WO2018168252A1 - Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production d'un dispositif électronique - Google Patents

Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production d'un dispositif électronique Download PDF

Info

Publication number
WO2018168252A1
WO2018168252A1 PCT/JP2018/003737 JP2018003737W WO2018168252A1 WO 2018168252 A1 WO2018168252 A1 WO 2018168252A1 JP 2018003737 W JP2018003737 W JP 2018003737W WO 2018168252 A1 WO2018168252 A1 WO 2018168252A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
sensitive
radiation
acid
Prior art date
Application number
PCT/JP2018/003737
Other languages
English (en)
Japanese (ja)
Inventor
雅史 小島
研由 後藤
大輔 浅川
享平 崎田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019505763A priority Critical patent/JP7015295B2/ja
Publication of WO2018168252A1 publication Critical patent/WO2018168252A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/17Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing carboxyl groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00

Definitions

  • the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition, a resist film, a pattern forming method, and an electronic device manufacturing method.
  • Patent Document 1 discloses a radiation-sensitive composition containing a monosulfonic acid type acid generator that is cleaved upon irradiation with radiation.
  • the acid generated by the cleavage of the acid generator has a function of causing a deprotection reaction of the resin component in the composition or causing a crosslinking reaction of the resin component.
  • this invention makes it a subject to provide the actinic-ray-sensitive or radiation-sensitive resin composition with small fluctuation (LWR) of a pattern line width when a pattern is formed.
  • Another object of the present invention is to provide a resist film, a pattern forming method, and an electronic device manufacturing method using the actinic ray-sensitive or radiation-sensitive resin composition.
  • the present inventors have found that the above problems can be solved by including an acid generator having a specific structure in the actinic ray-sensitive or radiation-sensitive resin composition,
  • the present invention has been completed. That is, it has been found that the above object can be achieved by the following configuration.
  • An actinic ray-sensitive or radiation-sensitive resin composition containing a compound that generates an acid represented by the general formula (I) described later upon irradiation with actinic rays or radiation.
  • an actinic ray-sensitive or radiation-sensitive resin composition having a small fluctuation (LWR) in pattern line width when a pattern is formed.
  • the resist film using the said actinic-ray-sensitive or radiation-sensitive resin composition, the pattern formation method, and the manufacturing method of an electronic device can be provided.
  • actinic ray-sensitive or radiation-sensitive resin composition resist film, pattern forming method, and electronic device manufacturing method of the present invention will be described in detail.
  • active light or “radiation” refers to, for example, an emission line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light (EUV light: Extreme Ultraviolet), X-ray, and electron beam (EB). : Electron Beam) or the like.
  • light means actinic rays or radiation.
  • exposure in the present specification includes not only exposure with an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), and X-rays, but also electron beams, And drawing with particle beams such as ion beams.
  • EUV light extreme ultraviolet rays
  • X-rays electron beams
  • to is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • (meth) acrylate represents acrylate and methacrylate.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (also referred to as molecular weight distribution) (Mw / Mn) of a resin are GPC (Gel Permeation Chromatography) apparatus (HLC-8120GPC manufactured by Tosoh Corporation) GPC measurement (solvent: tetrahydrofuran, flow rate (sample injection amount): 10 ⁇ L, column: TSK gel Multipore HXL-M manufactured by Tosoh Corporation, column temperature: 40 ° C., flow rate: 1.0 mL / min, detector: differential refractive index It is defined as a polystyrene-converted value by a detector (Refractive Index Detector).
  • the notation that does not indicate substitution or unsubstituted includes a group having a substituent together with a group not having a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the “organic group” refers to a group containing at least one carbon atom.
  • the type of substituent, the position of the substituent, and the number of substituents when “may have a substituent” are not particularly limited.
  • the number of substituents may be, for example, 1, 2, 3, or more.
  • the substituent include a monovalent nonmetallic atomic group excluding a hydrogen atom.
  • the substituent can be selected from the following substituent group T.
  • substituent T examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkoxy groups such as methoxy group, ethoxy group and tert-butoxy group; aryloxy groups such as phenoxy group and p-tolyloxy group; Alkoxycarbonyl groups such as methoxycarbonyl group, butoxycarbonyl group and phenoxycarbonyl group; acyloxy groups such as acetoxy group, propionyloxy group and benzoyloxy group; acetyl group, benzoyl group, isobutyryl group, acryloyl group, methacryloyl group and methoxalyl group An alkyl sulfanyl group such as a methylsulfanyl group and a tert-butylsulfanyl group; an arylsulfanyl group such as a phenylsulf
  • the actinic ray-sensitive or radiation-sensitive resin composition of the present invention (hereinafter also referred to as “the composition of the present invention”) is an acid represented by the general formula (I) described later by irradiation with actinic rays or radiation. Contains generated compounds (hereinafter also simply referred to as “specific compounds”). A feature of a compound that generates an acid represented by the general formula (I) described later is that the acid strength of the generated acid (that is, an acid represented by the general formula (I)) is strong.
  • the acid represented by the general formula (I) has a specific electron-withdrawing group X 1 and / or X 2 on the carbon atom substituted by the sulfonate ion. Due to this structural factor, the acid represented by the general formula (I) has a high acid strength. As a result of this, the actinic ray-sensitive or radiation-sensitive resin composition containing the specific compound suppresses unevenness of deprotection during the deprotection reaction of the acid-decomposable resin caused by exposure, and has a pattern formed. It is estimated that LWR is excellent.
  • the acid represented by the general formula (I) is an acid by molecular design using a strong electron-withdrawing group (X 1 and / or X 2 ) instead of a fluorine atom. It is in the point of achieving improvement in strength. That is, the acid represented by the general formula (I) does not necessarily contain a fluorine atom.
  • the actinic ray-sensitive or radiation-sensitive resin composition containing the specific compound has an advantage that the load on the environment is small.
  • the composition of the present invention is a so-called resist composition, and may be a positive resist composition or a negative resist composition. Further, it may be a resist composition for alkali development or a resist composition for organic solvent development.
  • the composition of the present invention is typically a chemically amplified resist composition.
  • the composition of this invention contains the compound which generate
  • the specific compound may be in the form of a low molecular compound or may be in the form of a polymer.
  • the molecular weight is preferably 3000 or less, more preferably 2000 or less, and even more preferably 1000 or less.
  • the structure is not particularly limited, and examples thereof include a structure incorporated in a part of ⁇ resin (A)> described later.
  • R 1 represents a hydrogen atom or an organic group.
  • R 2 represents an organic group.
  • X 1 represents a cyano group or a nitro group.
  • X 2 is a divalent group selected from —CO—O—, —CO—, —CO—S—, —CO—NR—, —SO 2 —, —SO 3 —, —O—, and —S—.
  • R represents a hydrogen atom or a hydrocarbon group.
  • l represents 0 or 1;
  • X ⁇ 1 >, R ⁇ 2 > and X ⁇ 2 > exist, they may be same or different, respectively.
  • the organic group represented by R 1 is not particularly limited, and examples thereof include a hydrocarbon group.
  • the hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic, and examples thereof include an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • the aromatic hydrocarbon group include an aromatic hydrocarbon group having 6 to 20 carbon atoms, and specifically include a phenyl group. These groups may have a substituent. As a substituent, it can select from the substituent group T mentioned above, for example
  • the R 1 from the viewpoint of excellent by LWR performance, a hydrogen atom is preferable.
  • the organic group represented by R 2 is not particularly limited, and examples thereof include a hydrocarbon group.
  • the hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • R 2 is preferably an aliphatic hydrocarbon group from the viewpoint of excellent LWR performance, and more preferably an aliphatic hydrocarbon group containing an alicyclic structure (for example, a cyclic alkyl group having 1 to 20 carbon atoms). preferable.
  • the aliphatic hydrocarbon group may be linear, branched or cyclic, and examples thereof include an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • aliphatic hydrocarbon group having 1 to 20 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, Dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, norbornyl group, adamantyl group, and the following general And a group represented by the formula (IA).
  • L 1 represents a linear alkylene group having 1 to 5 carbon atoms
  • L 2 represents a cyclic alkyl group having 3 to 12 carbon atoms
  • * represents a bonding position.
  • L 1 is preferably a linear alkylene group having 1 to 3 carbon atoms, and more preferably a methylene group.
  • L 2 is preferably a cyclic alkyl group having 6 to 12 carbon atoms, and more preferably a cyclic alkyl group having 8 to 10 carbon atoms (for example, an adamantyl group).
  • examples of the aromatic hydrocarbon group include an aromatic hydrocarbon group having 6 to 20 carbon atoms, and specific examples include a phenyl group.
  • the aliphatic hydrocarbon group and the aromatic hydrocarbon group may have a substituent.
  • a substituent it can select from the substituent group T mentioned above, for example.
  • X 1 represents a cyano group or a nitro group, and among them, a cyano group is preferable in that it is more excellent in LWR performance.
  • X 2 represents —CO—O—, —CO—, —CO—S—, —CO—NR—, —SO 2 —, —SO 3 —, —O—, and — Represents a divalent linking group selected from S-.
  • the bonding direction of the divalent linking group (for example, —CO—O—) represented in this specification is not particularly limited.
  • X 2 in the above general formula (I) is —CO—O—.
  • X 2 may be * 1-CO—O— * 2, where * 1 is the position bonded to the carbon atom side, and * 2 is the position bonded to the R 2 side. * 1-O-CO- * 2 may also be used.
  • X 2 is preferably —CO—O— or —CO— from the viewpoint of superior LWR performance.
  • R represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group for example, an alkyl group having 1 to 10 carbon atoms is preferable, an alkyl group having 1 to 6 carbon atoms is more preferable, and an alkyl group having 1 to 3 carbon atoms is still more preferable.
  • l represents 0 or 1, and 1 is preferable in that it is more excellent in LWR performance.
  • m and n each independently represents an integer of 0 to 2. As m, 1 or 2 is preferable and 2 is more preferable in that it is more excellent in LWR performance.
  • n is preferably 0 or 1 and more preferably 0 in terms of better LWR performance.
  • the acid represented by the above general formula (I) is preferably an acid represented by the general formula (II) from the viewpoint of superior LWR performance.
  • R 1, R 2, X 1, and X 2, R 1, R 2, X 1 in the general formula (I), and X 2 in the above formula also preferred embodiment The same.
  • X ⁇ 1 >, R ⁇ 2 > and X ⁇ 2 > may be same or different, respectively.
  • n is preferably 0 or 1 and more preferably 0 in terms of better LWR performance.
  • the acid represented by the general formula (I) is preferably an acid represented by the general formula (III) from the viewpoint of superior LWR performance.
  • R 1, R 2, and X 2 is R 1, R 2 in the general formula (I), and the X 2 synonymous.
  • multiple R 2 s and multiple X 2 s may be the same or different.
  • at least one of a plurality of R 2 is preferably an aliphatic hydrocarbon group containing an alicyclic structure, a cyclic alkyl group having 1 to 20 carbon atoms, or the above-mentioned A group represented by the general formula (IA) is more preferable.
  • the compound that generates the acid represented by formula (I) by irradiation with actinic rays or radiation is not particularly limited, and the compound has an ionic structure such as an onium salt such as a sulfonium salt and an iodonium salt, or Compounds having nonionic compound structures such as oxime esters and imide esters are preferred.
  • an onium salt such as a sulfonium salt and an iodonium salt
  • Compounds having nonionic compound structures such as oxime esters and imide esters are preferred.
  • the onium salt a sulfonium salt is more preferable.
  • R 1 , R 2 , X 1 , X 2 , 1, m, and n are R 1 , R 2 , X 1 , X 2 , and R in the general formula (I), respectively. It is synonymous with l, m, and n, and M + represents a monovalent cation.
  • examples of the monovalent cation represented by M + include cations represented by the following formulas (ZI) and (ZII).
