WO2018168597A1 - 高速フォトディテクターアレー - Google Patents

高速フォトディテクターアレー Download PDF

Info

Publication number
WO2018168597A1
WO2018168597A1 PCT/JP2018/008725 JP2018008725W WO2018168597A1 WO 2018168597 A1 WO2018168597 A1 WO 2018168597A1 JP 2018008725 W JP2018008725 W JP 2018008725W WO 2018168597 A1 WO2018168597 A1 WO 2018168597A1
Authority
WO
WIPO (PCT)
Prior art keywords
photodetector
photodetectors
light
local light
array
Prior art date
Application number
PCT/JP2018/008725
Other languages
English (en)
French (fr)
Inventor
梅沢 俊匡
高秀 坂本
敦史 菅野
直克 山本
川西 哲也
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Priority to US16/494,766 priority Critical patent/US10911153B2/en
Publication of WO2018168597A1 publication Critical patent/WO2018168597A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/05Spatial multiplexing systems
    • H04J14/052Spatial multiplexing systems using multicore fibre

Definitions

  • the present invention relates to a photodetector used for optical information communication.
  • Optical communication includes optical fiber wired communication and optical fiber wireless communication that combines wireless and optical communication.
  • the backbone of optical communication is capable of large capacity transmission, so cable is mainly used.
  • the capacity of optical access systems using optical fiber wireless technology will be increased. This is an important issue.
  • there is an application in a data center as a field that has recently been ordered as a short-distance optical fiber communication. Large-capacity optical communication is required within a distance of 1 km.
  • Non-Patent Document 1 Single photo detectors are used in measurement and analysis fields including optical communication applications, and high sensitivity and high speed are realized. In particular, the operating speed of photodetectors for optical communications has reached over 100 GHz.
  • the split type photodetector a one-dimensional device arranged in a straight line and a two-dimensional type arranged in multiple tiles have been reported.
  • a 640 pixel type has been reported as a sensor for spectral monitoring in WDM optical communication (Non-Patent Document 1 below).
  • An object of the present invention is to provide a photodetector that can receive a massively parallel optical communication and can instantaneously and collectively receive a large amount of data in multimode transmission and multicore transmission.
  • the present invention relates to a photodetector.
  • This photodetector has a two-dimensional photodetector array in which a plurality of photodetectors 11 are arranged in a two-dimensional array, and wiring 12 having a width of 4 ⁇ m or less is provided between the plurality of photodetectors.
  • the light receiving area of each photodetector has a side of 100 ⁇ m or less, and the plurality of photodetectors arranged in a two-dimensional array are arranged 20 ⁇ m or more apart from each other.
  • the plurality of photodetectors preferably have a mesa structure.
  • the photodetector array receives a plurality of lights emitted from a single mode fiber group in a multi-core fiber, and one of a plurality of photodetectors corresponds to each of the plurality of lights.
  • the light detector preferably further comprises a digital signal processor 25.
  • the digital signal processor 25 includes a weighting coefficient assigning unit 27 corresponding to each photo detector included in the plurality of photo detectors. Then, signals can be received from each of the plurality of photodetectors, and the respective weighting factors assigned by the weighting factor assigning unit 27 can be adjusted.
  • the present invention also provides a receiving apparatus including the above photodetector.
  • This receiving apparatus includes a local light source 3 combined with received light, and a plurality of different local light components before the local light generated from the local light source 3 is combined with the received light.
  • a modulation unit 7 having a plurality of modulation regions 5 for applying the modulation of.
  • the light detector includes a plurality of detection regions 9 that detect, for each of a plurality of portions of the local light, light obtained by combining the local light that has been subjected to a plurality of modulations by the modulation unit 7 and the received light. Function as.
  • the present invention can provide a photodetector capable of receiving massively parallel optical communications and receiving a large amount of data instantaneously and collectively in multimode transmission and multicore transmission.
  • FIG. 1 is a block diagram for explaining a receiving apparatus.
  • FIG. 2 is a conceptual diagram for explaining a modulation unit having a plurality of modulation regions.
  • FIG. 3 is a conceptual diagram showing a photodetector.
  • FIG. 3A shows an example of the photodiode and the wiring
  • FIG. 3B is a diagram for explaining the interval between the photodiodes.
  • FIG. 4 is a block diagram for explaining the digital signal processor.
  • FIG. 5 is a block diagram for explaining a receiving apparatus having a grating.
  • FIG. 6 is a block diagram for explaining a receiving apparatus that does not use a multiplexing unit.
  • FIG. 7 is a conceptual diagram showing an example of how to use the photodetector.
  • FIG. 1 is a block diagram for explaining a receiving apparatus.
  • FIG. 2 is a conceptual diagram for explaining a modulation unit having a plurality of modulation regions.
  • FIG. 3 is a conceptual diagram showing a photodete
  • FIG. 8 is a conceptual diagram for explaining the spatial coherent matching detector of the embodiment.
  • FIG. 9 is a diagram showing a design example of a PD array.
  • FIG. 10 is a diagram illustrating an example of a back-surface incident cross-sectional structure in the PD array.
  • FIG. 11 shows the studied 4 ⁇ 4 phase pattern.
  • FIG. 11A shows a pattern example of the phase mask.
  • FIG. 11B shows an example of combination of weighting factors.
  • FIG. 12 is a graph instead of a drawing showing the calculation of the arrangement restored by the DSP focusing on the reception of the 20-Gb / s QPSK signal for each mode.
  • FIG. 9 is a diagram showing a design example of a PD array.
  • FIG. 10 is a diagram illustrating an example of a back-surface incident cross-sectional structure in the PD array.
  • FIG. 11 shows the studied 4 ⁇ 4 phase pattern.
  • FIG. 11A shows a pattern example of the phase mask.
  • FIG. 13 is a graph instead of a drawing showing a calculation estimate of the 3 dB frequency band with respect to the size of the photodetector (pn junction area).
  • FIG. 14 is a graph instead of a drawing showing an example of calculating the crosstalk amount and insertion loss.
  • FIG. 1 is a block diagram for explaining a receiving apparatus.
  • the receiving apparatus includes a local light generation source 3 that generates local light combined with received light, a modulation unit 7 having a plurality of modulation regions 5, and a plurality of detection regions 9. And a detecting unit 11 having the same.
  • the modulation unit 7 has a plurality of modulation regions 5 for applying a plurality of different modulations to a plurality of portions of the local light before the local light generated from the local light generation source is combined with the received light. is there.
  • the detection unit 11 includes a plurality of detection regions 9 that detect, for each of a plurality of portions of the local light, light in which the local light that has been subjected to a plurality of modulations by the modulation unit and the received light are combined.
  • modulation are amplitude modulation, phase modulation, frequency modulation, amplitude shift, phase shift, frequency shift, and combinations thereof.
  • the lens 17 for collimating the local light emitted from the local light source 3 the lens 19 for collimating the received light, and the collimated received light and the collimated local light are combined.
  • a half mirror (combining unit) 21 for wave generation, an ADC (analog-digital converter) 23 for digitizing a detection signal from the detection unit 11, and a DSC (digital signal processor) 25 are included.
  • the DSC 25 includes a coefficient control unit 27 and a MIMO (multi-input multi-output) 29.
  • the received light may be light emitted from a multi-core fiber (MCF) or several core fibers (FCF).
  • the received light may be a spatially multiplexed signal such as mode division multiplexed (MDM) light.
  • MDM mode division multiplexed
  • the receiving apparatus in FIG. 1 is a coherent optical receiver that can receive light in an arbitrary multimode. This receiving apparatus can be used as a coherent receiver not only in wavelength multiplexing transmission, polarization multiplexing transmission, spatial multiplexing optical transmission, and multimode optical transmission, but also in single mode optical transmission.
  • FIG. 2 is a conceptual diagram for explaining a modulation unit having a plurality of modulation regions.
  • the modulation unit 7 has a plurality of modulation regions 5.
  • Light emitted from the local light source 3 and collimated by the lens 17 passes through a plurality of modulation regions 5 present in the modulation unit 7.
  • modulation corresponding to each of the plurality of modulation regions 5 is received.
  • An example of modulation in the plurality of modulation regions 5 is phase modulation.
  • the plurality of modulation regions 5 may perform either 0 or ⁇ phase modulation, or may perform any of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2 modulation. .
  • the plurality of modulation regions 5 may perform amplitude modulation or may perform frequency modulation.
  • Each modulation region 5 of the modulation unit 7 (mask) may be provided with an optical modulator, and each optical modulator may be connected to a control unit to perform arbitrary modulation.
