WO2018166349A1 - 一种多自由度驱动手臂及采用该手臂的双臂机器人 - Google Patents

一种多自由度驱动手臂及采用该手臂的双臂机器人 Download PDF

Info

Publication number
WO2018166349A1
WO2018166349A1 PCT/CN2018/077579 CN2018077579W WO2018166349A1 WO 2018166349 A1 WO2018166349 A1 WO 2018166349A1 CN 2018077579 W CN2018077579 W CN 2018077579W WO 2018166349 A1 WO2018166349 A1 WO 2018166349A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
freedom
harmonic reducer
limiting plate
synchronous wheel
Prior art date
Application number
PCT/CN2018/077579
Other languages
English (en)
French (fr)
Inventor
周雪峰
李凯格
程韬波
黄丹
Original Assignee
广东省智能制造研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省智能制造研究所 filed Critical 广东省智能制造研究所
Priority to US16/494,610 priority Critical patent/US11318604B2/en
Publication of WO2018166349A1 publication Critical patent/WO2018166349A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0009Gripping heads and other end effectors comprising multi-articulated fingers, e.g. resembling a human hand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0028Gripping heads and other end effectors with movable, e.g. pivoting gripping jaw surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0258Two-dimensional joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • B25J19/0029Means for supplying energy to the end effector arranged within the different robot elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • B25J9/0087Dual arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • B25J9/1025Harmonic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to the technical field of industrial robots, in particular to a multi-degree-of-freedom driving arm and a dual-arm robot using the same.
  • the research on dual-arm robots began in the 1990s and was mainly applied to space station operating robots and humanoid robots, such as the Justin robot developed by German Aerospace Center DLR, the Robonaut 2 robot developed by NASA NASA, and Nissan Japan.
  • the main research contents include: the trajectory planning of the two arms, the algorithm of the two-arm coordinated control and the control of the operating force/torque.
  • the existing single-arm robots coordinate work, the overall space is large, which is a waste of space. After the installation position is fixed, it is not easy to change the adjustment production line; the existing dual-arm robot adopts a custom integrated design of the motor and the reducer. The cost is very high.
  • a multi-degree-of-freedom driving arm comprising a single-degree-of-freedom drive module on the inner side and a plurality of double-degree-of-freedom drives arranged on the outer side and sequentially connected from the inner side to the outer side.
  • the single degree of freedom drive module is coupled to the innermost dual degree of freedom drive module;
  • the dual degree of freedom drive module has two orthogonal rotational degrees of freedom, respectively a first rotational degree of freedom and a second rotation a first degree of freedom, the first rotational degree of freedom comprising a first drive mechanism for driving the two degree of freedom drive module to rotate on a first degree of rotational freedom, the second degree of freedom of rotation comprising for driving the double freedom a second drive mechanism that rotates on the second rotational degree of freedom;
  • the first drive mechanism of the dual-degree-of-freedom drive module located on the outer side is disposed on the second drive mechanism of the dual-degree-of-freedom drive module adjacent thereto and located inside .
  • the single-degree-of-freedom driving module is combined with several double-degree-of-freedom driving modules, so that the robot arm becomes a multi-degree-of-freedom driving arm, which is more flexible, changeable, and adaptable, and can reduce the dependence on the fixture, and is suitable for completing such as assembly work. Complex tasks.
  • the two-degree-of-freedom drive module includes a triangular bracket separated by a partition to form a first space and a second space, a first outer casing disposed on the triangular bracket and used to seal the first space and the second space, and a right angle bracket
  • the first driving mechanism includes a first motor bracket fixed in the first space, a first servo motor fixed on the first motor bracket, a first motor controller for driving the first servo motor, and a first synchronous motor coupled to the first servo motor and driven by the first servo motor, a bevel gear support fixed in the first space, a second synchronous wheel, a first bevel gear, a second bevel gear, and a first a harmonic reducer, a first limiting plate, a first positioning plate and a first conduit fixing bracket through which the conduit passes; the second synchronous wheel and the first bevel gear are integrally supported by a bearing and a bevel gear through a shaft connection The racks are connected, and the second synchronous wheel and the first bevel gear
  • the first servo motor drives the first synchronous wheel and the second synchronous wheel to rotate under the driving of the first motor controller, thereby driving the first bevel gear to mesh with the rotation of the second bevel gear, and the function of the first speed reducer and the first limiting plate
  • the right angle bracket that is clamped is rotated about the axis of the second bevel gear and the first speed reducer to realize the rotation in one degree of freedom.
  • the second driving mechanism includes a second motor bracket fixed in the first space, a second servo motor fixed on the second motor bracket, a second motor controller for driving the second servo motor, a third synchronous wheel, a fourth synchronous wheel, a second harmonic reducer coaxially fixed with the fourth synchronous wheel, a second limiting plate, a second positioning plate and a conduit for passing through the second servo motor shaft a second conduit fixing frame;
  • the third synchronous wheel is coupled to the fourth synchronous wheel by a second timing belt;
  • the side of the triangular bracket is open with a third through which the rotating shaft of the fourth synchronous wheel passes a mounting hole, a rotating shaft of the fourth synchronous wheel is fixedly connected to an input end of the second harmonic reducer, and an end portion of the input end of the second harmonic reducer is fixedly mounted to a double free adjacent thereto
  • the second conduit fixing bracket is fixed at the center of the second positioning plate, and the second limiting plate is fixed to the
  • the second servo motor is driven by the second motor controller to drive the third synchronous wheel and the fourth synchronous wheel to rotate, and the second speed reducer and the second limiting plate act to make the double-degree-of-freedom driving module rotate around the fourth synchronous wheel. Rotation is performed centering on the axis of the second reducer to achieve rotation in the other direction of freedom.
  • a second outer casing for covering the second harmonic reducer is disposed on a side of the triangular bracket between adjacent two-degree-of-freedom drive modules.
  • the single degree of freedom drive module includes a first mounting plate, a second mounting plate mounted perpendicularly to the first mounting plate, a third motor bracket disposed on the first mounting plate, and a third servo fixed to the third motor bracket a motor, a fifth synchronous wheel connected to the third servo motor drive shaft and driven by the third servo motor, a sixth synchronous wheel, a third harmonic reducer coaxially fixed with the sixth synchronous wheel, and a third limit plate a third positioning plate and a third conduit fixing bracket through which the conduit passes; the fifth synchronous wheel is coupled to the sixth synchronous wheel by a third timing belt; the rotating shaft of the sixth synchronous wheel The input end of the third harmonic reducer is fixedly connected, and the second mounting plate is clamped between the sixth synchronous wheel and the third harmonic reducer, where the input end of the third harmonic reducer is located One end of the third harmonic reducer is mounted on the second mounting plate; the end portion of the third harmonic reducer input end is mounted and fixed to a triangle around the third mounting hole in
  • the side of the triangular bracket in the adjacent two-degree-of-freedom driving module of the module, the third limiting plate, the third harmonic reducer, the through hole in the center of the sixth synchronous wheel, and the side of the triangular bracket is clamped in the third Between the harmonic reducer and the third positioning plate.
  • the third servo motor drives the fifth synchronous wheel and the sixth synchronous wheel, and the third harmonic reducer and the third limiting plate act to drive the double-degree-of-freedom driving module adjacent to the single-degree-of-freedom driving module to bypass the first
  • the shafts of the six synchronous wheels and the third harmonic reducer are rotated centrally, thereby realizing one degree of freedom of rotation of the two-degree-of-freedom drive module.
  • the periphery of the first limiting plate is partially hollowed out to form a gap-disposed vacancy and a convex position, and the first periphery of the first harmonic reducer is provided with three first sensors distributed at intervals of 45 degrees.
  • the first sensor When the first limiting plate rotates with the second bevel gear, the first sensor is aligned with the missing position or the convex position on the first limiting plate; the second limiting plate and the third limiting plate are aligned
  • the structure is consistent with the structure of the first limiting plate; the side of the triangular bracket around the second harmonic reducer is provided with three second sensors distributed at a 45 degree interval, and the second limiting plate is provided.
  • the fourth synchronous wheel rotates, the first sensor is aligned with the missing position or the convex position on the second limiting plate; and the second mounting plate around the third harmonic reducer is provided with three intervals.
  • the third sensor of the 45 degree distribution when the third limiting plate rotates with the sixth synchronous wheel, the third sensor is
  • the two-degree-of-freedom drive module is provided with three.
  • the two-degree-of-freedom drive module is equipped with three, with a single-degree-of-freedom drive module, forming a one-arm seven-degree-of-freedom robot arm, making the arm more flexible.
  • the dual-arm robot includes a base, two sets of multi-degree-of-freedom driving arms disposed on the base, and a clamp disposed at an outer end of the multi-degree-of-freedom driving arm; each set of multi-degree-of-freedom driving arms includes an inner side to the outer side sequentially connected a three-degree-of-freedom drive module, the inner two-degree-of-freedom drive module is coupled to a single-degree-of-freedom drive module coupled to the base, the clamp being coupled to the dual-degree-of-freedom drive module located on the outer side;
  • the end of the first servo motor is provided with a relative encoder and a brake for controlling the limit information of the first sensor and the first limiting plate, and the dual-arm robot is provided with the receiving and transmitting by the relative encoder.
  • a processing module that feeds back information and processes; the ends of the second servo motor and the third servo motor are the same type of relative encoder and brake as the first servo motor.
  • the invention has the advantages that the robot has a single-arm seven-degree-of-freedom, flexible and variable, and is suitable for completing complicated tasks such as assembly work; the cost is low, the structure is compact, and the energy of the self-structure in a unit volume is Maximum density is achieved; the arm has a modular structure that guarantees better interchangeability and saves on maintenance costs.