  • R 201 , R 202 and R 203 each independently represents an organic group.
  • the organic group as R 201 , R 202 and R 203 generally has 1 to 30 carbon atoms, and preferably 1 to 20 carbon atoms.
  • Two of R 201 to R 203 may be bonded to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester bond, an amide bond, or a carbonyl group.
  • Examples of the group formed by combining two members out of R 201 to R 203 include an alkylene group (eg, butylene group, pentylene group) and —CH 2 —CH 2 —O—CH 2 —CH 2 —.
  • the specific compound may be a compound having a plurality of structures represented by the general formula (ZI).
  • at least one of R 201 to R 203 of the compound represented by the general formula (ZI) is a single bond or at least one of R 201 to R 203 of another compound represented by the general formula (ZI) It may be a compound having a structure bonded through a linking group.
  • Examples of the organic group for R 201 , R 202 and R 203 include an aryl group (preferably having 6 to 15 carbon atoms), a linear or branched alkyl group (preferably having 1 to 10 carbon atoms), and a cycloalkyl group. (Preferably having 3 to 15 carbon atoms).
  • R 201 , R 202 and R 203 at least one is preferably an aryl group, more preferably all three are aryl groups.
  • Examples of the aryl group include a heteroaryl group such as an indole residue and a pyrrole residue in addition to a phenyl group and a naphthyl group.
  • These aryl groups, alkyl groups, and cycloalkyl groups as R 201 , R 202, and R 203 may further have a substituent.
  • substituents include nitro groups, halogen atoms such as fluorine atoms, carboxy groups, hydroxyl groups, amino groups, cyano groups, alkoxy groups (preferably having 1 to 15 carbon atoms), cycloalkyl groups (preferably having 3 to 15 carbon atoms). ), An aryl group (preferably 6 to 14 carbon atoms), an alkoxycarbonyl group (preferably 2 to 7 carbon atoms), an acyl group (preferably 2 to 12 carbon atoms), and an alkoxycarbonyloxy group (preferably 2 carbon atoms). To 7), but is not limited thereto.
  • R 201 , R 202 and R 203 may be bonded via a single bond or a linking group.
  • the linking group include, but are not limited to, an alkylene group (preferably having 1 to 3 carbon atoms), —O—, —S—, —CO—, —SO 2 — and the like.
  • Preferred structures when at least one of R 201 , R 202 and R 203 is not an aryl group include paragraphs 0046 to 0047 of JP-A-2004-233661, paragraphs 0040 to 0046 of JP-A-2003-35948, US Compounds exemplified as general formulas (I-1) to (I-70) in Japanese Patent Application Publication No.
  • Preferred examples of the cation represented by the general formula (ZI) include cations represented by the general formula (ZI-3) or (ZI-4) described below. First, the cation represented by the general formula (ZI-3) will be described.
  • R 1 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or an alkenyl group
  • R 2 and R 3 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and R 2 and R 3 may be linked to each other to form a ring
  • R 1 and R 2 may combine with each other to form a ring
  • R x and R y each independently represents an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, a 2-oxoalkyl group, a 2-oxocycloalkyl group, an alkoxycarbonylalkyl group, or an alkoxycarbonylcycloalkyl group.
  • R x and R y may be connected to each other to form a ring, and this ring structure includes an oxygen atom, a nitrogen atom, a sulfur atom, a ketone group, an ether bond, an ester bond, or an amide bond. Also good.
  • the alkyl group as R 1 is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, and may have an oxygen atom, a sulfur atom, or a nitrogen atom in the alkyl chain. Specifically, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-dodecyl group, n-tetradecyl group, and n-octadecyl group And a straight-chain alkyl group such as a group, and a branched alkyl group such as an isopropyl group, an isobutyl group, a t-butyl group, a neopentyl group, and a 2-ethylhexyl group.
  • the alkyl group of R 1 may have a substituent.
  • Examples of the alkyl group having a substituent include a cyanomethyl group, a 2,2,2-trifluoroethyl group, a methoxycarbonylmethyl group, and an ethoxycarbonylmethyl group. Is mentioned.
  • the cycloalkyl group as R 1 is preferably a cycloalkyl group having 3 to 20 carbon atoms, and may have an oxygen atom or a sulfur atom in the ring. Specific examples include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group.
  • the cycloalkyl group represented by R 1 may have a substituent, and examples of the substituent include an alkyl group and an alkoxy group.
  • the alkoxy group as R 1 is preferably an alkoxy group having 1 to 20 carbon atoms. Specific examples include a methoxy group, an ethoxy group, an isopropyloxy group, a t-butyloxy group, a t-amyloxy group, and an n-butyloxy group.
  • the alkoxy group of R 1 may have a substituent, and examples of the substituent include an alkyl group and a cycloalkyl group.
  • the cycloalkoxy group as R 1 is preferably a cycloalkoxy group having 3 to 20 carbon atoms, and examples thereof include a cyclohexyloxy group, a norbornyloxy group, and an adamantyloxy group.
  • the cycloalkoxy group of R 1 may have a substituent, and examples of the substituent include an alkyl group and a cycloalkyl group.
  • the aryl group as R 1 is preferably an aryl group having 6 to 14 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and a biphenyl group.
  • the aryl group of R 1 may have a substituent, and preferred substituents include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an alkylthio group, and an arylthio group.
  • the substituent is an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, the same groups as the alkyl group, cycloalkyl group, alkoxy group and cycloalkoxy group as R 1 described above can be used.
  • Examples of the alkenyl group as R 1 include a vinyl group and an allyl group.
  • R 2 and R 3 represent a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and R 2 and R 3 may be connected to each other to form a ring.
  • R 2 and R 3 represents an alkyl group, a cycloalkyl group, and an aryl group.
  • Specific examples and preferred examples of the alkyl group, cycloalkyl group and aryl group represented by R 2 and R 3 include the same as the specific examples and preferred examples described above for R 1 .
  • the total number of carbon atoms that contribute to the formation of the ring contained in R 2 and R 3 is preferably 4 to 7, and is preferably 4 or 5 It is more preferable that
  • R 1 and R 2 may be connected to each other to form a ring.
  • R 1 is an aryl group (preferably a phenyl group or a naphthyl group which may have a substituent), and R 2 has 1 to 4 carbon atoms.
  • An alkylene group preferably a methylene group or an ethylene group
  • examples of the preferable substituent include the same substituents that the aryl group as R 1 may have.
  • R 1 and R 2 are connected to each other to form a ring, it is also preferable that R 1 is a vinyl group and R 2 is an alkylene group having 1 to 4 carbon atoms.
  • the alkyl group represented by R x and R y is preferably an alkyl group having 1 to 15 carbon atoms, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec- Butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl And an eicosyl group.
  • the cycloalkyl group represented by R x and R y is preferably a cycloalkyl group having 3 to 20 carbon atoms, and examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, and an adamantyl group. .
  • the alkenyl group represented by R x and R y is preferably an alkenyl group having 2 to 30 carbon atoms, and examples thereof include a vinyl group, an allyl group, and a styryl group.
  • an aryl group represented by R x and R y for example, an aryl group having 6 to 20 carbon atoms is preferable.
  • a phenyl group, a naphthyl group, an azulenyl group, an acenaphthylenyl group, a phenanthrenyl group, a penalenyl group, a phenalenyl group examples thereof include a nantracenyl group, a fluorenyl group, an anthracenyl group, a pyrenyl group, and a benzopyrenyl group.
  • a phenyl group or a naphthyl group is more preferable, and a phenyl group is still more preferable.
  • alkyl group moiety of the 2-oxoalkyl group and alkoxycarbonylalkyl group represented by R x and R y for example, those previously listed as R x and R y.
  • the cation represented by the general formula (ZI-3) is preferably a cation represented by the following general formulas (ZI-3a) and (ZI-3b).
  • R 1 , R 2 and R 3 are as defined in the general formula (ZI-3).
  • Y represents an oxygen atom, a sulfur atom or a nitrogen atom, preferably an oxygen atom or a nitrogen atom.
  • m, n, p and q represent integers, preferably 0 to 3, more preferably 1 to 2, and still more preferably 1.
  • the alkylene group connecting S + and Y may have a substituent, and preferred examples of the substituent include an alkyl group.
  • R 5 represents a monovalent organic group when Y is a nitrogen atom, and is absent when Y is an oxygen atom or a sulfur atom.
  • R 5 is preferably a group containing an electron withdrawing group, and particularly preferably a group represented by the following general formulas (ZI-3a-1) to (ZI-3a-4).
  • R represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, preferably an alkyl group.
  • Specific examples and preferred examples of the alkyl group, cycloalkyl group or aryl group for R include the same as the specific examples and preferred examples described above for R 1 in formula (ZI-3).
  • * represents a bond connected to a nitrogen atom as Y in the compound represented by the general formula (ZI-3a).
  • R 5 is preferably a group represented by —SO 2 —R 4 .
  • R 4 represents an alkyl group, a cycloalkyl group or an aryl group, and an alkyl group is preferred. Specific examples and preferred examples of the alkyl group, cycloalkyl group or aryl group for R 4 include the same as the specific examples and preferred examples described above for R 1 .
  • the cation represented by the general formula (ZI-3) is particularly preferably a cation represented by the following general formulas (ZI-3a ′) and (ZI-3b ′).
  • R 1 , R 2 , R 3 , Y and R 5 are as defined in the general formulas (ZI-3a) and (ZI-3b). It is.
  • R 13 represents a group having a hydrogen atom, a fluorine atom, a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, or a cycloalkyl group. These groups may have a substituent.
  • R 14 s each independently represents a group having a hydroxyl group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl group.
  • R 15 each independently represents an alkyl group, a cycloalkyl group or an aryl group.
  • Two R 15 may be bonded to each other to form a ring, and the atoms constituting the ring may include heteroatoms such as an oxygen atom, a sulfur atom and a nitrogen atom. These groups may have a substituent.
  • l represents an integer of 0-2.
  • r represents an integer of 0 to 8.
  • the alkyl groups represented by R 13 , R 14 and R 15 are linear or branched, and preferably have 1 to 10 carbon atoms.
  • Examples of the cycloalkyl group represented by R 13 , R 14 and R 15 include a monocyclic or polycyclic cycloalkyl group.
  • the alkoxy group for R 13 and R 14 is linear or branched and preferably has 1 to 10 carbon atoms.
  • the alkoxycarbonyl group for R 13 and R 14 is linear or branched and preferably has 2 to 11 carbon atoms.
  • Examples of the group having a cycloalkyl group of R 13 and R 14 include a group having a monocyclic or polycyclic cycloalkyl group.
  • the alkyl group of the alkyl group of R 14 include the same specific examples and the alkyl group as R 13 ⁇ R 15 described above.
  • the alkylsulfonyl group and cycloalkylsulfonyl group for R 14 may be linear, branched or cyclic, and preferably has 1 to 10 carbon atoms.
  • each of the above groups may have include a halogen atom (for example, a fluorine atom), a hydroxyl group, a carboxy group, a cyano group, a nitro group, an alkoxy group, an alkoxyalkyl group, an alkoxycarbonyl group, and an alkoxycarbonyloxy group.
  • a halogen atom for example, a fluorine atom
  • a hydroxyl group for example, a fluorine atom
  • carboxy group for example, a carboxy group
  • a cyano group for example, a hydroxyl group, a carboxy group, a cyano group, a nitro group, an alkoxy group, an alkoxyalkyl group, an alkoxycarbonyl group, and an alkoxycarbonyloxy group.
  • Examples of the ring structure that two R 15 may be bonded to each other include a 5-membered or 6-membered ring formed by two R 15 together with the sulfur atom in the general formula (ZI-4). More preferably a 5-membered ring (that is, a tetrahydrothiophene ring or a 2,5-dihydrothiophene ring).
  • the ring may be condensed with an aryl group or a cycloalkyl group.
  • These two R 15 may have a substituent.
  • substituents examples include a hydroxyl group, a carboxy group, a cyano group, a nitro group, an alkyl group, a cycloalkyl group, an alkoxy group, an alkoxyalkyl group, an alkoxycarbonyl group. Group, an alkoxycarbonyloxy group, and the like. There may be a plurality of substituents for the ring structure, or they may be bonded to each other to form a ring.
  • R 15 in the general formula (ZI-4) is preferably a methyl group, an ethyl group, an aryl group, or a divalent group in which two R 15s are bonded to each other to form a tetrahydrothiophene ring structure with a sulfur atom.
  • a divalent group in which two R 15 are bonded to each other to form a tetrahydrothiophene ring structure with a sulfur atom is more preferable.
  • R 13 and R 14 may have, a hydroxyl group, an alkoxy group, an alkoxycarbonyl group, or a halogen atom (particularly a fluorine atom) is preferable.
  • l is preferably 0 or 1, and more preferably 1.
  • r is preferably from 0 to 2.
  • cation structure represented by the general formula (ZI-3) or (ZI-4) described above include the above-mentioned JP-A Nos. 2004-233661, 2003-35948, and US patent applications.
  • Cationic structures such as compounds exemplified in Japanese Patent Publication No. 2003 / 0224288A1 and US Patent Application Publication No.
