WO2018164331A1 - 변압기 수소 가스 감시 시스템, 장치 및 방법 - Google Patents

변압기 수소 가스 감시 시스템, 장치 및 방법 Download PDF

Info

Publication number
WO2018164331A1
WO2018164331A1 PCT/KR2017/008994 KR2017008994W WO2018164331A1 WO 2018164331 A1 WO2018164331 A1 WO 2018164331A1 KR 2017008994 W KR2017008994 W KR 2017008994W WO 2018164331 A1 WO2018164331 A1 WO 2018164331A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
resistance value
temperature
information
hydrogen concentration
Prior art date
Application number
PCT/KR2017/008994
Other languages
English (en)
French (fr)
Inventor
김석곤
한정열
이유진
김태균
안용호
장병태
최종기
이남호
김남대
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to US16/491,382 priority Critical patent/US11243266B2/en
Publication of WO2018164331A1 publication Critical patent/WO2018164331A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2841Gas in oils, e.g. hydrogen in insulating oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • H01F27/14Expansion chambers; Oil conservators; Gas cushions; Arrangements for purifying, drying, or filling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1281Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of liquids or gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • H01F2027/404Protective devices specially adapted for fluid filled transformers

Definitions

  • the present invention relates to a transformer hydrogen gas monitoring system, apparatus and method.
  • Transformer preventive diagnostics can be performed through gas analysis (Gas Chromatograph. GC) in the transformer.
  • transformer preventive diagnosis was performed by extracting gas in a transformer through a filter (membrane) and analyzing the extracted gas. This method is expensive for maintenance such as filter replacement, which leads to longer transformer preventive diagnosis cycle. Transformer failure can also occur frequently during the transformer preventive diagnostic cycle.
  • One embodiment of the present invention provides a transformer hydrogen gas monitoring system, apparatus, and method for providing an environment that can simplify the analysis of hydrogen gas in a transformer so as to reduce a transformer preventive diagnosis cycle.
  • a transformer hydrogen gas monitoring system includes: a sensor module configured to measure a resistance value of a member at least partially disposed to meet hydrogen gas in a transformer and having a variable resistance value according to the hydrogen concentration in the transformer; And a multi-task module that receives the detection result of the sensor module, generates hydrogen concentration information corresponding to the resistance value information included in the detection result, and remotely transmits information corresponding to the generated hydrogen concentration information. It may include.
  • the member may include carbon nanotubes.
  • the sensor module may further include a temperature controller for changing the temperature of the member
  • the multi-task module may receive a temperature of the member after receiving the first sensing result during the first measurement period of the sensor module. Controls the operation of the temperature control unit so as to deviate from the predetermined temperature range, and controls the operation of the temperature control unit so that the temperature of the member falls within the predetermined temperature range after the temperature of the member deviates from the predetermined temperature range.
  • the second detection result during the second measurement period of the sensor module may be received.
  • the sensor module may further include a position control unit for changing the position of the member, and the multi-task module may receive the first sensing result during the first measurement period of the sensor module. Control the operation of the position control unit so as not to be located in the transformer, control the operation of the position control unit so that at least part of the member is located in the transformer, and when at least part of the member is located in the transformer The second detection result during the second measurement period may be received.
  • the member may be disposed in the drain valve so that the insulating oil contained in the transformer does not pass through the drain valve.
  • the sensor module may include a temperature sensor that measures a temperature in the transformer; And a cable electrically connecting between the sensor module and the multi task module.
  • the multi-task module may further generate the hydrogen concentration information by applying a temperature in the transformer, a resistance value of the member, and a resistance value of the cable to a predetermined equation.
  • At least one of the length, thickness and specific resistance of the cable may be designed such that the resistance value of the cable is smaller than the resistance value of the member.
  • the multi-task module generates the state information of the transformer corresponding to the generated hydrogen concentration information and remotely transmits the generated state information, wherein the state information includes at least two of partial discharge, arc, and overheating. can do.
  • the transformer hydrogen gas monitoring system further includes an HMI for receiving information corresponding to the hydrogen concentration information from the multi-task module, wherein the HMI transmits a control signal to the multi-task module, and the multi-task module. May control an on-off operation of the transformer based on the control signal.
  • a transformer hydrogen gas monitoring device includes a sensing unit configured to receive resistance value information of a member having at least a portion of hydrogen gas in a transformer and having a variable resistance value according to the hydrogen concentration in the transformer. ; A calculating unit calculating hydrogen concentration information in the transformer based on the resistance value information of the member; And a communication unit generating a communication signal including hydrogen concentration information in the transformer and transmitting the communication signal remotely. It may include.
  • the transformer hydrogen gas monitoring device may further include a controller for repeatedly controlling the temperature or position of the member at predetermined intervals.
  • the sensing unit receives the temperature information of the member
  • the transformer hydrogen gas monitoring device further includes a compensator for compensating the resistance value information by applying the temperature information and the resistance value information to a predetermined equation. can do.
  • the sensing unit is electrically connected to the member through a cable
  • the compensation unit may compensate the resistance value information by applying the resistance value of the cable to the predetermined equation.
  • Transformer hydrogen gas monitoring method comprising: detecting a resistance value of the member is arranged so that at least a portion meets the hydrogen gas in the transformer and having a variable resistance value according to the hydrogen concentration in the transformer; Calculating hydrogen concentration information in the transformer based on resistance value information of the member; Generating a communication signal including hydrogen concentration information in the transformer and transmitting the communication signal remotely; It may include.
  • Transformer hydrogen gas monitoring system, apparatus and method according to an embodiment of the present invention because the gas analysis can be performed without extracting the gas in the transformer, reducing the cost consumed in the process of preventing a number of transformers and preventive diagnosis The process can be simplified.
  • the simplification of the preventive diagnostics process can lead to shorter cycles of transformer preventive diagnostics, and can be the basis for creating an environment in which administrators can monitor transformer gas in real time.
  • the transformer hydrogen gas monitoring system, apparatus, and method may provide an environment in which hydrogen concentration information may be collectively collected from a plurality of transformers, and the collected hydrogen concentration information may be analyzed. It can support accurate diagnosis and management of transformer fault signs.
  • FIG. 1 is a conceptual diagram illustrating a transformer hydrogen gas monitoring system according to an exemplary embodiment of the present invention.
  • FIG. 2 is a view showing a transformer hydrogen gas monitoring system and a transformer hydrogen gas monitoring apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a transformer hydrogen gas monitoring method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart specifically illustrating a transformer hydrogen gas monitoring method according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram illustrating a transformer hydrogen gas monitoring system according to an exemplary embodiment of the present invention.
  • a gas monitoring system may include a sensor module including a member 14, a multi task module 120, and at least some of an HMI 130.
  • the gas in the transformer 10 can be monitored.
  • the member 14 may have a resistance value at least partially disposed in the transformer 10 and variable depending on the hydrogen concentration in the transformer 10.
  • the member 14 may be implemented with carbon nanotubes (CNTs), and disposed in the drain valve 13 so that one end is located in the transformer 10 and the other end is located outside the transformer 10. Can be.
  • the member 14 may include a structure such as a partition wall so that the insulating oil 12 does not pass through the drain valve 13.
  • the sensor module may be electrically connected to the member 14 to measure the resistance value of the member 14.