  • Figure 1 is a perspective view of an embodiment of the present invention
  • Figure 2 is a front elevational view of an embodiment of the present invention
  • FIG. 3 is a perspective view of the unilateral arm after removing the first outer casing according to an embodiment of the present invention
  • FIG. 4 is a front view of the unilateral arm after removing the first outer casing according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a single degree of freedom single arm according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of the interior of a single degree of freedom one arm according to an embodiment of the present invention.
  • FIG. 7 is a top plan view of a seven-degree-of-freedom single arm according to an embodiment of the present invention.
  • Figure 8 is a front elevational view of a seven-degree-of-freedom single arm according to an embodiment of the present invention.
  • FIG. 9 is a model diagram of a seven degree of freedom distribution model according to an embodiment of the present invention.
  • FIG. 10 is a front view of a dual degree of freedom driving module according to an embodiment of the present invention.
  • FIG. 11 is a top plan view of a dual degree of freedom driving module according to an embodiment of the present invention.
  • FIG. 12 is a bottom view of a dual degree of freedom driving module according to an embodiment of the present invention.
  • Figure 13 is a right side elevational view of the dual degree of freedom drive module of the embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a dual degree of freedom driving module according to an embodiment of the present invention.
  • 15 is a second schematic structural diagram of a dual degree of freedom driving module according to an embodiment of the present invention.
  • 16 is a third schematic structural diagram of a dual degree of freedom driving module according to an embodiment of the present invention.
  • 17 is a fourth structural diagram of a dual degree of freedom driving module according to an embodiment of the present invention.
  • FIG. 18 is a fifth structural diagram of a dual degree of freedom driving module according to an embodiment of the present invention.
  • 19 is a sixth structural diagram of a dual degree of freedom driving module according to an embodiment of the present invention.
  • 20 is a seventh structural diagram of a dual degree of freedom driving module according to an embodiment of the present invention.
  • 21 is a front view of a single degree of freedom driving module and a dual degree of freedom driving module according to an embodiment of the present invention
  • 22 is a schematic structural diagram of a single-degree-of-freedom driving module and a dual-degree-of-freedom driving module according to an embodiment of the present invention
  • 23 is a second schematic structural diagram of a single degree of freedom driving module and a dual degree of freedom driving module according to an embodiment of the present invention.
  • 24 is a third schematic structural diagram of a single degree of freedom driving module and a dual degree of freedom driving module according to an embodiment of the present invention.
  • 25 is a fourth structural diagram of a single-degree-of-freedom driving module and a dual-degree-of-freedom driving module according to an embodiment of the present invention.
  • 26 is a diagram of a reference state of use state according to an embodiment of the present invention.
  • Figure 27 is a perspective view showing the installation of a conduit fixing bracket and a positioning plate according to an embodiment of the present invention.
  • FIG. 28 is a front view showing the installation of a conduit fixing bracket and a positioning plate according to an embodiment of the present invention
  • 29 is a schematic structural diagram of a motion mechanism of a dual degree of freedom driving module in a right limit state according to an embodiment of the present invention.
  • FIG. 30 is a schematic structural diagram of a motion mechanism of a dual degree of freedom driving module in a state of 0 to 45 degrees in the lower right side according to an embodiment of the present invention
  • 31 is a schematic structural view showing a state in which a motion mechanism is in a right lower 45 degrees state in a dual degree of freedom driving module according to an embodiment of the present invention
  • 32 is a schematic structural diagram of a motion mechanism of a dual degree of freedom driving module in a state of 45 to 90 degrees in the lower right side according to an embodiment of the present invention
  • 33 is a schematic structural view showing a state in which a motion mechanism of a two-degree-of-freedom driving module is in a state directly below 90 degrees according to an embodiment of the present invention
  • FIG. 34 is a schematic structural diagram of a motion mechanism of a dual degree of freedom driving module in a state of 45 to 90 degrees in the lower left side according to an embodiment of the present invention
  • 35 is a schematic structural view showing a state in which a motion mechanism is in a lower left 45 degrees state in a dual degree of freedom driving module according to an embodiment of the present invention
  • 36 is a schematic structural diagram of a motion mechanism of a dual degree of freedom driving module in a state of 0 to 45 degrees at the lower left in the double degree of freedom driving module according to an embodiment of the present invention
  • FIG. 37 is a schematic structural diagram of a motion mechanism of a dual degree of freedom driving module in a left limit state according to an embodiment of the present invention.
  • 39 is a third reference diagram of a use state according to an embodiment of the present invention.
  • FIG. 40 is a fourth reference diagram of a use state according to an embodiment of the present invention.
  • Figure 41 is a fifth diagram of a use state reference diagram according to an embodiment of the present invention.
  • a multi-degree-of-freedom driving arm includes a single-degree-of-freedom driving module 1 located on the inner side, and a plurality of double-degree-of-freedom driving modules 2 disposed on the outer side and sequentially contacting from the inner side to the outer side.
  • the single degree of freedom drive module 1 is connected to the innermost two-degree-of-freedom drive module 2; the two-degree-of-freedom drive module 2 has two orthogonal rotational degrees of freedom, respectively a first rotational degree of freedom and a second degree of freedom of rotation
  • the first rotational degree of freedom includes a first drive mechanism for driving the two-degree-of-freedom drive module 2 to rotate on the first rotational degree of freedom
  • the second rotational degree of freedom includes for driving the two-degree-of-freedom drive module 2 to be free in the second rotation
  • the second drive mechanism is rotated on the second side; the first drive mechanism of the double-degree-of-freedom drive module 2 located on the outer side is disposed on the second drive mechanism of the two-degree-of-freedom drive module 2 adjacent thereto and located inside.
  • the single-degree-of-freedom driving module 1 is combined with a plurality of dual-degree-of-freedom driving modules 2, so that the robot arm becomes a multi-degree-of-freedom driving arm, which is more flexible, variable, and adaptable, and can reduce the dependence on the fixture 43, and is suitable for completing such as Complex tasks such as assembly work.
  • This application designs and develops a 14-DOF dual-arm robot (single-arm 7-degree-of-freedom) body, and the motor and reducer adopt the existing high-power density servo motor and harmonic reducer on the market.
  • the design of the dual-arm robot in this case adopts the module structure design to ensure better interchangeability.
  • the two-arm robot body includes two arms as shown in the figure, and the two arms are in the same structural form.
  • the two-degree-of-freedom drive module 2 includes a triangular bracket 3 separated by a partition to form a first space 4 and a second space 5, a first outer casing 6 disposed on the triangular bracket 3 and used to seal the first space 4 and the second space 5 And a right angle bracket 7;
  • the first driving mechanism includes a first motor bracket 8 fixed in the first space 4, a first servo motor 9 fixed on the first motor bracket 8, and a first unit for driving the first servo motor 9.
  • a motor controller 10 a first synchronous wheel 11 connected to the first servo motor 9 and driven by the first servo motor 9, a bevel gear support 12 fixed in the first space 4, and a second synchronous wheel 13 a first bevel gear 14, a second bevel gear 15, a first harmonic reducer 16, a first limiting plate 17, a first positioning plate 51, and a first conduit holder 18 through which the conduit passes;
  • the synchronous wheel 13 and the first bevel gear 14 are integrally connected to the bevel gear support frame 12 through a bearing through a shaft connection, and the second synchronous wheel 13 and the first bevel gear 14 are respectively located on both sides of the bevel gear support frame 12;
  • the wheel 11 is coupled to the second synchronous wheel 13 via the first timing belt 19; the second cone
  • the gear 15 is located in the first space 4, and the first harmonic reducer 16 and the first limiting plate 17 are both located in the second space 5, and the first bevel gear 14 is meshed with the second bevel gear 15 at a right angle;
  • the bevel gear 15
  • the first conduit fixing bracket 18 sequentially passes through the first limiting plate 17, the first harmonic reducer 16, and the through hole at the center of the second bevel gear 15;
  • the triangular bracket 3 is provided with a first mounting hole, first One end portion of the input end of the harmonic reducer 16 is mounted on the partition plate of the triangular bracket 3 around the first mounting hole;
  • the horizontal surface of the right angle bracket 7 has a second mounting hole, and the output end of the first harmonic reducer 16 is located One end portion passes through the mounting hole, and the partition of the right angle bracket 7 is clamped and fixed between the first harmonic reducer 16 and the first limiting plate 17.
  • the first servo motor 9 drives the first synchronous wheel 11 and the second synchronous wheel 13 to rotate under the driving of the first motor controller 10, thereby driving the first bevel gear 14 to mesh with the second bevel gear 15, and the first reducer and the first Under the action of a limiting plate 17, the clamped right angle bracket 7 is rotated about the axis of the second bevel gear 15 and the first reducer, thereby realizing a rotation in a degree of freedom.
  • the second driving mechanism includes a second motor bracket 20 fixed in the first space 4, a second servo motor 21 fixed on the second motor bracket 20, a second motor controller 22 for driving the second servo motor 21, a third synchronous wheel 23 driven by the second servo motor 21, a fourth synchronous wheel 24, a second harmonic reducer 25 coaxially fixed with the fourth synchronous wheel 24, a second limiting plate 26, and a second positioning plate 27 and a second conduit holder 28 through which the conduit passes; the third timing wheel 23 is coupled to the fourth timing wheel 24 via the second timing belt 29; the side of the triangle bracket 3 is open for the fourth timing wheel 24 The third mounting hole through which the rotating shaft passes, the rotating shaft of the fourth synchronous wheel 24 is fixedly connected with the input end of the second harmonic reducer 25, and the end portion of the input end of the second harmonic reducer 25 is fixedly mounted adjacent thereto