  • the plurality of modulation regions 5 may be provided in a lattice shape or may be arbitrarily arranged.
  • the plurality of modulation regions 5 have four or more optical modulators on the lattice points. In the example of FIG. 2, it has m ⁇ n modulation areas.
  • Examples of the plurality of modulation regions 5 are 2 ⁇ 2 (two in the vertical direction and two in the horizontal direction), 4 ⁇ 2 ⁇ 2 structures on one surface (4 ⁇ 4), 3 ⁇ 3, 5 ⁇ 5, 6 ⁇ 6, 4 ⁇ 6, 8 ⁇ 8, and 12 ⁇ 12.
  • a preferred example of the local light source 3 is a local light source that can sweep the wavelength.
  • a light source capable of sweeping the wavelength is known, for example, as described in Japanese Laid-Open Patent Publication No. 2007-148413.
  • Another preferred example of the local light source 3 is an optical comb signal generator.
  • An optical comb signal generator is known as described in, for example, Japanese Patent Application Laid-Open No. 2006-17748 and Japanese Patent Application Laid-Open No. 2011-221366.
  • the multiplexing unit 21 is an element that combines the received light and the local light that has been given a plurality of modulations by the modulation unit. Examples of the multiplexing unit 21 are a half mirror and a beam splitter.
  • FIG. 3 is a conceptual diagram showing a photodetector.
  • FIG. 3A shows an example of the photodiode and the wiring
  • FIG. 3B is a diagram for explaining the interval between the photodiodes.
  • a plurality of photodetectors (for example, photodiodes) 9 are arranged in a two-dimensional array.
  • the photodiode 9 a known photodiode used for optical information communication can be used.
  • the photodiodes 9 may constitute detector pixels, and each may correspond to the modulation region 5 of the modulation unit 7.
  • An example of a two-dimensional array is one in which four or more photodiodes exist on a lattice point.
  • An example of a two-dimensional array is 2 ⁇ 2 (two in the vertical direction and two in the horizontal direction), 4 ⁇ 2 ⁇ 2 structures (4 ⁇ 4), 3 ⁇ 3, 5 ⁇ 5, 6 ⁇ 6, 4 ⁇ 6, 8 ⁇ 8, and 12 ⁇ 12.
  • the plurality of photodetectors arranged in a two-dimensional array are preferably arranged apart from each other by 10 ⁇ m or more (that is, the distance d between the closest portions of adjacent photodiodes is 10 ⁇ m or more). If this distance is too large, the light detection function is degraded.
  • the distance d between adjacent photodiodes is preferably 10 ⁇ m to 100 ⁇ m, 30 ⁇ m to 80 ⁇ m, 30 ⁇ m to 60 ⁇ m, 40 ⁇ m to 60 ⁇ m.
  • the two-dimensional photodetector array section of the photodetector preferably has a surface incident structure (front surface incident or back surface incident structure).
  • the photodetector includes a wiring 12 having a width of 4 ⁇ m or less (preferably 1 ⁇ m or more and 4 ⁇ m or less, 1 ⁇ m or more and 3 ⁇ m or less, or 2 ⁇ m or more and 4 ⁇ m or less) between a plurality of photodetectors.
  • the light receiving region of each photodiode is preferably 100 ⁇ m or less on one side (the area is 10,000 ⁇ m 2 or less).
  • each of the plurality of photodiodes has a mesa structure.
  • the mesa structure means a structure in which a pn junction is formed in advance by crystal growth, and then an element region is cut into an island shape by etching.
  • a photodiode having a mesa structure is known as described in, for example, Japanese Patent No. 5842393 and Japanese Patent No. 5386664.
  • the photodiode may have a play structure.
  • the play structure means a structure in which an impurity is selectively added in the depth direction from the surface of the n-type epitaxial layer on the cathode layer side, and the p-type is inverted to form an anode.
  • the photodetector is preferably provided with a high-frequency transmission line that can output a high-speed electrical signal of 1 GHz or more from the two-dimensional photodetector array unit.
  • a high-speed transmission path has, for example, a structure in which a two-dimensional photodetector array portion is provided in the center of the base, and wiring connected to the wiring existing in the two-dimensional photodetector array extends in the circumferential direction of the base. It is what has.
  • the base is preferably connected to the outside (for example, a digital signal processor described later) by Philip chip bonding or wire bonding. These wirings are preferably realized by a microstrip line or a coplanar transmission line. With such a configuration, a photocurrent flows through each photodiode, is converted into an electric signal, and is output to an external electric circuit through a transmission line.
  • This optical detector uses photodiodes for optical communication in an array, so that unlike a CCD or the like, it can handle high-speed signals with a frequency response of 1 GHz or more.
  • the photodetector array receives a plurality of lights emitted from a single mode fiber group in a multi-core fiber, and one of a plurality of photodetectors corresponds to each of the plurality of lights.
  • the ADC 23 is an element that converts the light intensity detected by each photodiode into digital information. There may be an ADC connected to each photodiode, and the detection value of each photodiode may be converted into a digital signal. The ADC outputs a digital signal to the DSP.
  • the photodetector preferably further comprises a digital signal processor (DSP) 25.
  • DSP digital signal processor
  • FIG. 4 is a block diagram for explaining the digital signal processor.
  • the digital signal processor 25 includes a weighting coefficient assigning unit 27 corresponding to each photo detector included in the plurality of photo detectors.
  • the DSP 25 can adjust each weighting factor provided by the weighting factor assigning unit.
  • the DSP 25 receives a digital signal from each of the ADCs 23, multiplies each digital signal by a weighting coefficient, and sends it to a MIMO (multi-input multi-output) unit 29.
  • the MIMO unit 29 outputs information obtained by weighting the optical signals from the respective photodetectors. When the output information is analyzed, the received signal can be analyzed.
  • a signal obtained by multiplying a signal by various weighting factors from each of a plurality of photodetectors can be output as a signal. Furthermore, the components detected by a specific photodetector can be extracted by changing the weighting coefficient for each photodetector.
  • the photodetector may be used as a photodetector for directly receiving an output from a transmission path in which a multi-core fiber (MCF) and a number mode fiber (FMF) are combined, or an FMF transmission path.
  • MCF multi-core fiber
  • FMF number mode fiber
  • Output light from the MCF enters the output port. Then, the received light incident on the input port is emitted toward the lens.
  • the lens 19 receives the spread received light, collimates the received light, and transmits it to the half mirror 21.
  • local light is emitted from the local light source 3, reaches the lens 17 in a state where the width of the local light is widened, and is collimated at the lens 17.
  • Local light emitted from the lens 17 reaches the phase mask 7.
  • the plurality of phase modulators 5 in the phase mask 7 perform predetermined phase modulation on each part of the local light.
  • the local light subjected to the phase modulation reaches the half mirror 21.
  • the light diameter (w 1 ) of the local light when reaching the half mirror is equal to or smaller than the light diameter (w S ) of the received light reaching the half mirror 21 (for example, 90% or more and 99% or less). Is preferred.
  • the received light and the local light are combined. Of the received light, the portion that is in phase with the local light is strengthened, and the portion that is out of phase is weakened.
  • the light combined in this way has a portion where the light intensity is increased and a portion where the light intensity is weakened.
  • the strength basically corresponds to each phase modulator 5.
  • the light combined in the half mirror 21 enters the photodetector 11.
  • the photodetector 11 has a photodiode 9 at a position corresponding to the phase modulator 5.
  • the photodetector 11 can measure the intensity of the received light.
  • the output from each photodiode 9 is converted into a digital signal by the ADC 23 and subjected to signal processing in the DSP 25.
  • the DSP 25 can restore the received light.
  • the DSP 25 can weight the outputs from the respective photodiodes 9 and obtains light intensity information of components corresponding to the phase modulation by adjusting the weights. be able to. This makes it possible to classify the received light mode and modulation method.
  • FIG. 5 is a block diagram for explaining a receiving apparatus having a grating.
  • the local light reaches the phase mask 7 through the grating 31 and the lens.
  • An example of a grating is a fiber Bragg grating (FBG).
  • FBG fiber Bragg grating
  • Examples of the fiber Bragg grating include those using a uniform fiber grating, a chirped grating or a multi-section grating, and a fiber grating which can be modulated.
  • the fiber Bragg grating can be obtained, for example, by irradiating ultraviolet rays through a phase mask and changing the refractive index of the core at a predetermined pitch. Wavelength selective coherent detection can be realized by using a grating.
  • the local light wavelength is arranged in the signal light wavelength band
  • the spatial distribution is given to the amplitude and phase of the local light
  • the beat component between the signal light and the local light is detected by a single light detection or By detecting using a plurality of photodetectors, it is possible to acquire and restore local light amplitude, phase temporal change, spatial distribution, and change information.