  • the sensor module may include a gas sensor electrically connected to the other end of the member 14 to apply a sensing voltage and measure a sensing current according to the sensing voltage.
  • the gas monitoring system can perform the gas analysis without extracting the gas in the transformer 10, thereby reducing the cost consumed in the process of preventing a plurality of transformers and preventive diagnosis process Can be simplified.
  • the simplification of the preventive diagnostics process can lead to shorter cycles of transformer preventive diagnostics and can be the basis for establishing an environment that can monitor transformer gas in real time.
  • the sensor module may further include a cable 15 for electrically connecting the member 14 and the multi-task module 120. Accordingly, the gas sensor may be disposed in the multi task module 120 to apply a sensing voltage and measure the sensing current through the cable 15.
  • the cable 15 Since the measurement accuracy when the sensor module measures the resistance value of the member 14 through the cable 15 is higher as the resistance value of the cable 15 is smaller, the cable 15 has a short length so as to have a small resistance value. It can be thick or thick. For example, at least one of the length, thickness and specific resistance of the cable 15 may be designed such that the resistance value of the cable 15 is smaller than the resistance value of the member 14. Accordingly, the multi task module 120 may be disposed adjacent to the transformer 10.
  • the multi-task module 120 may receive the detection result of the sensor module, generate hydrogen concentration information corresponding to the resistance value information included in the detection result, and remotely transmit information corresponding to the generated hydrogen concentration information.
  • the information corresponding to the hydrogen concentration information may include at least one of hydrogen concentration information, resistance value information, and state information of a transformer.
  • the multi-task module 120 may be designed in the same manner as the transformer hydrogen gas monitoring device shown in FIG. 2.
  • the HMI 130 may receive information corresponding to hydrogen concentration information from the multi task module 120.
  • the HMI 130 may provide an environment in which an administrator may monitor a transformer in real time without restriction of time and place based on the Internet of Things (IoT).
  • IoT Internet of Things
  • the HMI 130 may provide the hydrogen concentration information in real time to the manager of the site, and may further analyze the accumulated hydrogen concentration information by accumulating and storing the hydrogen concentration information for a long time.
  • the HMI 130 may transmit a control signal to the multi-task module 120 to control the on-off operation of the transformer 10 based on the hydrogen concentration information. Thereafter, the multi-task module 120 may control the on-off operation of the transformer 10 based on the control signal.
  • the gas monitoring system according to an embodiment of the present invention can collectively monitor the gas of a plurality of transformers and take a quick and accurate action on a transformer having a failure sign.
  • FIG. 2 is a view showing a transformer hydrogen gas monitoring system and a transformer hydrogen gas monitoring apparatus according to an embodiment of the present invention.
  • the sensor module 110 may include at least some of the temperature controller 111, the position controller 112, the gas sensor 113, and the temperature sensor 114.
  • the temperature controller 111 may change the temperature of the member 14. Since the hydrogen concentration in the transformer may vary over time, the temperature control unit 111 may be removed from the member 14 such that it is removed every time hydrogen is deposited on the surface of the member 14 or permeated into the member 14. The temperature can be controlled. Accordingly, the hydrogen concentration measurement accuracy can be improved.
  • the temperature control unit 111 may quickly remove hydrogen in the member 14 by heating a portion of the member 14 located outside the transformer to about 50 degrees, and leave the member 14 intact after heating.
  • the member 14 can be cooled.
  • the temperature control unit 111 may receive a temperature control signal from the control unit 222 of the transformer hydrogen gas monitoring device 200 and raise or lower the temperature of the member 14 according to the temperature control signal. have.
  • the temperature control unit 111 heats the member 14 so that the temperature of the member 14 is out of a predetermined temperature range during the temperature adjustment period between the first measurement period and the second measurement period.
  • the member 14 may be cooled such that the temperature is within a predetermined temperature range.
  • the first measurement period and the second measurement period may be set based on the time point when the gas sensor 113 transmits the measurement result to the sensing unit 211.
  • the predetermined temperature range may be room temperature of about 25 degrees, but is not limited thereto.
  • the position controller 112 may change the position of the member 14. Since the concentration of hydrogen in the transformer may vary over time, the position control unit 112 may cause the member 14 to be stripped every time hydrogen is buried in the surface of the member 14 or permeated into the member 14. It may be moved out of the transformer or the member 14 may be inserted into the transformer. Accordingly, the hydrogen concentration measurement accuracy can be improved.
  • the position control unit 112 picks up a portion of the member 14 located outside the transformer and moves the member 14 outside the transformer. After the movement of the member 14, the insulating oil in the transformer does not pass through the oil drain valve. The drain valve can be blocked to prevent this. Thereafter, the position control unit 112 may insert the member 14 into the oil drain valve while opening the oil drain valve.
  • the position control unit 112 may receive a position control signal from the control unit 222 of the transformer hydrogen gas monitoring device 200 and control the movement of the member 14 according to the position control signal.
  • the position control unit 112 moves the member 14 so that the member 14 is not positioned in the transformer and the member 14 is positioned in the transformer during the positioning period between the first measurement period and the second measurement period.
  • the member 14 can be moved.
  • the temperature control of the temperature control unit 111 and the position control of the position control unit 112 may be performed together. Since the resistance value of the member 14 immediately after the member 14 is cooled or immediately after the member 14 is inserted into the transformer may not accurately reflect the actual hydrogen concentration of the transformer 10, The length of the second measurement period may be set to about 10 hours for the hydrogen concentration measurement accuracy, but is not limited thereto.
  • the gas sensor 113 may secure the hydrogen concentration information in the transformer by measuring the resistance value of the member 14.
  • the gas sensor 113 may be designed in the same manner as the sensor module described above with reference to FIG. 1.
  • the temperature sensor 114 can measure the temperature in the transformer.
  • the relationship between the resistance of the member 14 and the concentration of hydrogen in the transformer can be influenced by the temperature in the transformer. Accordingly, the temperature sensor 114 may transmit the measured temperature information to the sensing unit 211 or the compensating unit 214 so that the calculating unit 221 may reflect the temperature information measured in the hydrogen concentration information generation process. Accordingly, the hydrogen concentration measurement accuracy can be improved.
  • the transformer hydrogen gas monitoring apparatus 200 may include a sensing unit 211, a sensing circuit 212, an ADC 213, a compensating unit 214, and a calculating unit 221.
  • the sensing unit 211 may receive the resistance value information of the member 14 from the gas sensor 113.
  • the sensing unit 211 applies a sensing voltage to the cable 15 to receive the resistance value information of the member 14, measures a sensing current according to the sensing voltage, and amplifies the sensing current.
  • the sensing circuit 212 for filtering may be included. Accordingly, the transformer hydrogen gas monitoring device 200 can accurately measure the hydrogen concentration even when the resistance change ratio of the member 14 according to the change in the hydrogen concentration in the transformer is small.
  • the ADC 213 may convert the output signal of the sensing circuit 212 into a digital value.
  • the compensation unit 214 may compensate the resistance value of the resistance value information by applying temperature information generated by the temperature sensor 114 and resistance value information generated by the gas sensor 113 to a predetermined equation.
