WO2018166038A1 - 光源装置及投影系统 - Google Patents

光源装置及投影系统 Download PDF

Info

Publication number
WO2018166038A1
WO2018166038A1 PCT/CN2017/081311 CN2017081311W WO2018166038A1 WO 2018166038 A1 WO2018166038 A1 WO 2018166038A1 CN 2017081311 W CN2017081311 W CN 2017081311W WO 2018166038 A1 WO2018166038 A1 WO 2018166038A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
excitation light
optical path
region
laser
Prior art date
Application number
PCT/CN2017/081311
Other languages
English (en)
French (fr)
Inventor
胡飞
郭祖强
杜鹏
米麟
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to US16/493,972 priority Critical patent/US11243460B2/en
Priority to EP17901192.9A priority patent/EP3598230B1/en
Publication of WO2018166038A1 publication Critical patent/WO2018166038A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present invention relates to the field of projection technology, and in particular, to a light source device and a projection system.
  • a semiconductor blue laser is used to excite the phosphor to generate red and green light, and the blue light emitted by the semiconductor blue laser itself and the red and green light are used to form three primary colors to modulate the image, which is a commonly used method. .
  • the light source device 10 includes a first light source 101, a light homogenizing device 102, a regional beam splitter 103, a collecting lens 104, a fluorescent pink wheel 105, a first relay lens 106 and a second relay. Lens 108, mirror 107 and square bar 109.
  • the area beam splitter 103 includes a blue anti-yellow area 1031 and an anti-blue anti-yellow area 1032, and the blue anti-yellow area 1031 is located in a central area of the area beam splitter.
  • the first light source 101 is a blue laser, and the emitted blue light (excitation light) is homogenized by the light homogenizing device 102, is incident on the area beam splitter 103, and is transmitted through the blue anti-yellow area 1031 of the area beam splitter 103.
  • the blue light is incident on the collecting lens 104 along the central axis of the collecting lens 104, and the collecting lens 104 is used to concentrate the excitation light; the blue light is collected by the collecting lens 104 and incident on the fluorescent pink wheel 105.
  • the fluorescent pink wheel 105 includes a first section coated with a red phosphor, a second section coated with a green phosphor, and a third section having a scattering reflection function.
  • the fluorescent pink wheel 105 rotates periodically so that the first segment, the second segment, and the third segment are time-divisionally located on the optical path of the blue light.
  • Blue light excites red phosphor to produce red fluorescence (by laser), blue light excites green phosphor to produce green fluorescence (by laser), red fluorescence and green fluorescence are emitted in the form of Lambertian light; and blue light is scattered and reflected through the third segment. In the form of Lambertian light, the amount of optical expansion becomes large.
  • the red and green fluorescent light passes through the collecting lens 104 and is reflected by the area beam splitter 103.
  • the blue light emitted in the form of the Lambert light is reflected only by the anti-blue anti-yellow region 1032, and the blue light incident on the blue anti-yellow region 1031 is lost due to transmission; red, green, and blue light pass through the relay lens 106.
  • the mirror 107 and the relay lens 108 enter the square bar 109 and finally exit from the exit end of the square bar 109.
  • the prior art technical solution not only loses part of the excitation light but also reduces the brightness of the light source, and causes poor color uniformity.
  • the present invention provides a light source device having high light utilization efficiency and uniform color uniformity of the light source.
  • the basic idea of the present invention is that after the excitation light is reflected by the wavelength conversion device, there is no light returning along the original path of the incident light path of the excitation light, thereby avoiding this part of the excitation light loss; meanwhile, due to the laser and the reflected excitation light The light distribution is different, and the imaging position of the excitation light spot is changed by the action of the light guiding system, so that the laser and the reflected excitation light are image-coincident at a predetermined position, and have the same spatial distribution uniformity, thereby realizing the color of the total emitted light. Homogenize.
  • the present invention provides a light source device including a first light source, a light guiding system, and a wavelength converting device;
  • the first light source is configured to emit a first excitation light, and the first excitation light is incident along An optical channel is incident to the light directing system;
  • the light directing system is for directing the first excitation light to the wavelength conversion device;
  • the wavelength conversion device includes a wavelength conversion section and a reflective section, the wavelength The conversion device periodically moves such that the wavelength conversion section and the reflection section are periodically and periodically located on the optical path of the first excitation light, the wavelength conversion section absorbing the first excitation light and exiting the laser beam,
  • the first excitation light is obliquely incident on the surface of the reflective segment, and is reflected to form a second excitation light;
  • the light guiding system is further configured to collect the laser light and the second excitation light, and guide the laser light And a second excitation light exiting along the exit optical channel;
  • the light guiding system includes an optical path correction component, the optical path
  • the light source device further includes a filter wheel including a scattering transmissive section and a shading transmissive section for scattering the second excitation light, the refraction transmissive area
  • the segments are used to color the laser, and the filter wheel is periodically moved such that the various sections of the filter wheel are in one-to-one correspondence with the various sections of the wavelength conversion device.
  • the filter wheel is disposed coaxially with the wavelength conversion device and rotates about the same axis under the drive of one drive device.
  • the scattering transmissive section is provided with a Top-hat type diffuser or a hexagonal array of single-row compound eye structures.
  • the optical path correction component includes a curved reflective surface for simultaneously changing a direction of the second excitation light and a beam angular distribution; or the optical path correction component includes a planar reflective surface and a lens, the planar reflection The face is for changing a direction of the second excitation light, and the lens is for changing an angular distribution of the second excitation light.
  • the optical path correction component includes a convex reflective surface or a combination of a planar reflective surface and a concave lens, from the wavelength conversion device to a position where the second excitation light and the laser light are superposed, the first The optical path of the two excitation light is greater than the optical path of the laser.
  • the light guiding system includes a first beam splitting assembly, the first beam splitting assembly includes a first region and a second region that do not overlap, the first excitation light is incident on the first region, The second excitation light is incident on the second region, the transmissive reflection characteristic of the first region to the first excitation light and the transmissive reflection characteristic of the second region to the second excitation light are the same; The second excitation light is transmitted to the optical path correction component after passing through the second region, and the second excitation light and the received laser light are coincident with the optical path of the laser beam exiting position of the first beam splitting assembly.
  • the light guiding system further includes a first beam splitting assembly, the first beam splitting assembly including a first region and a second region that do not overlap, the first excitation light being incident on the first region, The second excitation light is incident on the second region, and the transmissive reflection characteristic of the first region to the first excitation light is opposite to the transmissive reflection characteristic of the second region to the second excitation light;
  • the light guiding system further includes a second beam splitting component, the second excitation light is transmitted to the optical path correcting component after passing through the second beam splitting component, and the second excitation light and the received laser light are in the second splitting light The optical path of the component is coincident by the laser exit position.
  • the optical path correction component includes a concave reflective surface or a combination of a planar reflective surface and a convex lens, from the wavelength conversion device to a position where the second excitation light and the laser light are superposed, the first The optical path of the two excitation light is smaller than the optical path of the laser light, and the optical path correction component transmits the laser light.
  • the light guiding system includes a first beam splitting assembly, the first beam splitting assembly includes a first region, the first excitation light is incident on the first region, and the second excitation light does not pass In the first beam splitting assembly, the second excitation light and the received laser light are coincident at a second excitation light exit position optical path of the optical path correction component.
  • the light guiding system includes a first beam splitting assembly, the first beam splitting assembly includes a first region and a second region that do not overlap, the first excitation light is incident on the first region, The second excitation light is incident on the second region, the transmissive reflection characteristic of the first region to the first excitation light and the transmissive reflection characteristic of the second region to the second excitation light are opposite;
  • the light guiding system includes a second beam splitting component, the second excitation light does not pass through the second beam splitting component, and the laser light is sequentially guided through the first beam splitting component and the second beam splitting component, and then transmitted through the light path Correcting the component and coincident with the second excitation light path at a second excitation light exiting position of the optical path correction component.
  • the first beam splitting component transmits the first excitation light and reflects the laser light. In another embodiment, the first beam splitting component reflects the first excitation light and transmits the received laser light.
  • the light guiding system includes a collecting lens disposed between the wavelength converting device and the first beam splitting assembly for concentrating the first excitation light onto the surface of the wavelength converting device, and The received laser light and the second excitation light are collected.
  • the first beam splitting assembly includes a compensation light guiding region for directing the compensation light to the wavelength conversion device.
  • the compensation light is not incident on the wavelength conversion section, thereby avoiding the light loss caused by the compensation light being scattered by the wavelength conversion device, and greatly improving the light utilization efficiency of the compensation light.
  • the angle between the second excitation light incident to the optical path correction component and the second excitation light reflected by the optical path correction component is not equal to 90°.
  • the technical solution can control the second excitation light to coincide with the optical path of the laser light by the arrangement angle of the optical path correction component in a state where the optical path is slightly deviated, thereby improving the degree of freedom in designing the light source device.
  • the first excitation light is incident on the collection lens at a position offset from the center of the collection lens.
  • the technical solution changes the propagation direction of the first excitation light by collecting the lens, thereby realizing that the first excitation light is incident on the reflection segment in an oblique incident manner, thereby avoiding additionally adding other optical components to change the direction of the first excitation light, thereby realizing
  • the structure of the light source device is simplified.
  • the primary optical axis of the first excitation light incident to the collection lens is not perpendicular to the surface of the wavelength conversion device.
  • the technical solution enlarges the angle between the first excitation light and the second excitation light of the collecting lens away from the wavelength conversion device, thereby avoiding the influence between the two beams.
  • the present invention also provides a projection system comprising the light source device of any of the above, further comprising a light modulating device and a lens device.
  • the present invention includes the following beneficial effects: by the guidance of the light guiding system, the first excitation light is incident on the surface of the reflection section of the wavelength conversion device in oblique incidence, and the reflection section on the wavelength conversion device reflects Instead of scattering the first excitation light to form the second excitation light, the expansion of the second excitation light optical expansion is avoided, so that the reflected second excitation light is separated from the first excitation light path without the optical path along the first excitation light.
  • the original path returns, thereby avoiding the second excitation light from losing part of the light along the optical path of the first excitation light, effectively improving the light utilization efficiency; and the main light of the second excitation light through the reflection of the optical path correction component of the light guiding system
  • the axis position is corrected (changing the imaging position of the second excitation light spot perpendicular to the optical path direction thereof), and the angular distribution of the second excitation light is changed by the optical path correction component (changing the imaging position of the second excitation light spot along the beam propagation direction,
  • the second excitation light is coincident with the imaging position of the laser light in the direction in which the light beam propagates, and the imaging position of the second excitation light is corrected, thereby
  • the second excitation light and the received laser light can have the same spatial distribution uniformity at a predetermined position. Therefore, the technical solution of the present invention improves the utilization of light and ensures the spatial distribution uniformity of the color of the light source.
  • FIG. 1A is a schematic structural view of a light source device in the prior art.
  • FIG. 1B is a schematic structural view of a region beam splitter in the light source device of FIG. 1A.
  • FIG. 2 is a schematic structural view of a light source device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of a light source device according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a light source device according to a third embodiment of the present invention.
  • 4A is a schematic structural view of the wavelength conversion device of FIG. 4.
  • FIG. 5 is a schematic structural diagram of a light source device according to Embodiment 4 of the present invention.
  • FIG. 5A is a schematic structural view of the first beam splitting assembly of FIG. 5.
  • FIG. 5A is a schematic structural view of the first beam splitting assembly of FIG. 5.
  • FIG. 6 is a schematic structural diagram of a light source device according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic structural diagram of a light source device according to Embodiment 6 of the present invention.
  • FIG. 8 is a schematic structural diagram of a light source device according to Embodiment 7 of the present invention.
  • FIG. 9 is a schematic structural view of a light source device according to Embodiment 8 of the present invention.
  • FIG. 9A is a schematic structural view of the first beam splitting assembly of FIG. 9.
  • FIG. 9A is a schematic structural view of the first beam splitting assembly of FIG. 9.
  • FIG. 10 is a schematic structural view of a light source device according to Embodiment 9 of the present invention.
  • FIG. 11 is a schematic structural diagram of a light source device according to Embodiment 10 of the present invention.
  • first”, “second”, “third” and the like are used for descriptive purposes only, for convenience of description, and are not to be construed as indicating or implying their relative importance or implicit indication.
  • features defining “first”, “second”, and “third” may include at least one of the features, either explicitly or implicitly.
  • the main optical axis of the light beam can be understood as the central axis of the light beam, and the direction of the main optical axis is the direction in which the light beam advances.
  • FIG. 2 is a schematic structural diagram of a light source device according to Embodiment 1 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204, a collecting lens 205, a relay lens 207, and an optical path correcting component 209, and further, the light source device further includes a uniform The light device 202, the filter wheel 211 and the integrator rod 212.
  • the first light source 201 emits a first excitation light that is incident along the incident light path to the light guiding system, and the light guiding system directs the first excitation light to the wavelength conversion device 206.
  • the first excitation light is homogenized by the homogenizing device 202 and then incident on the first region of the first beam splitting assembly 204, and transmitted through the first beam splitting assembly 204, and then incident on the collecting lens 205, and is collected by the collecting lens 205 and transmitted.
  • the first excitation light is incident on the surface of the wavelength conversion device 206 in such a manner that the main optical axis is obliquely incident (i.e., non-normally incident).
  • the wavelength conversion device 206 includes a wavelength conversion section and a reflection section.
  • the wavelength conversion device 206 is periodically moved such that the reflective segment and the wavelength conversion segment are periodically and temporally located on the optical path of the first excitation light.
  • the wavelength conversion section absorbs the first excitation light and emits the laser light
  • the reflection section reflects the first excitation light to form the second excitation light.
  • the wavelength conversion section includes a wavelength converting material or a wavelength converting structure capable of absorbing excitation light and emitting a laser light having a wavelength different from that of the excitation light.
  • the laser Under the action of the wavelength conversion section, the laser is roughly distributed in a Lambertian direction, and the main optical axis direction is perpendicular to the wavelength conversion section, and the reflection section does not change the angular distribution of the excitation light, the first excitation light and the second excitation.
  • the angular distribution of the light is substantially the same, and the second excitation light is symmetrically emitted with respect to the first excitation light, and the exit direction is not perpendicular to the reflective segment, so the laser and the main optical axis of the second excitation light do not coincide with each other. Different light paths are transmitted.
  • the light guiding system is further configured to collect the received laser light and the second excitation light, and direct the laser and the second excitation light to exit along the exiting optical channel, as follows.
  • the received laser light is emitted by the wavelength conversion section, collected by the collection lens 205 and transmitted to the first beam splitting component 204, and the first beam splitting component 204 is The transmitted and reflected characteristics of the first excitation light and the laser light are opposite such that the laser light is reflected and directed to exit along the exit light path.
  • the second excitation light When the reflective segment of the wavelength conversion device 206 is on the optical path of the first excitation light, the second excitation light is emitted by the reflective segment, collected by the collection lens 205, and transmitted to the second region of the first beam splitting assembly 204.
  • the second excitation light has the same wavelength as the first excitation light, and the second excitation light is transmitted through the second region of the first beam splitting assembly 204 and transmitted to the optical path correction component 209.
  • the first excitation light does not overlap with the region where the second excitation light is incident on the first beam splitting component 204 (the first region does not overlap with the second region), so the second excitation light does not follow the first excitation light.
  • the incident optical path is returned to the first light source 201 in the reverse direction.
  • the optical path correction component 209 is located on the optical path of the second excitation light, and the second excitation light incident on the optical path correction component 209 is reflected by the reflection surface of the optical path correction component 209 such that the main optical axis of the reflected second excitation light and the laser-receiving The main optical axes coincide.
  • the reflected second excitation light is again transmitted through the first beam splitting assembly 204, and the laser beam exiting position of the first beam splitting assembly 204 is combined with the laser beam (refer to the coincidence of the optical paths of the two, the actual two are staggered in time).
  • the light is incident on the filter wheel 211 via the relay lens 207, and the light transmitted through the filter wheel 211 enters the integrator rod 212 from the entrance of the integrator rod 212.
  • the main optical axis of the second excitation light "overlaps" with the main optical axis of the laser light, which can be understood as not coincident in the absolute sense but in the overlap of the approximate coincidence/precision error. It can be understood by those skilled in the art that, without limitation to the present embodiment, based on the technical solution provided by the present invention, the main optical axis of the second excitation light is parallel to the main optical axis of the laser and the distance is less than the threshold. It is also within the scope of the protection of the invention, which may also be referred to as "coincidence within the error range".
  • the components of the light source device of the present invention can be derived from a plurality of specific technical solutions according to the actual application environment, and the technical solutions can be combined with each other. Give an example.
  • the first light source 201 It may be a blue laser or a blue laser array, the first excitation light is a blue laser, the laser divergence angle is small, the light beam is concentrated, and the Gaussian distribution is substantially Gaussian, so that the reflected second excitation light can be easily distinguished from the first excitation light. Light path.
  • the first light source 201 can be a blue-emitting LED, and the first excitation light is blue LED light. The present invention is not limited thereto, but the light having the first excitation light at a small divergence angle is superior.
  • the light homogenizing device 202 includes an integrator rod or a fly-eye lens pair for homogenizing the first excitation light emitted by the first light source 201.
  • the light homogenizing device may not be provided, which is not limited in the present invention.
  • the combination of the first light source 201 and the light homogenizing device 202 in the first embodiment can also be regarded as a first light source.
  • the wavelength conversion device 206 is a disk structure (fluorescent color wheel), and the wavelength conversion section and the reflection section are arranged in a fan shape on the wheel structure, and are driven by a driving device (such as a motor). Rotate around the center axis of the wheel.
  • a driving device such as a motor
  • the wavelength conversion device may further be a fluorescent color drum/color cylinder, including a wavelength conversion section and a reflection section distributed around the barrel/cylindrical surface, and the color drum/color cylinder rotates around the axial direction thereof to The different sections are periodically illuminated by the excitation light according to the timing; or the wavelength conversion device may be a fluorescent color plate including a wavelength conversion section and a reflection section arranged in a line direction, along which the color plate is located The direction is linearly vibrated so that the different sections are periodically illuminated by the excitation light in time series, thereby emitting the time series light.
  • the wavelength conversion section of the wavelength conversion device 206 comprises a layer of fluorescent material, which may be a phosphor-organic adhesive layer (separated by an organic binder such as silica gel or epoxy resin).
  • the phosphor is bonded to the layer), or it may be a phosphor-inorganic adhesive layer (the separated phosphor is bonded to a layer by an inorganic binder such as glass), or may be a fluorescent ceramic (including 1 in a continuous ceramic) a structure as a matrix with phosphor particles distributed in the ceramic; 2 pure phase ceramic doping activator elements, such as Ce doped YAG ceramics; 3 on the basis of pure phase ceramic doping activator elements, dispersed in the ceramic Phosphor particles).
  • the wavelength conversion section comprises a quantum dot layer that is photochromic enabled by a quantum dot material.
  • the wavelength conversion device 206 may have only one wavelength conversion section (such as a yellow wavelength conversion section), or may have two wavelength conversion sections (such as a green wavelength conversion section and a red wavelength conversion section), and may also include two or more. Wavelength conversion section.
  • the reflective section of the wavelength conversion device 206 includes a metallic reflective surface that specularly reflects the excitation light.
  • the reflective segment comprises a dielectric reflective film (dielectric Reflecting film), specular reflection of the excitation light.