  • R 204 and R 205 each independently represents an aryl group, an alkyl group, or a cycloalkyl group.
  • the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 are the same as the aryl group, alkyl group, and cycloalkyl group of R 201 to R 203 in the aforementioned compound (ZI).
  • the aryl group of R 204 and R 205 preferably a phenyl group or a naphthyl group, a phenyl group is more preferable.
  • the aryl group of R 204 and R 205 may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, or a sulfur atom.
  • Examples of the skeleton of the aryl group having a heterocyclic structure include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
  • the alkyl group and cycloalkyl group represented by R 204 and R 205 are preferably a linear or branched alkyl group having 1 to 10 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, a butyl group, And pentyl group) and cycloalkyl groups having 3 to 10 carbon atoms (cyclopentyl group, cyclohexyl group, and norbornyl group).
  • the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may have a substituent.
  • substituents that the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may have include the aryl group, alkyl group, and cycloalkyl of R 201 to R 203 in the aforementioned compound (ZI).
  • Examples of the group may include, for example, an alkyl group (for example, 1 to 15 carbon atoms), a cycloalkyl group (for example, 3 to 15 carbon atoms), an aryl group (for example, 6 to 15 carbon atoms), an alkoxy group Groups (for example, having 1 to 15 carbon atoms), halogen atoms, hydroxyl groups, and phenylthio groups.
  • an alkyl group for example, 1 to 15 carbon atoms
  • a cycloalkyl group for example, 3 to 15 carbon atoms
  • an aryl group for example, 6 to 15 carbon atoms
  • an alkoxy group Groups for example, having 1 to 15 carbon atoms
  • halogen atoms for example, having 1 to 15 carbon atoms
  • hydroxyl groups halogen atoms
  • phenylthio groups halogen atoms, hydroxyl groups, and phenylthio groups.
  • Preferred examples of the cation represented by the general formula (ZI) include a cation represented by the general formula (7) described below.
  • A represents a sulfur atom.
  • m represents 1 or 2
  • n represents 1 or 2.
  • R represents an aryl group.
  • R N represents an aryl group substituted with a proton acceptor functional group.
  • the proton acceptor functional group is a functional group having electrons or a group capable of electrostatically interacting with protons, for example, a functional group having a macrocyclic structure such as a cyclic polyether, or a ⁇ conjugate. It means a functional group having a nitrogen atom with an unshared electron pair that does not contribute to.
  • the nitrogen atom having an unshared electron pair that does not contribute to ⁇ conjugation is, for example, a nitrogen atom having a partial structure represented by the following formula.
  • Preferred partial structures of the proton acceptor functional group include, for example, a crown ether structure, an azacrown ether structure, a primary to tertiary amine structure, a pyridine structure, an imidazole structure, and a pyrazine structure.
  • the compound (PA) having a proton acceptor functional group is decomposed by irradiation with actinic rays or radiation to generate a compound in which the proton acceptor property is lowered, disappeared, or changed from proton acceptor property to acidity.
  • the decrease or disappearance of the proton acceptor property or the change from the proton acceptor property to the acid is a change in the proton acceptor property caused by the addition of a proton to the proton acceptor functional group.
  • a proton adduct is formed from a compound having a proton acceptor functional group (PA) and a proton
  • the equilibrium constant in the chemical equilibrium is reduced.
  • Proton acceptor property can be confirmed by measuring pH.
  • Specific examples of the cation represented by the general formula (7) are shown. In the following formula, Et represents an ethyl group.
  • R 209 and R 210 each independently represents an alkyl group, a cycloalkyl group, a cyano group, or an aryl group.
  • the aryl group, alkyl group, and cycloalkyl group of R 209 and R 210 are the same as the groups described as the aryl group, alkyl group, and cycloalkyl group of R 201 to R 203 in the aforementioned compound (ZI). is there.
  • the aryl group, alkyl group, and cycloalkyl group of R 209 and R 210 may have a substituent. Examples of the substituent include the same substituents that the aryl group, alkyl group, and cycloalkyl group of R 201 to R 203 in the compound (ZI) may have.
  • a ′ represents an alkylene group, an alkenylene group or an arylene group.
  • the alkylene group as A ′ may have a substituent and preferably has 1 to 8 carbon atoms, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, and an octylene group. Can be mentioned.
  • the alkenylene group as A ′ may have a substituent and preferably has 2 to 6 carbon atoms, and examples thereof include an ethenylene group, a propenylene group, and a butenylene group.
  • the arylene group as A ′ may have a substituent and preferably has 6 to 15 carbon atoms, and examples thereof include a phenylene group, a tolylene group, and a naphthylene group.
  • Examples of the substituent that A ′ may have include those having active hydrogen such as a cycloalkyl group, an aryl group, an amino group, an amide group, a ureido group, a urethane group, a hydroxyl group, and a carboxy group; Atom (fluorine atom, chlorine atom, bromine atom, iodine atom), alkoxy group (methoxy group, ethoxy group, propoxy group, butoxy group, etc.), thioether group, acyl group (acetyl group, propanoyl group, benzoyl group, etc.) ), An acyloxy group (such as an acetoxy group, a propanoyloxy group, and a benzoyloxy group), an alkoxycarbonyl group (such as a methoxycarbonyl group, an ethoxycarbonyl group, and a propoxycarbonyl group), a cyano group, and a nitro group.
  • Rz represents a structure in which H of the acid represented by the general formula (I) is dissociated, and is represented by the following general formula (IY).
  • R 1 , R 2 , X 1 , X 2 , l, m, and n are respectively R 1 , R 2 , X 1 , X 2 , l in the general formula (I) described above. , M, and n. * Represents a bond with a compound residue represented by the general formula (ZV) or (ZVI).
  • the compound which generates an acid represented by the general formula (I) upon irradiation with actinic rays or radiation can be synthesized by a known synthesis method.
  • produces the acid represented by general formula (I) by irradiation of the actinic ray or radiation mentioned above can be used individually by 1 type or in combination of 2 or more types. Moreover, you may use in combination with well-known acid generators other than the compound which generate
  • a known acid generator for example, photocationic polymerization photoinitiator, photoradical polymerization photoinitiator, dye photodecoloring agent, photochromic agent, activity used for microresist, etc.
  • a known compound that generates an acid upon irradiation with light or radiation can be appropriately selected and used.
  • the total content of the acid generator containing the specific compound is preferably 0.1 to 20% by mass, more preferably 0.5 to 20% by mass, based on the total solid content of the composition. 5 to 20% by mass is more preferable.
  • the composition of this invention contains 2 or more types of acid generators, it is preferable that the total content of an acid generator exists in the said range.
  • general formula (I) when using together the compound and the acid generator which generate
  • the composition of the present invention is a resin (hereinafter referred to as “acid-decomposable resin” or “resin (A)”) having a group that is decomposed by the action of an acid to increase polarity (hereinafter also referred to as “acid-decomposable group”). (Also referred to as).
  • acid-decomposable resin typically, when an alkaline developer is employed as the developer, a positive pattern is suitably formed, and when an organic developer is employed as the developer.
  • the negative pattern is preferably formed.
  • Resin (A) preferably has a repeating unit having an acid-decomposable group.
  • the acid-decomposable group preferably has a structure in which a polar group is protected by a group (leaving group) that decomposes and leaves by the action of an acid.
  • polar groups include carboxy group, phenolic hydroxyl group, fluorinated alcohol group, sulfonic acid group, sulfonamide group, sulfonylimide group, (alkylsulfonyl) (alkylcarbonyl) methylene group, (alkylsulfonyl) (alkylcarbonyl) imide group Bis (alkylcarbonyl) methylene group, bis (alkylcarbonyl) imide group, bis (alkylsulfonyl) methylene group, bis (alkylsulfonyl) imide group, tris (alkylcarbonyl) methylene group, tris (alkylsulfonyl) methylene group, etc. Acid groups (groups dissociating in an aqueous
  • the alcoholic hydroxyl group is a hydroxyl group bonded to a hydrocarbon group, and means a hydroxyl group other than a hydroxyl group directly bonded on an aromatic ring (phenolic hydroxyl group). Excludes aliphatic alcohols substituted with a functional group (for example, a hexafluoroisopropanol group).
  • the alcoholic hydroxyl group is preferably a hydroxyl group having a pKa (acid dissociation constant) of 12 or more and 20 or less.
  • Preferred polar groups include carboxy group, phenolic hydroxyl group, fluorinated alcohol group (preferably hexafluoroisopropanol group), and sulfonic acid group.
  • a preferable group as the acid-decomposable group is a group in which the hydrogen atom of these groups is substituted with a group capable of leaving by the action of an acid (leaving group).
  • Examples of the group (leaving group) leaving by the action of an acid include —C (R 36 ) (R 37 ) (R 38 ), —C (R 36 ) (R 37 ) (OR 39 ), and — C (R 01 ) (R 02 ) (OR 39 ) and the like can be mentioned.
  • R 36 to R 39 each independently represents an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • R 36 and R 37 may be bonded to each other to form a ring.
  • R 01 and R 02 each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group or an alkenyl group.
  • the alkyl group of R 36 to R 39 , R 01 and R 02 is preferably an alkyl group having 1 to 8 carbon atoms, for example, methyl group, ethyl group, propyl group, n-butyl group, sec-butyl group, hexyl Group, and octyl group.
  • the cycloalkyl group of R 36 to R 39 , R 01 and R 02 may be monocyclic or polycyclic.
  • the monocyclic cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • a cycloalkyl group having 6 to 20 carbon atoms is preferable.
  • an adamantyl group, a norbornyl group, an isobornyl group, a camphanyl group, a dicyclopentyl group, an ⁇ -pinel group, a tricyclodecanyl group, A tetracyclododecyl group, an androstanyl group, etc. are mentioned.
  • at least one carbon atom in the cycloalkyl group may be substituted with a heteroatom such as an oxygen atom.
  • the aryl group of R 36 to R 39 , R 01 and R 02 is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and an anthryl group.
  • the aralkyl group of R 36 to R 39 , R 01 and R 02 is preferably an aralkyl group having 7 to 12 carbon atoms, and examples thereof include a benzyl group, a phenethyl group, and a naphthylmethyl group.
  • the alkenyl group of R 36 to R 39 , R 01 and R 02 is preferably an alkenyl group having 2 to 8 carbon atoms, and examples thereof include a vinyl group, an allyl group, a butenyl group, and a cyclohexenyl group.
  • the ring formed by combining R 36 and R 37 with each other is preferably a cycloalkyl group (monocyclic or polycyclic).
  • cycloalkyl group a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, or a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group is preferable. .
  • a cumyl ester group, an enol ester group, an acetal ester group, or a tertiary alkyl ester group is preferable, and an acetal group or a tertiary alkyl ester group is more preferable.
  • the resin (A) preferably has a repeating unit represented by the following general formula (AI) as a repeating unit having an acid-decomposable group.
  • Xa 1 represents a hydrogen atom, a halogen atom, or a monovalent organic group.
  • T represents a single bond or a divalent linking group.
  • Rx 1 to Rx 3 each independently represents an alkyl group or a cycloalkyl group. Any two of Rx 1 to Rx 3 may be bonded to form a ring structure, or may not be formed.
  • Examples of the divalent linking group for T include an alkylene group, an arylene group, —COO—Rt—, —O—Rt—, and the like.
  • Rt represents an alkylene group, a cycloalkylene group, or an arylene group.
  • —COO— is synonymous with —CO—O—.
  • T is preferably a single bond or —COO—Rt—.
  • Rt is preferably a chain alkylene group having 1 to 5 carbon atoms, more preferably —CH 2 —, — (CH 2 ) 2 —, or — (CH 2 ) 3 —. More preferably, T is a single bond.
  • Xa 1 is preferably a hydrogen atom or an alkyl group.
  • the alkyl group of Xa 1 may have a substituent, and examples of the substituent include a hydroxyl group and a halogen atom (preferably a fluorine atom).
  • the alkyl group of Xa 1 preferably has 1 to 4 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a hydroxymethyl group, and a trifluoromethyl group.
  • the alkyl group of Xa 1 is preferably a methyl group.
  • the alkyl group of Rx 1 , Rx 2 and Rx 3 may be linear or branched, and may be a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, An isobutyl group or a t-butyl group is preferred.
  • the number of carbon atoms of the alkyl group is preferably 1 to 10, more preferably 1 to 5, and still more preferably 1 to 3.
  • a part of the carbon-carbon bond may be a double bond.
  • cycloalkyl group of Rx 1 , Rx 2 and Rx 3 a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, or a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, an adamantyl group, and the like
  • the polycyclic cycloalkyl group is preferable.