  • the predetermined equation may include Equation 1 below. Where R is the compensated resistance value, T is the temperature measured by the temperature sensor 114, ⁇ is the temperature coefficient of the member, Rr is the resistance value of the member when the temperature is T degrees, and Ra is the temperature This is the resistance value of the member at 0 degrees.
  • the temperature in the transformer varies by 3 to 9 degrees during the measurement period, but is not limited thereto.
  • the calculation unit 221 may calculate the hydrogen concentration information in the transformer based on the resistance value information of the member 14.
  • the calculator 221 may calculate hydrogen concentration information through Equation 2 below.
  • C is the hydrogen concentration and ⁇ is the hydrogen concentration sensitivity of the member.
  • the unit of the hydrogen concentration is ppm, and may be calculated around 1000 ppm, but is not limited thereto.
  • the calculator 221 may apply the following Equation 3 to Equation 2 to reflect the resistance value of the cable 15 to the hydrogen concentration calculation.
  • Rs is the resistance of the cable 15
  • Ri is the resistance of the member.
  • the controller 222 may generate a temperature control signal or a position control signal to repeatedly control the temperature or the position of the member 14 at predetermined intervals.
  • the determination unit 223 may generate state information of the transformer corresponding to the hydrogen concentration information calculated by the calculation unit 221.
  • the state information may include at least two of partial discharge, arc, and overheating.
  • the gas generation rate for each failure of the transformer may be as shown in Table 1 below.
  • the ratio of hydrogen generated by arc generation is lower than that of hydrogen generated by partial discharge, and may be higher than that of hydrogen generated by overheating.
  • the determination unit 223 sets the first range of the high hydrogen concentration range, the second range of the intermediate hydrogen concentration range, and the third range of the low hydrogen concentration range, and calculates the hydrogen calculated by the calculation unit 221.
  • the concentration information corresponds to the first range
  • the state information of the transformer is determined as the partial discharge
  • the hydrogen concentration information calculated by the calculation unit 221 corresponds to the second range
  • the state information of the transformer is converted into an arc furnace.
  • the hydrogen concentration information calculated by the calculator 221 corresponds to the third range
  • the state information of the transformer may be determined as overheating.
  • the storage unit 224 may be configured to calculate the hydrogen concentration of the calculation unit 221, the information used to generate the control signal of the control unit 222, and the hydrogen concentration range used to determine the state information of the transformer of the determination unit 223. Can be stored. In addition, the storage unit 224 may support queuing of the communication unit 231 including a shared memory.
  • the communication unit 231 may generate a communication signal including hydrogen concentration information in the transformer and / or state information of the transformer and may remotely transmit the communication signal to the field connection 302, the monitoring panel 303, or the terminal 304.
  • the serial communication module 232 may provide a serial communication environment of the communication unit 231.
  • the optical communication module 233 may provide an optical communication environment of the communication unit 231.
  • the web server module 234 may provide an online access environment of the communication unit 231.
  • the power circuit 240 may receive AC power, convert the AC power to DC power, and supply the DC power to the sensing unit 211, the compensating unit 214, the calculating unit 221, and the communication unit 231.
  • the power circuit 240 may include a Switched-Mode Power Supply (SMPS) and a Surge Protection Circuit (SPC), and may receive AC power including a battery and a DC-DC converter. The stored power can be used instead.
  • SMPS Switched-Mode Power Supply
  • SPC Surge Protection Circuit
  • the graphic driver 251 may perform a graphic processing operation to generate a graph or chart including hydrogen concentration information and / or transformer state information calculated by the calculator 221.
  • the display unit 252 may display a graph or chart generated by the graphic driver 251. An administrator may quickly determine the hydrogen concentration information and / or the transformer state information of the transformer and take action on the transformer by viewing the display image of the display unit 252.
  • FIG. 3 is a flowchart illustrating a transformer hydrogen gas monitoring method according to an embodiment of the present invention.
  • a communication signal including the hydrogen concentration information in the transformer may be generated, and the communication signal may be remotely transmitted (S130).
  • the transformer hydrogen gas monitoring method may be performed by the transformer hydrogen gas monitoring system or the transformer hydrogen gas monitoring apparatus shown in FIGS. 1 and 2.
  • FIG. 4 is a flowchart specifically illustrating a transformer hydrogen gas monitoring method according to an embodiment of the present invention.
  • the sensor module initializes the measurement environment (S211), measures the resistance value of the member in an analog manner (S212), and compensates the resistance compensated by performing temperature compensation on the measured resistance value. Deriving a value (S213), converting an analog signal having the derived resistance value information into a digital value (S214), deriving a concentration conversion value to generate hydrogen concentration information based on the resistance value information (S215), The hydrogen concentration result value may be stored (S216), whether or not a communication request is received from the multi-task module (S217), and a measurement value may be sent (S218) when there is a communication request.
  • the multi-task device initializes an operating environment (S221), allocates a shared memory (S222), requests measurement data to a sensor module (S223), and a measured value from the sensor module.
  • the reception response can be confirmed (S224), if there is a reception response, the response data can be processed (S225), data can be created (S226), and the created data can be stored in the shared memory (S227).
  • a server task initializes an operating environment (S231), receives a parameter from a client, sets a parameter (S232), waits for a client connection (S233), and checks whether a client connection request is made. (S234), when there is a connection request, retrieves and writes data from the shared memory (S227) (S235), checks whether the client requests data (S236), and sends the data to the client when there is a data request. can do.
  • operation S238 of a client may include setting a parameter, requesting access data, receiving data, and generating an alarm according to the received data.
  • the client may be an on-site connection 302, a monitoring panel 303, or a terminal 304 illustrated in FIG. 2. That is, the server may perform the relay operation between the field connection 302, the monitoring panel 303 or the terminal 304 and the multi-task device.
  • the transformer hydrogen gas monitoring method may be performed by a computing environment including a processor, a memory, a storage, an input device, an output device, and a communication connection.
  • the input device may correspond to the sensing unit illustrated in FIG. 2
  • the processor may correspond to the operation unit, the control unit, and the determination unit illustrated in FIG. 2
  • the memory may be stored in FIG. 2.
  • the storage device may support an update operation of the memory
  • the output device may correspond to the display unit illustrated in FIG. 2.
  • ' ⁇ part' used in the present embodiment refers to software or a hardware component such as a field-programmable gate array (FPGA) or an ASIC, and ' ⁇ part' performs certain roles.
  • ' ⁇ ' is not meant to be limited to software or hardware.
  • ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and the like. Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functionality provided within the components and the 'parts' may be combined into a smaller number of components and the 'parts' or further separated into additional components and the 'parts'.
  • the components and 'units' may be implemented to reproduce one or more CPUs in a device or system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템은, 적어도 일부가 변압기 내의 수소 가스와 만나도록 배치되고 변압기 내의 수소 농도에 따라 가변적인 저항값을 가지는 부재의 저항값을 측정하는 센서 모듈과, 센서 모듈의 감지결과를 전달받고 감지결과에 포함된 저항값 정보에 대응되는 수소 농도 정보를 생성하고 생성한 수소 농도 정보에 대응되는 정보를 원격으로 전송하는 멀티 타스크 모듈을 포함할 수 있다.

Description

변압기 수소 가스 감시 시스템, 장치 및 방법
본 발명은 변압기 수소 가스 감시 시스템, 장치 및 방법에 관한 것이다.