  • the reflective segments may also employ other reflective structures to reflect the excitation light.
  • the reflection surface of the reflection section of the wavelength conversion device 206 is parallel to the plane of motion of the wavelength conversion device 206, that is, the rotation axis of the fluorescent color wheel is perpendicular to the reflection surface of the reflection section.
  • the first excitation light is incident on the surface of the wavelength conversion device in oblique incidence (when the reflection segment is located on the first excitation light path, the reflection surface of the reflection segment is the surface of the wavelength conversion device)
  • the collection lens 205 is incident at a position deviating from the center of the collecting lens 205 such that the first excitation light is changed in the light transmission direction by the collecting lens 205, thereby being obliquely incident on the surface of the wavelength conversion device.
  • the second excitation light reflected from the reflection section is incident on the collecting lens 205.
  • the first excitation light and the second excitation light form a "V"-shaped optical path.
  • the reflecting surface of the reflecting section may not be parallel to the plane of motion of the wavelength conversion device, but has an inclination angle with respect to the plane of motion of the wavelength conversion device, but the first excitation light is still obliquely incident.
  • the method is incident on the reflecting surface of the reflecting section, thereby realizing the optical path separation of the first excitation light and the second excitation light, and the technical solution can make the optical path design more flexible and variable.
  • the first beam splitting component 204 is a filter/filter/dichroic color filter that transmits excitation light (including the first excitation light and the second excitation light) and reflects the laser beam, the first splitting light.
  • the assembly 204 is large enough to enable light from the collection lens 205 to be reflected toward the relay lens 207, and to enable the first and second regions that are sufficiently separated from each other to provide the first excitation light and the second excitation light, respectively. transmission.
  • the optical path correction component 209 includes a convex reflecting surface that omits the second excitation light, reflects the second excitation light, and changes the beam angular distribution to diverge the light beam.
  • the optical path correction component 209 is disposed on a side of the first beam splitting assembly 204 remote from the wavelength conversion device 206.
  • the action of the optical path correcting component is to cause the second excitation light to coincide with the main optical axis of the laser by reflection, and the other is to converge or diverge the light beam by changing the beam angular distribution of the second excitation light.
  • the process of light from the wavelength conversion device 206 to the entrance of the integrator rod 212 is actually the process of imaging the spot on the surface of the wavelength conversion device 206 to the entrance surface of the integrator rod 212 (the integrator rod can also be replaced with other optics while the surface of the wavelength conversion device is The spot is imaged to the entrance face of the replaced optic).
  • the optical paths of the two excitation light are different, so that the optical path overlaps and the imaging positions do not coincide under the action of the same optical device, thereby causing one of the two.
  • the spatial uniformity of the light is poor (since the spot on the wavelength conversion device as the "object" is uniform, and the spot of the imaging position deviating from the integrator rod 212 is in a defocused state on the incident surface of the integrator rod 212, then the face of the spot is The distribution must be uneven).
  • the optical path correction component 209 is disposed on a side of the first beam splitting component 204 away from the wavelength conversion device 206, and the second excitation light from the optical path correction component 209 passes through the first beam splitting component 204 and is subjected to the laser main optical axis. coincide.
  • the second excitation light from the wavelength conversion device 206 to the coincidence position of the two lights (here, still refers to the coincidence of the spatial positions of the two lights, the actual two lights are staggered in time) is larger than the laser beam
  • the optical path of the second excitation light from the wavelength conversion device 206 to the incident surface of the integrator rod 212 is greater than the optical path of the incident surface of the laser from the wavelength conversion device 206 to the integrator rod 212.
  • the optical path correction component 209 of the embodiment includes a convex reflecting surface, which increases the imaging focal length of the second excitation light from the wavelength conversion device to the integrator rod, so that the second excitation light and the laser receiving laser can be imaged at the same position, thereby ensuring the light source.
  • the spatial distribution uniformity of the emitted light of the device is a convex reflecting surface, which increases the imaging focal length of the second excitation light from the wavelength conversion device to the integrator rod, so that the second excitation light and the laser receiving laser can be imaged at the same position, thereby ensuring the light source.
  • the convex reflective surface of the optical path correction component 209 is a structure that is plated with a metallic reflective film on a convex structure. In other embodiments, it may be realized by plating a dielectric reflection film or the like.
  • the collection lens 205 can be a combination of a plurality of lenses.
  • the relay lens 207 may be a combination of a plurality of lenses, such as a combination of a concave lens and a convex lens, and the like. It will be appreciated that the relay lens is not an integral component of the light source device of the present invention.
  • the filter wheel 211 includes a diffuse transmission section and a trimmed transmission section.
  • the scattering transmission section is for scattering the second excitation light such that the divergence angle of the second excitation light is consistent with the divergence angle of the laser, and the scattering transmission section can be realized by providing a diffusion sheet; It is used for color correction of the laser light, so that the color coordinates of the transmitted laser light conform to the requirements of the light emitted by the light source device, and the color correction transmission section can be realized by setting the wavelength filter.
  • the filter wheel 211 is periodically rotated by a driving device (such as a motor) such that the filter wheel 211 is synchronized with the wavelength conversion device 206 such that each section of the filter wheel 211 and each section of the wavelength conversion device 206 One-to-one correspondence.
  • a driving device such as a motor
  • the wavelength conversion device 206 emits the laser light
  • the color-changing transmission section of the filter wheel 211 is located on the optical path of the laser light
  • the wavelength conversion device 206 emits the second excitation light the scattering transmission area of the filter wheel 211
  • the segment is located on the optical path of the second excitation light. Since the general diffuser scatters the excitation light, the angular distribution of the excitation light is Gaussian scattering, which is different from the angular distribution of the received laser light.
  • the scattering transmission section is provided with a Top-hat type scattering sheet (that is, a single-row compound eye structure in which the angular distribution after scattering is approximately "several", shaped like a top hat, so called top-hat) or hexagonal arrangement.
  • a Top-hat type scattering sheet that is, a single-row compound eye structure in which the angular distribution after scattering is approximately "several", shaped like a top hat, so called top-hat
  • hexagonal arrangement that is, a single-row compound eye structure in which the angular distribution after scattering is approximately "several", shaped like a top hat, so called top-hat
  • the filter wheel is not an essential component of the light source device of the present invention.
  • the filter wheel may be omitted, which is not limited in the present invention.
  • the outgoing light of the filter wheel 211 enters the integrator rod 212 and is homogenized.
  • the integrator rod 212 can also be replaced with other leveling devices.
  • the integrator rod 212 may also be omitted so that the exiting light directly enters the subsequent optical component, which is not limited in the present invention.
  • FIG. 3 is a schematic structural diagram of a light source device according to Embodiment 2 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204a, a collecting lens 205, a relay lens 207, and an optical path correcting component 209, and further, the light source device further includes Two light sources 203, a light homogenizing device 202, a filter wheel 211 and an integrator rod 212.
  • the first light source 201 For descriptions of the first light source 201, the light guiding system, the wavelength converting device 206, the light homogenizing device 202, the filter wheel 211, and the integrator rod 212, reference may be made to the description in the first embodiment.
  • the technical solution of the second embodiment adds a second light source 203 for emitting compensation light when the wavelength conversion section of the wavelength conversion device 206 is on the optical path of the first excitation light.
  • the first beam splitting assembly 204a further includes a compensating light guiding region capable of guiding the compensation light to the wavelength converting device as compared with the first embodiment.
  • the compensation light When the compensation light is incident on the first beam splitting assembly 204a, the compensation light is transmitted through the compensation light guiding region and concentrated by the collecting lens 205 to the wavelength converting device 206, the compensation light is not absorbed by the wavelength converting device 206, but is scattered After reflection (diffuse reflection), it becomes a light having a substantially Lambertian distribution and is emitted together with the laser.
  • the compensation light collected by the collecting lens 205 is the same as most of the laser beams except for a small amount of compensation light and a portion of the compensated light guiding region where the laser light is transmitted through the first beam splitting assembly 204a.
  • the light path enters the exit light channel to exit.
  • the compensation light has a wavelength range that overlaps with the laser.
  • the wavelength range of the compensated light is (a, b)
  • the wavelength range of the laser is (c, d), where c ⁇ a ⁇ d.
  • the color of the compensation light may be the same or similar to that of the laser.
  • the compensation light can be used to compensate for at least one of the hue, brightness, and the like of the laser.
  • the second source 203 is a red laser source
  • the wavelength conversion device 206 includes a reflective segment, a green wavelength conversion segment, and a red wavelength conversion segment, when the red wavelength conversion segment is in the first excitation
  • the second light source 203 is turned on so that the red laser light and the red laser light are emitted together, so that the red light emitted from the light source device can be closer to the required red color, and the brightness of the red light can be improved.
  • the compensation light causes uneven color distribution of the spot surface due to compensation of light loss in the light guiding region
  • the compensation light since the color of the laser and the compensation light overlap, the compensation light only occupies a part of the color light, and the color uniformity Acceptable.
  • the setting of the compensation light guiding region does not affect the uniformity of the excitation light, and the present technical solution does not adversely affect the improvement of the uniformity of the excitation light.
  • the compensation light guiding region is disposed on the main optical axis path of the laser light, and the compensation light guiding region is capable of transmitting the excitation light such that the second excitation light can pass through the compensation light guiding region after being reflected by the optical path correction component 209. It coincides with the main optical axis of the laser.
  • the compensation light guiding region is offset from the main optical axis of the laser, that is, the compensation light is obliquely incident on the surface of the wavelength conversion device as the first excitation light, but the wavelength of the compensation light is incident on the wavelength conversion device.
  • the scattered and reflected light becomes a light having a substantially Lambertian distribution so that it can still coincide with the laser light instead of forming a "V" shaped optical path.
  • the second excitation light reflected by the optical path correction component may coincide with the main optical axis of the laser without passing through the compensation light guiding region, and thus the compensation light guiding region may not necessarily transmit the excitation light.
  • the second light source 203 for emitting the compensation light may be omitted if it is not necessary to compensate for the laser light, which is not limited in the present invention. If the second light source 203 for emitting the compensation light is omitted, the first beam splitting component may not include the compensation light guiding region.
  • FIG. 4 is a schematic structural diagram of a light source device according to Embodiment 3 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204a, a collecting lens 205, a first relay lens 207, a reflection sheet 208, an optical path correction component 209, and a
  • the second relay lens 210 further includes a second light source 203, a light homogenizing device 202, a filter wheel 211, and an integrator rod 212.
  • the wavelength conversion device 206 and the filter wheel 211 are disposed independently of each other, and are respectively driven by the two driving devices to perform periodic motion.
  • the wavelength conversion device 206 is disposed coaxially with the filter wheel 211, and is rotated about the same axis by the driving of one driving device.
  • the wavelength conversion device 206 includes a fan-shaped reflective segment 2061, a red wavelength conversion segment 2062, and a green wavelength conversion segment 2063.
  • the filter wheel 211 includes a fan-shaped scattering transmission segment 2111 and a red color correction.
  • the fan ring angle of the reflecting section 2061 is the same as the fan ring angle of the scattering transmissive section 2111
  • the fan ring angle of the red wavelength converting section 2062 is the same as the fan ring angle of the red trimming transmissive section 2112
  • the fan ring angle of the segment 2063 is the same as the fan ring angle of the green trimming transmissive section 2113.
  • the reflective region 2061 is disposed 180° opposite to the scattering transmissive region 2111.
  • This technical solution makes the reflective region 2061 farthest from the scattered transmissive region 2111, and has sufficient space for arranging the optical elements of the intermediate optical path.
  • the reflection region and the scattering transmission region may be disposed at an arbitrary angle of 0 to 180°, which is not limited in the present invention.
  • the present embodiment adds a reflection sheet 208 and a second relay lens 210 for guiding the laser light, the second excitation light, and the compensation light.
  • the reflective element 208 reflects the laser light, the second excitation light and the compensation light from the first relay lens 207 to the second relay lens 210, and the second relay lens 210 collects the laser light, the second excitation light and the compensation light. And transmits it to the filter wheel 211.
  • reflective element 208 is a metal mirror. In another embodiment, reflective element 208 can also be an element that includes a dielectric reflective film. In other embodiments, the reflective element 208 can also be other types of reflective optical devices, which are not limited in the present invention.
  • the wavelength conversion device 206 and the filter wheel 211 can also be split into two relatively independently arranged elements without changing.
  • the location of the solution is also within the scope of the invention.
  • FIG. 5 is a schematic structural diagram of a light source device according to Embodiment 4 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204b, a collecting lens 205, a first relay lens 207, a second beam splitting component 208a, and an optical path correcting component 209. And the second relay lens 210, in addition, the light source device further includes a second light source 203, a light homogenizing device 202, a filter wheel 211, and an integrator rod 212.
  • the first and second regions of the first beam splitting component 204 or the first beam splitting component 204a have the same transmission and reflection characteristics for the first excitation light and the second excitation light.
  • the transmission and reflection characteristics of the first region to the first excitation light and the transmission and reflection characteristics of the second region to the second excitation light are opposite.
  • the first beam splitting assembly 204b includes a first region 204b1, a second region 204b2, a compensation light guiding region 204b3, and a fourth region 204b4, the first region and the second region not overlapping.
  • the first region 204b1 transmits the first excitation light (further, the reflected laser light and the compensation light)
  • the second region 204b2 reflects the second excitation light (further, the reflected laser light and the compensation light)
  • the fourth region 204b4 reflects the laser and the compensated light.
  • region 204b4 transmits excitation light, and first region 204b1 and region 204b4 may merge into one entire region.
  • region 204b4 reflects the excitation light, and the second region 204b2 and the region 204b4 may merge into one entire region.
  • the transflective properties of the various regions can be achieved by coating, wherein transmission can also be achieved by hollowing out, and reflection can also be achieved by providing a reflective layer.
  • the first light source 201 emits the first excitation light, and after the first excitation light is homogenized by the homogenizing device 202, it is incident on the first region 204b1 of the first beam splitting assembly 204b and transmitted, and then the first excitation light passes through The collection lens 205 is converged and transmitted to the wavelength conversion device 206.
  • the wavelength conversion section of the wavelength conversion device 206 absorbs the first excitation light and emits a laser light having a substantially Lambertian distribution, which is collected by the collection lens 205 and transmitted to the laser beam.
  • the first beam splitting component 204b the laser beam covers most of the area of the first beam splitting component 204, except that a small amount of the laser light transmitted through the compensation light guiding region 204b3 overlaps with the complementary light spectrum, and the other laser light is reflected to The first relay lens 207.
  • the first excitation light is obliquely incident on the surface of the reflective segment, and reflected by the reflective segment to form a second excitation light, the second excitation light and the second excitation light
  • An excitation light is in a "V"-shaped optical path, collected by the collecting lens 205 and transmitted to the second region 204b2 of the first beam splitting assembly 204b, and the second excitation light is reflected by the second region 204b2 and reflected to the first relay lens. 207.
  • the second light source 203 emits compensation light that is transmitted through the compensation light guiding region 204b3 of the first beam splitting assembly 204b, is concentrated by the collecting lens 205, and is transmitted to the wavelength converting section of the wavelength converting device 206, and is scattered by the wavelength converting conversion section. After the reflection, the compensation light is substantially distributed in the Lambertian distribution. After the compensation light is collected by the collecting lens 205, the remaining portion and the laser-receiving edge are removed except that a small amount of the compensation light guiding region 204b3 of the first beam splitting assembly 204b is again transmitted and lost. The same light path exits.
  • the second excitation light is collected by the first relay lens 207 and transmitted to the optical path correction component 209, and is reflected by the optical path correction component 209 to the second relay lens 210.
  • the second relay lens 210 is collected and transmitted to the filter wheel 211.
  • the second beam splitting component 208a is disposed on the optical path between the first relay lens 207 and the optical path correcting component 209, and the second beam splitting component 208a does not affect.
  • the second excitation light is transmitted to directly transmit the second excitation light; on the other hand, the laser and the compensation light are collected by the first relay lens 207 and transmitted to the second beam splitting component 208a, and the second beam splitting component 208a is further subjected to the laser light. And the compensation light is reflected to the second relay lens 210, and the second relay lens 210 collects and transmits the received laser light and the compensation light to the filter wheel 211.
  • the optical path correction component 209 is located on a reverse extension line of the laser-receiving optical path reflected by the second beam splitter assembly 208a, and the optical path correction component 209 reflects the second excitation light such that the main optical axis of the reflected second excitation light is received by the laser.
  • the main optical axes coincide so that a uniform color space distribution can be achieved at the incident surface of the integrator rod 212.
  • the second excitation light passes through the second beam splitting assembly 208a twice, and coincides with the received laser light at the laser beam exiting position of the second beam splitting assembly 208a.
  • the optical path of the coincident position of the second excitation light from the wavelength conversion device 206 to the two beams is greater than the optical path of the laser beam with respect to the laser light, so the optical path correction component 209 also includes a convex reflection surface to increase the second laser light. Imaging focal length.
  • This technical feature is similar to the above embodiments in that a convex surface is selected to solve the optical path of the second excitation light from the wavelength conversion device to the combined position of the second excitation light and the laser light. The problem of uneven color distribution.
  • the first beam splitting component 204 or 204a functions to distinguish the first excitation light from the laser light path, and to combine the second excitation light and the laser light path.
  • the first beam splitting component 204b realizes that the first excitation light is distinguished from the light path of the laser beam
  • the second beam splitting component 208a realizes the combination of the second excitation light and the laser beam-receiving light path.
  • the second light source 203 may be omitted, and the compensation light guiding region of the first beam splitting assembly may also be omitted.
  • FIG. 6 is a schematic structural diagram of a light source device according to Embodiment 5 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204, a collecting lens 205, a relay lens 207, and an optical path correcting component 209a, and further, the light source device further includes a uniform The light device 202, the filter wheel 211 and the integrator rod 212.
  • the optical path correction component 209a is an optical component including a concave reflecting surface disposed on a side of the first beam splitting component 204 close to the wavelength converting device 206, and the reflection of the wavelength converting device 206.
  • the second excitation light emitted from the segment is not incident on the first beam splitting assembly 204, but is directly reflected by the concave reflecting surface of the optical path correcting component 209a.
  • the optical path correction component 209a is capable of transmitting a laser beam, and can be realized by plating a filter film that transmits excitation light and reflects the second excitation light on a concave surface of the transparent medium.
  • the first light source 201 emits the first excitation light, is homogenized by the homogenizing device 202, is incident on the first region of the first beam splitting component 204, is transmitted through the first beam splitting component 204, and then is incident on the collecting lens 205.
  • the collection lens 205 is converged and transmitted to the wavelength conversion device 206.
  • the wavelength conversion section absorbs the first excitation light and emits a laser light having a substantially Lambertian distribution, which is collected by the collection lens 205 and transmitted to the first
  • the beam splitting assembly 204 is reflected by the first beam splitting component 204 to the first relay lens 207.
  • the optical path correcting element 209a has a characteristic of transmitting laser light, and hardly affects the laser light, and transmits it directly through the optical path correcting element 209a.
  • the reflection section converts the first excitation light into the second excitation light, and the second excitation light and the first excitation light are "V"
  • the font light path is collected by the collecting lens 205 and transmitted to the optical path correcting element 209a.
  • the main optical axis coincides with the main optical axis of the laser light, and is transmitted to the first relay lens 207. .
  • the second excitation light does not reach the first beam splitting component 204, that is, is reflected by the light path correcting component 209a, and after being reflected, coincides with the light path of the laser-receiving main optical axis, so that the second excitation light is from the wavelength with respect to the received laser light.
  • the optical path of the coincident position of the conversion device 206 to the two lights is smaller than the optical path of the coincident position of the laser light from the wavelength conversion device 206 to the two lights, and therefore, the spot of the reflection section of the wavelength conversion device 206 is imaged to the incident surface of the integrator rod 212.
