性肝障害を示す、請求項6に記載の方法。
  8. 細胞の反応が前記因子の効能又は毒性である、請求項1~5のいずれか一項に記載の方法。
  9. 細胞が心筋細胞であり、支持体の剛性が5~100kpaである、請求項1~5のいずれか一項に記載の方法。
  10. 化学的因子が酸化ストレス誘導物質であり、細胞の反応が酸化ストレス応答である、請求項9に記載の方法。
  11. 酸化ストレス誘導物質が、グルコースである、請求項10に記載の方法。
  12. 細胞のin vivoでの特性をin vitroで発現するために、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体と細胞とを接触させる工程と、
    in vivoの細胞の特性をin vitroで導入及び/又は発現した細胞の特性をin vitroで維持する工程と、
    前記特性が導入、及び/又は維持されている細胞に、シグナルを入力する工程と、
    シグナルの入力に先立って、シグナルの入力と同時に、又はシグナルの入力の後に、疾患、又は障害を予防、治療又は改善するための候補物質と細胞とを接触させる工程と、
    入力されたシグナルに対する細胞の反応を測定する工程と、
    を含む、疾患、又は障害を予防、治療又は改善するための候補物質のスクリーニング方法(ただし、前記細胞に間葉系幹細胞は含まない)。
  13. 前記シグナルは、化学的因子及、物理的因子及び生物学的因子よりなる群から選択される少なくとも一つの因子を細胞に負荷することによって細胞に入力される、請求項12に記載の方法。
  14. 化学的因子が、化合物、イオン、気体、核酸、糖質、脂質、糖タンパク質、糖脂質、リポタンパク質、アミノ酸、ペプチド、タンパク質、ポリフェノール類、サイトカイン類及びケモカインよりなる群から選択される少なくとも一種である、請求項12又は13に記載の方法。
  15. 物理的因子が、細胞の周囲環境の剛性、圧力、張力、光、放射線、酸素濃度、pH及び温度よりなる群から選択される少なくとも一種である、請求項12又は13に記載の方法。
  16. 生物学的因子が、細菌、真菌、ウイルス、アレルゲン、ヒト細胞、ヒト以外の動物細胞及びこれらに含まれる成分より選択される少なくとも一種である、請求項12又は13に記載の方法。
  17. 細胞が肝細胞であり、支持体の剛性が0.2~5kpaである、請求項12~16のいずれか一項に記載の方法。
  18. 細胞の反応が薬物代謝酵素の誘導、非アルコール性脂肪肝炎のメカニズム、又は特発性肝障害を示す、請求項17に記載の方法。
  19. 細胞の反応が前記因子の効能又は毒性である、請求項12~16のいずれか一項に記載の方法。
  20. 細胞が心筋細胞であり、支持体の剛性が5~100kPaである、請求項12~16のいずれか一項に記載の方法。
  21. 化学的因子が酸化ストレス誘導物質であり、細胞の反応が酸化ストレス応答である、請求項20に記載の方法。
  22. 酸化ストレス誘導物質が、グルコースである、請求項20に記載の方法。
  23. 細胞のin vivoでの特性をin vitroで発現するために、細胞が生体内で認識する周囲環境の剛性を反映した剛性を有し、かつ前記剛性が剪断弾性率で100kPa以下である支持体を含む、請求項1~11に記載の細胞の反応の評価方法、又は請求項12~22に記載のスクリーニング方法を実施するためのキット。
  24. さらに目的とする細胞の反応の評価又はスクリーニングを実施するために適した細胞を含む、請求項23に記載のキット。 
PCT/JP2018/010054 2017-03-15 2018-03-14 細胞のin vivoでの特性を反映した細胞の反応の評価 WO2018168955A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019506235A JPWO2018168955A1 (ja) 2017-03-15 2018-03-14 細胞のin vivoでの特性を反映した細胞の反応の評価

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-074020 2017-03-15
JP2017074020 2017-03-15
JP2017-226450 2017-11-27
JP2017226450 2017-11-27

Publications (1)

Publication Number Publication Date
WO2018168955A1 true WO2018168955A1 (ja) 2018-09-20

Family

ID=63522197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010054 WO2018168955A1 (ja) 2017-03-15 2018-03-14 細胞のin vivoでの特性を反映した細胞の反応の評価

Country Status (2)