  • the second conduit fixing bracket 28 is fixed in the center of the second positioning plate 27, and the second
  • the second servo motor 21 drives the third synchronous wheel 23 and the fourth synchronous wheel 24 to rotate under the driving of the second motor controller 22, and the second speed reducer and the second limiting plate 26 act to make the double-degree-of-freedom driving module. 2 is rotated around the axis of the fourth synchronous wheel 24 and the second reducer to achieve the rotation in the other direction of freedom.
  • a second outer casing 30 for covering the second harmonic reducer 25 is disposed on the side of the triangular bracket 3 between the adjacent two-degree-of-freedom drive modules 2.
  • the single degree of freedom drive module 1 includes a first mounting plate 31, a second mounting plate 32 mounted perpendicularly to the first mounting plate 31, a third motor bracket 33 disposed on the first mounting plate 31, and a third motor bracket 33.
  • the upper third servo motor 34, the fifth synchronous wheel 35 connected to the third servo motor 34 and driven by the third servo motor 34, the sixth synchronous wheel 36, and the sixth synchronous wheel 36 are coaxially fixed a third harmonic reducer 37, a third limiting plate 38, a third positioning plate 39 and a third conduit fixing frame 40 through which the conduit passes; the fifth synchronous wheel 35 passes through the third synchronous belt 41 and the sixth synchronous wheel 36 is coupled together; the rotating shaft of the sixth synchronous wheel 36 is fixedly connected to the input end of the third harmonic reducer 37, and the second mounting plate 32 is clamped between the sixth synchronous wheel 36 and the third harmonic reducer 37.
  • the one end portion of the input end of the third harmonic reducer 37 is fixedly mounted on the second mounting plate 32; the end portion of the input end of the third harmonic reducer 37 is mounted and fixed to a double-degree-of-freedom drive adjacent thereto.
  • the side of the triangular bracket 3 around the third mounting hole in the module 2; the third conduit is fixed
  • the frame 40 is fixed in the center of the third positioning plate 39, the third limiting plate 38 is fixed at the output end of the third harmonic reducer 37, and the third conduit fixing frame 40 is sequentially passed adjacent to the single degree of freedom driving module 1.
  • the two degrees of freedom drive the side of the triangular bracket 3 in the module 2, the third limiting plate 38, the third harmonic reducer 37, the through hole in the center of the sixth synchronous wheel 36, and clamp the side of the triangular bracket 3 Between the third harmonic reducer 37 and the third positioning plate 39.
  • the third servo motor 34 drives the fifth synchronous wheel 35 and the sixth synchronous wheel 36, and the third harmonic reducer 37 and the third limiting plate 38 act to drive the double adjacent to the single-degree-of-freedom driving module 1.
  • the degree of freedom driving module 2 rotates around the axis of the sixth synchronizing wheel 36 and the third harmonic reducer 37, thereby realizing one degree of freedom of rotation of the two-degree-of-freedom driving module 2.
  • the periphery of the first limiting plate 17 is partially hollowed out to form a gap 46 and a convex position 47.
  • the partition around the first harmonic reducer 16 is provided with three intervals of 45 degrees.
  • a sensor 48 when the first limiting plate 17 rotates with the second bevel gear 15, the first sensor 48 is aligned with the missing position 46 or the convex position 47 on the first limiting plate 17;
  • the structure of the second limiting plate 26 and the third limiting plate 38 is the same as the structure of the first limiting plate 17; the three sides of the triangular bracket 3 around the second harmonic reducer 25 are provided with three intervals.
  • the second sensor 49 of the 45 degree distribution when the second limiting plate 26 rotates with the fourth synchronous wheel 24, the first sensor 48 is aligned with the missing position 46 or the convex on the second limiting plate 26 a third sensor 50 is disposed on the second mounting plate 32 around the third harmonic reducer 37 at a distance of 45 degrees.
  • the third limiting plate 38 rotates with the sixth synchronous wheel 36.
  • the third sensor 50 is aligned with the missing position 46 or the convex position 47 on the third limiting plate 38.
  • the two-degree-of-freedom drive module 2 is provided with three.
  • the two-degree-of-freedom driving module 2 is provided with three, and a single-degree-of-freedom driving module 1 is formed to form a one-arm seven-degree-of-freedom robot arm, which makes the arm more flexible and changeable.
  • the dual-arm robot includes a base 42, two sets of multi-degree-of-freedom driving arms disposed on the base 42, and a clamp 43 disposed at an outer end of the multi-degree-of-freedom driving arm; each set of multi-degree-of-freedom driving arms includes an inner side outwardly
  • the two double-degree-of-freedom drive modules 2 connected in series are connected to the double-degree-of-freedom drive module 2 on the inner side, and the single-degree-of-freedom drive module 1 connected to the base 42 is connected, and the clamp 43 is connected to the double on the outer side.
  • the degree of freedom drives the module 2; the end of the first servo motor 9 is provided with a relative encoder and a brake for controlling the limit information of the first sensor 48 and the first limiting plate 17, the dual-arm robot And a processing module that receives the feedback information transmitted by the relative encoder and processes the same; the ends of the second servo motor 21 and the third servo motor 34 are the same as the first structure of the first servo motor 9 Encoder and brake.
  • FIG. 7 and 8 there is a top view and a front view of a seven-degree-of-freedom single-arm structure, in which the arrows indicate the center of rotation of the joint of the mechanism;
  • Figure 9 shows a seven-degree-of-freedom distribution model in which seven orthogonal axes are alternately connected.
  • Figures 38 through 41 for the specific state of the rotation of the single-arm structure around the center of rotation.
  • a single two-degree-of-freedom drive module 2 has two orthogonal rotational degrees of freedom, each of which is driven by a servo motor and a harmonic reducer; the robot supplies power to the arm and transmits it through the wire.
  • the wire includes a wire guide 44 and a wire guide support 45 that is wrapped around the outer circumference of the wire guide 44 to form a conduit; the conduit is fixed through the first conduit holder 18 and the second conduit.
  • the frame 28 and the third conduit fixing frame 40 supply power to the three servo motors and the motor controller.
  • a single two-degree-of-freedom driving module 2 is shown as a driving mechanism of B, D, and F degrees of freedom in FIG. 9.
  • a single two-degree-of-freedom driving module 2 is shown as C, E, and G in FIG. The driving mechanism of the degree of freedom.
  • the mechanism limit design is shown.
  • the first sensor 48, the second sensor 49, and the third sensor 50 all of the three sensors adopt a reflective photoelectric sensor, and the same type of sensor is provided with three. They are distributed around the harmonic reducer at a 45-degree interval centering on the central axis of the harmonic reducer of the mechanism.
  • the first sensor 48 and the first conduit holder 18 and the first limiting plate 17 form a limit switch of the first harmonic reducer 16;
  • the second sensor 49 and the second conduit holder 28 and the second limiting plate 26 is a limit switch that constitutes the second harmonic reducer 25;
  • the third sensor 50 and the third conduit holder 40 and the third limiting plate 38 constitute a limit switch of the third harmonic reducer 37.
  • the reflective photoelectric sensor can illuminate or reflect the optical signal through the shape of the edge of the limiting plate when the signal light is irradiated on the edge of the limiting plate. If it is reflective, the optical signal of the sensor is convex. Blocking and reflecting; if it passes, the optical signal of the sensor passes through the missing position 46.
  • the set optical signal is set to 1 when the convex position is blocked by the convex position 47, and is 0 when the missing position of the limiting plate is 0.
  • the eight position status numbers are: 000, 001, 010 011, 100, 101, 110, 111.
  • the numbering status is shown in Figures 29 to 37.
  • Figure 29 shows the right limit state with the photosensor signal at 100 (sorting the leftmost sensor start). This position is the right turn limit position.
  • Figure 30 shows the motion mechanism in the lower right (0-45 degrees) state, and the photosensor signal is 011 (sorting the leftmost sensor starts). This position is the right turn limit position.
  • Figure 31 shows the motion mechanism at 45 degrees to the lower right and the photosensor signal is 110 (sorting the leftmost sensor starts).
  • Figure 32 shows the motion mechanism in the lower right (45-90 degrees) state with the photosensor signal 001 (sorting the leftmost sensor start).
  • Figure 33 shows the motion mechanism at 90 degrees directly below and the photosensor signal is 000 (sorting the leftmost sensor starts). This position is the middle of the trip.
  • Figure 34 shows the motion mechanism at the lower left (45 degrees - 90 degrees) status indication, and the photosensor signal is 011 (sorting the leftmost sensor start).
  • Figure 35 shows the motion mechanism at the lower left (45 degrees) status indication and the photosensor signal is 100 (sorting the leftmost sensor start).
  • Figure 36 shows the motion mechanism at the lower left (0 degrees - 45 degrees) status indication and the photosensor signal is 110 (sorting the leftmost sensor start).
  • Figure 37 shows the motion mechanism in the left state indication, and the photosensor signal is 001 (sorting the leftmost sensor starts). This position is the left turn limit position.
  • the limit design shown by reference numeral 49 in Fig. 20 is identical to the limit design principle shown by reference numeral 48 in Fig. 20.
  • the servo motor is equipped with a relative encoder and a brake at the end. Accurate absolute position feedback can be achieved through the limit information and the feedback information of the encoder.
  • the limit design of the second sensor 49 relates to various components of the second driving mechanism, such as the second sensor 49, the second harmonic reducer 25, the second limiting plate 26, etc., and the limit design thereof and the first driving mechanism
  • the principle of limit design is consistent.
  • the limit design of the single-degree-of-freedom driving module 1 the third sensor 50, the third harmonic reducer 37, the third limiting plate 38, etc.
  • the limit design and the principle of the limit design of the first driving mechanism are Consistent.
  • the servo motor is equipped with a relative encoder and a brake at the end, and accurate absolute position feedback can be realized by the limit information and the feedback information of the encoder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种多自由度驱动手臂,包括单自由度驱动模块(1)以及若干个双自由度驱动模块(2),单自由度驱动模块(1)与位于最内侧的双自由度驱动模块(2)相接;双自由度驱动模块(2)具有两个正交的旋转自由度,第一旋转自由度包括用于驱使该驱动模块(2)旋转的第一驱动机构,第二旋转自由度包括用于驱使该驱动模块(2)旋转的第二驱动机构;位于外侧的双自由度驱动模块(2)的第一驱动机构设置在与其相邻并位于内侧的双自由度驱动模块(2)的第二驱动机构上,还包括采用所述多自由度驱动手臂的双臂机器人,所述机器人单臂七自由度,灵活多变,适合完成各种复杂任务;其成本低,结构紧凑,自身结构在单位体积内的能量密度达到最大化;手臂采用模块化结构,可保证较好的互换性,节省检修成本。