  • the optical path whose optical path is smaller than the wavelength conversion section of the wavelength conversion device 206 is imaged to the incident surface of the integrator rod 212.
  • the optical path correction component 209 including the concave reflecting surface the imaging focal length is reduced, so that the second excitation light and the received laser light can be imaged at the same position, thereby ensuring the spatial distribution uniformity of the light emitted from the light source device.
  • the optical path correction component includes a convex reflection surface.
  • part of the laser is required to pass through the optical path correction component, which inevitably affects the uniformity of the laser.
  • the second excitation light is light with a small divergence angle, the area of the optical path correction component is small, so in some applications where the requirements are relatively low, the technical solution of the embodiment can also be accepted.
  • FIG. 7 is a schematic structural diagram of a light source device according to Embodiment 6 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204a, a collecting lens 205, a first relay lens 207, a reflection sheet 208, an optical path correction component 209a, and a
  • the second relay lens 210 further includes a second light source 203, a light homogenizing device 202, a filter wheel 211, and an integrator rod 212.
  • the present embodiment adds a second light source 203 for emitting compensation light when the wavelength conversion section of the wavelength conversion device 206 is on the optical path of the first excitation light.
  • the first beam splitting assembly 204a further includes a compensation light guiding region capable of transmitting the compensation light.
  • the wavelength conversion device 206 in this embodiment is disposed coaxially with the filter wheel 211, and is rotated about the same axis under the driving of one driving device. Moreover, as the structural position of the wavelength conversion device 206 and the filter wheel 211 changes, the optical path between the wavelength conversion device 206 and the filter wheel 211 is also appropriately adjusted, and the reflection sheet 208 and the second relay lens 210 are added for The guided laser light, the second excitation light, and the compensation light are guided.
  • the reflective element 208 reflects the laser light, the second excitation light and the compensation light from the first relay lens 207 to the second relay lens 210, and the second relay lens 210 collects the laser light, the second excitation light and the compensation light. And transmits it to the filter wheel 211.
  • the change of the difference reference may be made to the change of the third embodiment for the second embodiment, and details are not described herein again.
  • This embodiment can also be considered as combining the third embodiment with the fifth embodiment, replacing the optical path correction element 209 including the convex reflection surface in the third embodiment with the optical path correction element 209a including the concave reflection surface, and simultaneously the optical path correction element 209a.
  • the position is set on the optical path between the wavelength conversion device 206 and the first beam splitting assembly 204a.
  • FIG. 8 is a schematic structural diagram of a light source device according to Embodiment 7 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204b, a collecting lens 205, a first relay lens 207, a second beam splitting component 208a, and an optical path correcting component 209a.
  • the second relay lens 210 in addition, the light source device further includes a second light source 203, a light homogenizing device 202, a filter wheel 211, and an integrator rod 212.
  • the first beam splitting component 204b can also refer to FIG. 5A, including a first region 204b1, a second region 204b2, a compensation light guiding region 204b3, and a fourth region 204b4, and a first region 204b1 of the first beam splitting component 204b.
  • the transflective characteristics of the first excitation light are opposite to the transflective characteristics of the second excitation region 204b2 of the first beam splitting assembly 204b to the second excitation light.
  • the first excitation light emitted by the first light source 201 is homogenized by the homogenizing device 202, is incident on the first region 204b1 of the first beam splitting assembly 204b, and is transmitted, and then the first excitation light is concentrated by the collecting lens 205 and then transmitted to Wavelength conversion device 206.
  • the wavelength conversion section of the wavelength conversion device 206 absorbs the first excitation light and emits a laser light having a substantially Lambertian distribution, which is collected by the collection lens 205 and transmitted to the laser beam.
  • the first beam splitting component 204b the laser beam covers most of the area of the first beam splitting component 204b, except that a small amount of the laser light transmitted through the compensation light guiding region 204b3 which overlaps with the compensation light exists, the other laser light is reflected to The first relay lens 207.
  • the first excitation light is obliquely incident on the surface of the reflective segment, and reflected by the reflective segment to form a second excitation light, the second excitation light and the second excitation light
  • An excitation light is in a "V"-shaped optical path, collected by the collecting lens 205 and transmitted to the second region 204b2 of the first beam splitting assembly 204b, and the second excitation light is reflected by the second region 204b2 and reflected to the first relay lens. 207.
  • the second light source 203 emits compensation light that is transmitted through the compensation light guiding region 204b3 of the first beam splitting assembly 204b, is concentrated by the collecting lens 205, and is transmitted to the wavelength converting section of the wavelength converting device 206, and is scattered by the wavelength converting conversion section. After the reflection, the compensation light is substantially distributed in the Lambertian distribution. After the compensation light is collected by the collecting lens 205, the remaining portion and the laser-receiving edge are removed except that a small amount of the compensation light guiding region 204b3 of the first beam splitting assembly 204b is again transmitted and lost. The same light path exits.
  • the second excitation light is collected by the first relay lens 207 and transmitted to the optical path correction element 209a, and is reflected by the optical path correction element 209a to the second relay lens 210.
  • the second relay lens 210 is collected and transmitted to the filter wheel 211; on the other hand, the received laser light and the compensation light are collected by the first relay lens 207 and transmitted to the second beam splitting assembly 208a, and the second beam splitting assembly 208a is further subjected to the laser beam.
  • the compensation light is reflected to the second relay lens 210, and the second relay lens 210 collects and transmits the received laser light and the compensation light to the filter wheel 211.
  • the second excitation light is directly incident on the optical path correction element 209 without passing through the second beam splitting assembly 208a.
  • the partially received laser and the compensated light are transmitted through the optical path correction component 209a, which inevitably affects the uniformity of the laser.
  • the second excitation light is light having a small divergence angle, the area of the optical path correction component 209a is small, so that the application of the present embodiment can be accepted in some applications where the requirements are relatively low.
  • the laser light is sequentially guided by the first beam splitting assembly 204b and the second beam splitting component 208a, and then transmitted through the optical path correcting component 209a.
  • the second excitation light is reflected by the optical path correcting component 209a, and the two lights are in the optical path correcting component 209a.
  • the second excitation light exiting position optical paths are coincident such that the optical path of the second excitation light from the wavelength conversion device 206 to the coincidence position of the two lights is smaller than the light received by the laser from the wavelength conversion device 206 to the coincidence position of the two lights with respect to the laser light receiving Therefore, the optical path of the reflection section of the wavelength conversion device 206 to the incident surface of the integrator rod 212 is smaller than the optical path of the wavelength conversion section of the wavelength conversion device 206 to the incident surface of the integrator rod 212.
  • the surface of the optical path correcting component 209a that reflects the second excitation light is a concave reflecting surface, so that the second excitation light and the received laser light can be imaged at the same position, and the color space distribution is uniform.
  • the second beam splitting component 208a may also be a reflective sheet.
  • FIG. 9 is a schematic structural diagram of a light source device according to Embodiment 8 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204c, a collecting lens 205, a relay lens 207, and an optical path correcting component 209, and further, the light source device further includes Two light sources 203, a light homogenizing device 202, a filter wheel 211 and an integrator rod 212.
  • the first excitation light is homogenized by the homogenizing device 202, transmitted through the first beam splitting assembly 204/204a/204b, and then incident on the wavelength conversion device 206.
  • the first excitation light is reflected by the first beam splitting component 204c and then incident on the wavelength conversion device 206 via the collecting lens 205.
  • the first beam splitting assembly 204c includes a first region 204c1, a second region 204c2, a compensation light guiding region 204c3, and a fourth region 204c4.
  • the first region 204c1 reflects the first excitation light and transmits the received laser light and the compensation light
  • the second region 204c2 reflects the second excitation light and transmits the received laser light and the compensation light
  • the compensation light guiding region 204c3 reflects the compensation light and transmits the second excitation light.
  • the fourth region 204c4 is transmitted by the laser and the compensated light.
  • the first excitation light emitted by the first light source 201 is homogenized by the homogenizing device 202, then incident on the first region 204c1 of the first beam splitting component 204c, and is reflected in the region, and then incident on the collecting lens 205.
  • the collecting lens 205 is concentrated and incident on the wavelength conversion device 206.
  • the first excitation light is incident on the reflective segment in a manner obliquely incident on the main optical axis, and is reflected to form a second excitation light, the second excitation light.
  • a "V"-shaped optical path with the first excitation light is collected by the collecting lens 205 and transmitted to the second region 204c2 of the first beam splitting assembly 204c, and the second excitation light is reflected by the second region 204c2 and reflected to the optical path correcting element.
  • the optical path correction component 209b includes a convex reflection surface that reflects the second excitation light to enter the exit optical channel.
  • the wavelength conversion section of the wavelength conversion device 206 When the wavelength conversion section of the wavelength conversion device 206 is located on the optical path of the first excitation light, the wavelength conversion section absorbs the first excitation light and emits a laser light, which is substantially distributed in a Lambertian distribution, and is collected by the collecting lens 205. The received laser light is transmitted through the first beam splitting assembly 204c into the exiting light tunnel.
  • the first beam splitting component 204c has opposite transmission and reflection characteristics of the first excitation light and the laser light, and functions to distinguish the first excitation light from the laser light path. Before being incident on the first beam splitting assembly 204c, a portion of the laser light is incident on the optical path correcting element 209b, which is directly transmitted through the optical path correcting element 209b by the laser light.
  • the compensation light emitted by the second light source 203 is reflected by the compensation light guiding region 204c3 of the first beam splitting component 204c, collected by the collecting lens 205 and transmitted to the wavelength converting device 206, and is scattered and reflected by the wavelength converting section of the wavelength converting device 206 to approximate
  • the light distributed in the Lambertian is then collected by the collecting lens 205 and transmitted to the first beam splitting assembly 204c.
  • the compensation light and the laser light are combined into one beam, and the remaining compensation light and the laser beam pass through the first beam splitting component except that a small amount of the compensation light and the laser beam overlapped with the compensated light wavelength range are reflected by the compensated light guiding region 204c3.
  • the area other than the compensation light guiding area 204c3 of the 204c is transmitted to enter the outgoing light path.
  • the optical path correcting element 209b is disposed on the optical path between the wavelength converting device 206 and the first beam splitting component 204c, and the optical axis correcting element 209b is used, and the main optical axes of the second excitation light, the received laser light, and the compensation light are coincident.
  • a beam of light is incident on the first beam splitting assembly 204c.
  • the laser and the compensation light are Lambertian distribution light, covering most of the area of the first beam splitting component 204c, and the second excitation light is still a light having a small divergence angle of approximately Gaussian distribution, and the second excitation light is incident to the compensation
  • the light guiding region 204c3 is transmitted.
  • the first beam splitting assembly 204c in this embodiment is a whole, and each area on the surface is realized by plating or opening.
  • the first beam splitting component since the first beam splitting component is transmitted by the laser, the first beam splitting component may also be disposed as relatively independent filters, for example, the first region 204c1 filter and the second region are disposed independently of each other.
  • the technical effect of the present invention can also be achieved by the 204c2 filter and the compensation light guiding region 204c3 filter.
  • the second region 204c2 transmits the second excitation light
  • a reflective sheet is disposed on the optical path after the second excitation light is transmitted through the second region, for changing the direction of the second excitation light. It is incident on the optical path correction element 209b (also including the convex reflection surface), and the second excitation light is reflected by the optical path correction element 209b, and is superimposed on the laser-receiving main optical axis transmitted through the optical path correction element 209b.
  • the optical path correction element 209b is disposed on the optical path after the first beam splitting assembly 204c, that is, the laser beam passes through the first beam splitting assembly 204c and then passes through the optical path correcting element 209b.
  • the second light source 203 may not be provided, and accordingly, the compensation light guiding region 204c3 may also be omitted, but the original compensation light guiding region 204c3 needs to be capable of transmitting the second excitation light.
  • the second excitation light, the compensation light, and the received laser light have become a combined light of the main optical axis.
  • the positions of the filter wheel 211 and the integrator rod 212 can be arbitrarily changed.
  • the filter wheel 211 can be placed coaxially with the wavelength conversion device 206 by two 45°-positioned mirrors, and the filter wheel 211 is disposed coaxially with the wavelength conversion device 206, as in the third, fourth, sixth, and seventh embodiments.
  • Embodiment 8 with respect to the above-mentioned Embodiments 1 to 7, the characteristics of the first beam splitting component are changed, and the first excitation light is irradiated while maintaining the first splitting component opposite to the first excitation light and the laser-transmissive reflection characteristic. It is exchanged with the transmission and reflection characteristics of the laser.
  • the transformation can also be applied to the first to seventh embodiments, and the transmissive reflection characteristics of the respective mirrors are changed accordingly, and the reflection sheet or the wavelength filter can be added or removed as needed, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a light source device according to Embodiment 9 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204a, a collecting lens 205, a first relay lens 207, a reflection sheet 208, an optical path correction component 209, and a
  • the second relay lens 210 further includes a second light source 203, a light homogenizing device 202, a filter wheel 211, and an integrator rod 212.
  • the difference of the embodiment is that the first excitation light emitted by the first light source 201 is incident on the main optical axis not perpendicular to the surface of the wavelength conversion device 206 after being homogenized by the homogenizing device 202.
  • the lens 205 is collected, and therefore, the first excitation light is not parallel to the central axis of the collecting lens 205 before being incident on the collecting lens 205.
  • the main optical axis of the second excitation light is also not perpendicular to the surface of the wavelength conversion device 206. This embodiment enables the first excitation light and the second excitation. The angle between the lights is further enlarged to avoid the influence between the two beams.
  • the optical path correction component 209 is not disposed in parallel with the first beam splitting assembly, and the angle between the second excitation light incident to the optical path correction component 209 and the second excitation light reflected by the optical path correction component 209 is not equal to 90°. Since the angle of incidence of the first excitation light is shifted, the direction of the second excitation light is also angularly shifted, and is not affected by the laser, so that the second excitation light can coincide with the main optical axis of the laser, It is necessary to control the direction of the second excitation light by modifying the placement angle of the optical path correction component. In one embodiment, after the second excitation light is reflected by the optical path correction component, the angle is changed by 90° ⁇ 4°. The technical solution can control the second excitation light to coincide with the optical path of the laser light by the arrangement angle of the optical path correction component in a state where the optical path is slightly deviated, thereby improving the degree of freedom in designing the light source device.
  • FIG. 11 is a schematic structural diagram of a light source device according to Embodiment 10 of the present invention.
  • the light source device includes a first light source 201, a light guiding system, and a wavelength conversion device 206, wherein the light guiding system includes a first beam splitting assembly 204a, a collecting lens 205, a first relay lens 207, a reflection sheet 208, an optical path correction component 209, and a
  • the second relay lens 210 further includes a second light source 203, a light homogenizing device 202, a filter wheel 211, an integrator rod 212, and a compensating light guiding assembly 213.
  • the compensation light emitted by the second light source 203 is first incident on the wavelength conversion section, and then scattered and reflected to form a Lambertian distribution of light and The laser light is emitted together, that is, the compensation light is combined with the laser light at the position of the light emitting surface of the wavelength conversion section; and the compensation light emitted by the second light source 203 of the tenth embodiment is not incident on the wavelength conversion section, but is generated by the laser. Thereafter, the light guiding member 213 is combined with the laser light by the compensation.
  • the technical solution avoids the light loss caused by the compensation of the light being scattered by the wavelength conversion device, and greatly improves the light utilization efficiency of the compensation light.
  • the compensation light guiding component 213 is disposed on the outgoing light path of the laser light, specifically, on the outgoing light path of the integrator rod 212, and the received laser light and the compensation light are incident on the compensation light guiding component 213 from two directions, respectively. And thus become a bundle.
  • the compensation light guiding component 213 can be implemented by providing a small reflective area on a transparent substrate as shown in the figure, wherein the compensation light is incident on the small reflection area, is reflected by the small reflection area, and is covered by the laser to compensate most of the area of the light guiding component 213.
  • the transparent substrate incident on the non-small reflection area is directly transmitted by the laser light.
  • the compensated light guiding component 213 can also be exchanged for the transmitted and reflected characteristics of the laser and the compensated light, and the technical solution can be realized by providing a compensation light transmitting region on the reflective sheet.
  • the compensation light guiding component 213 is disposed on the outgoing light path of the integrator rod 212. In other embodiments, the compensation light guiding component 213 may also be disposed at other locations, for example, incident light that may be disposed on the integrator rod 212. On the optical path, or on the optical path between the wavelength conversion device and the filter wheel. In summary, the technical solution of this embodiment is to avoid compensating for the incident light to the wavelength conversion section, thereby avoiding the loss of light caused by the scattering of the wavelength conversion section.
  • the technical features of the compensating light and the laser combined light emitted by the second light source 203 in this embodiment can be applied to other embodiments of the present invention, and the optical processing of the optical beam and the beam transmitting process are not described in detail in the embodiment. For details, refer to the description of the above embodiments, and details are not described herein again.
  • the optical path correction components are curved reflecting surfaces, wherein the light beam is diverged by the convex reflection or the light beam is concentrated by the concave reflection, and the optical path correction components are all passed through
  • the device simultaneously achieves changing the propagation direction of the second excitation light and changing the beam angular distribution.
  • the function of the curved reflecting surface is realized by a combination of two optical devices, the direction of the second excitation light is changed by the planar reflecting surface, and the angular distribution of the second excitation light is changed by the lens.
  • the convex surface is replaced by a combination of a planar reflecting surface and a concave lens, so that the second excitation light can be first passed through the concave lens and then incident on the planar reflecting surface, or the second excitation light can be first reflected by the plane. The surface is reflected and then transmitted through the concave lens.
  • the second excitation light may be first passed through the convex lens and then incident on the planar reflecting surface, or the second excitation light may be first plane.
  • the reflective surface reflects and is then transmitted through the convex lens.
  • the optical path correction component is replaced.
  • other components may refer to the specific technical solution of the optical path correction component using the convex reflective surface in the above embodiment.
  • a combination of a planar reflecting surface and a convex lens is used instead of the concave reflecting surface, other components may refer to the detailed description of the technical solution of the optical path correcting component using the concave reflecting surface in the above embodiment, but need to satisfy the planar reflecting surface.
  • the transmitted and reflected characteristics of the laser are the same as those of the original curved surface.
  • one or more planar reflecting surfaces may be further added, and the optical path correcting component is formed together with the curved reflecting surface, as long as the main optical axis of the second excitation light and the laser received by the last reflection are made.
  • the main optical axes can be coincident.
  • the present invention also provides a projection system including the light source device of each of the above embodiments, further comprising a light modulating device and a lens device for projecting the outgoing light of the light source device onto the light modulator of the light modulating device And modulating the spatial distribution of the light according to the input image signal, and the modulated light is emitted through the lens device to form an image, thereby realizing the projection display function.
  • the projection display system of the invention can be applied to projectors such as cinema projectors, engineering projectors, pico projectors, educational projectors, wall projectors, laser televisions, etc., and can also be applied to image illumination such as image projection lamps, traffic. Tools (car and boat) lights, searchlights, stage lights and other scenes.
  • projectors such as cinema projectors, engineering projectors, pico projectors, educational projectors, wall projectors, laser televisions, etc.
  • image illumination such as image projection lamps, traffic.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源装置和投影系统,光源装置包括第一光源(201)、光引导系统和波长转换装置(206)。第一光源(201)发射第一激发光,沿入射光通道入射至光引导系统。光引导系统将第一激发光引导至波长转换装置(206)。波长转换装置(206)包括波长转换区段和反射区段,波长转换区段吸收第一激发光并出射受激光,第一激发光斜入射至反射区段的表面,被反射后形成第二激发光。光引导系统收集受激光和第二激发光,并引导受激光和第二激发光沿出射光通道出射。光引导系统包括光路校正组件(209),光路校正组件(209)位于第二激发光的光路上,反射第二激发光,使反射后的第二激发光的主光轴与受激光的主光轴重合,并改变第二激发光的光束角分布。