  • the ring structure formed by combining two of Rx 1 , Rx 2 and Rx 3 includes a monocyclic cycloalkane ring such as cyclopentyl ring, cyclohexyl ring, cycloheptyl ring, and cyclooctane ring, or norbornane ring, tetracyclo ring
  • a polycyclic cycloalkyl ring such as a decane ring, a tetracyclododecane ring and an adamantane ring is preferred.
  • a cyclopentyl ring, a cyclohexyl ring, or an adamantane ring is more preferable.
  • the ring structure formed by combining two of Rx 1 , Rx 2 and Rx 3 the structures shown below are also preferable.
  • the resin (A) preferably has a repeating unit described in paragraphs ⁇ 0336> to ⁇ 0369> of US Patent Application Publication No. 2016 / 0070167A1 as a repeating unit having an acid-decomposable group.
  • Resin (A) is decomposed by the action of an acid described in paragraphs ⁇ 0363> to ⁇ 0364> of US Patent Application Publication No. 2016 / 0070167A1 as a repeating unit having an acid-decomposable group. You may have a repeating unit containing the group which produces
  • Resin (A) may contain one type of repeating unit having an acid-decomposable group, or two or more types in combination.
  • the content of the repeating unit having an acid-decomposable group contained in the resin (A) (when there are a plurality of repeating units having an acid-decomposable group, the total) is based on the total repeating units of the resin (A), 10 to 90 mol% is preferable, 20 to 80 mol% is more preferable, and 30 to 70 mol% is still more preferable.
  • Resin (A) preferably has a repeating unit having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure.
  • the lactone structure or sultone structure only needs to have a lactone structure or sultone structure, and a 5- to 7-membered ring lactone structure or a 5- to 7-membered ring sultone structure is preferable.
  • Those having other ring structures condensed to the sultone structure are more preferable.
  • the resin (A) is a lactone structure represented by any one of the following general formulas (LC1-1) to (LC1-21), or any one of the following general formulas (SL1-1) to (SL1-3) It is more preferable to have a repeating unit having a sultone structure. A lactone structure or a sultone structure may be directly bonded to the main chain.
  • the lactone structure portion or the sultone structure portion may or may not have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 4 to 7 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkoxycarbonyl group having 2 to 8 carbon atoms, and a carboxy group.
  • An alkyl group having 1 to 4 carbon atoms, a cyano group, or an acid-decomposable group is preferable.
  • n 2 represents an integer of 0 to 4. When n 2 is 2 or more, the plurality of substituents (Rb 2 ) may be the same or different. A plurality of substituents (Rb 2 ) may be bonded to form a ring.
  • repeating unit having a lactone structure or a sultone structure a repeating unit represented by the following general formula (III) is preferable.
  • A represents an ester bond (a group represented by —COO—) or an amide bond (a group represented by —CONH—).
  • n is the number of repetitions of the structure represented by —R 0 —Z—, and represents an integer of 0 to 5, preferably 0 or 1, and more preferably 0. When n is 0, —R 0 —Z— does not exist and becomes a single bond.
  • R 0 represents an alkylene group, a cycloalkylene group, or a combination thereof. If R 0 is plural, R 0 each independently represents a alkylene group, a cycloalkylene group, or a combination thereof.
  • Z represents a single bond, an ether bond, an ester bond, an amide bond, a urethane bond or a urea bond.
  • each Z independently represents a single bond, an ether bond, an ester bond, an amide bond, a urethane bond or a urea bond.
  • R 8 represents a monovalent organic group having a lactone structure or a sultone structure.
  • R 7 represents a hydrogen atom, a halogen atom or a monovalent organic group (preferably a methyl group).
  • the alkylene group or cycloalkylene group of R 0 may have a substituent.
  • Z is preferably an ether bond or an ester bond, and more preferably an ester bond.
  • the resin (A) may have a repeating unit having a carbonate structure.
  • the carbonate structure is preferably a cyclic carbonate structure.
  • the repeating unit having a cyclic carbonate structure is preferably a repeating unit represented by the following general formula (A-1).
  • R A 1 represents a hydrogen atom, a halogen atom or a monovalent organic group (preferably a methyl group).
  • n represents an integer of 0 or more.
  • R A 2 represents a substituent. When n is 2 or more, each R A 2 independently represents a substituent.
  • A represents a single bond or a divalent linking group.
  • Z represents an atomic group that forms a monocyclic structure or a polycyclic structure together with a group represented by —O—C ( ⁇ O) —O— in the formula.
  • the resin (A) is a repeating unit having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure, and paragraphs ⁇ 0370> to ⁇ 0414> of US Patent Application Publication No. 2016 / 0070167A1. It is also preferable to have the repeating unit described in 1.
  • Resin (A) may have one or more repeating units having at least one selected from the group consisting of a lactone structure, a sultone structure, and a carbonate structure, and may have two or more in combination. It may be.
  • the following monomers are also suitably used as the raw material for the resin (A).
  • the total number of repeating units having at least one kind is preferably 5 to 70 mol%, more preferably 10 to 65 mol%, more preferably 20 to 60 mol% is more preferable.
  • the resin (A) preferably has a repeating unit having a polar group.
  • the polar group include a hydroxyl group, a cyano group, a carboxy group, and a fluorinated alcohol group.
  • the repeating unit having a polar group is preferably a repeating unit having an alicyclic hydrocarbon structure substituted with a polar group. Moreover, it is preferable that the repeating unit which has a polar group does not have an acid-decomposable group.
  • the alicyclic hydrocarbon structure in the alicyclic hydrocarbon structure substituted with a polar group is preferably an adamantyl group or a norbornane group.
  • Resin (A) may have the repeating unit which has a polar group individually by 1 type, and may have 2 or more types together.
  • the content of the repeating unit having a polar group is preferably from 5 to 40 mol%, more preferably from 5 to 30 mol%, still more preferably from 10 to 25 mol%, based on all repeating units in the resin (A).
  • Resin (A) may further have a repeating unit having neither an acid-decomposable group nor a polar group.
  • the repeating unit having neither an acid-decomposable group nor a polar group preferably has an alicyclic hydrocarbon structure.
  • Examples of the repeating unit having neither an acid-decomposable group nor a polar group include the repeating units described in paragraphs ⁇ 0236> to ⁇ 0237> of US Patent Application Publication No. 2016 / 0026083A1.
  • Preferred examples of the monomer corresponding to the repeating unit having neither an acid-decomposable group nor a polar group are shown below.
  • the resin (A) may have one type of repeating unit that has neither an acid-decomposable group nor a polar group, or may have two or more types in combination.
  • the content of the repeating unit having neither an acid-decomposable group nor a polar group is preferably from 5 to 40 mol%, more preferably from 5 to 30 mol%, based on all repeating units in the resin (A). 5 to 25 mol% is more preferable.
  • Resin (A) is, other than the above repeating structural units, dry etching resistance, standard developer suitability, substrate adhesion, resist profile, or further, general required characteristics of resist, resolving power, heat resistance, sensitivity, etc.
  • Various repeating structural units may be included for the purpose of adjusting the above. Examples of such a repeating structural unit include, but are not limited to, a repeating structural unit corresponding to a predetermined monomer.
  • the predetermined monomer has one addition polymerizable unsaturated bond selected from, for example, acrylic acid esters, methacrylic acid esters, acrylamides, methacrylamides, allyl compounds, vinyl ethers, vinyl esters, and the like. Compounds and the like.
  • addition polymerizable unsaturated compounds that can be copolymerized with monomers corresponding to the above various repeating structural units may be used.
  • the content molar ratio of each repeating structural unit is appropriately set in order to adjust various performances.
  • the resin (A) preferably has substantially no aromatic group from the viewpoint of ArF light transmittance. More specifically, the repeating unit having an aromatic group is preferably 5 mol% or less, more preferably 3 mol% or less with respect to all repeating units in the resin (A). More preferably, 0 mol%, that is, it does not have a repeating unit having an aromatic group.
  • the resin (A) preferably has a monocyclic or polycyclic alicyclic hydrocarbon structure.
  • all of the repeating units are composed of (meth) acrylate-based repeating units.
  • all of the repeating units are methacrylate repeating units, all of the repeating units are acrylate repeating units, or all of the repeating units are methacrylate repeating units and acrylate repeating units.
  • the acrylate-based repeating unit is 50 mol% or less with respect to all the repeating units of the resin (A).
  • the resin (A) When the composition of the present invention is for KrF exposure, EB exposure, or EUV exposure, the resin (A) preferably has a repeating unit having an aromatic hydrocarbon ring group. It is more preferable that the resin (A) has a repeating unit containing a phenolic hydroxyl group. Examples of the repeating unit containing a phenolic hydroxyl group include a hydroxystyrene repeating unit or a hydroxystyrene (meth) acrylate repeating unit.
  • the resin (A) is a group (leaving group) in which the hydrogen atom of the phenolic hydroxyl group is decomposed and removed by the action of an acid.
  • the content of the repeating unit having an aromatic hydrocarbon ring group contained in the resin (A) is preferably from 30 to 100 mol%, more preferably from 40 to 100 mol%, based on all repeating units in the resin (A). 50 to 100 mol% is more preferable.
  • the weight average molecular weight of the resin (A) is preferably 1,000 to 200,000, more preferably 2,000 to 20,000, still more preferably 3,000 to 15,000, and more preferably 3,000 to 11,000. Particularly preferred.
  • the degree of dispersion (Mw / Mn) is usually 1.0 to 3.0, preferably 1.0 to 2.6, more preferably 1.0 to 2.0, and even more preferably 1.1 to 2.0. preferable.
  • Resin (A) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the resin (A) is generally 20% by mass or more, preferably 40% by mass or more, more preferably 60% by mass or more, based on the total solid content. 75 mass% or more is more preferable, and 80 mass% or more is particularly preferable.
  • An upper limit in particular is not restrict
  • the composition of the present invention may contain an alkali-soluble resin (B) having a phenolic hydroxyl group (hereinafter also referred to as “resin (B)”). preferable.
  • the resin (B) preferably has a repeating unit having a phenolic hydroxyl group. In this case, typically, a negative pattern is suitably formed.
  • the crosslinking agent (G) may be supported on the resin (B).
  • the resin (B) may have the acid-decomposable group described above.
  • the repeating unit having a phenolic hydroxyl group contained in the resin (B) is preferably a repeating unit represented by the following general formula (II).
  • R 2 represents a hydrogen atom, an alkyl group (preferably a methyl group), or a halogen atom (preferably a fluorine atom).
  • B ′ represents a single bond or a divalent linking group.
  • Ar ′ represents an aromatic ring group.
  • m represents an integer of 1 or more.
  • Resin (B) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the resin (B) in the total solid content of the composition of the present invention is generally often 30% by mass or more, preferably 40% by mass or more, and more preferably 50% by mass or more.
  • Preferred examples of the resin (B) include the resins disclosed in paragraphs ⁇ 0142> to ⁇ 0347> of US Patent Application Publication No. 2016 / 0282720A1.
  • composition of the present invention may contain both the resin (A) and the resin (B).
  • the composition of the present invention preferably contains an acid diffusion controller (D).
  • the acid diffusion controller (D) acts as a quencher that traps the acid generated from the acid generator or the like during exposure and suppresses the reaction of the acid-decomposable resin in the unexposed area due to excess generated acid.
  • a low molecular weight compound (DD) having a group capable of leaving by the action of an acid, or an onium salt compound (DE) having a nitrogen atom in the cation moiety can be used as an acid diffusion controller.
  • DD low molecular weight compound having a group capable of leaving by the action of an acid
  • DE onium salt compound having a nitrogen atom in the cation moiety
  • a known acid diffusion controller can be used as appropriate.
  • R 200 , R 201 and R 202 may be the same or different and each independently represents a hydrogen atom, an alkyl group (preferably having 1 to 20 carbon atoms), a cycloalkyl group (preferably having 3 to 20 carbon atoms) or aryl. Represents a group (having 6 to 20 carbon atoms).
  • R 201 and R 202 may combine with each other to form a ring.
  • R 203 , R 204 , R 205 and R 206 may be the same or different and each independently represents an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group in the general formulas (A) and (E) may have a substituent or may be unsubstituted.
  • the alkyl group having a substituent is preferably an aminoalkyl group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, or a cyanoalkyl group having 1 to 20 carbon atoms.