Description

一种多自由度驱动手臂及采用该手臂的双臂机器人 技术领域
本发明涉及工业机器人技术领域,尤其涉及一种多自由度驱动手臂及采用该手臂的双臂机器人。
背景技术
对于双臂机器人的研究开始于上世纪90年代,主要应用于空间站操作机器人和仿人机器人,譬如德国航空航天中心DLR研制的Justin机器人、美国国家航空航天局NASA研制的Robonaut 2机器人、日本本田公司研制的ASIMO仿人机器人等。主要研究内容包括:双臂的运动轨迹规划、双臂协调控制算法及操作力/力矩的控制等几方面。
在工业应用领域,SCARA机器人、DELTA机器人,配合各种专机已实现了包括外壳、玻璃、盖板在内的零部件制造技术,其工艺和设备都相当成熟,有着较高的自动化水平。目前3C行业唯一离自动化程度还相当远的工序是最后的组装,例如在3C产品中存在大量的FPC(柔性电路板)的装配,要快速准确的进行FPC电路板的装配,就要求在3C智能装配手爪、机器人快速视觉定位和机器人抓取力精确控制技术等方面有所突破和综合设计,总体技术难度较大,传统机器人系统难以满足需求。随着现代制造业自动化水平的提高,2008年安川公司率先推出工业双臂机器人SDA-10,实现了一台控制器同时控制两个操作臂,完成一些简单的协调操作任务。2014年ABB公司的推出的双臂机器人样机YuMi具有高灵敏度,双臂极其灵活,可适用于各种精密度高的工作。此外人性化的视觉与触觉功能,除了能够与机器进行协调工作,还能够完美的实现人机协作工作。目前,双臂机器人正朝着高速、高精度、高智能化方向发展。
现有的多个单臂机器人进行协调工作时整体所占空间较大,比较浪费空间,安装位置固定后不易更改调整生产线;现有的双臂机器人,采用电机与减速器均为定制一体化设计,成本非常高。
发明内容
本发明的目的是克服上述现有技术的不足,提供一种多自由度驱动手臂及采用该手臂的双臂机器人。
本发明是通过以下技术方案来实现的:一种多自由度驱动手臂,其包括位于内侧的单自由度驱动模块、以及若干个设置在外侧且由内侧向外侧顺次相接的双自由度驱动模块,所述单自由度驱动模块与位于最内侧的双自由度驱动模块相接;所述双自由度驱动模块具有两个正交的旋转自由度,分别为第一旋转自由度和第二旋转自由度,所述第一旋转自由度包括用于驱使所述双自由度驱动模块在第一旋转自由度上旋转的第一驱动机构,所述第二旋转自由度包括用于驱使所述双自由度驱动模块在第二旋转自由度上旋转的第二驱动机构;位于外侧的双自由度驱动模块的第一驱动机构设置在与其相邻并位于内侧的双自由度驱动模块的第二驱动机构上。
单自由度驱动模块与若干个双自由度驱动模块组合,从而使得机器人手臂成为多自由度驱动手臂,更加灵活、多变、适应性强,可以减少对工装夹具的依赖,适合完成诸如装配作业等复杂任务。
所述双自由度驱动模块包括由隔板隔开形成第一空间和第二空间的三角支架、设置在所述三角支架上并用于密封第一空间和第二空间的第一外壳、以及直角支架;所述第一驱动机构包括固定在第一空间内的第一电机支架、固定在第一电机支架上的第一伺服电机、用于驱动所述第一伺服电机的第一电机控制器、与第一伺服电机驱动轴相连接并由第一伺服电机驱动的第一同步轮、固定在第一空间内的锥齿轮支撑架、第二同步轮、第一锥齿轮、第二锥齿轮、第一谐波减速器、第一限位板、第一定位板和供导线管穿过的第一导线管固定架;所述第二同步轮与第一锥齿轮通过轴连接整体通过轴承与锥齿轮支撑架相连接,并且第二同步轮与第一锥齿轮分别位于所述锥齿轮支撑架的两侧;所述第一同步轮通过第一同步带与所述第二同步轮联结在一起;第二锥齿轮位于所述第一空间内,第一谐波减速器与第一限位板均位于所述第二空间内,所述第一锥齿轮与第二锥齿轮成直角啮合连接分布;所述第二锥齿轮与第一谐波减速器的输入端固定连接,所述第一导线管固定架固定在所述第一定位板中央,所述第一限位板固定在所述第一谐波减速器的输出端,所述第一导线管固定架顺次穿过第一限位板、第一谐波减速器、第二锥齿轮中央的通孔;所述三角支架开设有第一安装孔,所述第一谐波减速器输入端所在的一端部安装固定在第一安装孔周边的三角支架的隔板上;所述直角支架的水平面开有第二安装孔,所述第一谐波减速器输出端所在的一端部穿过该安装孔,并且所述直角支架的隔板夹持而固定在第一谐波减速 器与第一限位板之间。第一伺服电机在第一电机控制器驱动下,带动第一同步轮、第二同步轮转动,从而带动第一锥齿轮啮合第二锥齿轮转动,第一减速器与第一限位板的作用下使得所夹持的直角支架绕第二锥齿轮与第一减速器的轴心为中心进行转动,从而实现一个自由度方向的转动。
所述第二驱动机构包括固定在所述第一空间内的第二电机支架、固定在第二电机支架上的第二伺服电机、用于驱动所述第二伺服电机的第二电机控制器、由第二伺服电机转轴驱动的第三同步轮、第四同步轮、与第四同步轮同轴固定的第二谐波减速器、第二限位板、第二定位板和供导线管穿过的第二导线管固定架;所述第三同步轮通过第二同步带与所述第四同步轮联结在一起;所述三角支架的侧面开设有供第四同步轮的转轴穿过的第三安装孔,所述第四同步轮的转轴与所述第二谐波减速器的输入端固定连接,所述第二谐波减速器输入端所在的一端部安装固定在与其相邻的一个双自由度驱动模块中的第三安装孔周边的三角支架的侧面上,所述第二导线管固定架固定在所述第二定位板中央,所述第二限位板固定在所述第二谐波减速器的输出端,所述第二导线管固定架顺次穿过第二限位板、第二谐波减速器、所述第四同步轮中央的通孔,并将三角支架的侧面夹持在第二谐波减速器与第二定位板之间。第二伺服电机在第二电机控制器驱动下,带动第三同步轮、第四同步轮转动,第二减速器与第二限位板的作用下,使得双自由度驱动模块绕第四同步轮与第二减速器的轴心所在为中心进行转动,从而实现其另一个自由度方向的转动。
相邻的双自由度驱动模块之间的三角支架的侧面上设置有用于盖住所述第二谐波减速器的第二外壳。
所述单自由度驱动模块包括第一安装板、与第一安装板垂直安装的第二安装板、设置在第一安装板上的第三电机支架、固定在第三电机支架上的第三伺服电机、与第三伺服电机驱动轴相连接并由第三伺服电机驱动的第五同步轮、第六同步轮、与第六同步轮同轴固定的第三谐波减速器、第三限位板、第三定位板和供导线管穿过的第三导线管固定架;所述第五同步轮通过第三同步带与所述第六同步轮联结在一起;所述第六同步轮的转轴与所述第三谐波减速器的输入端固定相接,且所述第二安装板夹持在所述第六同步轮与第三谐波减速器之间,第三谐波减速器输入端所在的一端部安装固定在所述第二安装板上;所述第三谐波减速器输入端所在的一端部安装固定在与其相邻的一个双自由度驱动模块中的第三安装孔周边的三角支架的侧面上;所述第三导线管固定架固定在所述第三定位板中央,所述第三限位板固定在所述第三谐波减速器的输出端,所述第三导线管固定架顺次穿过与单自由度驱动模块相邻的双自由度驱动模块中的三角支架的侧面、第三限位板、第三谐波减速器、第六同步轮中央的通孔,并将该三角支架的侧面夹持在第三谐波减速器与第三定位板之间。第三伺服电机驱动第五同步轮、第六同步轮,第三谐波减速器与第三限位板的作用下带动与单自由度驱动模块相邻而相接的双自由度驱动模块绕第六同步轮与第三谐波减速器的轴心为中心进行转动,从而实现双自由度驱动模块的一个自由度的转动。
所述第一限位板周边局部朝内挖空形成间隔分布的缺位与凸位,所述第一谐波减速器周边的隔板上设置有三个间隔呈45度分布的第一传感器,所述第一限位板随第二锥齿轮转动时,所述第一传感器对准所述第一限位板上的缺位或述凸位;所述第二限位板、第三限位板的结构与所述第一限位板的结构一致;所述第二谐波减速器周边的三角支架的侧面上设置有三个间隔呈45度分布的第二传感器,所述第二限位板随第四同步轮转动时,所述第一传感器对准所述第二限位板上的缺位或述凸位;所述第三谐波减速器周边的第二安装板上设置有三个间隔呈45度分布的第三传感器,所述第三限位板随第六同步轮转动时,所述第三传感器对准所述第三限位板上的缺位或述凸位。
所述双自由度驱动模块设置有三个。双自由度驱动模块设置有三个,配合一个单自由度驱动模块,形成单臂七自由度的机器人手臂,使得手臂更灵活多变。