  • the local light emission wavelength is arranged in the signal light wavelength band when, for example, the occupied light wavelength of the signal light wavelength is set to ⁇ 1 or more and ⁇ 2 or less (where ⁇ 1 ⁇ 2 ), the local light emission wavelength ⁇ L is changed to ⁇ It is arranged in an area of 1 or more and ⁇ 2 or less.
  • FIG. 6 is a block diagram for explaining a receiving apparatus that does not use a multiplexing unit.
  • the received light and the local light are combined in the photodetector, there is no multiplexing unit that combines the received light and the local light. With such a configuration, the optical elements can be reduced.
  • FIG. 7 is a conceptual diagram showing an example of how to use the photodetector.
  • output light from a transmission path in which a multi-core fiber (MCF) and a number mode fiber (FMF) are connected is received by using a plurality of photodetectors 11, and each photodetector (and connected thereto) is received.
  • the received signal is analyzed by ADC and DSP.
  • the above photodetectors can be used for the following purposes.
  • the light from the MCF is collected by a lens or the like and directly coupled to each photodetector.
  • the pixel arrangement of the photodetector may be determined in accordance with the MCF core arrangement (triangular arrangement, square arrangement).
  • a DEMUX device that converts MCF into a plurality of single fibers or a plurality of single fibers connected after the DEMUX device and a receiver corresponding to the single fiber is required. If the above-mentioned photodetector is used, a DEMUX device becomes unnecessary, and a plurality of receivers that are required for the number of outputs can be integrated into one.
  • a two-dimensional phased array antenna can be manufactured by connecting each element of a two-dimensional PDA to a small antenna such as a patch antenna and performing phase control on each photodetector element by an electrical or optical method. Since the single detector element can be designed to operate at 100 GHz or higher, a two-dimensional phased array antenna from the microwave band to the millimeter wave band or the THz band can be manufactured.
  • spatial coherent matching detection that enables high-speed mode separation and coherent detection in an optoelectronic manner.
  • FIG. 8 shows the principle.
  • FIG. 8 is a conceptual diagram for explaining the spatial coherent matching detector of the embodiment.
  • the spatial coherent matched detector includes a half mirror, a local light, a phase mask, a photodiode (PD) array, and a digital signal processor (DSP).
  • the signal and local light are input from the signal port and the local port and collimated.
  • the two lights are combined by a half mirror and enter the PD array.
  • the signal and local light are sufficiently spatially spread with a beam size that covers the active area of the PD array.
  • the PD array has a structure in which a common light input and a plurality of output electrodes are arranged in a two-dimensional matrix, and separately take out photocurrents at different positions.
  • each element of the PD array is based on the conventional PD technology, high bandwidth detection of 10 Gbaud or more is possible.
  • a phase mask having a special phase pattern is arranged on the local port side.
  • the phase pattern of the local beam is controlled using the phase mask. Therefore, the optical phase of the local light input to each element of the PD array is controlled as necessary.
  • the signal light is directly incident on the PD array, and therefore the relative phase difference between the signal light and the local light can be controlled independently by the PD laser.
  • FIG. 9 is a diagram showing a design example of a PD array. As shown in FIG. 9, the PD array is provided with a high-frequency transmission path for taking out a high-speed electrical signal of 1 GHz or more to the outside.
  • FIG. 10 is a diagram illustrating an example of a back-surface incident cross-sectional structure in the PD array.
  • a high-speed photodetector (size: about 100 ⁇ m ⁇ 100 ⁇ m or less) processed into a tile shape is arranged two-dimensionally. In order to connect the electrical output from each photodetector to an external electrical circuit, the photodetector is provided with a wiring of about 4 ⁇ m.
  • the electrical signal is a high-speed signal of 1 GHz or more
  • a microstrip line or coplanar transmission line is provided to extract the signal to the external circuit.
  • High-speed optical signals are incident from the top or back surface.
  • a photocurrent flows to each photodetector, is converted into an electric signal, and is output to an external electric circuit through a transmission line.
  • any orthogonal mode can be selected dynamically without changing the optical configuration.
  • the weighting factor can be easily controlled by the DSP, and parallel detection of all mode channels can be realized without optical mode division prior to optical detection. For example, if a ⁇ / 2 phase offset is applied between two PD elements in the array, the in-phase (I) component and the quadrature (Q) component of the signal are detected simultaneously, and coherent detection is achieved. In order to separate the spatial modes, all the photocurrents from the PD elements may be summed by giving a phase offset that matches the mode pattern. By appropriately changing the thermal current weighting factor for the addition process, any orthogonal mode can be dynamically selected without changing the configuration of the optical system.
  • the weighting factor can be easily controlled by the DSP, and parallel detection of all the mode channels can be realized without optical mode division prior to optical detection.
  • the most important point of this technique is that it is not necessary to apply a spatial filter or other optical signal processing to the received MDM signal.
  • the signal is simply input to a photodiode array having a common single light input surface. With such a single set of PD arrays, all modal channels can be detected individually. Spatial modes can be separated orthogonally without changing the phase mask pattern.
  • the detection system can be flexibly upgraded for other MDM signals multiplexed with different mode numbers. When the matrix size is sufficiently large, it is possible to detect MDM signals of 3, 5 or higher order.
  • the detection scheme does not suffer from mode splitting losses. Regardless of mode loss, the intrinsic loss is ideally 3 dB, equivalent to a single channel phase diversity coherent receiver and coherent matched detector. Converts to a conventional phase plate-based optical mode splitter modal number that proportionally increases the optical loss (the theoretical loss in FIG. 8 is 6 dB, but balanced detection using the other output port of the half mirror) It can be improved to 3dB by changing the configuration.)
  • FIG. 11 shows the studied 4 ⁇ 4 phase pattern.
  • FIG. 11A shows a pattern example of the phase mask.
  • FIG. 11B shows an example of combination of weighting factors.
  • This phase mask is composed of four sets of sub-phase masks surrounded by a dotted frame in the figure. Each sub-phase mask has four regions that provide phase shifts of 0, ⁇ / 2, ⁇ , and 3 ⁇ / 2, respectively.
  • a pair of PD elements corresponding to the [0, ⁇ ] phase shift functions as balanced detection of the in-phase component of the received signal.
  • the quadrature component is detected using a pair of [ ⁇ / 2, 3 ⁇ / 2] PD.
  • mode separation is achieved simply by changing the combination of weighting factors.
  • the LP01 mode is detected by adding all the photocurrents using the following weight coefficient matrix.
  • FIG. 12 shows the calculated arrangement restored by the DSP, focusing on the reception of 20-Gb / s QPSK signals for each mode, eg 3 ⁇ 20-Gb / sMDM QPSK signals.
  • the OSNR at 0.1 nm is assumed to be 20 dB.
  • a multi-input multi-output (MIMO) equalizer is applied to separate signals and suppress crosstalk between mode channels.
  • FIGS. 12 (a) to 12 (c) show channel arrangements of modes corresponding to the LP01, LP11a and LP11b modes obtained when all channels are multiplexed and received by the spatial coherent matching detector. . For simplicity, it is assumed that all modes are maintained in the spatial coherent matching detector.
  • the MDM signal can be optically demultiplexed and received coherently through numerical analysis of an arrangement with a 4 ⁇ 4 matrix that detects a 3 ⁇ 20 Gb / s MDM QPSK signal.
  • neither spatial filtering nor optical splitting is applied to the received signal, which is ideally useful for reducing the 3 dB loss comparable to a single channel coherent receiver.
  • FIG. 13 is a graph instead of a drawing showing a calculation estimate of a 3 dB frequency band with respect to the size of the photodetector (pn junction area). It can be seen from FIG. 13 that a band of about 1 GHz or more can be obtained by setting the size of the photodetector to 100 ⁇ m ⁇ 100 ⁇ m or less.
  • FIG. 14 is a graph instead of a drawing showing an example of calculation of the amount of crosstalk and insertion loss.
  • the wiring width is 4 ⁇ m
  • the space is 14 ⁇ m
  • the pixel interval is 64 ⁇ m
  • RF crosstalk of 20 dB or less is obtained at a frequency of 30 GHz or less.
  • the wiring width is 4 ⁇ m
  • the space is 14 ⁇ m
  • the pixel interval is 44 ⁇ m
  • RF crosstalk of 20 dB or less is obtained at a frequency of 30 GHz or less.
  • the present invention can be used in the field of optical information communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【解決課題】 超並列化光通信受信が可能になり,マルチモード伝送,マルチコア伝送において大量のデータ量を瞬時に一括して受信することができる光検出器を提供する。 【解決手段】 複数のフォトディテクター9が2次元アレイ状に配置され,前記複数のフォトディテクターの間に幅が4μm以下の配線12を有する,2次元フォトディテクターアレーを有し,それぞれのフォトディテクターの受光領域は,1辺が100μm以下であり,前記2次元アレイ状に配置された複数のフォトディテクターは,それぞれ20μm以上離れて配置される光検出器。