Description

光源装置及投影系统 技术领域
本发明涉及投影技术领域,特别是涉及一种光源装置及投影系统。
背景技术
现有投影技术领域中,采用半导体蓝光激光器激发荧光粉产生红光和绿光,并利用半导体蓝光激光器本身发射的蓝光与红光和绿光形成三基色光以调制图像,是常用的一种方法。
现有技术中,如图1A所示,光源装置10包括第一光源101,匀光器件102,区域分光片103,收集透镜104,荧光粉色轮105,第一中继透镜106和第二中继透镜108,反射镜107及方棒109。
如图1B所示,其中区域分光片103包括透蓝反黄区域1031和反蓝反黄区域1032,透蓝反黄区域1031位于区域分光片的中心区域。
第一光源101为蓝光激光器,其发出的蓝光(激发光)经过匀光器件102的均匀化后,入射于区域分光片103,并经区域分光片103的透蓝反黄区域1031透射。该蓝光沿收集透镜104的中心轴入射于收集透镜104,收集透镜104用于对激发光进行汇聚;蓝光经过收集透镜104收集后入射到荧光粉色轮105上。荧光粉色轮105包括涂覆有红色荧光粉的第一区段、涂覆有绿色荧光粉的第二区段以及具有散射反射功能的第三区段。荧光粉色轮105周期性转动,从而第一区段、第二区段和第三段分时位于蓝光的光路上。蓝光激发红色荧光粉产生红荧光(受激光)、蓝光激发绿色荧光粉产生绿荧光(受激光),红荧光以及绿荧光以朗伯光的形式出射;以及蓝光经第三区段散射反射,也以朗伯光的形式出射,光学扩展量变大。红荧光和绿荧光经过收集透镜104,由区域分光片103反射。而以朗伯光形式出射的蓝光,只有反蓝反黄区域1032才对其进行反射,入射到透蓝反黄区域1031的蓝光会因透射而损失掉;红、绿、蓝光经过中继透镜106、反射镜107和中继透镜108进入到方棒109,最终从方棒109的出口端出射。
由于入射到方棒109的光束中,中心部分缺少蓝光,因此,在从方棒109出射后,其出口的光斑面分布存在颜色不均匀的现象,中心部分偏黄,这会导致最终投影出来的画面颜色不均匀。
技术问题
综上所述,现有技术的技术方案既会损失部分激发光而降低光源亮度,又会导致颜色均匀性差。
技术解决方案
针对上述现有技术的光利用率不够高、颜色均匀性差的缺陷,本发明提供一种光利用率高、光源颜色均匀性好的光源装置。
本发明的基本构思为:使激发光被波长转换装置反射后,不存在沿激发光的入射光路原路返回的光,从而避免这部分激发光损失;同时,由于受激光与反射后的激发光的光分布不同,通过光引导系统的作用,改变激发光光斑的成像位置,使得受激光与反射后的激发光在预定位置成像重合、具有相同的空间分布均匀性,从而实现总出射光的颜色均匀化。
具体地,本发明提供了一种光源装置,其特征在于,包括第一光源、光引导系统和波长转换装置;所述第一光源用于发射第一激发光,所述第一激发光沿入射光通道入射至所述光引导系统;所述光引导系统用于将所述第一激发光引导至所述波长转换装置;所述波长转换装置包括波长转换区段和反射区段,所述波长转换装置周期性运动以使得所述波长转换区段和反射区段分时周期性地位于第一激发光的光路上,所述波长转换区段吸收所述第一激发光并出射受激光,所述第一激发光斜入射至所述反射区段的表面,被反射后形成第二激发光;所述光引导系统还用于收集所述受激光和第二激发光,并引导所述受激光和第二激发光沿出射光通道出射;所述光引导系统包括光路校正组件,所述光路校正组件位于所述第二激发光的光路上,用于反射所述第二激发光,并使反射后的第二激发光的主光轴与所述受激光的主光轴重合,还用于改变第二激发光的光束角分布,使所述第二激发光会聚或发散,以使所述第二激发光与所述受激光在沿光束传播方向上的成像位置重合。
在一个实施方式中,光源装置还包括滤光轮,包括散射透射区段和修色透射区段,所述散射透射区段用于对所述第二激发光进行散射,所述修色透射区段用于对受激光进行修色,所述滤光轮周期性运动,以使滤光轮的各个区段与波长转换装置的各个区段一一对应。
在一个实施方式中,所述滤光轮与所述波长转换装置同轴设置,在一个驱动装置的驱动下绕同一轴转动。
在一个实施方式中,散射透射区段设置Top-hat型散射片或者六边形排列的单排复眼结构。
在一个实施方式中,所述光路校正组件包括曲面反射面,用于同时改变所述第二激发光的方向和光束角分布;或者所述光路校正组件包括平面反射面与透镜,所述平面反射面用于改变所述第二激发光的方向,所述透镜用于改变所述第二激发光的角分布。
在一个实施方式中,所述光路校正组件包括凸面反射面或者包括平面反射面与凹透镜的组合,从所述波长转换装置至所述第二激发光与所述受激光的重合位置,所述第二激发光的光程大于所述受激光的光程。
在一个实施方式中,所述光引导系统包括第一分光组件,所述第一分光组件包括不重叠的第一区域和第二区域,所述第一激发光入射至所述第一区域,所述第二激发光入射至所述第二区域,所述第一区域对所述第一激发光的透射反射特性与所述第二区域对所述第二激发光的透射反射特性相同;所述第二激发光经过所述第二区域后传输至所述光路校正组件,所述第二激发光与所述受激光在所述第一分光组件的受激光出射位置光路重合。
在一个实施方式中,所述光引导系统还包括第一分光组件,所述第一分光组件包括不重叠的第一区域和第二区域,所述第一激发光入射至所述第一区域,所述第二激发光入射至所述第二区域,所述第一区域对所述第一激发光的透射反射特性与所述第二区域对所述第二激发光的透射反射特性相反;所述光引导系统还包括第二分光组件,所述第二激发光经过所述第二分光组件后传输至所述光路校正组件,所述第二激发光与所述受激光在所述第二分光组件的受激光出射位置光路重合。
在一个实施方式中,所述光路校正组件包括凹面反射面或者包括平面反射面与凸透镜的组合,从所述波长转换装置至所述第二激发光与所述受激光的重合位置,所述第二激发光的光程小于所述受激光的光程,所述光路校正组件透射所述受激光。
在一个实施方式中,所述光引导系统包括第一分光组件,所述第一分光组件包括第一区域,所述第一激发光入射至所述第一区域,所述第二激发光不经过所述第一分光组件,所述第二激发光与所述受激光在所述光路校正组件的第二激发光出射位置光路重合。
在一个实施方式中,所述光引导系统包括第一分光组件,所述第一分光组件包括不重叠的第一区域和第二区域,所述第一激发光入射至所述第一区域,所述第二激发光入射至所述第二区域,所述第一区域对所述第一激发光的透射反射特性与所述第二区域对所述第二激发光的透射反射特性相反;所述光引导系统包括第二分光组件,所述第二激发光不经过所述第二分光组件,所述受激光依次分别经所述第一分光组件和第二分光组件引导后,透射过所述光路校正组件,并在所述光路校正组件的第二激发光出射位置与所述第二激发光光路重合。
在一个实施方式中,所述第一分光组件透射第一激发光并反射受激光。在另一个实施方式中,第一分光组件反射第一激发光并透射受激光。
在一个实施方式中,光引导系统包括收集透镜,设置于所述波长转换装置与所述第一分光组件之间,用于将所述第一激发光会聚入射至所述波长转换装置表面,并收集所述受激光与所述第二激发光。
在一个实施方式中,还包括第二光源,用于当所述波长转换区段处于所述第一激发光的光路上时发射补偿光,所述补偿光与所述受激光具有交叠的波长范围,所述第一分光组件包括补偿光引导区域,用于将所述补偿光引导至所述波长转换装置。
在一个实施方式中,还包括用于发射补偿光的第二光源和补偿光引导组件,所述补偿光引导组件设置于所述受激光的出射光路上,所述补偿光与所述受激光具有交叠的波长范围,所述补偿光与所述受激光通过所述补偿光引导组件合光。该技术方案中,补偿光不入射至波长转换区段,避免了补偿光被波长转换装置散射而造成的光损失,极大的提高了补偿光的光利用率。
在一个实施方式中,入射至所述光路校正组件的第二激发光与被所述光路校正组件反射的第二激发光的夹角不等于90°。该技术方案能够在光路略微偏离的状态下仍能通过光路校正组件的摆放角度控制第二激发光与受激光的光路重合,提高了光源装置设计的自由度。
在一个实施方式中,所述第一激发光在偏离所述收集透镜中心的位置入射到收集透镜。该技术方案通过收集透镜改变了第一激发光的传播方向,从而实现第一激发光以斜入射的方式入射到反射区段,避免了额外增加其他光学元件来改变第一激发光的方向,实现了光源装置结构简化。
在一个实施方式中,入射至所述收集透镜的第一激发光的主光轴不垂直于波长转换装置的表面。该技术方案使得收集透镜远离波长转换装置一侧的第一激发光与第二激发光的夹角扩大,避免了两束光之间产生影响。
本发明还提供了一种投影系统,包括上述任一项所述的光源装置,还包括光调制装置和镜头装置。
有益效果
与现有技术相比,本发明包括如下有益效果:通过光引导系统的引导,第一激发光以斜入射的方式入射到波长转换装置的反射区段表面,波长转换装置上的反射区段反射而非散射第一激发光形成第二激发光,避免了第二激发光光学扩展量的扩大,使得反射后的第二激发光与第一激发光光路分离,不会沿第一激发光的光路原路返回,从而避免了第二激发光沿第一激发光的光路损失部分光,有效的提高了光利用率;通过光引导系统的光路校正组件的反射作用,对第二激发光的主光轴位置进行校正(改变第二激发光光斑垂直于其光路方向的成像位置),并通过光路校正组件改变第二激发光的角分布(改变第二激发光光斑沿光束传播方向的成像位置,使第二激发光与受激光在沿光束传播方向上的成像位置重合),对第二激发光的成像位置进行校正,从而使得第二激发光与受激光能够在预定位置具有相同的空间分布均匀性。因此,本发明的技术方案提高了光的利用率,并保证了光源颜色的的空间分布均匀性。
附图说明
图1A为现有技术中的一种光源装置的结构示意图。
图1B为图1A的光源装置中的区域分光片的结构示意图。
图2为本发明实施例一的光源装置的结构示意图。
图3为本发明实施例二的光源装置的结构示意图。
图4为本发明实施例三的光源装置的结构示意图。
图4A为图4中波长转换装置的结构示意图。
图5为本发明实施例四的光源装置的结构示意图。
图5A为图5中第一分光组件的结构示意图。
图6为本发明实施例五的光源装置的结构示意图。
图7为本发明实施例六的光源装置的结构示意图。
图8为本发明实施例七的光源装置的结构示意图。
图9为本发明实施例八的光源装置的结构示意图。
图9A为图9中第一分光组件的结构示意图。
图10为本发明实施例九的光源装置的结构示意图。
图11为本发明实施例十的光源装置的结构示意图。
本发明的最佳实施方式
在本发明中如涉及“第一”、“第二”、“第三”等的描述仅用于描述目的,以便于描述方便,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。
本发明中,光束的主光轴可以理解为光束的中心轴,主光轴的方向为光束前进的方向。
下面结合附图和实施方式对本发明实施例进行详细说明。
实施例一
请参见图2,图2为本发明实施例一的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204、收集透镜205、中继透镜207和光路校正组件209,此外,光源装置还包括匀光装置202、滤光轮211和积分棒212。
在本实施例中,第一光源201发射第一激发光,第一激发光沿入射光通道入射至光引导系统,光引导系统将第一激发光引导至波长转换装置206。具体地,第一激发光经匀光装置202匀光后入射至第一分光组件204的第一区域,并透射过第一分光组件204,而后入射至收集透镜205,经收集透镜205会聚后传输至波长转换装置206,并且第一激发光以主光轴斜入射(即非垂直入射)的方式入射至波长转换装置206的表面。
波长转换装置206包括波长转换区段和反射区段。波长转换装置206周期性运动,以使得反射区段和波长转换区段分时周期性地位于第一激发光的光路上。其中,波长转换区段吸收第一激发光并出射受激光,反射区段反射第一激发光以形成第二激发光。波长转换区段包括波长转换材料或波长转换结构,能够吸收激发光并出射波长不同于激发光的受激光。在波长转换区段的作用下,受激光大致呈朗伯分布,且主光轴方向垂直于波长转换区段,而反射区段则不改变激发光的角分布,第一激发光与第二激发光的角分布大致相同,且第二激发光相对于第一激发光对称出射,出射方向不垂直于反射区段,因此受激光与第二激发光的主光轴不重合,两者沿两个不同光路传播。
光引导系统还用于收集受激光和第二激发光,并引导受激光和第二激发光沿出射光通道出射,具体如下。
当波长转换装置206的波长转换区段处于第一激发光的光路上时,受激光由波长转换区段出射后,经收集透镜205收集并传输至第一分光组件204,第一分光组件204对于第一激发光和受激光的透射反射特性相反,使得受激光被反射并被引导至沿出射光通道出射。
当波长转换装置206的反射区段处于第一激发光的光路上时,第二激发光由反射区段出射后,经收集透镜205收集并传输至第一分光组件204的第二区域。第二激发光与第一激发光波长相同,第二激发光透射过第一分光组件204的第二区域,并传输至光路校正组件209。在本实施例中,第一激发光与第二激发光入射到第一分光组件204的区域不重叠(第一区域与第二区域不重叠),因此第二激发光不会沿第一激发光的入射光路反向原路返回到第一光源201。光路校正组件209位于第二激发光的光路上,入射到光路校正组件209的第二激发光被光路校正组件209的反射面反射,使得反射后的第二激发光的主光轴与受激光的主光轴重合。反射后的第二激发光再次透射过第一分光组件204,在第一分光组件204的受激光出射位置与受激光合为一束(指两者光路的重合,实际两者在时间上是错开的),经中继透镜207汇聚入射到滤光轮211,透射过滤光轮211的光从积分棒212的入口进入积分棒212。
本发明中,第二激发光的主光轴与受激光的主光轴“重合”,可以理解为不是绝对意义上的重合而是大致重合/精度误差范围内的重合。本领域技术人员可以理解的,不限于本实施例,在本发明所提供的技术方案的基础上,使得第二激发光的主光轴与受激光的主光轴平行且距离小于阈值的技术方案也属于本发明保护的范围,该技术方案也可以称为“误差范围内的重合”。
以上为本发明实施例一的基本技术方案,在此基础上,本发明光源装置的各个组件根据实际的应用环境,可以衍生出多种特定的技术方案,各技术方案之间可以相互组合,以下进行举例说明。
在一个实施方式中,第一光源 201 可以为蓝色激光器或蓝色激光阵列,第一激发光为蓝色激光,激光发散角小、光束集中,大致呈高斯分布,使得反射后的第二激发光能够与第一激发光很容易区分光路。在另一个实施例中,第一光源 201 可以为发蓝光的 LED,第一激发光为蓝色 LED 光。本发明对此不进行限制,但以第一激发光为小发散角的光为优。
在一个实施方式中,匀光装置202包括积分棒或复眼透镜对,用于对第一光源201发出的第一激发光进行匀光。在其他实施方式中,若第一光源201发出的第一激发光均匀性较好,也可以不设置匀光装置,本发明对此不进行限制。当然,在本发明的一实施方式中,也可以将实施例一中的第一光源201与匀光装置202的组合看作一个第一光源。
在本实施例中,波长转换装置206为一轮盘结构(荧光色轮),波长转换区段和反射区段在轮盘结构上呈扇环形排布,通过一驱动装置(如马达)驱动而绕轮盘中轴转动。在另一实施方式中,波长转换装置还可以为荧光色桶/色筒,包括沿桶/筒面环绕分布的波长转换区段和反射区段,色桶/色筒绕其轴线方向旋转,以使不同区段依时序周期性处于激发光的照射下;或者,波长转换装置还可以为荧光色板,包括沿一直线方向依次排布的波长转换区段和反射区段,色板沿该直线方向线性振动,以使不同区段依时序周期性处于激发光的照射下,从而出射时序光。
在一个实施方式中,波长转换装置206的波长转换区段包括荧光材料层,该荧光材料层既可以是荧光粉-有机粘接剂层(通过硅胶、环氧树脂等有机粘接剂将分离的荧光粉粘结成层),也可以是荧光粉-无机粘接剂层(通过玻璃等无机粘接剂将分离的荧光粉粘结成层),还可以是荧光陶瓷(包括①以连续的陶瓷作为基质且陶瓷内分布着荧光粉颗粒的结构;②纯相陶瓷掺杂激活剂元素,如Ce掺杂的YAG陶瓷;③在纯相陶瓷掺杂激活剂元素的基础上,在陶瓷内分散设置荧光粉颗粒)。在另一个实施方式中,波长转换区段包括量子点层,通过量子点材料实现光致发光功能。波长转换装置206可以只有一个波长转换区段(如黄色波长转换区段),也可以有两个波长转换区段(如绿色波长转换区段和红色波长转换区段),还可以包括两个以上波长转换区段。
在一个实施方式中,波长转换装置206的反射区段包括金属反射面,对激发光进行镜面反射。在另一个实施方式中,反射区段包括介质反射膜(dielectric reflecting film),对激发光进行镜面反射。在本发明的其他实施方式中,反射区段也可以采用其他的反射结构,对激发光进行反射。
在本实施例中,波长转换装置206的反射区段的反射面平行于波长转换装置206的运动平面,也即荧光色轮的转动轴垂直于反射区段的反射面。为了实现第一激发光以斜入射的方式入射到波长转换装置表面(当反射区段位于第一激发光光路上时,反射区段的反射面即为波长转换装置的表面),第一激发光在偏离收集透镜205中心的位置入射到收集透镜205,使得第一激发光被收集透镜205改变光传输方向,从而倾斜的入射到波长转换装置表面。随后,从反射区段反射出的第二激发光入射到收集透镜205。在收集透镜205与波长转换装置206之间,第一激发光和第二激发光形成“V”字型光路。在另一个实施方式中,反射区段的反射面也可以不平行于波长转换装置的运动平面,而是相对于波长转换装置的运动平面有一个倾角,但是仍要保证第一激发光以斜入射的方式入射到反射区段的反射面,从而实现第一激发光与第二激发光的光路分离,该技术方案可以使得光路设计更加灵活多变。