所述双臂机器人包括基座、设置在基座上的两组多自由度驱动手臂、设置在多自由度驱动手臂外端的夹具;每组多自由度驱动手臂包括有内侧向外侧顺次相接的三个双自由度驱动模块,位于内侧的双自由度驱动模块连接有一连接在所述基座上的单自由度驱动模块,所述夹具连接在位于外侧的双自由度驱动模块上;所述第一伺服电机的末端均设有用于控制第一传感器、第一限位板的限位信息的相对式编码器及抱闸,所述双臂机器人设有接收由相对式编码器传输而来的反馈信息并进行处理的处理模块;所述第二伺服电机与第三伺服电机的末端均与第一伺服电机所采用相同结构的相对式编码器及抱闸。
与现有技术对比,本发明的优点在于:本装置的机器人单臂七自由度,灵活多变,适合完成诸如装 配作业等复杂任务;其成本低,结构紧凑,自身结构在单位体积内的能量密度达到最大化;手臂采用模块化结构,可保证较好的互换性,并且节省检修成本。
附图说明
图1为本发明实施例的立体图;
图2为本发明实施例的主视图;
图3为本发明实施例单边手臂去掉第一外壳后的立体图;
图4为本发明实施例单边手臂去掉第一外壳后的主视图;
图5为本发明实施例七自由度单臂的结构示意图;
图6为本发明实施例七自由度单臂内部的结构示意图;
图7为本发明实施例七自由度单臂的俯视图;
图8为本发明实施例七自由度单臂的主视图;
图9为本发明实施例七自由度分布模型图;
图10为本发明实施例双自由度驱动模块的主视图;
图11为本发明实施例双自由度驱动模块的俯视图;
图12为本发明实施例双自由度驱动模块的仰视图;
图13为本发明实施例双自由度驱动模块的右视图;
图14为本发明实施例双自由度驱动模块的结构示意图之一;
图15为本发明实施例双自由度驱动模块的结构示意图之二;
图16为本发明实施例双自由度驱动模块的结构示意图之三;
图17为本发明实施例双自由度驱动模块的结构示意图之四;
图18为本发明实施例双自由度驱动模块的结构示意图之五;
图19为本发明实施例双自由度驱动模块的结构示意图之六;
图20为本发明实施例双自由度驱动模块的结构示意图之七;
图21为本发明实施例单自由度驱动模块与双自由度驱动模块配合使用的主视图;
图22为本发明实施例单自由度驱动模块与双自由度驱动模块配合使用的结构示意图之一;
图23为本发明实施例单自由度驱动模块与双自由度驱动模块配合使用的结构示意图之二;
图24为本发明实施例单自由度驱动模块与双自由度驱动模块配合使用的结构示意图之三;
图25为本发明实施例单自由度驱动模块与双自由度驱动模块配合使用的结构示意图之四;
图26为本发明实施例的使用状态参考图之一;
图27为本发明实施例导线管固定架与定位板安装的立体图;
图28为本发明实施例导线管固定架与定位板安装的主视图;
图29为本发明实施例双自由度驱动模块中运动机构处于右限位状态的结构示意图;
图30为本发明实施例双自由度驱动模块中运动机构处于右下方0~45度状态的结构示意图;
图31为本发明实施例双自由度驱动模块中运动机构处于右下方45度状态的结构示意图;
图32为本发明实施例双自由度驱动模块中运动机构处于右下方45~90度状态的结构示意图;
图33为本发明实施例双自由度驱动模块中运动机构处于正下方90度状态的结构示意图;
图34为本发明实施例双自由度驱动模块中运动机构处于左下方45~90度状态的结构示意图;
图35为本发明实施例双自由度驱动模块中运动机构处于左下方45度状态的结构示意图;
图36为本发明实施例双自由度驱动模块中运动机构处于左下方0~45度状态的结构示意图;
图37为本发明实施例双自由度驱动模块中运动机构处于左限位状态的结构示意图;
图38为本发明实施例的使用状态参考图之二;
图39为本发明实施例的使用状态参考图之三;
图40为本发明实施例的使用状态参考图之四;
图41为本发明实施例的使用状态参考图之五。
图中附图标记含义:1、单自由度驱动模块;2、双自由度驱动模块;3、三角支架;4、第一空间; 5、第二空间;6、第一外壳;7、直角支架;8、第一电机支架;9、第一伺服电机;10、第一电机控制器;11、第一同步轮;12、锥齿轮支撑架;13、第二同步轮;14、第一锥齿轮;15、第二锥齿轮;16、第一谐波减速器;17、第一限位板;18、第一导线管固定架;19、第一同步带;20、第二电机支架;21、第二伺服电机;22、第二电机控制器;23、第三同步轮;24、第四同步轮;25、第二谐波减速器;26、第二限位板;27、第二定位板;28、第二导线管固定架;29、第二同步带;30、第二外壳;31、第一安装板;32、第二安装板;33、第三电机支架;34、第三伺服电机;35、第五同步轮;36、第六同步轮;37、第三谐波减速器;38、第三限位板;39、第三定位板;40、第三导线管固定架;41、第三同步带;42、基座;43、夹具;44、走线管;45、线管导向支撑;46、缺位;47、凸位;48、第一传感器;49、第二传感器;50、第三传感器;51、第一定位板;A、B、C、D、E、F、G分别代表一个自由度。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例
参阅图1至图41,为一种多自由度驱动手臂,其包括位于内侧的单自由度驱动模块1、以及若干个设置在外侧且由内侧向外侧顺次相接的双自由度驱动模块2,单自由度驱动模块1与位于最内侧的双自由度驱动模块2相接;双自由度驱动模块2具有两个正交的旋转自由度,分别为第一旋转自由度和第二旋转自由度,第一旋转自由度包括用于驱使双自由度驱动模块2在第一旋转自由度上旋转的第一驱动机构,第二旋转自由度包括用于驱使双自由度驱动模块2在第二旋转自由度上旋转的第二驱动机构;位于外侧的双自由度驱动模块2的第一驱动机构设置在与其相邻并位于内侧的双自由度驱动模块2的第二驱动机构上。
单自由度驱动模块1与若干个双自由度驱动模块2组合,从而使得机器人手臂成为多自由度驱动手臂,更加灵活、多变、适应性强,可以减少对工装夹具43的依赖,适合完成诸如装配作业等复杂任务。
本申请设计开发14自由度双臂机器人(单臂7自由度)本体,电机及减速器均采用市面上现有高功率密度伺服电机及谐波减速器。本案双臂机器人设计采用模块儿化结构设计,以保证较好的互换性。双臂机器人本体包括两个手臂如图所示,两臂结构形式一致。
双自由度驱动模块2包括由隔板隔开形成第一空间4和第二空间5的三角支架3、设置在三角支架3上并用于密封第一空间4和第二空间5的第一外壳6、以及直角支架7;第一驱动机构包括固定在第一空间4内的第一电机支架8、固定在第一电机支架8上的第一伺服电机9、用于驱动第一伺服电机9的第一电机控制器10、与第一伺服电机9驱动轴相连接并由第一伺服电机9驱动的第一同步轮11、固定在第一空间4内的锥齿轮支撑架12、第二同步轮13、第一锥齿轮14、第二锥齿轮15、第一谐波减速器16、第一限位板17、第一定位板51和供导线管穿过的第一导线管固定架18;第二同步轮13与第一锥齿轮14通过轴连接整体通过轴承与锥齿轮支撑架12相连接,并且第二同步轮13与第一锥齿轮14分别位于锥齿轮支撑架12的两侧;第一同步轮11通过第一同步带19与第二同步轮13联结在一起;第二锥齿轮15位于第一空间4内,第一谐波减速器16与第一限位板17均位于第二空间5内,第一锥齿轮14与第二锥齿轮15成直角啮合连接分布;第二锥齿轮15与第一谐波减速器16的输入端固定连接,第一导线管固定架18固定在第一定位板51中央,第一限位板17固定在第一谐波减速器16的输出端,第一导线管固定架18顺次穿过第一限位板17、第一谐波减速器16、第二锥齿轮15中央的通孔;三角支架3开设有第一安装孔,第一谐波减速器16输入端所在的一端部安装固定在第一安装孔周边的三角支架3的隔板上;直角支架7的水平面开有第二安装孔,第一谐波减速器16输出端所在的一端部穿过该安装孔,并且直角支架7的隔板夹持而固定在第一谐波减速器16与第一限位板17之间。第一伺服电机9在第一电机控制器10驱动下,带动第一同步轮11、第二同步轮13转动,从而带动第一锥齿轮14啮合第二锥齿轮15转动,第一减速器与第一限位板17的作用下使得所夹持的直角支架7绕第二锥齿轮15与第一减速器的轴心为中心进行转动,从而实现一个自由度方向的转动。