  • the alkyl groups in general formulas (A) and (E) are more preferably unsubstituted.
  • guanidine As the basic compound (DA), guanidine, aminopyrrolidine, pyrazole, pyrazoline, piperazine, aminomorpholine, aminoalkylmorpholine, piperidine and the like are preferable, imidazole structure, diazabicyclo structure, onium hydroxide structure, onium carboxylate structure, A compound having a trialkylamine structure, an aniline structure or a pyridine structure, an alkylamine derivative having a hydroxyl group and / or an ether bond, an aniline derivative having a hydroxyl group and / or an ether bond, or the like is more preferable.
  • a basic compound (DB) whose basicity decreases or disappears upon irradiation with actinic rays or radiation (hereinafter also referred to as “compound (DB)”) has a proton acceptor functional group, and has an actinic ray or It is a compound that decomposes upon irradiation with radiation and whose proton acceptor property is lowered, disappears, or changes from proton acceptor property to acidity.
  • the proton acceptor functional group is a functional group having electrons or a group capable of electrostatically interacting with protons, for example, a functional group having a macrocyclic structure such as a cyclic polyether, or a ⁇ conjugate. It means a functional group having a nitrogen atom with an unshared electron pair that does not contribute to.
  • the nitrogen atom having an unshared electron pair that does not contribute to ⁇ conjugation is, for example, a nitrogen atom having a partial structure represented by the following formula.
  • Preferred partial structures of the proton acceptor functional group include, for example, a crown ether structure, an azacrown ether structure, a primary to tertiary amine structure, a pyridine structure, an imidazole structure, and a pyrazine structure.
  • the compound (DB) is decomposed by irradiation with actinic rays or radiation to generate a compound in which the proton acceptor property is reduced or lost, or the proton acceptor property is changed to acidic.
  • the decrease or disappearance of the proton acceptor property or the change from the proton acceptor property to the acid property is a change in the proton acceptor property caused by the addition of a proton to the proton acceptor functional group.
  • the acid dissociation constant pKa of the compound generated by decomposition of the compound (DB) upon irradiation with actinic rays or radiation preferably satisfies pKa ⁇ 1, more preferably ⁇ 13 ⁇ pKa ⁇ 1, More preferably, 13 ⁇ pKa ⁇ -3 is satisfied.
  • the acid dissociation constant pKa represents the acid dissociation constant pKa in an aqueous solution, and is defined in, for example, Chemical Handbook (II) (4th revised edition, 1993, edited by the Chemical Society of Japan, Maruzen Co., Ltd.). It shows that acid strength is so large that the value of acid dissociation constant pKa is low.
  • the acid dissociation constant pKa in the aqueous solution can be actually measured by measuring the acid dissociation constant at 25 ° C. using an infinitely diluted aqueous solution.
  • the following software package 1 can be used to calculate a value based on a Hammett substituent constant and a database of known literature values.
  • the values of pKa described in this specification all indicate values obtained by calculation using this software package.
  • an onium salt (DC) that is a weak acid relative to the acid generator can be used as an acid diffusion controller.
  • DC an onium salt
  • an acid generator and an onium salt that generates an acid that is a relatively weak acid with respect to the acid generated from the acid generator are mixed and used, it is generated from the acid generator by irradiation with actinic rays or radiation.
  • an onium salt having an unreacted weak acid anion a weak acid is released by salt exchange to yield an onium salt having a strong acid anion.
  • the strong acid is exchanged with a weak acid having a lower catalytic ability, so that the acid is apparently deactivated and the acid diffusion can be controlled.
  • R 51 represents a hydrocarbon group which may have a substituent
  • Z 2c represents a hydrocarbon group having 1 to 30 carbon atoms which may have a substituent (however, a carbon adjacent to S).
  • R 52 is an organic group
  • Y 3 is a linear, branched or cyclic alkylene group or an arylene group
  • Rf is a fluorine atom.
  • Each of the M + is independently an ammonium cation, a sulfonium cation or an iodonium cation.
  • sulfonium cation or the iodonium cation represented by M + include the sulfonium cation exemplified by the general formula (ZI) and the iodonium cation exemplified by the general formula (ZII).
  • the compound (DCA) is preferably a compound represented by any one of the following general formulas (C-1) to (C-3).
  • R 1 , R 2 , and R 3 each independently represent a substituent having 1 or more carbon atoms.
  • L 1 represents a divalent linking group or a single bond linking the cation moiety and the anion moiety.
  • -X - it is, -COO -, -SO 3 - represents an anion portion selected from -R 4 -, -SO 2 -, and -N.
  • R 4 has a carbonyl group (—C ( ⁇ O) —), a sulfonyl group (—S ( ⁇ O) 2 —), and a sulfinyl group (—S ( ⁇ O) — at the linking site with the adjacent N atom.
  • R 1 , R 2 , R 3 , R 4 , and L 1 may be bonded to each other to form a ring structure.
  • R 1 to R 3 may be combined to represent one divalent substituent and may be bonded to the N atom by a double bond.
  • Examples of the substituent having 1 or more carbon atoms in R 1 to R 3 include alkyl group, cycloalkyl group, aryl group, alkyloxycarbonyl group, cycloalkyloxycarbonyl group, aryloxycarbonyl group, alkylaminocarbonyl group, cycloalkylamino A carbonyl group, an arylaminocarbonyl group, etc. are mentioned.
  • An alkyl group, a cycloalkyl group, or an aryl group is preferable.
  • L 1 as the divalent linking group is a linear or branched alkylene group, cycloalkylene group, arylene group, carbonyl group, ether bond, ester bond, amide bond, urethane bond, urea bond, and two types thereof. Examples include groups formed by combining the above. L 1 is preferably an alkylene group, an arylene group, an ether bond, an ester bond, or a combination of two or more of these groups.
  • a low molecular compound (DD) having a nitrogen atom and a group capable of leaving by the action of an acid has a group leaving on the nitrogen atom by the action of an acid. It is preferable that it is an amine derivative having.
  • the group capable of leaving by the action of an acid is preferably an acetal group, a carbonate group, a carbamate group, a tertiary ester group, a tertiary hydroxyl group, or a hemiaminal ether group, and more preferably a carbamate group or a hemiaminal ether group.
  • the molecular weight of the compound (DD) is preferably 100 to 1000, more preferably 100 to 700, and still more preferably 100 to 500.
  • Compound (DD) may have a carbamate group having a protecting group on the nitrogen atom.
  • the protecting group constituting the carbamate group is represented by the following general formula (d-1).
  • R b each independently represents a hydrogen atom, an alkyl group (preferably 1 to 10 carbon atoms), a cycloalkyl group (preferably 3 to 30 carbon atoms), an aryl group (preferably 3 to 30 carbon atoms), an aralkyl group. (Preferably having 1 to 10 carbon atoms) or an alkoxyalkyl group (preferably having 1 to 10 carbon atoms).
  • R b may be connected to each other to form a ring.
  • the alkyl group, cycloalkyl group, aryl group, and aralkyl group represented by R b are each independently a functional group such as a hydroxyl group, a cyano group, an amino group, a pyrrolidino group, a piperidino group, a morpholino group, an oxo group, an alkoxy group, or It may be substituted with a halogen atom.
  • Rb The same applies to the alkoxyalkyl group represented by Rb .
  • R b is preferably a linear or branched alkyl group, a cycloalkyl group, or an aryl group, and more preferably a linear or branched alkyl group or a cycloalkyl group.
  • the ring two R b is formed by interconnected, alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic hydrocarbons and derivatives thereof.
  • Specific examples of the structure represented by the general formula (d-1) include, but are not limited to, the structure disclosed in paragraph ⁇ 0466> of US Patent Publication US2012 / 0135348A1.
  • the compound (DD) preferably has a structure represented by the following general formula (6).
  • R a represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group.
  • R b has the same meaning as R b in formula (d-1), and preferred examples are also the same.
  • the alkyl group as R a, a cycloalkyl group, an aryl group and aralkyl group is each independently an alkyl group as R b, cycloalkyl group, aryl group and aralkyl group, is substituted
  • the group which may be substituted may be the same as the group described above.
  • R a alkyl group, cycloalkyl group, aryl group, and aralkyl group are the same groups as the specific examples described above for R b. Is mentioned.
  • Specific examples of the particularly preferred compound (DD) in the present invention include, but are not limited to, compounds disclosed in paragraph ⁇ 0475> of US Patent Application Publication No. 2012 / 0135348A1.
  • the onium salt compound (DE) having a nitrogen atom in the cation part is preferably a compound having a basic site containing a nitrogen atom in the cation part.
  • the basic moiety is preferably an amino group, and more preferably an aliphatic amino group. More preferably, all of the atoms adjacent to the nitrogen atom in the basic moiety are hydrogen atoms or carbon atoms. From the viewpoint of improving basicity, it is preferable that an electron-withdrawing functional group (such as a carbonyl group, a sulfonyl group, a cyano group, and a halogen atom) is not directly connected to the nitrogen atom.
  • an electron-withdrawing functional group such as a carbonyl group, a sulfonyl group, a cyano group, and a halogen atom
  • the compound (DE) include, but are not limited to, compounds disclosed in paragraph ⁇ 0203> of US Patent Application Publication No. 2015 / 03009408
  • the acid diffusion controller (D) may be used alone or in combination of two or more.
  • the content of the acid diffusion controller (D) (the total when there are a plurality of types) is preferably 0.1 to 10% by mass, based on the total solid content of the composition, preferably 0.1 to 5 mass% is more preferable.
  • the composition of the present invention may contain a hydrophobic resin (E).
  • the hydrophobic resin (E) is preferably a resin different from the resin (A) and the resin (B).
  • the composition of the present invention contains the hydrophobic resin (E)
  • the static / dynamic contact angle on the surface of the actinic ray-sensitive or radiation-sensitive film can be controlled. This makes it possible to improve development characteristics, suppress outgassing, improve immersion liquid follow-up in immersion exposure, reduce immersion defects, and the like.
  • the hydrophobic resin (E) is preferably designed to be unevenly distributed on the surface of the resist film. However, unlike the surfactant, the hydrophobic resin (E) is not necessarily required to have a hydrophilic group in the molecule. There is no need to contribute to uniform mixing.
  • the hydrophobic resin (E) is selected from the group consisting of “fluorine atom”, “silicon atom”, and “CH 3 partial structure contained in the side chain portion of the resin” from the viewpoint of uneven distribution in the membrane surface layer. It is preferable that the resin has a repeating unit having at least one kind.
  • the hydrophobic resin (E) contains a fluorine atom and / or a silicon atom
  • the fluorine atom and / or silicon atom in the hydrophobic resin (E) may be contained in the main chain of the resin, It may be contained in the chain.
  • the hydrophobic resin (E) contains a fluorine atom
  • it may be a resin having an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom as a partial structure having a fluorine atom. preferable.
  • the hydrophobic resin (E) preferably has at least one group selected from the following groups (x) to (z).
  • Examples of the acid group (x) include a phenolic hydroxyl group, a carboxylic acid group, a fluorinated alcohol group, a sulfonic acid group, a sulfonamide group, a sulfonylimide group, an (alkylsulfonyl) (alkylcarbonyl) methylene group, and an (alkylsulfonyl) (alkyl Carbonyl) imide group, bis (alkylcarbonyl) methylene group, bis (alkylcarbonyl) imide group, bis (alkylsulfonyl) methylene group, bis (alkylsulfonyl) imide group, tris (alkylcarbonyl) methylene group, and tris (alkylsulfonyl) ) And a methylene group.
  • the acid group is preferably a fluorinated alcohol group (preferably hexafluoroisopropanol), a sulf
  • Examples of the group (y) which is decomposed by the action of the alkali developer and increases the solubility in the alkali developer include a lactone group, a carboxylic acid ester group (—COO—), and an acid anhydride group (—C (O) OC. (O)-), acid imide group (—NHCONH—), carboxylic acid thioester group (—COS—), carbonate ester group (—OC (O) O—), sulfate ester group (—OSO 2 O—), and Examples thereof include a sulfonic acid ester group (—SO 2 O—), and a lactone group or a carboxylic acid ester group (—COO—) is preferable.
  • the repeating unit containing these groups is, for example, a repeating unit in which these groups are directly bonded to the main chain of the resin, and examples thereof include a repeating unit of an acrylate ester and a methacrylate ester.
  • these groups may be bonded to the main chain of the resin via a linking group.
  • this repeating unit may be introduce
  • the repeating unit having a lactone group include those similar to the repeating unit having a lactone structure described above in the section of the resin (A).