Description

高速フォトディテクターアレー
 本発明は,光情報通信に用いられる光検出器に関する。
 光通信容量は年々増加の一途をたどっており,今後もその伝送容量を高めていく必要がある。光通信は光ファイバー有線通信および無線と光通信を合わせた光ファイバー無線通信がある。現在光通信のバックボーンは大容量伝送が可能であるため有線が主に利用されているが,今後たとえばモバイルバックホール応用などを考えた場合,光ファイバー無線技術を用いた光アクセス系の大容量化も重要な案件になると考えられる。さらに近年短距離光ファイバー通信として注文を浴びている分野としてデータセンター内への応用がある。距離1km以内で大容量光通信が求められている。いずれの応用分野においても,データ通信速度・容量を向上させるため,WDM技術や変調多値化により解決を図ってきたが,近年ではマルチモード,マルチコアを使用した空間多重(SDM)伝送によりトータルでのデータ容量向上が検討されている。
 単一フォトディテクターは光通信応用をはじめとし,計測,分析分野へ活用されており,高感度,高速化が実現されている。特に光通信向けフォトディテクターの動作スピードは100GHz超に達している。一方分割型フォトディテクターは,直線状に配置した1次元デバイスやタイル状に多分割配置した2次元型が報告されている。1次元型においてはWDM光通信における分光モニター用センサーとして640ピクセル型が報告されている(下記非特許文献1)。
S. Sanpei, et al., "WD 200 WDM monitor" Yokogawa Tech. Report, no. 34, pp. 17-20, 2002.
 本発明は,超並列化光通信受信が可能になり,マルチモード伝送,マルチコア伝送において大量のデータ量を瞬時に一括して受信することができる光検出器を提供することを目的とする。
 本発明は,光検出器に関する。この光検出器は,複数のフォトディテクター11が2次元アレイ状に配置され,複数のフォトディテクターの間に幅が4μm以下の配線12を有する,2次元フォトディテクターアレーを有する。そして,それぞれのフォトディテクターの受光領域は,1辺が100μm以下であり,2次元アレイ状に配置された複数のフォトディテクターは,それぞれ20μm以上離れて配置される。
 複数のフォトディテクターは,メサ構造を有することが好ましい。
 フォトディテクターアレーは,マルチコアファイバ内のシングルモードファイバー群から放射される複数の光を受信するものであり,複数の光のそれぞれに,複数のフォトディテクターのいずれかが対応する。
 光検出器は,さらにデジタル信号プロセッサ25を有するものが好ましい。
 デジタル信号プロセッサ25は,複数のフォトディテクターに含まれるそれぞれのフォトディテクターに対応した重み係数付与部27を有する。そして,複数のフォトディテクターのそれぞれから信号を受け取り,重み係数付与部27が付与するそれぞれの重み係数を調整できる。
 本発明は上記の光検出器を含む受信装置をも提供する。この受信装置は,受信光と合波される局所光発生源3と,局所光発生源3から発生した局所光が受信光と合波される前に,局所光の複数の部分に異なった複数の変調を与えるための複数の変調領域5を有する変調部7とを有する受信装置である。光検出器は,変調部7で複数の変調を与えられた局所光と,受信光とが合波された光を,局所光の複数の部分ごとに検出する複数の検出領域9を有する検出部として機能する。
 本発明は,超並列化光通信受信が可能になり,マルチモード伝送,マルチコア伝送において大量のデータ量を瞬時に一括して受信することができる光検出器を提供できる。
図1は,受信装置を説明するためのブロック図である。 図2は,複数の変調領域を有する変調部を説明するための概念図である。 図3は,光検出器を示す概念図である。図3(a)は,フォトダイオードと配線の例を示し,図3(b)はフォトダイオードの間隔を説明するための図である。 図4は,デジタル信号プロセッサを説明するためのブロック図である。 図5は,グレーティングを有する受信装置を説明するためのブロック図である。 図6は,合波部を用いない受信装置を説明するためのブロック図である。 図7は,光検出器の利用方法の例を示す概念図である。 図8は,実施例の空間コヒーレント整合検出器を説明するための概念図である。 図9は,PDアレイの設計例を示す図である。 図10は,PDアレイにおける裏面入射断面構造例を示す図である。 図11は,検討した4×4位相パターンを示す。図11(a)は,位相マスクのパターン例を示す。図11(b)は,重み係数の組み合わせ例を示す。 図12は,モード毎の20-Gb/s QPSK信号の受信に焦点を当てて,DSPで復元された配置を計算したものを示す図面に替るグラフである。 図13は,フォトディテクターの大きさ(pn接合面積)に対する3dB周波数帯域の計算見積もりを示す図面に替るグラフである。 図14は,クロストーク量および挿入損失の算出例を示す図面に替るグラフである。
 以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。なお,以下では,空間コヒーレント整合検出器を例にして,本発明を実施するための形態について説明する。しかしながら,本発明は,空間コヒーレント整合検出器に限定されるものではない。
 図1は,受信装置を説明するためのブロック図である。図1に示されるように,この受信装置は,受信光と合波される局所光を発生する局所光発生源3と,複数の変調領域5を有する変調部7と,複数の検出領域9を有する検出部11とを含む。変調部7は,局所光発生源から発生した局所光が受信光と合波される前に,局所光の複数の部分に異なった複数の変調を与えるための複数の変調領域5を有するものである。検出部11は,変調部で複数の変調を与えられた局所光と,受信光とが合波された光を,局所光の複数の部分ごとに検出する複数の検出領域9を有する。変調の例は,振幅変調,位相変調,周波数変調,振幅シフト,位相シフト,周波数シフト,及びこれら組み合わせである。図1の例では,局所光発生源3から出射した局所光をコリメートするためのレンズ17と,受信光をコリメートするためのレンズ19と,コリメートされた受信光及びコリメートされた局所光とを合波するためのハーフミラー(合波部)21,検出部11からの検出信号をデジタル化するためのADC(アナログ-デジタル変換器)23,DSC(デジタル信号プロセッサ)25を含む。DSC25は,係数制御部27と,MIMO(マルチインプットマルチアウトプット)29を含む。
 受信光は,マルチコアファイバ(MCF)や数コアファイバ(FCF)からの出射光であってもよい。受信光は,モード分割多重(MDM)光などの空間多重信号であってもよい。図1の受信装置は,任意の多重モードの光を受信することができるコヒーレント光受信器である。この受信装置は,波長多重伝送,偏波多重伝送,空間多重光伝送,多モード光伝送のみならず,単一モード光伝送におけるコヒーレント受信器として利用されうる。
 図2は,複数の変調領域を有する変調部を説明するための概念図である。図2に示されるように,この変調部7は,複数の変調領域5を有する。局所光発生源3から出射し,レンズ17によりコリメートされた光が,変調部7に存在する複数の変調領域5を通過する。その際に,複数の変調領域5のそれぞれに対応した変調を受けることとなる。複数の変調領域5における変調の例は,位相変調である。例えば,複数の変調領域5が0とπのいずれかの位相変調を行うものであっても,0,π/2,π,及び3π/2のいずれかの変調を行うものであってもよい。複数の変調領域5は,振幅変調を行うものであってもよいし,周波数変調を行うものであってもよい。変調部7(マスク)の各変調領域5には,光変調器が設けられ,それぞれの光変調器が制御部と接続され,任意の変調を行うものであってもよい。
 複数の変調領域5は,格子状に設けられてもよいし,任意の配置であってもよい。複数の変調領域5は,格子点上に4つ以上の光変調器が存在するものである。図2の例では,m×n個の変調領域を有している。複数の変調領域5の例は,2×2(縦方向及び横方向に2つずつ),2×2が1つの面に4つある構造(4×4),3×3,5×5,6×6,4×6,8×8,及び12×12である。
 局所光発生源3の好ましい例は,波長を掃引できる局所光発生源である。波長を掃引できる光源は,例えば再表2007-148413号公報に記載される通り,公知である。局所光発生源3の好ましい別の例は,光コム信号発生器である。光コム信号発生器は,例えば特開2006-17748号公報や,特開2011-221366号公報に記載される通り,公知である。
 合波部21は,受信光と,変調部で複数の変調を与えられた局所光とを合波する要素である。合波部21の例は,ハーフミラー及びビームスプリッターである。
 光検出器(検出部)