第二驱动机构包括固定在第一空间4内的第二电机支架20、固定在第二电机支架20上的第二伺服电机21、用于驱动第二伺服电机21的第二电机控制器22、由第二伺服电机21转轴驱动的第三同步轮23、第四同步轮24、与第四同步轮24同轴固定的第二谐波减速器25、第二限位板26、第二定位板27和供导线管穿过的第二导线管固定架28;第三同步轮23通过第二同步带29与第四同步轮24联结在一起;三角支架3的侧面开设有供第四同步轮24的转轴穿过的第三安装孔,第四同步轮24的转轴与第二谐波减速器25的输入端固定连接,第二 谐波减速器25输入端所在的一端部安装固定在与其相邻的一个双自由度驱动模块2中的第三安装孔周边的三角支架3的侧面上,第二导线管固定架28固定在第二定位板27中央,第二限位板26固定在第二谐波减速器25的输出端,第二导线管固定架28顺次穿过第二限位板26、第二谐波减速器25、第四同步轮24中央的通孔,并将三角支架3的侧面夹持在第二谐波减速器25与第二定位板27之间。第二伺服电机21在第二电机控制器22驱动下,带动第三同步轮23、第四同步轮24转动,第二减速器与第二限位板26的作用下,使得双自由度驱动模块2绕第四同步轮24与第二减速器的轴心所在为中心进行转动,从而实现其另一个自由度方向的转动。
相邻的双自由度驱动模块2之间的三角支架3的侧面上设置有用于盖住第二谐波减速器25的第二外壳30。
单自由度驱动模块1包括第一安装板31、与第一安装板31垂直安装的第二安装板32、设置在第一安装板31上的第三电机支架33、固定在第三电机支架33上的第三伺服电机34、与第三伺服电机34驱动轴相连接并由第三伺服电机34驱动的第五同步轮35、第六同步轮36、与第六同步轮36同轴固定的第三谐波减速器37、第三限位板38、第三定位板39和供导线管穿过的第三导线管固定架40;第五同步轮35通过第三同步带41与第六同步轮36联结在一起;第六同步轮36的转轴与第三谐波减速器37的输入端固定相接,且第二安装板32夹持在第六同步轮36与第三谐波减速器37之间,第三谐波减速器37输入端所在的一端部安装固定在第二安装板32上;第三谐波减速器37输入端所在的一端部安装固定在与其相邻的一个双自由度驱动模块2中的第三安装孔周边的三角支架3的侧面上;第三导线管固定架40固定在第三定位板39中央,第三限位板38固定在第三谐波减速器37的输出端,第三导线管固定架40顺次穿过与单自由度驱动模块1相邻的双自由度驱动模块2中的三角支架3的侧面、第三限位板38、第三谐波减速器37、第六同步轮36中央的通孔,并将该三角支架3的侧面夹持在第三谐波减速器37与第三定位板39之间。第三伺服电机34驱动第五同步轮35、第六同步轮36,第三谐波减速器37与第三限位板38的作用下带动与单自由度驱动模块1相邻而相接的双自由度驱动模块2绕第六同步轮36与第三谐波减速器37的轴心为中心进行转动,从而实现双自由度驱动模块2的一个自由度的转动。
所述第一限位板17周边局部朝内挖空形成间隔分布的缺位46与凸位47,所述第一谐波减速器16周边的隔板上设置有三个间隔呈45度分布的第一传感器48,所述第一限位板17随第二锥齿轮15转动时,所述第一传感器48对准所述第一限位板17上的缺位46或述凸位47;所述第二限位板26、第三限位板38的结构与所述第一限位板17的结构一致;所述第二谐波减速器25周边的三角支架3的侧面上设置有三个间隔呈45度分布的第二传感器49,所述第二限位板26随第四同步轮24转动时,所述第一传感器48对准所述第二限位板26上的缺位46或述凸位47;所述第三谐波减速器37周边的第二安装板32上设置有三个间隔呈45度分布的第三传感器50,所述第三限位板38随第六同步轮36转动时,所述第三传感器50对准所述第三限位板38上的缺位46或述凸位47。
双自由度驱动模块2设置有三个。双自由度驱动模块2设置有三个,配合一个单自由度驱动模块1,形成单臂七自由度的机器人手臂,使得手臂更灵活多变。
所述双臂机器人包括基座42、设置在基座42上的两组多自由度驱动手臂、设置在多自由度驱动手臂外端的夹具43;每组多自由度驱动手臂包括有内侧向外侧顺次相接的三个双自由度驱动模块2,位于内侧的双自由度驱动模块2连接有一连接在所述基座42上的单自由度驱动模块1,所述夹具43连接在位于外侧的双自由度驱动模块2上;所述第一伺服电机9的末端均设有用于控制第一传感器48、第一限位板17的限位信息的相对式编码器及抱闸,所述双臂机器人设有接收由相对式编码器传输而来的反馈信息并进行处理的处理模块;所述第二伺服电机21与第三伺服电机34的末端均与第一伺服电机9所采用相同结构的相对式编码器及抱闸。
参阅图7及图8,为七自由度单臂结构的俯视图与主视图,图中箭头所指为机构关节的回转中心;图9为七自由度分布模型,七个正交的转轴交替连接,涉及单臂结构绕回转中心的转动的具体状态请参阅图38至图41。
参阅图16及图17,单个双自由度驱动模块2具有两个正交的旋转自由度,每个自由度由一个伺服电机和一个谐波减速器实现回转驱动;机器人对手臂供电,通过导线传递给每一个驱动机构,导线包括走线管44及包覆在走线管44外周的线管导向支撑45,从而形成导线管;导线管穿过第一导线管固定架18、第二导线管固定架28、第三导线管固定架40,对三个伺服电机及电机控制器供电。
参阅图18,所示单个双自由度驱动模块2为图9中B、D、F自由度的驱动机构;参阅图19,所示单个双自由度驱动模块2为图9中C、E、G自由度的驱动机构。
参阅图20,所示为机构限位设计,本实施例中,第一传感器48、第二传感器49、第三传感器50,这三种传感器均采用反射式光电传感器,同种类似的传感器设有三个,以所在机构的谐波减速器的中轴为中心成间隔45度分布在谐波减速器周边。第一传感器48与第一导线管固定架18、第一限位板17组成第一谐波减速器16的限位开关;第二传感器49与第二导线管固定架28、第二限位板26组成第二谐波减速器25的限位开关;第三传感器50与第三导线管固定架40、第三限位板38组成第三谐波减速器37的限位开关。
限位原理:反射式光电传感器将信号光照射在限位板边缘时通过限位板边缘的形状可实现对光信号的遮挡反射或者通过,若为反射,则为传感器的光信号为凸位47遮挡而反射;若为通过,则为传感器的光信号通过了缺位46。通过设计限位板边缘的形状配合反射式光电传感器的相对位置可实现限位板8种不同的位置状态的检测。
以图20所示的限位设计为例进行分析,涉及到第一驱动机构的各部件。设置光信号被凸位47遮挡反射时为1,通过限位板的缺位46时为0则八种位置状态编号为:000、001、010 011、100、101、110、111。编号状态如图29至图37所示。
图29所示为右限位状态,光电传感器信号为100(排序最左侧传感器开始)。此位置为右转极限位置。
图30所示为运动机构处于右下方(0-45度)状态,光电传感器信号为011(排序最左侧传感器开始)。此位置为右转极限位置。
图31所示为运动机构处于右下方45度状态,光电传感器信号为110(排序最左侧传感器开始)。
图32所示为运动机构处于右下方(45-90度)状态,光电传感器信号为001(排序最左侧传感器开始)。
图33所示为运动机构处于正下方90度状态,光电传感器信号为000(排序最左侧传感器开始)。此位置为行程中间位置。
图34所示为运动机构处于左下方(45度-90度)状态指示,光电传感器信号为011(排序最左侧传感器开始)。
图35所示为运动机构处于左下方(45度)状态指示,光电传感器信号为100(排序最左侧传感器开始)。
图36所示为运动机构处于左下方(0度-45度)状态指示,光电传感器信号为110(排序最左侧传感器开始)。
图37所示为运动机构处于左方状态指示,光电传感器信号为001(排序最左侧传感器开始)。此位置为左转极限位置。
图20中标记49所示的限位设计与图20中标记48所示限位设计原理一致。伺服电机末端装有相对式编码器及抱闸,通过限位信息及编码器的反馈信息即可实现准确的绝对位置反馈。
第二传感器49的限位设计,涉及第二驱动机构的各部件,例如第二传感器49、第二谐波减速器25、第二限位板26等,其限位设计与第一驱动机构的限位设计的原理是一致的。关于单自由度驱动模块1的限位设计,涉及第三传感器50、第三谐波减速器37、第三限位板38等,其限位设计与第一驱动机构的限位设计的原理是一致的。本实施例中的限位设计,伺服电机末端装有相对式编码器及抱闸,通过限位信息及编码器的反馈信息即可实现准确的绝对位置反馈。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (8)