  • the content of the repeating unit having a group (y) that is decomposed by the action of the alkali developer and increases the solubility in the alkali developer is 1 to 100 mol% with respect to all the repeating units in the hydrophobic resin (E). 3 to 98 mol% is more preferable, and 5 to 95 mol% is still more preferable.
  • Examples of the repeating unit having a group (z) that is decomposed by the action of an acid in the hydrophobic resin (E) are the same as the repeating unit having an acid-decomposable group mentioned in the resin (A).
  • the repeating unit having a group (z) that decomposes by the action of an acid may have at least one of a fluorine atom and a silicon atom.
  • the content of the repeating unit having a group (z) that is decomposed by the action of an acid is preferably 1 to 80 mol%, more preferably 10 to 80 mol%, based on all repeating units in the hydrophobic resin (E). 20 to 60 mol% is more preferable.
  • the hydrophobic resin (E) may further have a repeating unit different from the above-described repeating unit.
  • the repeating unit containing a fluorine atom is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, based on all repeating units in the hydrophobic resin (E).
  • the repeating unit containing a silicon atom is preferably 10 to 100 mol%, more preferably 20 to 100 mol%, based on all repeating units in the hydrophobic resin (E).
  • hydrophobic resin (E) contains a CH 3 partial structure in the side chain portion
  • a mode in which the hydrophobic resin (E) does not substantially contain a fluorine atom and a silicon atom is also preferable.
  • hydrophobic resin (E) is substantially comprised only by the repeating unit comprised only by the atom chosen from a carbon atom, an oxygen atom, a hydrogen atom, a nitrogen atom, and a sulfur atom.
  • the weight average molecular weight in terms of standard polystyrene of the hydrophobic resin (E) is preferably 1,000 to 100,000, more preferably 1,000 to 50,000.
  • the total content of the residual monomer and / or oligomer component contained in the hydrophobic resin (E) is preferably 0.01 to 5% by mass, more preferably 0.01 to 3% by mass.
  • the dispersity (Mw / Mn) is preferably in the range of 1 to 5, more preferably in the range of 1 to 3.
  • hydrophobic resin (E) known resins can be used by being appropriately selected singly or as a mixture thereof.
  • the repeating units disclosed in paragraphs ⁇ 0177> to ⁇ 0258> of US Patent Application Publication No. 2016 / 0237190A1 are also preferable as the repeating units constituting the hydrophobic resin (E).
  • Hydrophobic resin (E) may be used individually by 1 type, and may use 2 or more types together. It is preferable to use a mixture of two or more kinds of hydrophobic resins (E) having different surface energies from the viewpoint of compatibility between the immersion liquid followability and the development characteristics in the immersion exposure.
  • the content of the hydrophobic resin (E) is preferably 0.01 to 10% by mass, more preferably 0.05 to 8% by mass, and more preferably 0.1 to 10% by mass with respect to the total solid content in the composition. 5 mass% is still more preferable.
  • the composition of the present invention may contain a solvent.
  • a known resist solvent can be appropriately used.
  • paragraphs ⁇ 0665> to ⁇ 0670> of U.S. Patent Application Publication No. 2016 / 0070167A1 paragraphs ⁇ 0210> to ⁇ 0235> of U.S. Patent Application Publication No. 2015 / 0004544A1, and Patent Publication No. 2016 / 0237190A1.
  • Known solvents disclosed in paragraphs ⁇ 0424> to ⁇ 0426> of the specification and paragraphs ⁇ 0357> to ⁇ 0366> of U.S. Patent Application Publication No. 2016 / 0274458A1 can be preferably used.
  • Examples of the solvent that can be used in preparing the composition include alkylene glycol monoalkyl ether carboxylate, alkylene glycol monoalkyl ether, alkyl lactate ester, alkyl alkoxypropionate, cyclic lactone (preferably having 4 to 10 carbon atoms), Examples thereof include an organic solvent such as a monoketone compound (preferably having 4 to 10 carbon atoms) which may have a ring, alkylene carbonate, alkyl alkoxyacetate, and alkyl pyruvate.
  • a monoketone compound preferably having 4 to 10 carbon atoms
  • the mixed solvent which mixed the solvent which has a hydroxyl group in a structure may be used as an organic solvent, you may use the mixed solvent which mixed the solvent which has a hydroxyl group in a structure, and the solvent which does not have a hydroxyl group.
  • the solvent having a hydroxyl group and the solvent not having a hydroxyl group the above-described exemplary compounds can be selected as appropriate.
  • the solvent containing a hydroxyl group an alkylene glycol monoalkyl ether, an alkyl lactate or the like is preferable, and propylene glycol monomethyl ether ( PGME), propylene glycol monoethyl ether (PGEE), methyl 2-hydroxyisobutyrate, or ethyl lactate is more preferred.
  • the solvent having no hydroxyl group is preferably an alkylene glycol monoalkyl ether acetate, an alkyl alkoxypropionate, a monoketone compound which may have a ring, a cyclic lactone or an alkyl acetate, among these, More preferred are propylene glycol monomethyl ether acetate (PGMEA), ethyl ethoxypropionate, 2-heptanone, ⁇ -butyrolactone, cyclohexanone, cyclopentanone or butyl acetate, propylene glycol monomethyl ether acetate, ⁇ -butyrolactone, ethyl ethoxypropionate Further preferred are cyclohexanone, cyclopentanone and 2-heptanone.
  • PMEA propylene glycol monomethyl ether acetate
  • ethyl ethoxypropionate 2-heptanone
  • ⁇ -butyrolactone cyclohexanone
  • the mixing ratio (mass ratio) of the solvent having a hydroxyl group and the solvent having no hydroxyl group is preferably from 1/99 to 99/1, more preferably from 10/90 to 90/10, and from 20/80 to 60/40. Further preferred.
  • a mixed solvent containing 50% by mass or more of a solvent having no hydroxyl group is preferable in terms of coating uniformity.
  • the solvent preferably contains propylene glycol monomethyl ether acetate, may be a propylene glycol monomethyl ether acetate single solvent, or may be two or more mixed solvents containing propylene glycol monomethyl ether acetate.
  • the composition of this invention may contain the compound (henceforth a crosslinking agent (G)) which bridge
  • a crosslinking agent (G) a known compound can be appropriately used.
  • known compounds disclosed in paragraphs ⁇ 0379> to ⁇ 0431> of US Patent Application Publication No. 2016 / 0147154A1 and paragraphs ⁇ 0064> to ⁇ 0141> of US Patent Application Publication No. 2016 / 0282720A1 Can be suitably used as the crosslinking agent (G).
  • the crosslinking agent (G) is a compound having a crosslinkable group capable of crosslinking the resin, and examples of the crosslinkable group include a hydroxymethyl group, an alkoxymethyl group, an acyloxymethyl group, an alkoxymethyl ether group, an oxirane ring, And an oxetane ring.
  • the crosslinkable group is preferably a hydroxymethyl group, an alkoxymethyl group, an oxirane ring or an oxetane ring.
  • the crosslinker (G) is preferably a compound (including a resin) having two or more crosslinkable groups.
  • the cross-linking agent (G) is more preferably a phenol derivative, a urea compound (a compound having a urea structure) or a melamine compound (a compound having a melamine structure) having a hydroxymethyl group or an alkoxymethyl group.
  • a crosslinking agent may be used individually by 1 type, and may use 2 or more types together.
  • the content of the crosslinking agent (G) is preferably 1 to 50% by mass, more preferably 3 to 40% by mass, and still more preferably 5 to 30% by mass with respect to the total solid content of the resist composition.
  • the composition of the present invention may contain a surfactant.
  • a surfactant When a surfactant is included, a fluorine-based and / or silicon-based surfactant (specifically, a fluorine-based surfactant, a silicon-based surfactant, or a surfactant having both a fluorine atom and a silicon atom) Is preferred.
  • composition of the present invention contains a surfactant
  • a surfactant when an exposure light source having a wavelength of 250 nm or less, particularly 220 nm or less is used, a pattern having good adhesion and development defects with good sensitivity and resolution can be obtained.
  • the fluorine-based and / or silicon-based surfactant include surfactants described in paragraph ⁇ 0276> of US Patent Application Publication No. 2008/0248425.
  • surfactants other than the fluorine-based and / or silicon-based surfactants described in paragraph ⁇ 0280> of US Patent Application Publication No. 2008/0248425 can also be used.
  • surfactants may be used alone or in combination of two or more.
  • the content of the surfactant is preferably 0.0001 to 2% by mass, more preferably 0.0005 to 1% by mass, based on the total solid content of the composition. preferable.
  • the content of the surfactant is 10 ppm or more based on the total solid content of the composition, the surface uneven distribution of the hydrophobic resin (E) is increased. Thereby, the surface of the actinic ray-sensitive or radiation-sensitive film can be made more hydrophobic, and water followability at the time of immersion exposure is improved.
  • composition of the present invention may further contain an acid proliferation agent, a dye, a plasticizer, a photosensitizer, a light absorber, an alkali-soluble resin, a dissolution inhibitor, or a dissolution accelerator.
  • the solid concentration of the composition of the present invention is preferably 1.0 to 10% by mass, more preferably 2.0 to 5.7% by mass, and still more preferably 2.0 to 5.3% by mass.
  • the solid content concentration is a mass percentage of the mass of other resist components excluding the solvent with respect to the total mass of the composition.
  • the film thickness of the actinic ray-sensitive or radiation-sensitive film made of the composition of the present invention is preferably 90 nm or less, more preferably 85 nm or less, from the viewpoint of improving resolution.
  • Such a film thickness can be obtained by setting the solid content concentration in the composition to an appropriate range to give an appropriate viscosity and improving the coating property or film forming property.
  • the composition of the present invention is used by dissolving the above components in a predetermined organic solvent, preferably the above mixed solvent, filtering the solution, and applying the solution on a predetermined support (substrate).
  • the pore size of the filter used for filter filtration is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and further preferably 0.03 ⁇ m or less.
  • This filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • a cyclic filtration may be performed, and a plurality of types of filters are connected in series. Alternatively, filtration may be performed in parallel.
  • the composition may be filtered multiple times. Furthermore, you may perform a deaeration process etc. with respect to a composition before and after filter filtration.
  • the composition of the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition that changes its properties upon reaction with irradiation with actinic rays or radiation. More specifically, the composition of the present invention can be used in semiconductor manufacturing processes such as IC (Integrated Circuit), circuit boards such as liquid crystals or thermal heads, fabrication of imprint mold structures, other photofabrication processes, or The present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition used for producing a lithographic printing plate or an acid-curable composition.
  • the pattern formed in the present invention can be used in an etching process, an ion implantation process, a bump electrode forming process, a rewiring forming process, a MEMS (Micro Electro Mechanical Systems), and the like.
  • the present invention also relates to a pattern forming method using the actinic ray-sensitive or radiation-sensitive resin composition.
  • the pattern formation method of this invention is demonstrated.
  • the actinic ray-sensitive or radiation-sensitive film of the present invention will also be described.
  • the pattern forming method of the present invention comprises: (I) a step of forming a resist film (actinic light sensitive or radiation sensitive film) on a support with the above-mentioned actinic ray sensitive or radiation sensitive resin composition (resist film forming step); (Ii) exposing the resist film (irradiating actinic rays or radiation) (exposure step); and (Iii) a step of developing the exposed resist film using a developer (development step),
  • the pattern forming method of the present invention is not particularly limited as long as it includes the steps (i) to (iii), and may further include the following steps.
  • the exposure method in the exposure step may be immersion exposure.
  • the pattern forming method of the present invention preferably includes (ii) a pre-heating (PB: PreBake) step before (ii) the exposure step.
  • the pattern forming method of the present invention preferably includes (v) a post-exposure bake (PEB) step after (ii) the exposure step and (iii) before the development step.
  • the pattern forming method of the present invention may include (ii) an exposure step a plurality of times.
  • the pattern forming method of the present invention may include (iv) a preheating step a plurality of times.
  • the pattern forming method of the present invention may include (v) a post-exposure heating step a plurality of times.
  • the above-described (i) film formation step, (ii) exposure step, and (iii) development step can be performed by a generally known method.
  • a resist underlayer film for example, SOG (Spin On Glass), SOC (Spin On Carbon), and antireflection film
  • SOG Spin On Glass
  • SOC Spin On Carbon
  • antireflection film As a material constituting the resist underlayer film, a known organic or inorganic material can be appropriately used.