 次に,光検出器11の例について説明する。図3は,光検出器を示す概念図である。図3(a)は,フォトダイオードと配線の例を示し,図3(b)はフォトダイオードの間隔を説明するための図である。この例の光検出器11は,複数のフォトディテクター(例えばフォトダイオード)9が2次元アレイ状に配置されている。フォトダイオード9は,光情報通信に用いられている公知のフォトダイオードを用いることができる。フォトダイオード9は,検出器のピクセルを構成し,それぞれが,変調部7の変調領域5に対応したものであってもよい。2次元アレイの例は,格子点上に4つ以上のフォトダイオードが存在するものである。2次元アレイの例は,2×2(縦方向及び横方向に2つずつ),2×2が1つの面に4つある構造(4×4),3×3,5×5,6×6,4×6,8×8,及び12×12である。2次元アレイ状に配置された複数のフォトディテクターは,それぞれ10μm以上離れて配置される(つまり隣接するフォトダイオードの最も近い部分間の距離dが10μm以上)ことが好ましい。この間隔が大きすぎると,光検出機能が低下するので,隣接するフォトダイオードの間の距離dは,10μm以上100μm以下が好ましく,30μm以上80μm以下でも,30μm以上60μm以下でも,40μm以上60μm以下でもよい。光検出器の2次元フォトディテクターアレー部は,面入射構造(表面入射又は裏面入射構造)を有していることが好ましい。
 この光検出器は,例えば,複数のフォトディテクターの間に幅が4μm以下(好ましくは1μm以上4μm以下,1μm以上3μm以下,又は2μm以上4μm以下)の配線12を有する。それぞれのフォトダイオードの受光領域は,1辺が100μm以下(面積が1万μm以下)であることが好ましい。
 複数のフォトダイオードは,それぞれメサ構造を有することが好ましい。メサ構造は,あらかじめ結晶成長によりpn接合を形成し,その後,素子領域をエッチングにより島状に切り出した構造を意味する。メサ構造を有するフォトダイオードは,例えば,特許5842393号公報や特許5386764号公報に記載される通り公知である。フォトダイオードはプレーな構造であってもよい。プレーな構造は,カソード層側となるn型エピタキシャル層の表面から選択的に不純物を深さ方向に添加し,そこをp型に反転させてアノードとする構造を意味する。また,光検出器は,2次元フォトディテクターアレー部から1GHz以上の高速電気信号を出力することができるような高周波伝送路が設けられていることが好ましい。このような高速伝送路は,例えば,2次元フォトディテクターアレー部を基盤の中心部に設け,その2次元フォトディテクターアレー部に存在する配線と接続された配線が基盤の周方向に伸びている構造を有するものである。そして,この基盤は,外部(例えば後述するデジタル信号プロセッサ)とフィリップチップボンディング又はワイヤーボンディングにより接続されることが好ましい。これらの配線は,マイクロストリップラインやコプレーナ型の伝送線路により実現されることが好ましい。このような構成を有すれば,光電流が各フォトダイオードに流れ,電気信号に変換され,伝送線路を通して外部電気回路へと出力されることとなる。
 この光検出器は,光通信用のフォトダイオードをアレイ状にして用いているので,CCDなどとは異なり,周波数応答が1GHz以上といった高速信号に対応できる。
 フォトディテクターアレーは,マルチコアファイバ内のシングルモードファイバー群から放射される複数の光を受信するものであり,複数の光のそれぞれに,複数のフォトディテクターのいずれかが対応する。
 ADC(アナログ-デジタル変換器)
 ADC23は,それぞれのフォトダイオードが検出した光強度をデジタル情報に変換する要素である。それぞれのフォトダイオードと接続されたADCが存在し,それぞれのフォトダイオードの検出値をデジタル信号に変換してもよい。ADCはDSPへデジタル信号を出力する。
 DSP(デジタル信号プロセッサ)
 光検出器は,さらにデジタル信号プロセッサ(DSP)25を有するものが好ましい。図4は,デジタル信号プロセッサを説明するためのブロック図である。デジタル信号プロセッサ25は,複数のフォトディテクターに含まれるそれぞれのフォトディテクターに対応した重み係数付与部27を有する。DSP25は,重み係数付与部が付与するそれぞれの重み係数を調整できる。DSP25は,ADC23のそれぞれからデジタル信号を受け取り,それぞれのデジタル信号に,重み係数をかけ合わせ,MIMO(マルチインプットマルチ出力)部29に送る。MIMO部29は,それぞれのフォトディテクターからの光信号に重みがけを行った情報を出力する。出力情報を解析すると,受信信号を解析できる。
このようにして,複数のフォトディテクターのそれぞれから信号に様々な重み係数をかけ合わせたものを信号として出力できる。さらに,それぞれのフォトディテクターに関する重み係数を変えることで,特定のフォトディテクターが検出した成分を抽出できる。
 この光検出器は,例えば,マルチコアファイバ(MCF)と数モードファイバ(FMF)とが組み合わさった伝送路や,FMFによる伝送路からの出力を直接受信するための光検出器として用いられてもよい。   
 以下,受信装置の動作例について説明する。MCFからの出力光が出力ポートに入射する。すると,入力ポートに入射した受信光がレンズに向けて出射する。レンズ19は,広がった状態の受信光を受け取り,受信光をコリメートし,ハーフミラー21へと伝える。一方,局所光源3から局所光が出射され,局所光の幅が広げられた状態でレンズ17に到達し,レンズ17においてコリメートされる。レンズ17から出射した局所光は,位相マスク7に到達する。位相マスク7における複数の位相変調器5は,局所光の各部位に対し,所定の位相変調を施す。位相変調を施された局所光は,ハーフミラー21に到達する。ハーフミラーに到達した際の局所光の光径(w)は,ハーフミラー21に到達した受信光の光径(w)と同じかそれより小さい(例えば,90%以上99%以下である)ことが好ましい。ハーフミラー21において,受信光と局所光とが合波される。受信光のうち,局所光と位相があった部分は強めあい,位相が逆位相であった部分は弱めあう。このように合波された光は,光強度が強めあった部分と弱めあった部分が存在することとなる。その強弱は,基本的には,それぞれの位相変調器5に対応したものである。ハーフミラー21において合波された光は,光検出器11に入射する。光検出器11には,位相変調器5に対応した位置にフォトダイオード9が存在する。このため,光検出器11において,受信した光の強度を測定できることとなる。それぞれのフォトダイオード9からの出力は,ADC23においてデジタル信号に変換され,DSP25において信号処理が施される。DSP25は,受信光を復元できる。具体的には,DSP25は,それぞれのフォトダイオード9からの出力に対して重み付けをすることができるようにされており,重み付けを調整することで,位相変調に応じた成分の光強度情報を得ることができる。これにより,受信光のモードや変調方式を分類できることとなる。
 図5は,グレーティングを有する受信装置を説明するためのブロック図である。この例では,局所光がグレーティング31及びレンズを経て,位相マスク7に至る。グレーティングの例は,ファイバブラッググレーティング(FBG)である。ファイバブラッググレーティングは,ユニフォームファイバグレーティング,チャープグレーティング,又はマルチセクショングレーティングを用いるものや,変調可能なファイバグレーティングがあげられる。ファイバブラッググレーティングは,たとえば,位相マスクを介して紫外線を照射し,そのコアの屈折率を所定のピッチで変化させることにより得ることができる。グレーティングを用いることで,波長選択コヒーレント検出を実現できる。つまり,例えば,局発光波長を信号光波長帯域内に配置し,局発光の振幅及び位相等に,空間分布を与え,かつ,信号光と局発光間ビート成分を,単一の光検出または,複数の光検出器を用いて,検出することにより,局発光の振幅,位相の時間変化,空間分布,変化情報を取得,復元することができる。局発光波長を信号光波長帯域内に配置するとは,例えば,信号光波長の占有光波長をλ以上λ以下とした時(ただし,λ<λ),局発光波長λをλ以上λ以下の領域に配置することである。
 図6は,合波部を用いない受信装置を説明するためのブロック図である。図6に示される例では,光検出器において受信光と局所光とが合わさるため,受信光と局所光とを合波する合波部が存在しない。このような構成とすれば光学素子を軽減できることとなる。
 図7は,光検出器の利用方法の例を示す概念図である。この例では,マルチコアファイバ(MCF)と数モードファイバ(FMF)とが接続された伝送路からの出力光を複数の光検出器11を用いて受信し,それぞれの光検出器(及びそれと接続されたADC及びDSP)により受信信号を解析する。
 上記の光検出器は,以下のような用途も考えられる。MCFからの光をレンズ等で集光し,各フォトディテクターへ直接光結合を行う。MCFのコア配置(三角配置,四角配置)に合わせ,光検出器のピクセルの配置を決定すればよい。従来技術ではMCFを複数の単一ファイバーへ変換するDEMUX装置又はDEMUX装置後に複数の単一ファイバーを接続し,その単一ファイバーに応じた受信器が必要であった。上記の光検出器を用いればDEMUX装置が不要となり,また出力本数分必要であった複数の受信器が1つに集約できる。このため,上記の光検出器を用いれば,受信側システム構成を簡略化でき,小型トランシーバー等の設計に大きく寄与される。また,軌道角運動量(OAM)を使ったモード分割多重伝送においても,上記の光検出器を用いることで,光DEMUX装置や後段の1モードに対する受信機が不要となり,直接OAM光信号を受信できる。これにより瞬時モード判定とデータ受信が可能となる。2次元PDA各素子とパッチアンテナなどの小型アンテナを接続し,各光検出器素子への位相制御を電気的,光学的手法により行うことで,2次元フェーズドアレーアンテナを製造できる。光検出器単体素子は100GHz以上で動作するよう設計が可能であることから,マイクロ波帯からミリ波帯,あるいはTHz帯の2次元フェーズドアレーアンテナが作製可能となる。