최근 현장에 설치된 변압기의 노후고장 현상이 증가하고 있으므로, 노후고장에 대비한 예방진단 체계를 사전 구축해야 할 필요성이 증가하고 있다. 변압기 예방진단은 변압기 내의 가스분석(Gas Chromatograph. GC)을 통해 수행될 수 있다.
종래의 변압기 예방진단은 필터(멤브레인)를 통해 변압기 내의 가스를 추출하고 추출한 가스를 분석하는 방식으로 진행되었다. 이러한 방식은 필터교체와 같은 유지보수에 많은 비용을 소비하므로, 변압기 예방진단 주기가 길어지는 원인이 된다. 변압기 노후고장은 변압기 예방진단 주기 중에도 자주 발생할 수 있다.
본 발명의 일 실시 예는, 변압기 예방진단 주기를 줄일 수 있도록 변압기 내의 수소 가스 분석을 간소화할 수 있는 환경을 제공하는 변압기 수소 가스 감시 시스템, 장치 및 방법을 제공한다.
본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템은, 적어도 일부가 변압기 내의 수소 가스와 만나도록 배치되고 상기 변압기 내의 수소 농도에 따라 가변적인 저항값을 가지는 부재의 저항값을 측정하는 센서 모듈; 및 상기 센서 모듈의 감지결과를 전달받고 상기 감지결과에 포함된 저항값 정보에 대응되는 수소 농도 정보를 생성하고 생성한 수소 농도 정보에 대응되는 정보를 원격으로 전송하는 멀티 타스크 모듈; 을 포함할 수 있다.
예를 들어, 상기 부재는 탄소나노튜브(Carbon Nano Tube)를 포함할 수 있다.
예를 들어, 상기 센서 모듈은 상기 부재의 온도를 변경하는 온도 제어부를 더 포함하고, 상기 멀티 타스크 모듈은 상기 센서 모듈의 제1 측정기간 동안의 제1 감지결과를 전달받은 이후에 상기 부재의 온도가 소정의 온도범위를 벗어나도록 상기 온도 제어부의 동작을 제어하고, 상기 부재의 온도가 소정의 온도범위를 벗어난 이후에 상기 부재의 온도가 상기 소정의 온도범위내에 속하도록 상기 온도 제어부의 동작을 제어하고, 상기 부재의 온도가 소정의 온도범위내에 속할 때 상기 센서 모듈의 제2 측정기간 동안의 제2 감지결과를 전달받을 수 있다.
예를 들어, 상기 센서 모듈은 상기 부재의 위치를 변경하는 위치 제어부를 더 포함하고, 상기 멀티 타스크 모듈은 상기 센서 모듈의 제1 측정기간 동안의 제1 감지결과를 전달받은 이후에 상기 부재가 상기 변압기 내에 위치하지 않도록 상기 위치 제어부의 동작을 제어하고, 상기 부재의 적어도 일부가 상기 변압기 내에 위치하도록 상기 위치 제어부의 동작을 제어하고, 상기 부재의 적어도 일부가 상기 변압기 내에 위치할 때 상기 센서 모듈의 제2 측정기간 동안의 제2 감지결과를 전달받을 수 있다.
예를 들어, 상기 부재는 상기 변압기에 포함된 절연유가 배유밸브를 통해 통과하지 못하도록 상기 배유밸브내에 배치될 수 있다.
예를 들어, 상기 센서 모듈은 상기 변압기 내의 온도를 측정하는 온도 센서; 및 상기 센서 모듈과 상기 멀티 타스크 모듈의 사이를 전기적으로 연결하는 케이블; 을 더 포함하고, 상기 멀티 타스크 모듈은 상기 변압기 내의 온도와 상기 부재의 저항값과 상기 케이블의 저항값을 소정의 수학식에 적용하여 상기 수소 농도 정보를 생성할 수 있다.
예를 들어, 상기 케이블의 길이, 두께 및 비저항 중 적어도 하나는 상기 케이블의 저항값이 상기 부재의 저항값보다 작도록 설계될 수 있다.
예를 들어, 상기 멀티 타스크 모듈은 생성한 수소 농도 정보에 대응되는 상기 변압기의 상태 정보를 생성하고 생성한 상태 정보를 원격으로 전송하고, 상기 상태 정보는 부분방전, 아크 및 과열 중 적어도 둘을 포함할 수 있다.
예를 들어 변압기 수소 가스 감시 시스템은, 상기 멀티 타스크 모듈로부터 상기 수소 농도 정보에 대응되는 정보를 수신하는 HMI를 더 포함하고, 상기 HMI는 상기 멀티 타스크 모듈로 제어 신호를 전송하고, 상기 멀티 타스크 모듈은 상기 제어 신호에 기초하여 상기 변압기의 온-오프 동작을 제어할 수 있다.
본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 장치는, 적어도 일부가 변압기 내의 수소 가스와 만나도록 배치되고 상기 변압기 내의 수소 농도에 따라 가변적인 저항값을 가지는 부재의 저항값 정보를 전달받는 센싱부; 상기 부재의 저항값 정보에 기초하여 상기 변압기 내의 수소 농도 정보를 연산하는 연산부; 및 상기 변압기 내의 수소 농도 정보를 포함하는 통신 신호를 생성하고 상기 통신 신호를 원격으로 전송하는 통신부; 를 포함할 수 있다.
예를 들어 상기 변압기 수소 가스 감시 장치는, 상기 부재의 온도 또는 위치를 소정의 주기마다 반복적으로 제어하는 제어부를 더 포함할 수 있다.
예를 들어, 상기 센싱부는 상기 부재의 온도 정보를 전달받고, 상기 변압기 수소 가스 감시 장치는 상기 온도 정보와 상기 저항값 정보를 소정의 수학식에 적용하여 상기 저항값 정보를 보상하는 보상부를 더 포함할 수 있다.
예를 들어, 상기 센싱부는 케이블을 통해 상기 부재에 전기적으로 연결되고,
상기 보상부는 상기 케이블의 저항값도 상기 소정의 수학식에 적용하여 상기 저항값 정보를 보상할 수 있다.
본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 방법은, 적어도 일부가 변압기 내의 수소 가스와 만나도록 배치되고 상기 변압기 내의 수소 농도에 따라 가변적인 저항값을 가지는 부재의 저항값을 감지하는 단계; 상기 부재의 저항값 정보에 기초하여 상기 변압기 내의 수소 농도 정보를 연산하는 단계; 및 상기 변압기 내의 수소 농도 정보를 포함하는 통신 신호를 생성하고 상기 통신 신호를 원격으로 전송하는 단계; 를 포함할 수 있다.
본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템, 장치 및 방법은, 변압기 내의 가스를 추출하지 않고도 가스분석을 수행할 수 있으므로, 다수의 변압기를 예방진단하는 과정에서 소비되는 비용을 줄이고 예방진단 과정을 간소화할 수 있다.
예방진단 과정의 간소화는 변압기 예방진단 주기 단축을 유도할 수 있으며, 관리자가 변압기 가스를 실시간으로 감시할 수 있는 환경을 구축하는데 바탕이 될 수 있다.