  1. 一种多自由度驱动手臂,其特征在于:其包括位于内侧的单自由度驱动模块(1)、以及若干个设置在外侧且由内侧向外侧顺次相接的双自由度驱动模块(2),所述单自由度驱动模块(1)与位于最内侧的双自由度驱动模块(2)相接;所述双自由度驱动模块(2)具有两个正交的旋转自由度,分别为第一旋转自由度和第二旋转自由度,所述第一旋转自由度包括用于驱使所述双自由度驱动模块(2)在第一旋转自由度上旋转的第一驱动机构,所述第二旋转自由度包括用于驱使所述双自由度驱动模块(2)在第二旋转自由度上旋转的第二驱动机构;位于外侧的双自由度驱动模块(2)的第一驱动机构设置在与其相邻并位于内侧的双自由度驱动模块(2)的第二驱动机构上。
  2. 根据权利要求1所述的多自由度驱动手臂,其特征在于:所述双自由度驱动模块(2)包括由隔板隔开形成第一空间(4)和第二空间(5)的三角支架(3)、设置在所述三角支架(3)上并用于密封第一空间(4)和第二空间(5)的第一外壳(6)、以及直角支架(7);所述第一驱动机构包括固定在第一空间(4)内的第一电机支架(8)、固定在第一电机支架(8)上的第一伺服电机(9)、用于驱动所述第一伺服电机(9)的第一电机控制器(10)、与第一伺服电机(9)驱动轴相连接并由第一伺服电机(9)驱动的第一同步轮(11)、固定在第一空间(4)内的锥齿轮支撑架(12)、第二同步轮(13)、第一锥齿轮(14)、第二锥齿轮(15)、第一谐波减速器(16)、第一限位板(17)、第一定位板(51)和供导线管穿过的第一导线管固定架(18);所述第二同步轮(13)与第一锥齿轮(14)通过轴连接整体通过轴承与锥齿轮支撑架(12)相连接,并且第二同步轮(13)与第一锥齿轮(14)分别位于所述锥齿轮支撑架(12)的两侧;所述第一同步轮(11)通过第一同步带(19)与所述第二同步轮(13)联结在一起;第二锥齿轮(15)位于所述第一空间(4)内,第一谐波减速器(16)与第一限位板(17)均位于所述第二空间(5)内,所述第一锥齿轮(14)与第二锥齿轮(15)成直角啮合连接分布;所述第二锥齿轮(15)与第一谐波减速器(16)的输入端固定连接,所述第一导线管固定架(18)固定在所述第一定位板(51)中央,所述第一限位板(17)固定在所述第一谐波减速器(16)的输出端,所述第一导线管固定架(18)顺次穿过第一限位板(17)、第一谐波减速器(16)、第二锥齿轮(15)中央的通孔;所述三角支架(3)开设有第一安装孔,所述第一谐波减速器(16)输入端所在的一端部安装固定在第一安装孔周边的三角支架(3)的隔板上;所述直角支架(7)的水平面开有第二安装孔,所述第一谐波减速器(16)输出端所在的一端部穿过该安装孔,并且所述直角支架(7)的隔板夹持而固定在第一谐波减速器(16)与第一限位板(17)之间。
  3. 根据权利要求2所述的多自由度驱动手臂,其特征在于:所述第二驱动机构包括固定在所述第一空间(4)内的第二电机支架(20)、固定在第二电机支架(20)上的第二伺服电机(21)、用于驱动所述第二伺服电机(21)的第二电机控制器(22)、由第二伺服电机(21)转轴驱动的第三同步轮(23)、第四同步轮(24)、与第四同步轮(24)同轴固定的第二谐波减速器(25)、第二限位板(26)、第二定位板(27)和供导线管穿过的第二导线管固定架(28);所述第三同步轮(23)通过第二同步带(29)与所述第四同步轮(24)联结在一起;所述三角支架(3)的侧面开设有供第四同步轮(24)的转轴穿过的第三安装孔,所述第四同步轮(24)的转轴与所述第二谐波减速器(25)的输入端固定连接,所述第二谐波减速器(25)输入端所在的一端部安装固定在与其相邻的一个双自由度驱动模块(2)中的第三安装孔周边的三角支架(3)的侧面上,所述第二导线管固定架(28)固定在所述第二定位板(27)中央,所述第二限位板(26)固定在所述第二谐波减速器(25)的输出端,所述第二导线管固定架(28)顺次穿过第二限位板(26)、第二谐波减速器(25)、所述第四同步轮(24)中央的通孔,并将三角支架(3)的侧面夹持在第二谐波减速器(25)与第二定位板(27)之间。
  4. 根据权利要求3所述的多自由度驱动手臂,其特征在于:相邻的双自由度驱动模块(2)之间的三角支架(3)的侧面上设置有用于盖住所述第二谐波减速器(25)的第二外壳(30)。
  5. 根据权利要求3所述的多自由度驱动手臂,其特征在于:所述单自由度驱动模块(1)包括第一安装板(31)、与第一安装板(31)垂直安装的第二安装板(32)、设置在第一安装板(31)上的第三电机支架(33)、固定在第三电机支架(33)上的第三伺服电机(34)、与第三伺服电机(34)驱动轴相连接并由第三伺服电机(34)驱动的第五同步轮(35)、第六同步轮(36)、与第六同步轮(36)同轴固定的第三谐波减速器(37)、第三限位板(38)、第三定位板(39)和供导线管穿过的第三导线管固定架(40);所述第五同步轮(35)通过第三同步带(41)与所述第六同步轮(36)联结在一起;所述第六同步轮(36)的转轴与所述第三谐波减速器(37)的 输入端固定相接,且所述第二安装板(32)夹持在所述第六同步轮(36)与第三谐波减速器(37)之间,第三谐波减速器(37)输入端所在的一端部安装固定在所述第二安装板(32)上;所述第三谐波减速器(37)输入端所在的一端部安装固定在与其相邻的一个双自由度驱动模块(2)中的第三安装孔周边的三角支架(3)的侧面上;所述第三导线管固定架(40)固定在所述第三定位板(39)中央,所述第三限位板(38)固定在所述第三谐波减速器(37)的输出端,所述第三导线管固定架(40)顺次穿过与单自由度驱动模块(1)相邻的双自由度驱动模块(2)中的三角支架(3)的侧面、第三限位板(38)、第三谐波减速器(37)、第六同步轮(36)中央的通孔,并将该三角支架(3)的侧面夹持在第三谐波减速器(37)与第三定位板(39)之间。
  6. 根据权利要求5所述的多自由度驱动手臂,其特征在于:所述第一限位板(17)周边局部朝内挖空形成间隔分布的缺位(46)与凸位(47),所述第一谐波减速器(16)周边的隔板上设置有三个间隔呈45度分布的第一传感器(48),所述第一限位板(17)随第二锥齿轮(15)转动时,所述第一传感器(48)对准所述第一限位板(17)上的缺位(46)或述凸位(47);所述第二限位板(26)、第三限位板(38)的结构与所述第一限位板(17)的结构一致;所述第二谐波减速器(25)周边的三角支架(3)的侧面上设置有三个间隔呈45度分布的第二传感器(49),所述第二限位板(26)随第四同步轮(24)转动时,所述第一传感器(48)对准所述第二限位板(26)上的缺位(46)或述凸位(47);所述第三谐波减速器(37)周边的第二安装板(32)上设置有三个间隔呈45度分布的第三传感器(50),所述第三限位板(38)随第六同步轮(36)转动时,所述第三传感器(50)对准所述第三限位板(38)上的缺位(46)或述凸位(47)。
  7. 根据权利要求3所述的多自由度驱动手臂,其特征在于:所述双自由度驱动模块(2)设置有三个。
  8. 一种采用权利要求6所述的多自由度驱动手臂的双臂机器人,其特征在于:所述双臂机器人包括基座(42)、设置在基座(42)上的两组多自由度驱动手臂、设置在多自由度驱动手臂外端的夹具(43);每组多自由度驱动手臂包括有内侧向外侧顺次相接的三个双自由度驱动模块(2),位于内侧的双自由度驱动模块(2)连接有一连接在所述基座(42)上的单自由度驱动模块(1),所述夹具(43)连接在位于外侧的双自由度驱动模块(2)上;所述第一伺服电机(9)的末端均设有用于控制第一传感器(48)、第一限位板(17)的限位信息的相对式编码器及抱闸,所述双臂机器人设有接收由相对式编码器传输而来的反馈信息并进行处理的处理模块;所述第二伺服电机(21)与第三伺服电机(34)的末端均与第一伺服电机(9)所采用相同结构的相对式编码器及抱闸。
PCT/CN2018/077579 2017-03-16 2018-02-28 一种多自由度驱动手臂及采用该手臂的双臂机器人 WO2018166349A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/494,610 US11318604B2 (en) 2017-03-16 2018-02-28 Driving arm with multiple degrees of freedom and twin-armed robot using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710157220.9A CN107042507B (zh) 2017-03-16 2017-03-16 一种多自由度驱动手臂及采用该手臂的双臂机器人
CN201710157220.9 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018166349A1 true WO2018166349A1 (zh) 2018-09-20