 本実施例では,高速モード分離とコヒーレント検出を光電子的に可能にする「空間コヒーレント整合検出」とよばれる新しい手法を提案し,検討する。
 図8にその原理を示す。図8は,実施例の空間コヒーレント整合検出器を説明するための概念図である。空間コヒーレント整合検出器は,ハーフミラー,局所光,位相マスク,フォトダイオード(PD)アレイおよびデジタル信号プロセッサ(DSP)を含む。信号および局所光は信号ポートおよびローカルポートから入力され,コリメートされる。2つの光は,ハーフミラーで結合され,PDアレイに入射する。信号および局所光は,PDアレイのアクティブエリアをカバーするビームサイズで十分に空間的に広がっている。
PDアレイは,共通の光入力と複数の出力電極とが2次元マトリクス状に配置された構造を有し,異なる位置の光電流を別々に取り出す。PDアレイの各要素は従来のPD技術に基づいているため,10Gbaud以上の高帯域幅検出が可能である。検出システムでは,ローカルポート側に特殊位相パターンを持つ位相マスクを配置している。位相マスクを用いて,局所ビームの位相パターンが制御される。したがって,PDアレイの各素子に入力されるローカル光の光位相は,必要に応じて制御される。一方,信号光はそのままPDアレイに入射し,したがって,PDレーザーで信号光とローカル光の相対位相差を独立に制御できる。
 図9は,PDアレイの設計例を示す図である。図9に示されるように,PDアレイは,1GHz以上の高速電気信号を外部へ取り出すための高周波伝送路が設けられている。図10は,PDアレイにおける裏面入射断面構造例を示す図である。タイル状に加工した高速フォトディテクター(大きさ:約100μm×100μm以下)を2次元上に配置する。各フォトディテクターからの電気出力と外部電気回路との接続のため,フォトディテクターには4μm程度の配線を設ける。電気信号は1GHz以上の高速信号であるため,外部回路への信号取り出しにはマイクロストリップラインやコプレーナ―伝送線路を設ける。高速光信号は上面もしくは裏面より入射を行う。これにより光電流が各フォトディテクターに流れ,電気信号へ変換され,伝送線路を通して外部電気回路へ出力される。
 例えば,アレイ内の2つのPD素子の間にπ/2位相オフセットを与えると,信号の同相(I)成分と直交(Q)成分が同時に検出され,コヒーレント検出が達成される。空間モードを分離するには,モーダルパターンに一致する位相オフセットを与えることによって,PD素子からの光電流をすべて集計する必要がある。加算プロセスのための熱電流の重み係数を適切に変更することにより,光学構成を変えることなく任意の直交モードを動的に選択することができる。
 重み係数はDSPで簡単に制御することができ,光検出に先立って光モード分割なしですべてのモードチャネルの並列検出を実現できる。例えば,アレイ内の2つのPD素子の間にπ/2位相オフセットを与えると,信号の同相(I)成分と直交(Q)成分が同時に検出され,コヒーレント検出が達成される。空間モードを分離するには,モードパターンに一致する位相オフセットを与えることによって,PD素子からの光電流をすべて集計すればよい。加算プロセスのための熱電流の重み係数を適切に変更することにより,光学系の構成を変えることなく任意の直交モードを動的に選択することができる。重み係数はDSPで簡単に制御することができ,光検出に先立って光モード分割なしですべてのモードチャネルの並列検出を実現できる。
 この技術の最も重要な点は,受信したMDM信号に対して空間フィルタまたは他の光信号処理を適用しなくて済むことである。信号は,共通の単一光入力面を有するフォトダイオードアレイに単に入力される。このようなPDアレイの単一のセットでは,すべてのモーダルチャネルを個別に検出することができる。位相マスクパターンを変更することなく,空間モードを直交的に分離することができる。我々は,配列要素で検出された光電流の組み合わせを選択するためにDSPを使用する。検出システムは,異なるモード数が多重化された他のMDM信号に対して柔軟にアップグレードすることができる。マトリックスサイズが十分に大きい場合には,3,5またはそれより高次のMDM信号を検出可能である。
 さらに,検出スキームは,モード分割損失を被らない。モード損失にかかわらず,固有損失は理想的に3dBであり,シングルチャンネル位相ダイバーシティコヒーレント受信機およびコヒーレント整合検出器と同等である。光損失を比例的に増加させる従来の位相板ベースの光モードスプリッタモーダル数に変換する(図8の理論的損失は6dBであるが,ハーフミラーのもう一方の出力ポートを使用してバランス型検出構成として変更することで,3dBまで改善できる。)。
 ここでは,4x4 PDアレイを用いた3つのモードのMDM信号のモード分離と検出に着目した空間コヒーレント整合検出器を検討する。本概念を証明するために数値解析を行った。図11は,検討した4×4位相パターンを示す。図11(a)は,位相マスクのパターン例を示す。図11(b)は,重み係数の組み合わせ例を示す。この位相マスクは,図の点線の枠で囲まれた4組のサブ位相マスクで構成されている。各サブ位相マスクは,それぞれ0,π/2,π,3π/2の位相シフトを与える4つの領域を有する。[0,π]位相シフトに対応する一対のPD素子は,受信信号の同相成分のバランスト検出として機能する。直角位相成分は,対となる[π/2,3π/2]PDを用いて検出される。PDアレイからのすべての光電流を合計するとき,重み係数の組み合わせを変更するだけでモード分離が達成される。LP01モードは,以下の重み係数行列を用いてすべての光電流を合計すると検出される。
A=[aij]=[1 0 0 1; 0 -1 -1 0; 0 -1 -1 0;1 0 0 1](I成分の場合)。
[0 -1 1 0; 1 0 0 -1; -1 0 0 1; 0 1 -1 0](Q成分の場合)。
 また,LP11aモードとLP11bモードを検出するには,それぞれ
[1 0 0 -1; 0 -1 1 0; 0 -1 1 0; 1 0 0 -1] (LP11a-I),
[0 -1 -1 0; 1 0 0 1; -1 0 0 -1; 0 1 1 0] (LP11a-Q),および
[1 0 0 1; 0 -1 -1 0; 0 1 1 0; -1 0 0 -1] (LP11b-I),
[0 -1 1 0; 1 0 0 -1; 1 0 0 -1; 0 -1 1 0] (LP11b-Q)となる。
 図12は,モード毎の20-Gb/s QPSK信号,例えば3×20-Gb/sMDM QPSK信号の受信に焦点を当てて,DSPで復元された配置を計算したものを示す。計算では,0.1 nmでのOSNRは20 dBと仮定される。マルチ入力マルチ出力(MIMO)イコライザを適用して信号を分離し,モードのチャネル間のクロストークを抑圧する。図12(a)から(c)は,すべてのチャネルが多重化され,空間コヒーレント整合検出器で受信されたときに得られるLP01,LP11aおよびLP11bモードに対応するモードのチャネルの配置を示している。なお,簡単に説明するため,空間コヒーレント整合検出器では,すべてのモードが保持されると仮定する。したがって,すべてのチャネルがクロストークなしに別々に復元されていることが分かる。これは,このシステムがMDM信号のすべてのモードのチャネルを直交で逆多重化できることを意味する。また,PDアレイの角度(および位相マスクも同様)をMDMモードに対して0.1π[rad]傾斜させたときに得られた配置を計算した。この配置は図12(d)から(f)に示されている。この状況では,サブセットPDにおける光検出の均衡が不完全になる。従って,不均衡な成分は,MIMOで完全に補償することはできない。我々は,MIMO処理を変更する,および/またはPDアレイ(より大きい行列スケールを有する)の空間分解能を向上させることができると考えている。
 結論として,我々は,高速PDアレイに基づく2次元空間コヒーレント整合検出方器を提案し,検討した。3×20 Gb/sMDM QPSK信号を検出する4×4行列による配置の数値解析を通して,MDM信号は光電気的に分波し,コヒーレントに受信することができることが分かる。従来のMDMデマルチプレクサーとは異なり,空間フィルタリングも光スプリッティングも受信信号には適用されず,理想的には,単一チャネルコヒーレント受信機に匹敵する3dBの損失を低減するのに有益である。
 図13は,フォトディテクターの大きさ(pn接合面積)に対する3dB周波数帯域の計算見積もりを示す図面に替るグラフである。図13からフォトディテクターの大きさを100μm×100μm以下とすることで帯域約1GHz以上が得られることがわかる。
 図14は,クロストーク量および挿入損失の算出例を示す図面に替るグラフである。図14に示されるように,1ピクセルのピクセルサイズ100μm×100μm,配線幅4μm,スペース14μm,ピクセル間隔64μm時,周波数30GHz以下においてRFクロストーク20dB以下が得られる。同様に1ピクセルのピクセルサイズ20μm×20μm,配線幅4μm,スペース14μm,ピクセル間隔44μm時,周波数30GHz以下においてRFクロストーク20dB以下が得られる。
 本発明は,光情報通信の分野で利用されうる。
 3 局所光源
 5 変調領域(変調器)
 7 変調部
 9 検出領域(フォトディテクター,フォトダイオード)
 11 検出部
 12 配線
 17 レンズ
 19 レンズ
 21 合波部(ハーフミラー)
 23 ADC
 25 デジタル信号プロセッサ(DSP)
 27 重み係数付与部
 