따라서, 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템, 장치 및 방법은, 다수의 변압기로부터 수소 농도 정보를 일괄적으로 수집할 수 있는 환경을 제공할 수 있으며, 수집된 수소 농도 정보의 분석을 통한 정확한 변압기 고장징후 진단 및 관리를 지원할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템을 나타낸 개념도이다.
도 2는 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템과 변압기 수소 가스 감시 장치를 나타낸 도면이다.
도 3은 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 방법을 나타낸 순서도이다.
도 4는 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 방법을 구체적으로 예시한 순서도이다.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 실시 예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템을 나타낸 개념도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 가스 감시 시스템은, 부재(14)를 포함하는 센서 모듈과, 멀티 타스크 모듈(120)과, HMI(130) 중 적어도 일부를 포함할 수 있으며, 변압기(10) 내의 가스를 감시할 수 있다.
부재(14)는 적어도 일부가 변압기(10) 내에 배치되고 변압기(10) 내의 수소 농도에 따라 가변적인 저항값을 가질 수 있다.
예를 들어, 상기 부재(14)는 탄소나노튜브(Carbon Nano Tube, CNT)로 구현될 수 있으며, 일단이 변압기(10) 내에 위치하고 타단이 변압기(10) 외에 위치하도록 배유밸브(13)내에 배치될 수 있다. 또한, 상기 부재(14)는 절연유(12)가 배유밸브(13)를 통해 통과하지 못하도록 격벽과 같은 구조를 포함할 수 있다.
센서 모듈은 부재(14)에 전기적으로 연결되어 부재(14)의 저항값을 측정할 수 있다. 예를 들어, 상기 센서 모듈은 부재(14)의 타단에 전기적으로 연결되어 센싱 전압을 인가하고 상기 센싱 전압에 따른 센싱 전류를 측정하는 가스 센서를 포함할 수 있다.
이에 따라, 본 발명의 일 실시 예에 따른 가스 감시 시스템은 변압기(10) 내의 가스를 추출하지 않고도 가스분석을 수행할 수 있으므로, 다수의 변압기를 예방진단하는 과정에서 소비되는 비용을 줄이고 예방진단 과정을 간소화할 수 있다. 예방진단 과정의 간소화는 변압기 예방진단 주기 단축을 유도할 수 있으며, 변압기 가스를 실시간으로 감시할 수 있는 환경 구축에 바탕이 될 수 있다.
또한, 상기 센서 모듈은 상기 부재(14)와 멀티 타스크 모듈(120)의 사이를 전기적으로 연결하는 케이블(15)을 더 포함할 수 있다. 따라서, 상기 가스 센서는 멀티 타스크 모듈(120)내에 배치되어 케이블(15)을 통해 센싱 전압을 인가하고 센싱 전류를 측정할 수도 있다.
센서 모듈이 케이블(15)을 통하여 부재(14)의 저항값을 측정할 때의 측정 정밀도는 케이블(15)의 저항값이 작을수록 높으므로, 케이블(15)은 작은 저항값을 가지도록 짧은 길이를 가지거나 두꺼울 수 있다. 예를 들어, 케이블(15)의 길이, 두께 및 비저항 중 적어도 하나는 케이블(15)의 저항값이 부재(14)의 저항값보다 작도록 설계될 수 있다. 이에 따라, 멀티 타스크 모듈(120)이 변압기(10)에 인접하여 배치될 수 있다.
멀티 타스크 모듈(120)은 센서 모듈의 감지결과를 전달받고 상기 감지결과에 포함된 저항값 정보에 대응되는 수소 농도 정보를 생성하고 생성한 수소 농도 정보에 대응되는 정보를 원격으로 전송할 수 있다. 수소 농도 정보에 대응되는 정보는 수소 농도 정보, 저항값 정보, 변압기의 상태 정보 중 적어도 하나를 포함할 수 있다. 예를 들어, 상기 멀티 타스크 모듈(120)은 도 2에 도시된 변압기 수소 가스 감시 장치와 동일하게 설계될 수 있다.
HMI(130)는 멀티 타스크 모듈(120)로부터 수소 농도 정보에 대응되는 정보를 수신할 수 있다. 예를 들어, 상기 HMI(130)는 관리자가 사물인터넷(IoT) 기반으로 시간, 장소 등의 제약없이 변압기를 실시간으로 감시할 수 있는 환경을 제공할 수 있다.
상기 HMI(130)는 현장의 관리자에게 수소 농도 정보를 실시간으로 제공할 수 있으며, 수소 농도 정보를 장기간 누적 저장하여 누적된 수소 농도 정보를 심층 분석할 수도 있다. 또한, 상기 HMI(130)는 수소 농도 정보에 기초하여 변압기(10)의 온-오프 동작을 제어하도록 멀티 타스크 모듈(120)로 제어 신호를 전송할 수 있다. 이후, 멀티 타스크 모듈(120)은 상기 제어 신호에 기초하여 변압기(10)의 온-오프 동작을 제어할 수 있다. 이에 따라, 본 발명의 일 실시 예에 따른 가스 감시 시스템은 다수의 변압기의 가스를 일괄적으로 감시하고 고장징후가 있는 변압기에 대한 신속하고 정확한 조치를 취할 수 있다.
도 2는 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 시스템과 변압기 수소 가스 감시 장치를 나타낸 도면이다.
도 2를 참조하면, 센서모듈(110)은 온도 제어부(111), 위치 제어부(112), 가스 센서(113) 및 온도 센서(114) 중 적어도 일부를 포함할 수 있다.
온도 제어부(111)는 부재(14)의 온도를 변경할 수 있다. 변압기 내의 수소 농도가 시간 경과에 따라 변동될 수 있으므로, 상기 온도 제어부(111)는 부재(14)의 표면에 묻거나 부재(14) 속으로 스며든 수소가 측정할 때마다 탈거되도록 부재(14)의 온도를 제어할 수 있다. 이에 따라, 수소 농도 측정 정확도는 향상될 수 있다.
예를 들어, 상기 온도 제어부(111)는 부재(14)에서 변압기 외에 위치하는 부분을 약 50도 정도로 가열하여 부재(14) 내의 수소를 빠르게 제거할 수 있으며, 가열 후에 부재(14)를 그대로 두거나 부재(14)를 냉각시킬 수 있다.
예를 들어, 상기 온도 제어부(111)는 변압기 수소 가스 감시 장치(200)의 제어부(222)로부터 온도 제어 신호를 전달받고 상기 온도 제어 신호에 따라 부재(14)의 온도를 상승시키거나 하강시킬 수 있다.
즉, 상기 온도 제어부(111)는 제1 측정기간과 제2 측정기간의 사이 온도조절기간 동안에 부재(14)의 온도가 소정의 온도범위를 벗어나도록 부재(14)를 가열하고 부재(14)의 온도가 소정의 온도범위 내에 속하도록 부재(14)를 냉각시킬 수 있다.
여기서, 제1 측정기간과 제2 측정기간은 가스 센서(113)가 센싱부(211)로 측정 결과를 전달한 시점을 기준으로 설정될 수 있다. 한편, 소정의 온도범위는 약 25도 정도의 상온일 수 있으나, 이에 한정되지 않는다.