Family

ID=59544588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077579 WO2018166349A1 (zh) 2017-03-16 2018-02-28 一种多自由度驱动手臂及采用该手臂的双臂机器人

Country Status (3)

Country Link
US (1) US11318604B2 (zh)
CN (1) CN107042507B (zh)
WO (1) WO2018166349A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722055A1 (en) * 2019-04-09 2020-10-14 Cloudminds (Beijing) Technologies Co., Ltd. Robot
CN112247973A (zh) * 2020-10-26 2021-01-22 朱幕松 内藏式机器人一体化关节模组
US11318604B2 (en) 2017-03-16 2022-05-03 Guangdong Institute Of Intelligent Manufacturing Driving arm with multiple degrees of freedom and twin-armed robot using same
CN114751191A (zh) * 2022-04-08 2022-07-15 浙江集秀元智能装备有限公司 一种用于电池极板的多工位移料装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107498539A (zh) * 2017-08-29 2017-12-22 广州中国科学院先进技术研究所 一种非对称双机械臂装置
CN107932551B (zh) * 2017-11-28 2024-01-26 天津扬天科技有限公司 一种七自由度协作机械臂
CN107953328A (zh) * 2017-12-25 2018-04-24 北京工业大学 一种七自由度仿人机械臂
CN108582044B (zh) * 2018-05-23 2024-04-23 北京华信智航科技有限公司 一种基于双手爪的8自由度一体化机械臂
CN109591014B (zh) * 2018-12-18 2020-06-23 武汉科技大学 一种双臂协作机器人的双臂协调搬运方法
CN110039521B (zh) * 2019-04-17 2020-10-02 华中科技大学 一种基于双rrrr构型的水下多功能协作型双机械臂
CN112549017A (zh) * 2020-10-27 2021-03-26 南京凌华微电子科技有限公司 避免关节极限的双臂机器人协作空间求解方法
CN112536789B (zh) * 2020-12-02 2022-04-12 山东大学 一种刚柔结合式外肢体机械臂及其辅助作业装置
CN113696476B (zh) * 2021-08-19 2022-08-02 清华大学 双自由度旋转机构和体内原位生物打印装置
CN113910234B (zh) * 2021-10-27 2022-10-14 因格(苏州)智能技术有限公司 双机械手控制方法与存储介质
CN114700934A (zh) * 2022-04-14 2022-07-05 湖南工业智能体创新研究院有限公司 一种小型机械手
CN115890644A (zh) * 2023-01-17 2023-04-04 北京理工大学 一种桌面级六自由度机械臂结构
CN116784982A (zh) * 2023-08-28 2023-09-22 长沙英迈医工研究院有限公司 手术机械臂及手术机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828453A (en) * 1987-04-21 1989-05-09 The United States Of America As Represented By The United States Department Of Energy Modular multimorphic kinematic arm structure and pitch and yaw joint for same
CN202146362U (zh) * 2010-12-30 2012-02-22 上海交通大学医学院附属第九人民医院 一种基于光学导航七自由度颅颌面手术辅助机械臂
CN104602868A (zh) * 2012-06-21 2015-05-06 睿信科机器人有限公司 用于机器人训练的用户接口
CN205521390U (zh) * 2016-01-21 2016-08-31 南京航空航天大学 一种双臂机器人
CN106078710A (zh) * 2016-07-06 2016-11-09 英华达(上海)科技有限公司 多任务应用的多轴机器人
CN106826790A (zh) * 2017-03-16 2017-06-13 广东省智能制造研究所 一种机器人双自由度驱动模块
CN106945031A (zh) * 2017-03-16 2017-07-14 广东省智能制造研究所 一种机器人单自由度驱动模块
CN107042507A (zh) * 2017-03-16 2017-08-15 广东省智能制造研究所 一种多自由度驱动手臂及采用该手臂的双臂机器人

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419637B2 (ja) * 1996-07-24 2003-06-23 富士通株式会社 関節機構及びこれを使用するロボット
CN104411466A (zh) * 2012-06-19 2015-03-11 株式会社安川电机 机器人系统及加工品的制造方法
CN102837322B (zh) * 2012-09-26 2015-04-15 黄刚 一种仿人型七自由度机械臂
US9358687B2 (en) * 2013-01-24 2016-06-07 Mohammad Reza Emami System, method and computer program for autonomously emulating robot manipulators of continuously-varying configurations
US9044865B2 (en) * 2013-03-07 2015-06-02 Engineering Services Inc. Two joint module
CN204893945U (zh) * 2015-09-11 2015-12-23 哈尔滨理工大学 仿人类手臂关节的家政机器人
CN205889243U (zh) * 2016-05-19 2017-01-18 北京自动化控制设备研究所 一种模块化仿人机械臂
CN205996959U (zh) * 2016-08-01 2017-03-08 深圳市祈飞科技有限公司 双臂机器人
WO2018074101A1 (ja) * 2016-10-20 2018-04-26 三菱電機株式会社 3回転自由度接続機構、ロボット、ロボットアームおよびロボットハンド
CN207387652U (zh) * 2017-03-16 2018-05-22 广东省智能制造研究所 一种多自由度驱动手臂及采用该手臂的双臂机器人

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828453A (en) * 1987-04-21 1989-05-09 The United States Of America As Represented By The United States Department Of Energy Modular multimorphic kinematic arm structure and pitch and yaw joint for same
CN202146362U (zh) * 2010-12-30 2012-02-22 上海交通大学医学院附属第九人民医院 一种基于光学导航七自由度颅颌面手术辅助机械臂
CN104602868A (zh) * 2012-06-21 2015-05-06 睿信科机器人有限公司 用于机器人训练的用户接口
CN205521390U (zh) * 2016-01-21 2016-08-31 南京航空航天大学 一种双臂机器人
CN106078710A (zh) * 2016-07-06 2016-11-09 英华达(上海)科技有限公司 多任务应用的多轴机器人
CN106826790A (zh) * 2017-03-16 2017-06-13 广东省智能制造研究所 一种机器人双自由度驱动模块
CN106945031A (zh) * 2017-03-16 2017-07-14 广东省智能制造研究所 一种机器人单自由度驱动模块
CN107042507A (zh) * 2017-03-16 2017-08-15 广东省智能制造研究所 一种多自由度驱动手臂及采用该手臂的双臂机器人

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11318604B2 (en) 2017-03-16 2022-05-03 Guangdong Institute Of Intelligent Manufacturing Driving arm with multiple degrees of freedom and twin-armed robot using same
EP3722055A1 (en) * 2019-04-09 2020-10-14 Cloudminds (Beijing) Technologies Co., Ltd. Robot
US11518050B2 (en) 2019-04-09 2022-12-06 Cloudminds Robotics Co., Ltd. Robot
CN112247973A (zh) * 2020-10-26 2021-01-22 朱幕松 内藏式机器人一体化关节模组
CN112247973B (zh) * 2020-10-26 2021-08-03 朱幕松 内藏式机器人一体化关节模组
CN114751191A (zh) * 2022-04-08 2022-07-15 浙江集秀元智能装备有限公司 一种用于电池极板的多工位移料装置
CN114751191B (zh) * 2022-04-08 2023-06-09 浙江集秀元智能装备有限公司 一种用于电池极板的多工位移料装置

Also Published As

Publication number Publication date
US20200206907A1 (en) 2020-07-02
US11318604B2 (en) 2022-05-03
CN107042507B (zh) 2023-07-28
CN107042507A (zh) 2017-08-15

Similar Documents

Publication Publication Date Title
WO2018166349A1 (zh) 一种多自由度驱动手臂及采用该手臂的双臂机器人
CN106863266B (zh) 机器人、控制装置以及机器人系统
CN105690417A (zh) 多功能智能夹爪及关节机器人
CN103495971B (zh) 一种五自由度组合式机器人平台
TWI480139B (zh) 機械關節與應用其之機械手臂
CN105751214A (zh) 一种具备示教作用的六轴机械手及其工作方法
CN205630668U (zh) 多功能智能夹爪及关节机器人
JPH0569374A (ja) 指モジユール、指モジユール構造、ロボツトハンドおよび指モジユールの信号検出取出方法
CN102476383A (zh) 平面多关节型机器人手臂机构
CN106863347B (zh) 一种模块化两自由度机器人关节
CN108908392B (zh) 一种协作型多指机械手及机器人系统
CN106826790B (zh) 一种机器人双自由度驱动模块
CN201881384U (zh) 一种平面多关节型机器人手臂机构
CN102101292B (zh) 四关节视觉机器人
CN212553833U (zh) 智能制造创新实训平台
CN106945031B (zh) 一种机器人单自由度驱动模块
CN206105843U (zh) 一种四自由度并联机器人
CN206140499U (zh) 一种scara机器人
CN206869903U (zh) 物体夹持部和机器人
CN207387652U (zh) 一种多自由度驱动手臂及采用该手臂的双臂机器人
CN203993879U (zh) 二、三次元机械手
CN111299849A (zh) 配置双摆头的激光切割机
CN207387656U (zh) 一种机器人双自由度驱动模块
CN207077446U (zh) 一种机器人单自由度驱动模块
CN210616515U (zh) 一种六自由度自主分拣机械臂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18767365

Country of ref document: EP

Kind code of ref document: A1