 
 

Claims (5)

  1.  複数のフォトディテクター(9)が2次元アレイ状に配置され,前記複数のフォトディテクターの間に幅が4μm以下の配線(12)を有する,2次元フォトディテクターアレーを有し,
     それぞれのフォトディテクターの受光領域は,1辺が100μm以下であり,
     前記2次元アレイ状に配置された複数のフォトディテクターは,それぞれ20μm以上離れて配置される,
     光検出器。
  2.  請求項1に記載の光検出器であって,
     前記複数のフォトディテクターは,メサ構造を有する,光検出器。
  3.  請求項1に記載の光検出器であって,
     前記フォトディテクターアレーは,マルチコアファイバ内のシングルモードファイバー群から放射される複数の光を受信するものであり,前記複数の光のそれぞれに,前記複数のフォトディテクターのいずれかが対応する,光検出器。
  4.  請求項1に記載の光検出器であって,さらにデジタル信号プロセッサ(25)を有し,
     前記デジタル信号プロセッサ(25)は, 
    前記複数のフォトディテクターに含まれるそれぞれのフォトディテクターに対応した重み係数付与部(27)を有し,
     前記複数のフォトディテクターのそれぞれから信号を受け取り,重み係数付与部(27)が付与するそれぞれの重み係数を調整できる,光検出器。
  5.  請求項1に記載の光検出器を含む受信装置であって
     さらに,受信光と合波される局所光発生源(3)と,
     前記局所光発生源(3)から発生した局所光が前記受信光と合波される前に,前記局所光の複数の部分に異なった複数の変調を与えるための複数の変調領域(5)を有する変調部(7)とを有し,
     前記光検出器は,
     前記変調部(7)で複数の変調を与えられた局所光と,前記受信光とが合波された光を,前記局所光の複数の部分ごとに検出する複数の検出領域(9)を有する検出部(11)として機能する,
     受信装置。
PCT/JP2018/008725 2017-03-17 2018-03-07 高速フォトディテクターアレー WO2018168597A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,766 US10911153B2 (en) 2017-03-17 2018-03-07 High-speed photodetector array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-053741 2017-03-17
JP2017053741A JP6884948B2 (ja) 2017-03-17 2017-03-17 高速フォトディテクターアレー

Publications (1)

Publication Number Publication Date
WO2018168597A1 true WO2018168597A1 (ja) 2018-09-20

Family

ID=63523756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008725 WO2018168597A1 (ja) 2017-03-17 2018-03-07 高速フォトディテクターアレー

Country Status (3)