위치 제어부(112)는 부재(14)의 위치를 변경할 수 있다. 변압기 내의 수소 농도가 시간 경과에 따라 변동될 수 있으므로, 상기 위치 제어부(112)는 부재(14)의 표면에 묻거나 부재(14) 속으로 스며든 수소가 측정할 때마다 탈거되도록 부재(14)를 변압기 외부로 이동시키거나 부재(14)를 변압기 내로 삽입할 수 있다. 이에 따라, 수소 농도 측정 정확도는 향상될 수 있다.
예를 들어, 상기 위치 제어부(112)는 부재(14)에서 변압기 외에 위치하는 부분을 집고 부재(14)를 변압기 외부로 이동시키고, 부재(14)의 이동후에 변압기 내의 절연유가 배유밸브를 통과하지 못하도록 배유밸브를 막을 수 있다. 이후, 상기 위치 제어부(112)는 배유밸브를 열면서 부재(14)를 배유밸브 내로 삽입할 수 있다.
예를 들어, 상기 위치 제어부(112)는 변압기 수소 가스 감시 장치(200)의 제어부(222)로부터 위치 제어 신호를 전달받고 상기 위치 제어 신호에 따라 부재(14)의 이동을 제어할 수 있다.
즉, 상기 위치 제어부(112)는 제1 측정기간과 제2 측정기간의 사이 위치조절기간 동안에 부재(14)가 변압기 내에 위치하지 않도록 부재(14)를 이동시키고 부재(14)가 변압기 내에 위치하도록 부재(14)를 이동시킬 수 있다.
한편, 온도 제어부(111)의 온도 제어와 위치 제어부(112)의 위치 제어는 함께 진행될 수 있다. 부재(14)가 냉각된 직후 또는 부재(14)가 변압기 내에 삽입된 직후의 부재(14)의 저항값은 실제 변압기(10)의 수소 농도를 정확하게 반영하지 못할 수 있으므로, 상기 제1 측정기간과 제2 측정기간의 길이는 수소 농도 측정 정확도를 위해 10시간 전후로 설정될 수 있으나, 이에 한정되지 않는다.
가스 센서(113)는 부재(14)의 저항값을 측정하여 변압기 내의 수소 농도 정보를 확보할 수 있다. 예를 들어, 상기 가스 센서(113)는 도 1을 참조하여 전술한 센서 모듈과 동일하게 설계될 수 있다.
온도 센서(114)는 변압기 내의 온도를 측정할 수 있다. 부재(14)의 저항값과 변압기 내의 수소 농도 간의 관계는 변압기 내의 온도에 영향을 받을 수 있다. 따라서, 온도 센서(114)는 측정한 온도 정보를 센싱부(211) 또는 보상부(214)로 전달함으로써, 연산부(221)가 수소 농도 정보 생성 과정에서 측정된 온도 정보를 반영하게 할 수 있다. 이에 따라, 수소 농도 측정 정확도는 향상될 수 있다.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 장치(200)는, 센싱부(211), 센싱 회로(212), ADC(213), 보상부(214), 연산부(221), 제어부(222), 판단부(223), 저장부(224), 통신부(231), 직렬통신 모듈(232), 광통신 모듈(233), 웹서버 모듈(234), 전원 회로(240), 그래픽 드라이버(251) 및 디스플레이부(252) 중 적어도 일부를 포함할 수 있으며, 센서모듈(110)로부터 감지결과를 전달받고 다기능을 수행하도록 통합 설계될 수 있다.
센싱부(211)는 부재(14)의 저항값 정보를 가스 센서(113)로부터 전달받을 수 있다.
예를 들어, 상기 센싱부(211)는 부재(14)의 저항값 정보를 전달받기 위해 케이블(15)에 센싱 전압을 인가하고 상기 센싱 전압에 따른 센싱 전류를 측정하고 상기 센싱 전류에 대한 증폭 또는 필터링을 하는 센싱 회로(212)를 포함할 수 있다. 이에 따라, 변압기 수소 가스 감시 장치(200)는 변압기 내의 수소 농도의 변화에 따른 부재(14)의 저항값 변화 비율이 작을 경우에도 정밀하게 수소 농도를 측정할 수 있다.
ADC(213)는 센싱 회로(212)의 출력신호를 디지털 값으로 변환할 수 있다.
보상부(214)는 온도 센서(114)에 의해 생성된 온도 정보와 가스 센서(113)에 의해 생성된 저항값 정보를 소정의 수학식에 적용하여 상기 저항값 정보의 저항값을 보상할 수 있다. 예를 들어, 상기 소정의 수학식은 하기의 수학식 1을 포함할 수 있다. 여기서, R은 보상된 저항값이고, T는 온도 센서(114)에 의해 측정된 온도이고, α는 부재의 온도계수이고, Rr는 온도가 T도일 때의 부재의 저항값이고, Ra는 온도가 0도일 때의 부재의 저항값이다. 변압기 내의 온도는 측정기간 동안 3도 내지 9도 정도 변동되나, 이에 한정되지 않는다.
Figure PCTKR2017008994-appb-M000001
연산부(221)는 부재(14)의 저항값 정보에 기초하여 변압기 내의 수소 농도 정보를 연산할 수 있다.
예를 들어, 상기 연산부(221)는 하기의 수학식 2를 통해 수소 농도 정보를 연산할 수 있다. 여기서, C는 수소 농도이고, β는 부재의 수소 농도 감응도이다. 수소 농도의 단위는 ppm이고, 1000ppm 전후로 연산될 수 있으나, 이에 한정되지 않는다.
Figure PCTKR2017008994-appb-M000002
또한, 상기 연산부(221)는 하기의 수학식 3을 상기 수학식 2에 적용하여 케이블(15)의 저항값을 수소 농도 연산에 반영할 수 있다. 여기서, Rs는 케이블(15)의 저항이고, Ri는 부재의 저항값이다.
Figure PCTKR2017008994-appb-M000003
이에 따라, 수소 농도 측정 정확도는 향상될 수 있다.
제어부(222)는 부재(14)의 온도 또는 위치를 소정의 주기마다 반복적으로 제어할 수 있도록 온도 제어 신호 또는 위치 제어 신호를 생성할 수 있다.
판단부(223)는 연산부(221)에 의해 연산된 수소 농도 정보에 대응되는 변압기의 상태 정보를 생성할 수 있다. 여기서, 상기 상태 정보는 부분방전, 아크 및 과열 중 적어도 둘을 포함할 수 있다. 예를 들어, 변압기의 고장현상 별 가스 발생 비율은 하기의 표 1과 같을 수 있다.
Figure PCTKR2017008994-appb-T000001
표 1을 참조하면, 아크 발생에 따라 발생하는 수소 비율은 부분방전 발생에 따라 발생하는 수소 비율보다 낮으며, 과열 발생에 따라 발생하는 수소 비율보다 높을 수 있다.
예를 들어, 상기 판단부(223)는 높은 수소 농도 범위의 제1 범위와 중간 수소 농도 범위의 제2 범위와 낮은 수소 농도 범위의 제3 범위를 설정하고, 연산부(221)에 의해 연산된 수소 농도 정보가 상기 제1 범위에 대응될 경우에 변압기의 상태 정보를 부분방전으로 결정하고, 연산부(221)에 의해 연산된 수소 농도 정보가 상기 제2 범위에 대응될 경우에 변압기의 상태 정보를 아크로 결정하고, 연산부(221)에 의해 연산된 수소 농도 정보가 상기 제3 범위에 대응될 경우에 변압기의 상태 정보를 과열로 결정할 수 있다.