在本实施例中,第一分光组件204为一透射激发光(包括第一激发光和第二激发光)且反射受激光的滤光片/滤光膜/二向色片,该第一分光组件204足够大,以使来自收集透镜205的光能够被反射向中继透镜207,而且能够使得有足够大的相互分离的第一区域和第二区域分别供第一激发光和第二激发光透射。
在本实施例中,光路校正组件209包括一凸面反射面,该凸面反射面迎向第二激发光,将第二激发光反射,并改变光束角分布,对光束进行发散。该光路校正组件209设置在第一分光组件204远离波长转换装置206的一侧。
在本发明中,光路校正组件的作用除了通过反射使得第二激发光能够与受激光主光轴重合外,另一作用在于通过改变第二激发光的光束角分布,对光束进行会聚或发散。光从波长转换装置206到积分棒212的入口的过程,实际是波长转换装置206表面的光斑成像到积分棒212入射面的过程(积分棒也可以替换为其它光学器件,同时波长转换装置表面的光斑成像到该替换后的光学器件的入射面)。由于第二激发光与受激光在主光轴重合前的光路不同,两者光程不同,导致其光路重合后在通过相同的光学器件作用下成像位置不重合,从而导致两者中的一种光的空间均匀性较差(由于作为“物”的波长转换装置上的光斑是均匀的,而成像位置偏离积分棒212的光斑在积分棒212的入射面处于离焦状态,那么该光斑的面分布必然是不均匀的)。通过加入曲面反射面,增加一次对第二激发光的会聚或发散,能够使得第二激发光的成像位置能够与受激光的成像位置重合。
在本实施例中,光路校正组件209设置在第一分光组件204远离波长转换装置206的一侧,来自光路校正组件209的第二激发光穿过第一分光组件204后与受激光主光轴重合。相对于受激光,第二激发光从波长转换装置206至两光的重合位置(此处仍是指两光的空间位置的重合,实际两光在时间上是错开的)的光程大于受激光的光程,第二激发光从波长转换装置206到积分棒212的入射面的光程大于受激光从波长转换装置206到积分棒212的入射面的光程。将波长转换装置至积分棒之间的光学元件看作一个成像装置,则根据成像公式1/u+1/v=1/f,若要使得第二激发光与受激光的成像位置相同,则需要增大第二激发光的成像装置的焦距f,该功能可以通过在第二激发光的光路上增加一个凹透镜或者凸面镜实现。本实施例的光路校正组件209包括一凸面反射面,增大了第二激发光从波长转换装置到积分棒的成像焦距,使得第二激发光与受激光能够在同一位置成像,从而保证了光源装置出射光的空间分布均匀性。
在一个实施方式中,光路校正组件209的凸面反射面为在一凸面结构上镀制金属反射膜的结构。在其他实施方式中,也可以通过镀制介质反射膜等方式实现。
在一个实施方式中,收集透镜205可以由多个透镜组合而成。
在一个实施方式中,中继透镜207可以由多个透镜组合而成,如凹透镜与凸透镜的组合等。可以理解,中继透镜并非本发明光源装置的必需组件。
在本实施例中,滤光轮211包括散射透射区段和修色透射区段。其中,散射透射区段用于对第二激发光进行散射,使得第二激发光的发散角与受激光的发散角保持一致,散射透射区段可以通过设置散射片来实现;修色透射区段用于对受激光进行修色,使得透射过的受激光的色坐标符合光源装置的出射光要求,修色透射区段可以通过设置波长滤光片来实现。滤光轮211由一驱动装置(如马达)驱动而做周期性转动,使得滤光轮211与波长转换装置206同步,以使滤光轮211的各个区段与波长转换装置206的各个区段一一对应。具体地,当波长转换装置206出射受激光时,滤光轮211的修色透射区段位于受激光的光路上;当波长转换装置206出射第二激发光时,滤光轮211的散射透射区段位于第二激发光的光路上。由于一般的散射片对激发光散射后,激发光的角分布为高斯散射,与受激光的角分布不同,因此,为使得激发光散射后的角分布能够与受激光一致,在一些实施方式中,散射透射区段设置Top-hat型散射片(即散射后的角分布大致呈“几”字型,形状像礼帽,所以称为top-hat)或者六边形排列的单排复眼结构。
可以理解,滤光轮并非本发明光源装置的必需组件,在对出射光的色坐标或角分布要求较低的应用场景,也可以省略滤光轮,本发明对此不进行限制。
本实施例中,滤光轮211的出射光进入积分棒212而被均匀化。在其他实施方式中,积分棒212也可以替换为其他匀光器件。在另一些实施方式中,积分棒212也可以省略,使得出射光直接进入后续的光学元件,本发明对此不进行限制。
实施例二
请参见图3,图3为本发明实施例二的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204a、收集透镜205、中继透镜207和光路校正组件209,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211和积分棒212。
第一光源201、光引导系统、波长转换装置206、匀光装置202、滤光轮211、积分棒212的描述可以参照上述实施例一中的描述。
与实施例一相比,实施例二的技术方案增加了第二光源203,用于当波长转换装置206的波长转换区段处于第一激发光的光路上时发射补偿光。此外,与实施例一相比,第一分光组件204a进一步包括一补偿光引导区域,能够引导补偿光至波长转换装置。
当补偿光入射到第一分光组件204a时,补偿光透射过补偿光引导区域并经收集透镜205会聚入射到波长转换装置206,该补偿光不会被波长转换装置206吸收,而是在被散射反射(漫反射)后,成为大致呈朗伯分布的光,与受激光一同出射。其中,除少量补偿光以及部分与补偿光光谱交叠的受激光透射第一分光组件204a的补偿光引导区域并损耗掉之外,其余被收集透镜205收集的补偿光与大部分受激光沿相同光路进入出射光通道出射。
在一个实施方式中,补偿光与受激光具有交叠的波长范围。例如,补偿光的波长范围区间是(a, b),受激光的波长范围区间为(c, d),其中 c<a<d。在一个实施方式中,补偿光的颜色可以与受激光相同或相近。补偿光可以用于补偿受激光的色调和亮度等中至少的一种。例如,在一个具体的实施例中,第二光源203为红色激光光源,波长转换装置206包括反射区段、绿色波长转换区段和红色波长转换区段,当红色波长转换区段处于第一激发光的光路上时,开启第二光源203,使得红色激光与红色受激光一起发出,能够使得光源装置出射的红光更接近所需要的红色,而且能够提高红光的亮度。
在本实施方式中,虽然补偿光会因补偿光引导区域的光损失而造成光斑面分布颜色不均匀,但是由于受激光与补偿光颜色交叠,补偿光只占其色光的一部分,颜色均匀性能够接受。而且,补偿光引导区域的设置不会影响激发光的均匀性,本技术方案对激发光均匀性的改善不会产生不利影响。
在本实施方式中,补偿光引导区域设置在受激光的主光轴路径上,该补偿光引导区域能够透射激发光,使得第二激发光在经光路校正组件209反射后能够通过补偿光引导区域与受激光主光轴重合。
在一个实施方式中,补偿光引导区域偏离受激光的主光轴设置,也即补偿光如同第一激发光一般,斜入射到波长转换装置的表面,但是由于补偿光入射到波长转换装置的波长转换区段,散射反射后的光变为大致呈朗伯分布的光,使其仍能够与受激光重合,而非形成“V”字型光路。该技术方案中,经光路校正组件反射后的第二激发光可以不经过补偿光引导区域而与受激光主光轴重合,因此补偿光引导区域可以不必透射激发光。
在本发明其它实施例(包括但不限于下述各实施例)中,若不需要补偿受激光,则用于发射补偿光的第二光源203也可以省略,本发明对此不进行限制。若省略用于发射补偿光的第二光源203,则第一分光组件可以不包含补偿光引导区域。
实施例三
请参见图4,图4为本发明实施例三的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204a、收集透镜205、第一中继透镜207、反射片208、光路校正组件209和第二中继透镜210,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211和积分棒212。
上述各实施例中,波长转换装置206与滤光轮211相对独立设置,分别由两个驱动装置驱动而进行周期性运动。与之不同的是,本实施例中,波长转换装置206与滤光轮211同轴设置,在一个驱动装置的驱动下绕同一轴转动。
请参见图4A,其中波长转换装置206包括扇环形的反射区段2061、红色波长转换区段2062和绿色波长转换区段2063,滤光轮211包括扇环形的散射透射区段2111、红色修色透射区段2112和绿色修色透射区段2113。其中,反射区段2061的扇环形角度与散射透射区段2111的扇环形角度相同,红色波长转换区段2062的扇环形角度与红色修色透射区段2112的扇环形角度相同,绿色波长转换区段2063的扇环形角度与绿色修色透射区段2113的扇环形角度相同。本实施例中,反射区域2061与散射透射区域2111呈180°相对设置,该技术方案使得反射区域2061与散射透射区域2111距离最远,能够有足够的空间布置中间光路的光学元件。当然,在其他实施方式中,也可以使反射区域与散射透射区域呈0~180°任意角度设置,本发明对此不进行限制。
随着波长转换装置206与滤光轮211的结构位置的变化,波长转换装置206至滤光轮211之间的光路也适当调整。相对于上述实施例,本实施例增加了反射片208和第二中继透镜210,用于引导受激光、第二激发光和补偿光。其中,反射元件208将来自第一中继透镜207的受激光、第二激发光和补偿光反射至第二中继透镜210,第二中继透镜210收集受激光、第二激发光和补偿光,并将其传输至滤光轮211。
在一个实施方式中,反射元件208为金属反射镜。在另一个实施方式中,反射元件208还可以是包括介质反射膜的元件。在其他实施方式中,反射元件208还可以是其他类型的反射式光学器件,本发明对此不进行限制。
在本发明另一个实施方式中,在保留反射元件208和第二中继透镜210的情况下,也可以将波长转换装置206与滤光轮211拆分成两个相对独立设置的元件而不改变其位置,该技术方案也在本发明的保护范围内。
本实施例中的其他各组件可以参照实施例二及其变化实施例的描述,此处不再赘述。
本实施例基于实施例二的变化同样可运用于实施例一,此处不再赘述。
实施例四
请参见图5,图5为本发明实施例四的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204b、收集透镜205、第一中继透镜207、第二分光组件208a、光路校正组件209和第二中继透镜210,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211和积分棒212。
在上述各实施例中,第一分光组件204或第一分光组件204a的第一区域和第二区域对第一激发光和第二激发光的透射反射特性相同。与之区别的是,本实施例中,第一区域对第一激发光的透射反射特性与第二区域对第二激发光的透射反射特性相反。
如图5A所示,第一分光组件204b包括第一区域204b1、第二区域204b2、补偿光引导区域204b3以及第四区域204b4,第一区域与第二区域不重叠。其中,第一区域204b1透射第一激发光(进一步地,反射受激光和补偿光),第二区域204b2反射第二激发光(进一步地,反射受激光和补偿光),补偿光引导区域204b3透射补偿光(进一步地,反射与补充光光谱不同的光),第四区域204b4反射受激光和补偿光。在一个实施方式中,区域204b4透射激发光,第一区域204b1与区域204b4可以融合为一整个区域。在另一个实施方式中,区域204b4反射激发光,第二区域204b2与区域204b4可以融合为一整个区域。各个区域的透射反射特性可以通过镀膜来实现,其中透射还可以通过镂空来实现,反射还可以通过设置反射层来实现。
在本实施例中,第一光源201发射第一激发光,第一激发光经匀光装置202匀光后,入射至第一分光组件204b的第一区域204b1并透射,而后第一激发光经收集透镜205会聚后传输至波长转换装置206。当波长转换装置206的波长转换区段处于第一激发光的光路上时,波长转换区段吸收第一激发光并出射大致呈朗伯分布的受激光,受激光经收集透镜205收集并传输至第一分光组件204b,该受激光覆盖第一分光组件204的大部分区域,除少量与补偿光存在光谱交叠的受激光透射过补偿光引导区域204b3损失掉之外,其他受激光被反射至第一中继透镜207。当波长转换装置206的反射区段处于第一激发光的光路上时,第一激发光斜入射至反射区段的表面,经反射区段反射形成第二激发光,该第二激发光与第一激发光呈“V”字型光路,经收集透镜205收集并传输至第一分光组件204b的第二区域204b2,第二激发光被第二区域204b2反射,并被反射至第一中继透镜207。第二光源203发射补偿光,该补偿光透射过第一分光组件204b的补偿光引导区域204b3,经收集透镜205会聚后传输至波长转换装置206的波长转换区段,被波长转换转换区段散射反射后成为大致呈朗伯分布的补偿光,该补偿光被收集透镜205收集后,除其中少量再次透射第一分光组件204b的补偿光引导区域204b3并损耗掉之外,其余部分与受激光沿相同光路出射。
到达第一中继透镜207的各光束中,一方面,第二激发光经第一中继透镜207收集并传输至光路校正元件209,被光路校正元件209反射至第二中继透镜210,经第二中继透镜210收集后传输至滤光轮211,该过程中,第二分光组件208a设置在第一中继透镜207与光路校正元件209之间的光路上,第二分光组件208a不影响第二激发光的传输,使第二激发光直接透射;另一方面,受激光和补偿光经第一中继透镜207收集并传输至第二分光组件208a,第二分光组件208a进一步将受激光和补偿光反射至第二中继透镜210,第二中继透镜210将受激光和补偿光收集和传输至滤光轮211。
光路校正元件209位于第二分光组件208a反射的受激光的光路的反向延长线上,光路校正元件209将第二激发光反射,使得反射后的第二激发光的主光轴与受激光的主光轴重合,从而能够在积分棒212的入射面实现颜色空间分布均匀。
在本实施例中,第二激发光两次穿过第二分光组件208a,与受激光在第二分光组件208a的受激光出射位置光路重合。相对于受激光,第二激发光从波长转换装置206至两束光的重合位置的光程大于受激光的光程,因此光路校正组件209同样包括一凸面反射面,以增大第二受激光的成像焦距。该技术特征与上述各实施例类似,都是选择凸面反射面,以解决第二激发光的从波长转换装置到第二激发光与受激光的合光位置的光程大于受激光的光程带来的颜色分布不均匀的问题。
在上述实施例一至三中,第一分光组件204或者204a既起到了区分第一激发光与受激光光路的作用,又起到了合并第二激发光与受激光光路的作用。而在本实施例中,第一分光组件204b实现了第一激发光与受激光的光路区分,第二分光组件208a实现了第二激发光与受激光的光路合并。
在一个实施方式中,若不需要补偿受激光,则可以省略第二光源203,第一分光组件的补偿光引导区域也可以省略。
本实施例中未描述的各光学元件对于光束的光学处理以及光束传输过程等,可参照上述实施例的描述,此处不再赘述。
实施例五
请参见图6,图6为本发明实施例五的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204、收集透镜205、中继透镜207和光路校正组件209a,此外,光源装置还包括匀光装置202、滤光轮211和积分棒212。
与实施例一的区别在于,本实施例中,光路校正组件209a为一包括凹面反射面的光学元件,设置在第一分光组件204靠近波长转换装置206的一侧,而且波长转换装置206的反射区段出射的第二激发光不入射到第一分光组件204,而是直接被光路校正组件209a的凹面反射面反射。而且,光路校正组件209a能够透射受激光,可以通过在透明介质的凹面镀制透射激发光并反射第二激发光的滤光膜实现。
具体地,第一光源201发射第一激发光,经匀光装置202匀光后入射至第一分光组件204的第一区域,并透射过第一分光组件204,而后入射至收集透镜205,经收集透镜205会聚后传输至波长转换装置206。当第一激发光入射至波长转换装置206的波长转换区段时,波长转换区段吸收第一激发光并出射大致呈朗伯分布的受激光,受激光经收集透镜205收集并传输至第一分光组件204,并被第一分光组件204反射至第一中继透镜207。该过程中,光路校正元件209a具有透射受激光的特性,几乎不对受激光产生影响,使其直接透射过光路校正元件209a。当第一激发光以斜入射的方式入射至波长转换装置206的反射区段时,反射区段将第一激发光转换为第二激发光,该第二激发光与第一激发光呈“V”字型光路,经收集透镜205收集并传输至光路校正元件209a,第二激发光被光路校正元件209a反射后,主光轴与受激光的主光轴重合,传输向第一中继透镜207。
在本实施例中,第二激发光未到达第一分光组件204即被光路校正组件209a反射,并于反射后与受激光主光轴光路重合,使得相对于受激光,第二激发光从波长转换装置206至两光的重合位置的光程小于受激光从波长转换装置206至两光的重合位置的光程,因此,波长转换装置206的反射区段的光斑成像到积分棒212入射面的光程小于波长转换装置206的波长转换区段的光斑成像到积分棒212入射面的光程。根据成像公式1/u+1/v=1/f,若要使得第二激发光与受激光的成像位置相同,则需要减小第二激发光的成像焦距f。通过设置包括凹面反射面的光路校正组件209,减小了成像焦距,使得第二激发光与受激光能够在同一位置成像,从而保证了光源装置出射光的空间分布均匀性。
相对于上述各实施方式中光路校正组件包括凸面反射面的技术方案,本实施例的技术方案中部分受激光需要穿过光路校正组件,这使得受激光的均匀性不可避免的受到一些影响。但是由于第二激发光为小发散角的光,光路校正组件的面积较小,因此在一些要求相对较低的应用场合,也可以接受本实施例的技术方案。