Country Link
US (1) US10911153B2 (ja)
JP (1) JP6884948B2 (ja)
WO (1) WO2018168597A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884948B2 (ja) * 2017-03-17 2021-06-09 国立研究開発法人情報通信研究機構 高速フォトディテクターアレー
KR102711604B1 (ko) 2019-11-04 2024-09-30 엘지전자 주식회사 무선 광 통신 시스템에서 신호를 수신하는 방법 및 이를 위한 수신 단말
CN115172487A (zh) * 2022-09-08 2022-10-11 深圳技术大学 一种二维光电探测器、光追踪装置和光通信系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240825A (ja) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> 光受信器
JPH10112554A (ja) * 1996-08-15 1998-04-28 Hamamatsu Photonics Kk 半導体光スイッチ集積素子
JP2001352094A (ja) * 2000-04-06 2001-12-21 Hamamatsu Photonics Kk ホトダイオードアレイ
JP2005251890A (ja) * 2004-03-03 2005-09-15 Sumitomo Electric Ind Ltd 上面入射型受光素子アレイ
JP2012099580A (ja) * 2010-10-29 2012-05-24 Hamamatsu Photonics Kk フォトダイオードアレイ
JP2012533915A (ja) * 2009-06-26 2012-12-27 アルカテル−ルーセント 光横モード多重化信号のための受信機
JP2013038216A (ja) * 2011-08-08 2013-02-21 Mitsubishi Electric Corp 光受信モジュール

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562623B2 (ja) * 1987-10-28 1996-12-11 国際電信電話株式会社 ベースバンド合成法による偏波ダイバーシティ光受信方式
US5299047A (en) * 1992-04-02 1994-03-29 At&T Bell Laboratories Ternary data communication using multiple polarizations
US5388088A (en) * 1992-04-02 1995-02-07 At&T Corp. Multiple polarization sensitive detection arrangement for fiber optic communications
US5892605A (en) * 1997-03-31 1999-04-06 Lockheed Martin Corporation Optical crossbar using guided spatial division multiplexing
US6434308B1 (en) * 1999-09-03 2002-08-13 Teraconnect, Inc Optoelectronic connector system
US6920290B2 (en) * 2001-07-11 2005-07-19 Lockheed Martin Corporation Multi-wavelength high bandwidth communication receiver and system
US20070041729A1 (en) * 2002-10-23 2007-02-22 Philip Heinz Systems and methods for detecting changes in incident optical radiation at high frequencies
US20050041980A1 (en) * 2003-08-18 2005-02-24 Fuji Xerox Co., Ltd. Wireless optical system
JP2005167090A (ja) * 2003-12-04 2005-06-23 Hamamatsu Photonics Kk 半導体受光素子及びその製造方法
US7230227B2 (en) * 2004-10-08 2007-06-12 The Boeing Company Lenslet/detector array assembly for high data rate optical communications
JP4841834B2 (ja) * 2004-12-24 2011-12-21 浜松ホトニクス株式会社 ホトダイオードアレイ
WO2008114314A1 (ja) * 2007-03-16 2008-09-25 Fujitsu Microelectronics Limited 光受信装置、および受信方法
US8204378B1 (en) * 2008-03-27 2012-06-19 Tektronix, Inc. Coherent optical signal processing
US9374158B2 (en) * 2008-09-26 2016-06-21 University Of Central Florida Research Foundation, Inc. Electronic wavefront correction for free-space optical communications
US8417124B2 (en) * 2008-11-05 2013-04-09 Broadcom Corporation Multiple input, multiple output (MIMO) communication via multimode media
US8229304B1 (en) * 2009-04-30 2012-07-24 Hrl Laboratories, Llc Phase control of a fiber optic bundle
JP2010278045A (ja) * 2009-05-26 2010-12-09 Panasonic Corp 光半導体装置
US8355638B2 (en) * 2009-06-26 2013-01-15 Alcatel Lucent Receiver for optical transverse-mode-multiplexed signals
US8908809B2 (en) * 2010-12-15 2014-12-09 At&T Intellectual Property I, L.P. Complexity reduced feed forward carrier recovery methods for M-QAM modulation formats
JP5832852B2 (ja) * 2011-10-21 2015-12-16 浜松ホトニクス株式会社 光検出装置
JP5984617B2 (ja) * 2012-10-18 2016-09-06 浜松ホトニクス株式会社 フォトダイオードアレイ
US20140193165A1 (en) * 2013-01-08 2014-07-10 Silicon Image, Inc. Electronic alignment of optical signals
US10411812B1 (en) * 2013-03-15 2019-09-10 Forrest Rose Optical interconnect computing module tolerant to changes in position and orientation
US9377593B2 (en) * 2013-11-19 2016-06-28 Lumentum Operations Llc System and method of estimating beam mode content for waveguide alignment
US9696212B2 (en) * 2014-07-30 2017-07-04 Bae Systems Information And Electronic Systems Integration Inc. High efficiency coherent imager
JP6884948B2 (ja) * 2017-03-17 2021-06-09 国立研究開発法人情報通信研究機構 高速フォトディテクターアレー

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240825A (ja) * 1995-03-06 1996-09-17 Nippon Telegr & Teleph Corp <Ntt> 光受信器
JPH10112554A (ja) * 1996-08-15 1998-04-28 Hamamatsu Photonics Kk 半導体光スイッチ集積素子
JP2001352094A (ja) * 2000-04-06 2001-12-21 Hamamatsu Photonics Kk ホトダイオードアレイ
JP2005251890A (ja) * 2004-03-03 2005-09-15 Sumitomo Electric Ind Ltd 上面入射型受光素子アレイ
JP2012533915A (ja) * 2009-06-26 2012-12-27 アルカテル−ルーセント 光横モード多重化信号のための受信機
JP2012099580A (ja) * 2010-10-29 2012-05-24 Hamamatsu Photonics Kk フォトダイオードアレイ
JP2013038216A (ja) * 2011-08-08 2013-02-21 Mitsubishi Electric Corp 光受信モジュール

Also Published As

Publication number Publication date
JP6884948B2 (ja) 2021-06-09
US10911153B2 (en) 2021-02-02
JP2018157117A (ja) 2018-10-04
US20200044745A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP7140784B2 (ja) モジュラー三次元光学検知システム
US9564968B2 (en) Multiple-input method and apparatus of free-space optical communication
KR102355831B1 (ko) 자가-테스트 기능성을 가진 수직 입사 광검출기
Tsokos et al. True time delay optical beamforming network based on hybrid InP-silicon nitride integration
WO2018168597A1 (ja) 高速フォトディテクターアレー
TW484269B (en) Method for obtaining a light wavelength monitor and device for forming a light wavelength monitor
WO2018168598A1 (ja) 空間整合受信
US11658742B2 (en) System for multi-channel, diverged-beam optical wireless communication
CN112099048A (zh) 基于时分-差频复用的微波光子mimo雷达探测方法及系统
JP2002111123A (ja) 出力監視制御装置および光通信システム
CN104283616B (zh) 基于光真延时的对射频信号整形的系统和方法
Cheng et al. An integrated optical beamforming network for two-dimensional phased array radar
CN113614569A (zh) 具有降低的散斑灵敏度的lidar系统
Zhang et al. Integrated wavelength-tuned optical mm-wave beamformer with doubled delay resolution
US6701042B1 (en) Arrayed waveguide grating module and device and method for monitoring optical signal using the same
Zhang et al. Two-dimensional phased-array receiver based on integrated silicon true time delay lines
US8610625B2 (en) Method and apparatus for transmitting and receiving phase-controlled radiofrequency signals
Umezawa et al. Application of Resonant-Cavity 4x4 Arrayed Photodetector for SDM-WDM-FSO Beam Detection
Khani et al. Fully-Packaged 71-76 GHz Coherent Photonic Mixer featuring WR-12 Output for CRoF Backhauling
KR20020037050A (ko) 수광 소자 및 수광 소자를 사용한 광 검출기
Rouvalis et al. A high-power and high-linearity 50 GHz waveguide photodiode module
KR102329109B1 (ko) 무선 광통신 방향 분할 역다중화가 가능한 포토닉 위상배열 기반 수신기
Jiao et al. III–V photonic integrated circuits for beyond-telecom applications
JP2003087040A (ja) 光制御アレイアンテナ
Umezawa et al. 100-Gbps 2-SDM 2-WDM FSO beam direct detection using resonant cavity 4x4 photodetector array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768418

Country of ref document: EP

Kind code of ref document: A1