저장부(224)는 연산부(221)의 수소 농도 연산에 이용되는 수학식, 제어부(222)의 제어 신호 생성에 이용되는 정보, 판단부(223)의 변압기의 상태 정보 결정에 이용되는 수소 농도 범위를 저장할 수 있다. 또한, 상기 저장부(224)는 공유 메모리(Shared Memory)를 포함하여 통신부(231)의 큐잉을 지원할 수 있다.
통신부(231)는 변압기 내의 수소 농도 정보 및/또는 변압기의 상태 정보를 포함하는 통신 신호를 생성하고 상기 통신 신호를 현장접속(302), 감시반(303) 또는 단말기(304)로 원격 전송할 수 있다.
직렬통신 모듈(232)은 통신부(231)의 직렬통신 환경을 제공할 수 있다.
광통신 모듈(233)은 통신부(231)의 광통신 환경을 제공할 수 있다.
웹서버 모듈(234)은 통신부(231)의 온라인 액세스 환경을 제공할 수 있다.
전원 회로(240)는 AC전원을 전달받고 상기 AC전원을 DC전원으로 변환하고 상기 DC전원을 센싱부(211), 보상부(214), 연산부(221), 통신부(231)에 공급할 수 있다. 예를 들어, 상기 전원 회로(240)는 Switched-Mode Power Supply(SMPS) 및 서지 보호 회로(Surge Protection Circuit, SPC)를 포함할 수 있으며, 배터리와 DC-DC 컨버터를 포함하여 AC전원을 전달받는 대신 저장된 전원을 사용할 수 있다.
그래픽 드라이버(251)는 연산부(221)에 의해 연산된 수소 농도 정보 및/또는 변압기 상태 정보를 포함하는 그래프 또는 차트가 생성되도록 그래픽 처리 연산을 수행할 수 있다.
디스플레이부(252)는 그래픽 드라이버(251)에 의해 생성된 그래프 또는 차트를 디스플레이할 수 있다. 관리자는 상기 디스플레이부(252)의 디스플레이 영상을 보고 변압기의 수소 농도 정보 및/또는 변압기 상태 정보를 신속하게 파악하고 변압기에 대한 조치를 취할 수 있다.
도 3은 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 방법을 나타낸 순서도이다.
도 3을 참조하면, 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 방법은, 부재의 저항값을 감지하는 단계(S110)와, 감지한 저항값에 기초하여 변압기 내의 수소 농도 정보를 연산하는 단계(S120)와, 변압기 내의 수소 농도 정보를 포함하는 통신 신호를 생성하고 통신 신호를 원격으로 전송하는 단계(S130)를 포함할 수 있다.
예를 들어, 상기 변압기 수소 가스 감시 방법은 도 1 및 도 2에 도시된 변압기 수소 가스 감시 시스템 또는 변압기 수소 가스 감시 장치에 의해 수행될 수 있다.
도 4는 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 방법을 구체적으로 예시한 순서도이다.
도 4를 참조하면, 센서 모듈(Sensor Device Module)은 측정 환경을 초기화(S211)하고, 부재의 저항값을 아날로그 방식으로 측정(S212)하고, 측정한 저항값에 대한 온도 보상을 하여 보상된 저항값을 도출(S213)하고, 도출된 저항값 정보를 가지는 아날로그 신호를 디지털 값으로 변환(S214)하고, 저항값 정보에 기초하여 수소 농도 정보를 생성하기 위해 농도 환산값을 도출(S215)하고, 수소 농도 결과값을 저장(S216)하고, 멀티 타스크 모듈로부터의 통신 요청 여부를 확인(S217)하고, 통신 요청이 있을 경우에 측정값을 송부(S218)할 수 있다.
도 4를 참조하면, 멀티 타스크 장치(Sensor Task)는 동작 환경을 초기화(S221)하고, 공유 메모리를 할당(S222)하고, 센서 모듈로 측정 데이터를 요청(S223)하고, 센서 모듈로부터의 측정값 수신 응답을 확인(S224)하고, 수신 응답이 있을 경우에 응답 데이터를 처리(S225)하고, 데이터를 작성(S226)하고, 작성된 데이터를 공유 메모리(S227)로 저장할 수 있다.
도 4를 참조하면, 서버(Server Task)는 동작 환경을 초기화(S231)하고, 클라이언트로부터 파라미터를 전달받아서 파라미터를 설정(S232)하고, 클라이언트 접속을 대기(S233)하고, 클라이언트 접속 요청 여부를 확인(S234)하고, 접속 요청이 있을 경우에 공유 메모리(S227)로부터 데이터를 불러와서 작성(S235)하고, 클라이언트의 데이터 요청 여부를 확인(S236)하고, 데이터 요청이 있을 경우에 데이터를 클라이언트로 송부할 수 있다.
도 4를 참조하면, 클라이언트(Client)의 동작(S238)은 파라미터 설정, 접속 데이터 요청, 데이터 수신 및 수신 데이터에 따른 경보 생성을 포함할 수 있다. 상기 클라이언트(Client)는 도 2에 도시된 현장접속(302), 감시반(303) 또는 단말기(304)일 수 있다. 즉, 서버는 현장접속(302), 감시반(303) 또는 단말기(304)와 멀티 타스크 장치간의 중계 동작을 수행할 수 있다.
한편, 본 발명의 일 실시 예에 따른 변압기 수소 가스 감시 방법은 프로세서, 메모리, 스토리지, 입력 디바이스, 출력 디바이스 및 통신 접속을 포함하는 컴퓨팅 환경에 의해 수행될 수 있다. 예를 들어, 상기 입력 디바이스는 도 2에 도시된 센싱부에 대응될 수 있으며, 상기 프로세서는 도 2에 도시된 연산부, 제어부, 판단부에 대응될 수 있으며, 상기 메모리는 도 2에 도시된 저장부에 대응될 수 있으며, 스토리지는 상기 메모리의 갱신(update) 동작을 지원할 수 있으며, 출력 디바이스는 도 2에 도시된 디스플레이부에 대응될 수 있다.
또한, 본 실시 예에서 사용되는 '~부' 라는 용어는 소프트웨어 또는 FPGA(field-programmable gate array) 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 시스템 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.
이상에서는 본 발명을 실시 예로써 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형이 가능할 것이다.

Claims (15)

  1. 적어도 일부가 변압기 내의 수소 가스와 만나도록 배치되고 상기 변압기 내의 수소 농도에 따라 가변적인 저항값을 가지는 부재의 저항값을 측정하는 센서 모듈; 및
    상기 센서 모듈의 감지결과를 전달받고 상기 감지결과에 포함된 저항값 정보에 대응되는 수소 농도 정보를 생성하고 생성한 수소 농도 정보에 대응되는 정보를 원격으로 전송하는 멀티 타스크 모듈; 을 포함하는 변압기 수소 가스 감시 시스템.
  2. 제1항에 있어서,
    상기 부재는 탄소나노튜브(Carbon Nano Tube)를 포함하는 변압기 수소 가스 감시 시스템.