Country Link
JP (1) JPWO2018168955A1 (ja)
WO (1) WO2018168955A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110790376A (zh) * 2019-11-19 2020-02-14 清华苏州环境创新研究院 一种废水生物处理特性评价的方法
WO2020241633A1 (ja) * 2019-05-27 2020-12-03 国立大学法人三重大学 病変の検出方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532166A (ja) * 2007-06-29 2010-10-07 真理 船木 幹細胞の発生の調節における柔らかいゲル系
JP2012010600A (ja) * 2010-06-29 2012-01-19 Univ Of Tokushima 培養脂肪細胞
JP2016032432A (ja) * 2013-04-23 2016-03-10 国立大学法人徳島大学 細胞圧縮培養による病態モデルの作製方法
JP2016517694A (ja) * 2013-05-08 2016-06-20 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル)Ecole Polytechnique Federale De Lausanne (Epfl) 個別の細胞培養微小環境のアレイ、このようなアレイを作製する方法、およびその使用
JP2016523079A (ja) * 2013-06-18 2016-08-08 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 癌幹細胞を培養する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195313B2 (en) * 2014-04-10 2019-02-05 Wisconsin Alumni Research Foundation Method for forming hydrogel arrays using surfaces with differential wettability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532166A (ja) * 2007-06-29 2010-10-07 真理 船木 幹細胞の発生の調節における柔らかいゲル系
JP2012010600A (ja) * 2010-06-29 2012-01-19 Univ Of Tokushima 培養脂肪細胞
JP2016032432A (ja) * 2013-04-23 2016-03-10 国立大学法人徳島大学 細胞圧縮培養による病態モデルの作製方法
JP2016517694A (ja) * 2013-05-08 2016-06-20 エコール・ポリテクニーク・フェデラル・ドゥ・ローザンヌ (ウ・ペ・エフ・エル)Ecole Polytechnique Federale De Lausanne (Epfl) 個別の細胞培養微小環境のアレイ、このようなアレイを作製する方法、およびその使用
JP2016523079A (ja) * 2013-06-18 2016-08-08 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ 癌幹細胞を培養する方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAJAJ, PIYUSH ET AL.: "Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH A, vol. 95A, no. 4, 2010, pages 1261 - 1269, XP055608893 *
BAT, ERHAN ET AL.: "Flexible scaffolds based on poly(trimethylene carbonate) networks for cardiac tissue engineering", JOURNAL OF CONTROLLED RELEASE, vol. 148, 2010, pages e74 - e76, XP029172508 *
LOZOYA OSWALDO A. ET AL.: "Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche", BIOMATERIALS, vol. 32, 2011, pages 7389 - 7402, XP028261567, DOI: doi:10.1016/j.biomaterials.2011.06.042 *
MARSANO, ANNA ET AL.: "Scaffold Stiffness Affects the Contractile Function of Three-Dimensional Engineered Cardiac Constructs", BIOTECHNOL. PROG., vol. 26, no. 5, 2010, pages 1382 - 1390, XP055608906 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241633A1 (ja) * 2019-05-27 2020-12-03 国立大学法人三重大学 病変の検出方法
CN110790376A (zh) * 2019-11-19 2020-02-14 清华苏州环境创新研究院 一种废水生物处理特性评价的方法

Also Published As

Publication number Publication date
JPWO2018168955A1 (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6775157B2 (ja) 三次元組織体及びその製造方法、並びに、三次元組織体の形成剤
JP6328032B2 (ja) 幹細胞の進展の調節における柔らかいゲル系
JP6251152B2 (ja) Msc成長調節用の低剛性ゲル
Osmond et al. Collagen and collagen‐chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells
JP2010532166A5 (ja)
US20140154735A1 (en) Tumour cell and tissue culture
JP2010532167A5 (ja)
WO2020203369A1 (ja) 細胞構造体及び細胞構造体の製造方法
O’Grady et al. Development of an N-cadherin biofunctionalized hydrogel to support the formation of synaptically connected neural networks
CN112771151B (zh) 利用细胞培养用载体制备的类器官及利用其的药物毒性评价方法
WO2018168955A1 (ja) 細胞のin vivoでの特性を反映した細胞の反応の評価
CN111902424A (zh) 含细胞外基质的组合物及其制造方法、以及三维组织体、三维组织体形成剂
Wang et al. Spatial micro-variation of 3D hydrogel stiffness regulates the biomechanical properties of hMSCs
JP2017147944A (ja) スフェロイド形成促進方法
Bahramsoltani et al. Quantitation of angiogenesis and antiangiogenesis in vivo, ex vivo and in vitro–an overview
US20180022789A1 (en) Gelatin particles, method for producing gelatin particles, gelatin-particlecontaining cells, method for producing gelatin-particle-containing cells, and cellular structure
CN112771150B (zh) 包含含有天然油的微胶囊的细胞培养用载体
JP2018506291A (ja) 細胞外マトリクスとして使用するための合成ペプチドヒドロゲル製剤
JP6797389B1 (ja) 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法
WO2021054079A1 (ja) 細胞構造体及びその製造方法
Harmsen et al. Organ-Derived Extracellular Matrix (ECM) Hydrogels: Versatile Systems to Investigate the Impact of Biomechanics and Biochemistry on Cells in Disease Pathology
JP2022036357A (ja) 細胞構造体及び細胞構造体の製造方法
Keshavarz et al. Gelatin‐Mediated Vascular Self‐Assembly via a YAP‐MMP Signaling Axis
Wilson Quantifying Tailored Hyaluronan Hydrogel Properties for 3D Cell Culture Applications
KR20210103977A (ko) 면역 조절성 탈세포 림프절 유래 지지체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18766632

Country of ref document: EP

Kind code of ref document: A1