  • a protective film (top coat) may be formed on the upper layer of the resist film.
  • a known material can be appropriately used.
  • composition for forming a protective film disclosed in US Patent Application Publication No. 2013/0244438 and International Patent Application Publication No. 2016 / 157988A can be suitably used.
  • a composition for protective film formation what contains the acid diffusion control agent mentioned above is preferable.
  • a protective film may be formed on the resist film containing the hydrophobic resin described above.
  • the support is not particularly limited, and a substrate generally used in a manufacturing process of a semiconductor such as an IC or a manufacturing process of a circuit board such as a liquid crystal or a thermal head, and other photofabrication lithography processes is used. be able to.
  • Specific examples of the support include inorganic substrates such as silicon, SiO 2 , and SiN.
  • the heating temperature is preferably 70 to 130 ° C., more preferably 80 to 120 ° C. in both (iv) the preheating step and (v) the post-exposure heating step.
  • the heating time is preferably 30 to 300 seconds, more preferably 30 to 180 seconds, and further preferably 30 to 90 seconds in both (iv) the preheating step and (v) the post-exposure heating step.
  • the heating can be performed by means provided in the exposure apparatus and the developing apparatus, and may be performed using a hot plate or the like.
  • the wavelength is preferably 250 nm or less, more preferably 220 nm or less, and even more preferably 1 to 200 nm.
  • KrF excimer laser (248 nm), ArF excimer laser (193 nm), F 2 excimer laser (157 nm), X-ray, EUV (13 nm), electron beam, etc.
  • KrF excimer laser, ArF excimer laser, EUV or electron beam is preferred.
  • the alkaline developer a quaternary ammonium salt typified by tetramethylammonium hydroxide is usually used.
  • an alkaline aqueous solution such as an inorganic alkali, a primary to tertiary amine, an alcohol amine, and a cyclic amine can also be used. It can be used.
  • the alkaline developer may contain an appropriate amount of alcohols and / or surfactant.
  • the alkali concentration of the alkali developer is usually from 0.1 to 20% by mass.
  • the pH of the alkaline developer is usually 10-15.
  • the development time using an alkali developer is usually 10 to 300 seconds. The alkali concentration, pH, and development time of the alkali developer can be appropriately adjusted according to the pattern to be formed.
  • the organic developer is a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. Is preferred.
  • ketone solvents include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 2-heptanone (methyl amyl ketone), 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, Examples include cyclohexanone, methylcyclohexanone, phenylacetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, acetonyl acetone, ionone, diacetyl alcohol, acetyl carbinol, acetophenone, methyl naphthyl ketone, isophorone, and propylene carbonate.
  • ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl.
  • Examples include butyl acid, methyl 2-hydroxyisobutyrate, isoamyl acetate, isobutyl isobutyrate, and butyl propionate.
  • the solvents disclosed in paragraphs ⁇ 0715> to ⁇ 0718> of US Patent Application Publication No. 2016 / 0070167A1 can be used.
  • a plurality of the above solvents may be mixed, or may be mixed with a solvent other than the above or water.
  • the water content of the entire developer is preferably less than 50% by mass, more preferably less than 20% by mass, still more preferably less than 10% by mass, and particularly preferably substantially free of moisture.
  • the content of the organic solvent in the organic developer is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, still more preferably 90 to 100% by mass, and 95 to 100% by mass with respect to the total amount of the developer. % Is particularly preferred.
  • the organic developer may contain an appropriate amount of a known surfactant as required.
  • the surfactant content is usually from 0.001 to 5 mass%, preferably from 0.005 to 2 mass%, more preferably from 0.01 to 0.5 mass%, based on the total amount of the developer.
  • the organic developer may contain the acid diffusion control agent described above.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and left stationary for a certain time (paddle method), a substrate
  • dip method a method in which the developer is raised on the surface of the substrate by surface tension and left stationary for a certain time
  • a substrate Examples include a method of spraying developer on the surface (spray method) or a method of continuously discharging developer while scanning a developer discharge nozzle on a substrate rotating at a constant speed (dynamic dispensing method). It is done.
  • a step of developing using an alkaline aqueous solution (alkali developing step) and a step of developing using a developer containing an organic solvent (organic solvent developing step) may be combined.
  • alkali developing step alkaline aqueous solution
  • organic solvent developing step organic solvent developing step
  • pure water can be used as the rinsing solution used in the rinsing step after the developing step using the alkaline developer.
  • the pure water may contain an appropriate amount of a surfactant.
  • a process for removing the developing solution or the rinsing liquid adhering to the pattern with a supercritical fluid may be added.
  • a heat treatment may be performed in order to remove moisture remaining in the pattern.
  • the rinsing solution used in the rinsing step after the developing step using the developing solution containing an organic solvent there is no particular limitation on the rinsing solution used in the rinsing step after the developing step using the developing solution containing an organic solvent, as long as it does not dissolve the pattern, and a solution containing a general organic solvent can be used.
  • a rinse liquid use a rinse liquid containing at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents. Is preferred. Specific examples of the hydrocarbon solvent, ketone solvent, ester solvent, alcohol solvent, amide solvent, and ether solvent are the same as those described in the developer containing an organic solvent.
  • a rinse liquid containing a monohydric alcohol is more preferable.
  • Examples of the monohydric alcohol used in the rinsing step include linear, branched, or cyclic monohydric alcohols. Specifically, 1-butanol, 2-butanol, 3-methyl-1-butanol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 1-hexanol, 4-methyl-2-pentanol, 1 -Heptanol, 1-octanol, 2-hexanol, cyclopentanol, 2-heptanol, 2-octanol, 3-hexanol, 3-heptanol, 3-octanol, 4-octanol and methyl isobutyl carbinol.
  • Examples of monohydric alcohols having 5 or more carbon atoms include 1-hexanol, 2-hexanol, 4-methyl-2-pentanol, 1-pentanol, 3-methyl-1-butanol, and methyl isobutyl carbinol. .
  • a plurality of each component may be mixed, or may be used by mixing with an organic solvent other than the above.
  • the water content in the rinse liquid is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less. By setting the water content to 10% by mass or less, good development characteristics can be obtained.
  • the rinse solution may contain an appropriate amount of a surfactant.
  • the substrate that has been developed using the organic developer is washed with a rinse containing an organic solvent.
  • the method of the cleaning process is not particularly limited. For example, a method of continuing to discharge the rinse liquid onto the substrate rotating at a constant speed (rotary coating method), or immersing the substrate in a bath filled with the rinse liquid for a certain period of time. Examples thereof include a method (dip method) and a method (spray method) of spraying a rinsing liquid on the substrate surface.
  • the heating step after the rinsing step is usually 40 to 160 ° C., preferably 70 to 95 ° C., and the heating time is usually 10 seconds to 3 minutes, preferably 30 seconds to 90 seconds.
  • the actinic ray-sensitive or radiation-sensitive resin composition of the present invention and various materials used in the pattern forming method of the present invention preferably does not contain impurities such as metal components, isomers, and residual monomers.
  • the content of these impurities contained in the above various materials is preferably 1 ppm or less, more preferably 100 ppt or less, still more preferably 10 ppt or less, and substantially not (less than the detection limit of the measuring device). Is particularly preferred.
  • Examples of a method for removing impurities such as metals from the various materials include filtration using a filter.
  • the pore size of the filter is preferably 10 nm or less, more preferably 5 nm or less, and still more preferably 3 nm or less.
  • the filter material is preferably a polytetrafluoroethylene, polyethylene, or nylon filter.
  • a filter that has been washed in advance with an organic solvent may be used.
  • a plurality of types of filters may be connected in series or in parallel. When a plurality of types of filters are used, filters having different pore diameters and / or materials may be used in combination.
  • various materials may be filtered a plurality of times, and the step of filtering a plurality of times may be a circulating filtration step.
  • a filter with reduced eluate as disclosed in Japanese Patent Application Publication No. 2016-201426 Japanese Patent Laid-Open No. 2016-201426
  • impurities may be removed with an adsorbent, or a combination of filter filtration and adsorbent may be used.
  • adsorbent a known adsorbent can be used.
  • an inorganic adsorbent such as silica gel or zeolite, or an organic adsorbent such as activated carbon can be used.
  • Examples of the metal adsorbent include those disclosed in Japanese Patent Application Publication No. 2016-206500 (Japanese Patent Laid-Open No. 2016-206500).
  • a raw material having a low metal content is selected as a raw material constituting the various materials, and filter filtration is performed on the raw materials constituting the various materials.
  • a method of performing distillation under a condition in which contamination is suppressed as much as possible by lining the inside of the apparatus with Teflon (registered trademark) or the like can be mentioned.
  • Teflon registered trademark
  • the preferable conditions for filter filtration performed on the raw materials constituting the various materials are the same as those described above.
  • a method for improving the surface roughness of the pattern may be applied to the pattern formed by the pattern forming method of the present invention.
  • a method for improving the surface roughness of the pattern for example, a method of processing a pattern by a plasma of a gas containing hydrogen disclosed in US Patent Application Publication No. 2015/0104957 is cited.
  • Japanese Patent Application Publication No. 2004-235468 JP 2004-235468 A
  • US Patent Application Publication No. 2010/0020297 Proc. of SPIE Vol. 8328 83280N-1 “EUV Resist Curing Technique for LWR Reduction and Etch Selectivity Enhancement”
  • the pattern formed by the above method is disclosed in, for example, Japanese Patent Application Publication No. 1991-270227 (Japanese Patent Laid-Open No. 3-270227) and US Patent Application Publication No. 2013/0209941. It can be used as a core material for the spacer process.
  • the present invention also relates to an electronic device manufacturing method including the pattern forming method described above.
  • the electronic device manufactured by the method for manufacturing an electronic device of the present invention is suitably mounted on an electric / electronic device (for example, home appliances, OA (Office Automation) -related devices, media-related devices, optical devices, communication devices, etc.). Is done.
  • an electric / electronic device for example, home appliances, OA (Office Automation) -related devices, media-related devices, optical devices, communication devices, etc.
  • ⁇ Hydrophobic resin> The structures of the hydrophobic resins (1b and 2b) shown in Table 1 are shown below.
  • the weight average molecular weight (Mw) and dispersion degree (Mw / Mn) of hydrophobic resin 1b and 2b were measured by GPC (carrier: THF) (it is a polystyrene conversion value).
  • the composition ratio (mol% ratio) of the resin was measured by 13 C-NMR.
  • SL-1 Propylene glycol monomethyl ether acetate (PGMEA)
  • SL-2 Propylene glycol monomethyl ether (PGME)
  • SL-3 Cyclohexanone
  • SL-4 ⁇ -Butyrolactone
  • ArF excimer laser immersion scanner manufactured by ASML; XT1700i, NA1.20, C-Quad, outer sigma 0.730, inner sigma 0.630, XY deflection
  • actinic ray-sensitive or radiation-sensitive film And exposed through a 6% halftone mask of 1: 1 line and space pattern with a line width of 75 nm.
  • immersion liquid ultrapure water was used.
  • the actinic ray-sensitive or radiation-sensitive film after exposure was baked at 120 ° C. for 60 seconds, developed with n-butyl acetate for 30 seconds, and then rinsed with 4-methyl-2-pentanol for 30 seconds. Thereafter, this was spin-dried to obtain a negative pattern.
  • Table 1 the numerical values in parentheses in the acid generator column and the basic compound column represent the content (g). In Table 1, the numbers in parentheses in the solvent column represent mass ratios. In Table 1, the contents of the resin, the hydrophobic resin, and the surfactant are as described in the respective columns in the table (unit: g).
  • the acid represented by the general formula (I) is an acid represented by the general formula (III), and at least one of R 2 contains an alicyclic structure. In the case of a group hydrocarbon group, it was confirmed that LWR was more excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