本实施例未描述的各光学元件对于光束的光学处理以及光束传输过程等,可参照上述实施例一的描述,此处不再赘述。
实施例六
请参见图7,图7为本发明实施例六的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204a、收集透镜205、第一中继透镜207、反射片208、光路校正组件209a和第二中继透镜210,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211和积分棒212。
相对于实施例五,本实施例增加了第二光源203,用于当波长转换装置206的波长转换区段处于第一激发光的光路上时发射补偿光。此外,与实施例五相比,第一分光组件204a进一步包括一补偿光引导区域,能够透射补偿光。该区别变化具体可以参照实施例二相对于实施例一的变化,此处不再赘述。
相对于实施例五,本实施例中的波长转换装置206与滤光轮211同轴设置,在一个驱动装置的驱动下绕同一轴转动。而且随着波长转换装置206与滤光轮211的结构位置的变化,波长转换装置206至滤光轮211之间的光路也适当调整,增加了反射片208和第二中继透镜210,用于引导受激光、第二激发光和补偿光。其中,反射元件208将来自第一中继透镜207的受激光、第二激发光和补偿光反射至第二中继透镜210,第二中继透镜210收集受激光、第二激发光和补偿光,并将其传输至滤光轮211。该区别变化具体可以参照实施例三相对于实施例二的变化,此处不再赘述。
本实施例也可以看作将实施例三与实施例五结合,将实施例三中的包括凸面反射面的光路校正元件209替换为包括凹面反射面的光路校正元件209a,同时将光路校正元件209a的位置设置在波长转换装置206与第一分光组件204a之间的光路上。
本实施例未描述的各光学元件对于光束的光学处理以及光束传输过程等,可参照上述各实施例的描述,此处不再赘述。
实施例七
请参见图8,图8为本发明实施例七的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204b、收集透镜205、第一中继透镜207、第二分光组件208a、光路校正组件209a和第二中继透镜210,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211和积分棒212。
实施例七相对于实施例六的区别类似于实施例四相对于实施例三的区别。在本实施例中,第一分光组件204b同样可参照图5A,包括第一区域204b1、第二区域204b2、补偿光引导区域204b3和第四区域204b4,第一分光组件204b的第一区域204b1对第一激发光的透射反射特性与第一分光组件204b的第二区域204b2对第二激发光的透射反射特性相反。
具体地,第一光源201发出的第一激发光经匀光装置202匀光后,入射至第一分光组件204b的第一区域204b1并透射,而后第一激发光经收集透镜205会聚后传输至波长转换装置206。当波长转换装置206的波长转换区段处于第一激发光的光路上时,波长转换区段吸收第一激发光并出射大致呈朗伯分布的受激光,受激光经收集透镜205收集并传输至第一分光组件204b,该受激光覆盖第一分光组件204b的大部分区域,除少量与补偿光存在光谱交叠的受激光透射过补偿光引导区域204b3损失掉之外,其他受激光被反射至第一中继透镜207。当波长转换装置206的反射区段处于第一激发光的光路上时,第一激发光斜入射至反射区段的表面,经反射区段反射形成第二激发光,该第二激发光与第一激发光呈“V”字型光路,经收集透镜205收集并传输至第一分光组件204b的第二区域204b2,第二激发光被第二区域204b2反射,并被反射至第一中继透镜207。第二光源203发射补偿光,该补偿光透射过第一分光组件204b的补偿光引导区域204b3,经收集透镜205会聚后传输至波长转换装置206的波长转换区段,被波长转换转换区段散射反射后成为大致呈朗伯分布的补偿光,该补偿光被收集透镜205收集后,除其中少量再次透射第一分光组件204b的补偿光引导区域204b3并损耗掉之外,其余部分与受激光沿相同光路出射。
到达第一中继透镜207的各光束中,一方面,第二激发光经第一中继透镜207收集并传输至光路校正元件209a,被光路校正元件209a反射至第二中继透镜210,经第二中继透镜210收集后传输至滤光轮211;另一方面,受激光和补偿光经第一中继透镜207收集并传输至第二分光组件208a,第二分光组件208a进一步将受激光和补偿光反射至第二中继透镜210,第二中继透镜210将受激光和补偿光收集和传输至滤光轮211。其中,第二激发光不经过第二分光组件208a,直接入射到光路校正元件209。而部分受激光和补偿光则透射过光路校正组件209a,这使得受激光的均匀性不可避免的受到一些影响。但是由于第二激发光为小发散角的光,光路校正组件209a的面积较小,因此在一些要求相对较低的应用场合,也可以接受本实施例的技术方案。
在本实施例中,受激光依次分别经第一分光组件204b和第二分光组件208a引导后,透射过光路校正组件209a,第二激发光经光路校正组件209a反射,两光在光路校正组件209a的第二激发光出射位置光路重合,使得相对于受激光,第二激发光从波长转换装置206至两光的重合位置的光程小于受激光从波长转换装置206至两光的重合位置的光程,因此,波长转换装置206的反射区段的光斑成像到积分棒212入射面的光程小于波长转换装置206的波长转换区段的光斑成像到积分棒212入射面的光程。光路校正组件209a反射第二激发光的面为凹面反射面,使得第二激发光和受激光能够在相同的位置成像,实现颜色空间分布均匀。
本实施例中,由于第二激发光不入射到第二分光组件208a,因此第二分光组件208a也可以为一反射片。
本实施例未详细描述的各光学元件对于光束的光学处理以及光束传输过程等,可参照上述各实施例的描述,此处不再赘述。
实施例八
请参见图9,图9为本发明实施例八的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204c、收集透镜205、中继透镜207和光路校正组件209,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211和积分棒212。
上述各实施方式中,第一激发光经匀光装置202匀光后,透射过第一分光组件204/204a/204b,然后入射到波长转换装置206。与之不同的是,在本实施例中,第一激发光被第一分光组件204c反射,然后经收集透镜205入射到波长转换装置206。
如图9A所示,本实施例中,第一分光组件204c包括第一区域204c1、第二区域204c2、补偿光引导区域204c3以及第四区域204c4。其中,第一区域204c1反射第一激发光并透射受激光和补偿光,第二区域204c2反射第二激发光并透射受激光和补偿光,补偿光引导区域204c3反射补偿光并透射第二激发光和至少部分受激光,第四区域204c4透射受激光和补偿光。
具体地,第一光源201发射的第一激发光经匀光装置202匀光后,入射至第一分光组件204c的第一区域204c1,并在该区域被反射,而后入射至收集透镜205,经收集透镜205会聚后入射至波长转换装置206。
当波长转换装置206的反射区段位于第一激发光的光路上时,第一激发光以主光轴斜入射的方式入射至反射区段,反射后形成第二激发光,该第二激发光与第一激发光呈“V”字型光路,经收集透镜205收集并传输至第一分光组件204c的第二区域204c2,第二激发光被第二区域204c2反射,并被反射至光路校正元件209b,光路校正元件209b包括一凸面反射面,该凸面反射面反射第二激发光,使其进入出射光通道。当波长转换装置206的波长转换区段位于第一激发光的光路上时,波长转换区段吸收第一激发光并发出受激光,该受激光大致呈朗伯分布,被收集透镜205收集后,该受激光透射过第一分光组件204c,进入出射光通道。
本实施例中,第一分光组件204c对第一激发光和受激光的透射反射特性相反,起到了区分第一激发光与受激光光路的作用。在入射到第一分光组件204c之前,部分受激光入射到光路校正元件209b,该部分受激光直接透射过光路校正元件209b。
第二光源203发出的补偿光经第一分光组件204c的补偿光引导区域204c3反射后,经收集透镜205收集并传输至波长转换装置206,被波长转换装置206的波长转换区段散射反射为近似呈朗伯分布的光,而后被收集透镜205收集并传输至第一分光组件204c。此时,补偿光与受激光合为一束出射,除少量补偿光及与补偿光波长范围重叠的受激光被补偿光引导区域204c3反射后损失外,其余补偿光和受激光经过第一分光组件204c的除补偿光引导区域204c3外的区域透射,进入出射光通道。
在本实施例中,光路校正元件209b设置在波长转换装置206与第一分光组件204c之间的光路上,通过光路校正元件209b,第二激发光、受激光和补偿光的主光轴重合,成为一束光入射到第一分光组件204c上。其中,受激光和补偿光为朗伯分布的光,覆盖了第一分光组件204c的大部分区域,而第二激发光仍为近似高斯分布的小发散角的光,第二激发光入射至补偿光引导区域204c3并透射。
本实施例中的第一分光组件204c为一个整体,其上的各个区域通过镀膜或者开孔等方式实现。在另一个实施方式中,由于第一分光组件透射受激光,也可以将第一分光组件设置为相对独立的几个滤光片,例如设置彼此独立的第一区域204c1滤光片、第二区域204c2滤光片、补偿光引导区域204c3滤光片,也能够实现本发明的技术效果。
在本实施例的一个变形实施例中,第二区域204c2透射第二激发光,在第二激发光透射过第二区域后的光路上设置一反射片,用于改变第二激发光的方向,使其入射至光路校正元件209b(同样包括凸面反射面),第二激发光经光路校正元件209b反射后,与透射过光路校正元件209b的受激光主光轴重合。在该实施方式中,光路校正元件209b设置在第一分光组件204c之后的光路上,即受激光先通过第一分光组件204c,然后通过光路校正元件209b。
在本实施例的一个变形实施例中,也可以不设置第二光源203,那么相应的,补偿光引导区域204c3也可以省略,但是原补偿光引导区域204c3需要能够透射第二激发光。
本实施例中,在光束到达207前,第二激发光、补偿光和受激光已成为主光轴重合的一束合光,通过设置反射镜可以任意改变滤光轮211和积分棒212的位置。例如可以通过两个45°放置的反射镜,将光束翻转180°,将滤光轮211与波长转换装置206同轴一体设置,如同实施例三、四、六、七一般。
本实施例未详细描述的各光学元件对于光束的光学处理以及光束传输过程等,可参照上述各实施例的描述,此处不再赘述。
实施例八相对于上述实施例一至七,对第一分光组件的特性进行了变换,在保持使第一分光组件对第一激发光和受激光透射反射特性相反的前提下,将第一激发光和受激光的透射反射特性进行了调换。该变换也可以应用到实施例一至七中,相应的对各反射镜的透射反射特性进行改变,并在需要时增减反射片或波长滤光片即可,此处不再赘述。
实施例九
请参见图10,图10为本发明实施例九的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204a、收集透镜205、第一中继透镜207、反射片208、光路校正组件209和第二中继透镜210,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211和积分棒212。
与实施例三相比,本实施例的区别在于,第一光源201发出的第一激发光在经过匀光装置202匀光后,以主光轴不垂直于波长转换装置206的表面的方向入射于收集透镜205,因此,第一激发光在入射至收集透镜205前,其主光轴方向与收集透镜205的中心轴不平行。
由于反射对称性,第二激发光经收集透镜205收集并出射后,第二激发光的主光轴也不垂直于波长转换装置206的表面,该实施例使得第一激发光能够与第二激发光之间的夹角进一步扩大,从而避免两束光之间产生影响。
在一个实施方式中,光路校正组件209与第一分光组件不平行设置,入射至光路校正组件209的第二激发光与被光路校正组件209反射的第二激发光的夹角不等于90°。由于第一激发光的入射方向角度偏移,使得第二激发光的方向也发生角度偏移,而受激光不受影响,因此,为使得第二激发光能够与受激光的主光轴重合,需要通过修改光路校正组件的摆放角度来控制第二激发光的方向。在一个实施方式中,第二激发光经光路校正组件反射后,角度改变90°±4°。该技术方案能够在光路略微偏离的状态下仍能通过光路校正组件的摆放角度控制第二激发光与受激光的光路重合,提高了光源装置设计的自由度。
本实施例相对于实施例三的区别特征也可结合到其他各实施例中,本实施例未详细描述的各光学元件对于光束的光学处理以及光束传输过程等,可参照上述各实施例的描述,此处不再赘述。
实施例十
请参见图11,图11为本发明实施例十的光源装置的结构示意图。光源装置包括第一光源201、光引导系统和波长转换装置206,其中,光引导系统包括第一分光组件204a、收集透镜205、第一中继透镜207、反射片208、光路校正组件209和第二中继透镜210,此外,光源装置还包括第二光源203、匀光装置202、滤光轮211、积分棒212和补偿光引导组件213。
与上述包括第二光源203的实施例不同的是,上述各实施例中,第二光源203发出的补偿光先入射到波长转换区段,然后经散射反射后形成朗伯分布的光并与受激光一同出射,即补偿光与受激光在波长转换区段的发光表面位置合光;而本实施例十的第二光源203发出的补偿光不入射至波长转换区段,而是在受激光产生后,通过补偿光引导组件213与受激光合光。该技术方案避免了补偿光被波长转换装置散射而造成的光损失,极大的提高了补偿光的光利用率。
在本实施例中,补偿光引导组件213设置于受激光的出射光路上,具体地,设置于积分棒212的出射光路上,受激光和补偿光分别从两个方向入射于补偿光引导组件213,从而合为一束。补偿光引导组件213可以如图所示,在一个透明基板上设置小反射区来实现,其中补偿光入射到小反射区,被小反射区反射,受激光覆盖补偿光引导组件213的大部分区域,入射到非小反射区的透明基板的受激光直接透射。进一步地,还可以通过镀膜使得小反射区仅反射补偿光波长范围的光,透射其他波长范围的光。在一个实施方式中,还可以将补偿光引导组件213对受激光和补偿光的透射反射特性调换,可以通过在反射片上设置补偿光透射区域来实现该技术方案。
在本实施例中,补偿光引导组件213设置在积分棒212的出射光路上,在其他实施方式中,补偿光引导组件213也可以设置于其他位置,例如,可以设置于积分棒212的入射光的光路上,或者设置于波长转换装置与滤光轮之间的光路上。总之,本实施例部分的技术方案宗旨在于,避免补偿光入射到波长转换区段,从而避免补偿光因波长转换区段的散射而造成的光损失。
本实施例关于第二光源203发出的补偿光与受激光合光的技术特征可以应用到本发明其他实施方式中,本实施例未详细描述的各光学元件对于光束的光学处理以及光束传输过程等,可参照上述各实施例的描述,此处不再赘述。
实施例十一
上述实施例一至十及各个变形实施例中,光路校正组件都是曲面反射面,其中,或者通过凸面反射面对光束进行发散,或者通过凹面反射面对光束进行会聚,光路校正组件都是通过一个器件同时实现改变第二激发光的传播方向与改变光束角分布。
与之不同的是,在本实施例中,通过两个光学器件的组合实现曲面反射面的功能,利用平面反射面改变第二激发光的方向,利用透镜改变第二激发光的角分布。在一个实施方式中,通过平面反射面与凹透镜的组合来替代凸面反射面,既可以使得第二激发光先穿过凹透镜,然后入射到平面反射面,也可以使得第二激发光先被平面反射面反射,然后透射过凹透镜。在另一个实施方式中,通过平面反射面与凸透镜的组合来替代凹面反射面,既可以使得第二激发光先穿过凸透镜,然后入射到平面反射面,也可以使得第二激发光先被平面反射面反射,然后透射过凸透镜。
本实施例对光路校正组件进行了替换,对于用平面反射面与凹透镜的组合来替代凸面反射面的实施方式,其他组件可以参照上述实施例中采用凸面反射面的光路校正组件的技术方案的具体描述;对于用平面反射面与凸透镜的组合来替代凹面反射面的实施方式,其他组件可以参照上述实施例中采用凹面反射面的光路校正组件的技术方案的具体描述,但需满足平面反射面对受激光的透射反射特性与原曲面反射面相同。
可以理解,在曲面反射面的基础上,也可以进一步增加一个或多个平面反射面,与曲面反射面共同组成光路校正组件,只要使得最后一次反射后的第二激发光主光轴与受激光的主光轴重合即可。
本发明还要求公开了一种投影系统,该投影系统包括上述各实施例中的光源装置,还包括光调制装置和镜头装置,通过将光源装置的出射光投射到光调制装置的光调制器上,并根据输入的图像信号对该光的空间分布进行调制,经调制后的光经镜头装置出射形成图像,从而实现投影显示功能。
本发明的投影显示系统既可以应用于投影机如影院投影机、工程投影机、微型投影机、教育投影机、拼墙投影机、激光电视等,也可以应用于图像照明如图像投影灯、交通工具(车船飞机)灯、探照灯、舞台灯等场景。
本说明书中所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,由本申请任意两个或两个以上的实施例的部分或全部技术特征组成的可行的技术方案,都属于本发明保护的范围。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

1、一种光源装置,其特征在于,包括第一光源、光引导系统和波长转换装置;
所述第一光源用于发射第一激发光,所述第一激发光沿入射光通道入射至所述光引导系统;
所述光引导系统用于将所述第一激发光引导至所述波长转换装置;
所述波长转换装置包括波长转换区段和反射区段,所述波长转换装置周期性运动以使得所述波长转换区段和反射区段分时周期性地位于第一激发光的光路上,所述波长转换区段吸收所述第一激发光并出射受激光,所述第一激发光斜入射至所述反射区段的表面,被反射后形成第二激发光;
所述光引导系统还用于收集所述受激光和第二激发光,并引导所述受激光和第二激发光沿出射光通道出射;
其中,所述光引导系统包括光路校正组件,所述光路校正组件位于所述第二激发光的光路上,用于反射所述第二激发光,并使反射后的第二激发光的主光轴与所述受激光的主光轴重合,还用于改变第二激发光的光束角分布,使所述第二激发光与所述受激光在沿光束传播方向上的成像位置重合。
2、根据权利要求1所述的光源装置,其特征在于,所述光路校正组件包括曲面反射面,用于同时改变所述第二激发光的方向和光束角分布;或者
所述光路校正组件包括平面反射面与透镜,所述平面反射面用于改变所述第二激发光的方向,所述透镜用于改变所述第二激发光的角分布。
3、根据权利要求2所述的光源装置,其特征在于,所述光路校正组件包括凸面反射面或者包括平面反射面与凹透镜的组合,从所述波长转换装置至所述第二激发光与所述受激光的重合位置,所述第二激发光的光程大于所述受激光的光程。
4、根据权利要求3所述的光源装置,其特征在于,所述光引导系统包括第一分光组件,所述第一分光组件包括不重叠的第一区域和第二区域,所述第一激发光入射至所述第一区域,所述第二激发光入射至所述第二区域,所述第一区域对所述第一激发光的透射反射特性与所述第二区域对所述第二激发光的透射反射特性相同;
所述第二激发光经过所述第二区域后传输至所述光路校正组件,所述第二激发光与所述受激光在所述第一分光组件的受激光出射位置光路重合。
5、根据权利要求3所述的光源装置,其特征在于,所述光引导系统包括第一分光组件,所述第一分光组件包括不重叠的第一区域和第二区域,所述第一激发光入射至所述第一区域,所述第二激发光入射至所述第二区域,所述第一区域对所述第一激发光的透射反射特性与所述第二区域对所述第二激发光的透射反射特性相反;
所述光引导系统包括第二分光组件,所述第二激发光经过所述第二分光组件后传输至所述光路校正组件,所述第二激发光与所述受激光在所述第二分光组件的受激光出射位置光路重合。
6、根据权利要求2所述的光源装置,其特征在于,所述光路校正组件包括凹面反射面或者包括平面反射面与凸透镜的组合,从所述波长转换装置至所述第二激发光与所述受激光的重合位置,所述第二激发光的光程小于所述受激光的光程,所述光路校正组件透射所述受激光。
7、根据权利要求6所述的光源装置,其特征在于,所述光引导系统还包括第一分光组件,所述第一分光组件包括第一区域,所述第一激发光入射至所述第一区域,所述第二激发光不经过所述第一分光组件,所述第二激发光与所述受激光在所述光路校正组件的第二激发光出射位置光路重合。
8、根据权利要求6所述的光源装置,其特征在于,所述光引导系统还包括第一分光组件,所述第一分光组件包括不重叠的第一区域和第二区域,所述第一激发光入射至所述第一区域,所述第二激发光入射至所述第二区域,所述第一区域对所述第一激发光的透射反射特性与所述第二区域对所述第二激发光的透射反射特性相反;
所述光引导系统还包括第二分光组件,所述第二激发光不经过所述第二分光组件,所述受激光依次分别经所述第一分光组件和第二分光组件引导后,透射过所述光路校正组件,并在所述光路校正组件的第二激发光出射位置与所述第二激发光光路重合。
9、根据权利要求4、5、7或8中任一项所述的光源装置,其特征在于,还包括第二光源,用于当所述波长转换区段处于所述第一激发光的光路上时发射补偿光,所述补偿光与所述受激光具有交叠的波长范围,所述第一分光组件包括补偿光引导区域,用于将所述补偿光引导至所述波长转换装置。
10、根据权利要求1所述的光源装置,其特征在于,还包括用于发射补偿光的第二光源和补偿光引导组件,所述补偿光引导组件设置于所述受激光的出射光路上,所述补偿光与所述受激光具有交叠的波长范围,所述补偿光与所述受激光通过所述补偿光引导组件合光。
11、根据权利要求1~8,10中任一项所述的光源装置,其特征在于,入射至所述光路校正组件的第二激发光与被所述光路校正组件反射的第二激发光的夹角不等于90°。
12、一种投影系统,包括权利要求1至11中任一项所述的光源装置,还包括光调制装置和镜头装置。
PCT/CN2017/081311 2017-03-14 2017-04-20 光源装置及投影系统 WO2018166038A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/493,972 US11243460B2 (en) 2017-03-14 2017-04-20 Light source device and projection system
EP17901192.9A EP3598230B1 (en) 2017-03-14 2017-04-20 Light source device and projection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710150667.3 2017-03-14
CN201710150667.3A CN108572498B (zh) 2017-03-14 2017-03-14 光源装置及投影系统