L'invention concerne : une composition de résine sensible à la lumière active ou au rayonnement à partir de laquelle un motif ayant une faible rugosité de largeur de ligne (LWR) est formé ; un film de réserve qui utilise cette composition de résine sensible à la lumière active ou au rayonnement ; un procédé de formation de motif ; et un procédé de production d'un dispositif électronique. Cette composition de résine sensible à la lumière active ou au rayonnement contient un composé qui génère un acide représenté par la formule générale (I) lorsqu'il est exposé à la lumière active ou au rayonnement.
PCT/JP2018/003737 2017-03-13 2018-02-05 Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production d'un dispositif électronique WO2018168252A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019505763A JP7015295B2 (ja) 2017-03-13 2018-02-05 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047525 2017-03-13
JP2017-047525 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168252A1 true WO2018168252A1 (fr) 2018-09-20

Family

ID=63523804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003737 WO2018168252A1 (fr) 2017-03-13 2018-02-05 Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de production d'un dispositif électronique

Country Status (3)

Country Link
JP (1) JP7015295B2 (fr)
TW (1) TW201839508A (fr)
WO (1) WO2018168252A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733463B (zh) * 2019-05-31 2021-07-11 美商羅門哈斯電子材料有限公司 光阻劑圖案修整組成物及圖案形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010715A (ja) * 1996-06-25 1998-01-16 Fuji Photo Film Co Ltd ポジ型感光性組成物
WO2011030737A1 (fr) * 2009-09-11 2011-03-17 Jsr株式会社 Composition et nouveau composé sensibles aux rayonnements
JP2012194292A (ja) * 2011-03-15 2012-10-11 Jsr Corp フォトレジスト組成物
JP2014126767A (ja) * 2012-12-27 2014-07-07 Fujifilm Corp 感活性光線性または感放射線性樹脂組成物、感活性光線性または感放射線性膜及びパターン形成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6743618B2 (ja) * 2016-09-21 2020-08-19 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、化合物及び化合物の製造方法
WO2018101339A1 (fr) * 2016-12-01 2018-06-07 Jsr株式会社 Composition de résine sensible au rayonnement, composé sel d'onium et procédé de formation d'un motif de réserve
KR102327880B1 (ko) * 2016-12-22 2021-11-17 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
KR102323057B1 (ko) * 2016-12-22 2021-11-08 후지필름 가부시키가이샤 감활성광선성 또는 감방사선성 수지 조성물, 감활성광선성 또는 감방사선성막, 패턴 형성 방법, 전자 디바이스의 제조 방법 및 광산발생제

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010715A (ja) * 1996-06-25 1998-01-16 Fuji Photo Film Co Ltd ポジ型感光性組成物
WO2011030737A1 (fr) * 2009-09-11 2011-03-17 Jsr株式会社 Composition et nouveau composé sensibles aux rayonnements
JP2012194292A (ja) * 2011-03-15 2012-10-11 Jsr Corp フォトレジスト組成物
JP2014126767A (ja) * 2012-12-27 2014-07-07 Fujifilm Corp 感活性光線性または感放射線性樹脂組成物、感活性光線性または感放射線性膜及びパターン形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI733463B (zh) * 2019-05-31 2021-07-11 美商羅門哈斯電子材料有限公司 光阻劑圖案修整組成物及圖案形成方法
US11506981B2 (en) 2019-05-31 2022-11-22 Rohm And Haas Electronic Materials Llc Photoresist pattern trimming compositions and pattern formation methods

Also Published As

Publication number Publication date
TW201839508A (zh) 2018-11-01
JP7015295B2 (ja) 2022-02-02
JPWO2018168252A1 (ja) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2018212079A1 (fr) Composition de résine sensible aux rayons actifs ou sensible à un rayonnement, film de résist, procédé de formation de motif, et procédé de production de dispositif électronique
WO2020066824A1 (fr) Composition de résine sensible à la lumière actinique ou au rayonnement, film de réserve, procédé de formation de motif, et procédé de production de dispositif électronique
WO2019123895A1 (fr) Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de fabrication d'un dispositif électronique et composé
JP2018155788A (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP6727402B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2018180070A1 (fr) Composition de résine sensible aux rayons actiniques ou sensible au rayonnement, film de réserve, procédé de formation de motif, et procédé de production d'un dispositif électronique
WO2019026549A1 (fr) Composition de résine sensible à la lumière active ou au rayonnement, film de réserve, procédé de formation de motif et procédé de fabrication d'un dispositif électronique
WO2019167737A1 (fr) Composition de résine sensible aux rayons actifs ou au rayonnement, film de réserve, procédé de formation de motif et procédé de fabrication d'un dispositif électronique
WO2018168258A1 (fr) Composition de résine sensible à la lumière active ou sensible au rayonnement, film de réserve, procédé de formation de motifs et procédé de production de dispositif électronique
JP7220229B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP2023090803A (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP6773794B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
JP7191981B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
JP7015295B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
JP7124094B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
KR102655997B1 (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막, 패턴 형성 방법, 및 전자 디바이스의 제조 방법
WO2022024856A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, procédé de fabrication de dispositif électronique, et composé
WO2019167481A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, film sensible aux rayons actiniques ou au rayonnement, procédé de formation de motif, et procédé de fabrication de dispositif électronique
WO2019167451A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, film sensible aux rayons actiniques ou au rayonnement, procédé de formation de motif, et procédé de production de dispositif électronique
JP7084995B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、樹脂
WO2019187804A1 (fr) Composition de résine sensible aux rayons actifs ou au rayonnement, film sensible aux rayons actifs ou au rayonnement, procédé de formation de motif, procédé de fabrication de dispositif électronique et polyester
WO2019188455A1 (fr) Composition de résine sensible aux rayons actiniques ou au rayonnement, film sensible aux rayons actiniques ou au rayonnement, procédé de formation de motif, procédé de fabrication d'un dispositif électronique et polyester
WO2019167570A1 (fr) Composition de résine sensible à la lumière actinique ou au rayonnement, film de réserve, procédé de formation de motif et procédé de fabrication d'un dispositif électronique
TW202011114A (zh) 感光化射線性或感放射線性樹脂組成物、感光化射線性或感放射線性膜、圖案形成方法、電子器件之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768612

Country of ref document: EP

Kind code of ref document: A1