Publications (1)

Publication Number Publication Date
WO2018166038A1 true WO2018166038A1 (zh) 2018-09-20

Family

ID=63522815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081311 WO2018166038A1 (zh) 2017-03-14 2017-04-20 光源装置及投影系统

Country Status (4)

Country Link
US (1) US11243460B2 (zh)
EP (1) EP3598230B1 (zh)
CN (2) CN108572498B (zh)
WO (1) WO2018166038A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3654100A1 (en) * 2018-11-15 2020-05-20 Coretronic Corporation Illumination system and projection apparatus
EP3722874A1 (en) * 2019-03-20 2020-10-14 Ricoh Company, Ltd. Light source device, image projection apparatus, light source optical system
CN112147836A (zh) * 2019-06-28 2020-12-29 深圳光峰科技股份有限公司 一种光源系统及显示设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557752B (zh) * 2017-09-26 2021-03-02 深圳光峰科技股份有限公司 光源系统及投影装置
KR20190141610A (ko) * 2018-06-14 2019-12-24 니치아 카가쿠 고교 가부시키가이샤 발광 장치와 그 제조 방법
CN110703552B (zh) * 2018-07-10 2021-10-15 中强光电股份有限公司 照明系统以及投影装置
CN111399324B (zh) 2019-01-03 2022-11-25 深圳光峰科技股份有限公司 光源系统及投影设备
JP7413740B2 (ja) * 2019-03-20 2024-01-16 株式会社リコー 光源装置、画像投射装置及び光源光学系
JP7336762B2 (ja) * 2019-04-16 2023-09-01 パナソニックIpマネジメント株式会社 光源装置及び投写型表示装置
JP7341740B2 (ja) 2019-06-12 2023-09-11 キヤノン株式会社 光源装置および画像投射装置
CN112213908B (zh) * 2019-07-12 2022-12-02 深圳光峰科技股份有限公司 光源系统与显示设备
EP3771945B1 (en) * 2019-07-30 2023-10-04 Coretronic Corporation Illumination system and projection apparatus
CN112443818B (zh) * 2019-08-30 2023-04-28 深圳市中光工业技术研究院 光源系统及照明装置
CN114624947A (zh) * 2022-01-27 2022-06-14 无锡视美乐激光显示科技有限公司 一种波长转换装置、光源装置及投影系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453448A (zh) * 2012-05-30 2013-12-18 日立视听媒体股份有限公司 光源装置以及图像显示装置
JP2014142369A (ja) * 2013-01-22 2014-08-07 Zero Rabo Kk 照明光学系およびこれを用いた電子装置
CN105278226A (zh) * 2014-06-13 2016-01-27 中强光电股份有限公司 光源模块与投影装置
CN206610072U (zh) * 2017-03-14 2017-11-03 深圳市光峰光电技术有限公司 光源装置及投影系统
CN206671745U (zh) * 2017-03-14 2017-11-24 深圳市光峰光电技术有限公司 光源装置及投影系统

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839285B1 (ko) * 2002-04-23 2008-06-17 엘지전자 주식회사 컬러드럼을 이용한 투사장치
KR100765274B1 (ko) * 2003-02-27 2007-10-09 엘지전자 주식회사 투사형 디스플레이 광학계
TWI293716B (en) * 2004-11-10 2008-02-21 Asia Optical Co Inc Optical system for projection and projector therewith
JP5381363B2 (ja) * 2008-09-01 2014-01-08 セイコーエプソン株式会社 プロジェクタ
CN101713908B (zh) * 2008-10-06 2011-08-24 鸿富锦精密工业(深圳)有限公司 投影机
JP4953149B2 (ja) * 2009-06-18 2012-06-13 Necディスプレイソリューションズ株式会社 光学ユニットおよび投写型表示装置
JP5558996B2 (ja) * 2010-09-30 2014-07-23 三洋電機株式会社 光源装置及び投写型映像表示装置
JP2012108486A (ja) * 2010-10-21 2012-06-07 Panasonic Corp 光源装置および画像表示装置
KR101245493B1 (ko) * 2011-03-21 2013-03-25 양재일 다면 동시 투사형 빔 프로젝터
CN104914657B (zh) * 2011-07-08 2017-04-12 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
CN103062672B (zh) * 2011-10-21 2015-03-11 中强光电股份有限公司 照明系统与投影装置
US9442357B2 (en) * 2011-10-25 2016-09-13 Texas Instruments Incorporated Spectral filtering of phosphor color wheels
CN103207507B (zh) * 2012-01-11 2015-07-08 中强光电股份有限公司 光源模组与投影装置
JP5970994B2 (ja) * 2012-07-12 2016-08-17 ソニー株式会社 光源装置及びプロジェクタ
JP6056293B2 (ja) * 2012-09-12 2017-01-11 株式会社リコー 照明光源装置及びこの照明光源装置を備えた投射装置及び投射装置の制御方法
JP6292523B2 (ja) * 2013-01-10 2018-03-14 Zero Lab株式会社 波長変換デバイス、照明光学系およびこれを用いた電子装置
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
WO2014192115A1 (ja) * 2013-05-30 2014-12-04 Necディスプレイソリューションズ株式会社 光源装置および投写型表示装置
TWI480585B (zh) * 2013-07-30 2015-04-11 Delta Electronics Inc 顯示光源模組
JP6476667B2 (ja) * 2013-11-01 2019-03-06 株式会社リコー 光源装置及びこれを用いたプロジェクタ
JP6379473B2 (ja) * 2013-11-06 2018-08-29 株式会社リコー 照明装置、投射表示装置、および、照明方法
DE102013224768B4 (de) * 2013-12-03 2023-07-27 Coretronic Corporation Lichtmodul für eine Projektionsvorrichtung und DLP-Projektor
DE102014202090B4 (de) * 2014-02-05 2024-02-22 Coretronic Corporation Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
JP6331826B2 (ja) * 2014-07-23 2018-05-30 大日本印刷株式会社 投射装置および照明装置
CN105319819B (zh) * 2014-07-28 2019-09-20 深圳光峰科技股份有限公司 发光装置及投影系统
KR20160019177A (ko) * 2014-08-11 2016-02-19 엘지전자 주식회사 일체형 파장 변환 휠 및 컬러 휠이 구비된 프로젝션 장치
DE102014222130A1 (de) * 2014-10-29 2016-05-04 Osram Gmbh Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
TWI575299B (zh) 2015-05-08 2017-03-21 中強光電股份有限公司 照明系統以及投影裝置
CN106468427A (zh) * 2015-08-21 2017-03-01 台达电子工业股份有限公司 荧光色轮与应用其的波长转换装置
CN107688272A (zh) * 2016-08-04 2018-02-13 深圳市光峰光电技术有限公司 发光装置及投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453448A (zh) * 2012-05-30 2013-12-18 日立视听媒体股份有限公司 光源装置以及图像显示装置
JP2014142369A (ja) * 2013-01-22 2014-08-07 Zero Rabo Kk 照明光学系およびこれを用いた電子装置
CN105278226A (zh) * 2014-06-13 2016-01-27 中强光电股份有限公司 光源模块与投影装置
CN206610072U (zh) * 2017-03-14 2017-11-03 深圳市光峰光电技术有限公司 光源装置及投影系统
CN206671745U (zh) * 2017-03-14 2017-11-24 深圳市光峰光电技术有限公司 光源装置及投影系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3654100A1 (en) * 2018-11-15 2020-05-20 Coretronic Corporation Illumination system and projection apparatus
US10809607B2 (en) 2018-11-15 2020-10-20 Coretronic Corporation Illuminaiton system and projection apparatus
EP3722874A1 (en) * 2019-03-20 2020-10-14 Ricoh Company, Ltd. Light source device, image projection apparatus, light source optical system
US11829058B2 (en) 2019-03-20 2023-11-28 Ricoh Company, Ltd. Light source device and image projection apparatus including a rod integrator and light guide
CN112147836A (zh) * 2019-06-28 2020-12-29 深圳光峰科技股份有限公司 一种光源系统及显示设备
CN112147836B (zh) * 2019-06-28 2023-08-04 深圳光峰科技股份有限公司 一种光源系统及显示设备
US11921410B2 (en) 2019-06-28 2024-03-05 Appotronics Corporation Limited Light source system and display apparatus

Also Published As

Publication number Publication date
EP3598230A1 (en) 2020-01-22
CN110928124A (zh) 2020-03-27
US11243460B2 (en) 2022-02-08
EP3598230A4 (en) 2020-04-15
CN108572498B (zh) 2019-12-03
US20200124955A1 (en) 2020-04-23
CN108572498A (zh) 2018-09-25
EP3598230B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2018166038A1 (zh) 光源装置及投影系统
WO2018166120A1 (zh) 光源装置及投影系统
WO2016165569A1 (zh) 发光装置和投影系统
WO2016161932A1 (zh) 发光装置和投影显示设备
WO2014163322A1 (ko) 입체 영상 장치
US6549338B1 (en) Bandpass filter to reduce thermal impact of dichroic light shift
WO2016091106A1 (zh) 投影系统
WO2013029463A1 (zh) 投影系统及其发光装置
WO2014084489A1 (ko) 광원유닛과 이를 포함하는 영상투사장치
WO2013056594A1 (zh) 一种光源和显示系统
WO2016197888A1 (zh) 投影系统、光源系统以及光源组件
WO2015176608A1 (zh) 光源模组及投影设备
WO2017020855A1 (zh) 光源系统和投影系统
WO2010143891A2 (en) Projection system
WO2018076716A1 (zh) 光源系统及显示设备
US7872219B2 (en) Illumination device with plural color light sources and first and second integrators
WO2014180309A1 (zh) 显示均匀补偿方法、光调制装置、信号处理器和投影系统
WO2018214288A1 (zh) 光源系统及显示设备
US9638988B2 (en) Light multiplexer with color combining element
US6781641B2 (en) Liquid crystal display projector
WO2018151581A1 (ko) 레이저 스크라이빙 장치
WO2013036062A2 (en) Lighting module
WO2012057388A1 (en) Apparatus for forming fine patterns capable of switching direction of polarization interference pattern in laser scanning method and method of forming fine patterns using the same
WO2018196195A1 (zh) 光源系统及显示设备
WO2019024211A1 (zh) 投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017901192

Country of ref document: EP

Effective date: 20191014