  3. 제1항에 있어서,
    상기 센서 모듈은 상기 부재의 온도를 변경하는 온도 제어부를 더 포함하고,
    상기 멀티 타스크 모듈은 상기 센서 모듈의 제1 측정기간 동안의 제1 감지결과를 전달받은 이후에 상기 부재의 온도가 소정의 온도범위를 벗어나도록 상기 온도 제어부의 동작을 제어하고, 상기 부재의 온도가 소정의 온도범위를 벗어난 이후에 상기 부재의 온도가 상기 소정의 온도범위내에 속하도록 상기 온도 제어부의 동작을 제어하고, 상기 부재의 온도가 소정의 온도범위내에 속할 때 상기 센서 모듈의 제2 측정기간 동안의 제2 감지결과를 전달받는 변압기 수소 가스 감시 시스템.
  4. 제1항에 있어서,
    상기 센서 모듈은 상기 부재의 위치를 변경하는 위치 제어부를 더 포함하고,
    상기 멀티 타스크 모듈은 상기 센서 모듈의 제1 측정기간 동안의 제1 감지결과를 전달받은 이후에 상기 부재가 상기 변압기 내에 위치하지 않도록 상기 위치 제어부의 동작을 제어하고, 상기 부재의 적어도 일부가 상기 변압기 내에 위치하도록 상기 위치 제어부의 동작을 제어하고, 상기 부재의 적어도 일부가 상기 변압기 내에 위치할 때 상기 센서 모듈의 제2 측정기간 동안의 제2 감지결과를 전달받는 변압기 수소 가스 감시 시스템.
  5. 제1항에 있어서,
    상기 부재는 상기 변압기에 포함된 절연유가 배유밸브를 통해 통과하지 못하도록 상기 배유밸브내에 배치되는 변압기 수소 가스 감시 시스템.
  6. 제1항에 있어서,
    상기 센서 모듈은 상기 변압기 내의 온도를 측정하는 온도 센서; 및
    상기 센서 모듈과 상기 멀티 타스크 모듈의 사이를 전기적으로 연결하는 케이블; 을 더 포함하고,
    상기 멀티 타스크 모듈은 상기 변압기 내의 온도와 상기 부재의 저항값과 상기 케이블의 저항값을 소정의 수학식에 적용하여 상기 수소 농도 정보를 생성하는 변압기 수소 가스 감시 시스템.
  7. 제6항에 있어서,
    상기 멀티 타스크 모듈은 하기의 수학식:
    Figure PCTKR2017008994-appb-I000001
    Figure PCTKR2017008994-appb-I000002
    을 상기 소정의 수학식으로 이용하여 수소 농도를 연산하고,
    상기 수학식에서, C는 상기 수소 농도이고, T는 상기 온도 센서에 의해 측정된 온도이고, α는 상기 부재의 온도계수이고, β는 상기 부재의 수소 농도 감응도이고, Rr는 상기 온도 센서에 의해 측정된 온도가 T도일 때의 저항값이고, Ra는 상기 온도 센서에 의해 측정된 온도가 0도일 때의 저항값이고, Rs는 상기 케이블의 저항값이고 Ri는 상기 부재의 저항값인 변압기 수소 가스 감시 시스템.
  8. 제6항에 있어서,
    상기 케이블의 길이, 두께 및 비저항 중 적어도 하나는 상기 케이블의 저항값이 상기 부재의 저항값보다 작도록 설계되는 변압기 수소 가스 감시 시스템.
  9. 제1항에 있어서,
    상기 멀티 타스크 모듈은 생성한 수소 농도 정보에 대응되는 상기 변압기의 상태 정보를 생성하고 생성한 상태 정보를 원격으로 전송하고,
    상기 상태 정보는 부분방전, 아크 및 과열 중 적어도 둘을 포함하는 변압기 수소 가스 감시 시스템.
  10. 제1항에 있어서,
    상기 멀티 타스크 모듈로부터 상기 수소 농도 정보에 대응되는 정보를 수신하는 HMI를 더 포함하고,
    상기 HMI는 상기 멀티 타스크 모듈로 제어 신호를 전송하고,
    상기 멀티 타스크 모듈은 상기 제어 신호에 기초하여 상기 변압기의 온-오프 동작을 제어하는 변압기 수소 가스 감시 시스템.
  11. 적어도 일부가 변압기 내의 수소 가스와 만나도록 배치되고 상기 변압기 내의 수소 농도에 따라 가변적인 저항값을 가지는 부재의 저항값 정보를 전달받는 센싱부;
    상기 부재의 저항값 정보에 기초하여 상기 변압기 내의 수소 농도 정보를 연산하는 연산부; 및
    상기 변압기 내의 수소 농도 정보를 포함하는 통신 신호를 생성하고 상기 통신 신호를 원격으로 전송하는 통신부; 를 포함하는 변압기 수소 가스 감시 장치.
  12. 제11항에 있어서,
    상기 부재의 온도 또는 위치를 소정의 주기마다 반복적으로 제어하는 제어부를 더 포함하는 변압기 수소 가스 감시 장치.
  13. 제11항에 있어서,
    상기 센싱부는 상기 부재의 온도 정보를 전달받고,
    상기 변압기 수소 가스 감시 장치는 상기 온도 정보와 상기 저항값 정보를 소정의 수학식에 적용하여 상기 저항값 정보를 보상하는 보상부를 더 포함하는 변압기 수소 가스 감시 장치.
  14. 제13항에 있어서,
    상기 센싱부는 케이블을 통해 상기 부재에 전기적으로 연결되고,
    상기 보상부는 상기 케이블의 저항값도 상기 소정의 수학식에 적용하여 상기 저항값 정보를 보상하는 변압기 수소 가스 감시 장치.
  15. 적어도 일부가 변압기 내의 수소 가스와 만나도록 배치되고 상기 변압기 내의 수소 농도에 따라 가변적인 저항값을 가지는 부재의 저항값을 감지하는 단계;
    상기 부재의 저항값 정보에 기초하여 상기 변압기 내의 수소 농도 정보를 연산하는 단계; 및
    상기 변압기 내의 수소 농도 정보를 포함하는 통신 신호를 생성하고 상기 통신 신호를 원격으로 전송하는 단계; 를 포함하는 변압기 수소 가스 감시 방법.
PCT/KR2017/008994 2017-03-10 2017-08-18 변압기 수소 가스 감시 시스템, 장치 및 방법 WO2018164331A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/491,382 US11243266B2 (en) 2017-03-10 2017-08-18 Transformer hydrogen gas monitoring system, device, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170030662A KR101908373B1 (ko) 2017-03-10 2017-03-10 변압기 수소 가스 감시 시스템, 장치 및 방법
KR10-2017-0030662 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164331A1 true WO2018164331A1 (ko) 2018-09-13

Family

ID=63448129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008994 WO2018164331A1 (ko) 2017-03-10 2017-08-18 변압기 수소 가스 감시 시스템, 장치 및 방법

Country Status (3)

Country Link
US (1) US11243266B2 (ko)
KR (1) KR101908373B1 (ko)
WO (1) WO2018164331A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI3825880T3 (en) * 2019-11-20 2023-01-13 Protected iot device reset
CN111090007A (zh) * 2019-12-18 2020-05-01 国网上海市电力公司 存储器、导电回路电接触状态评测方法、装置和设备
CN114088780A (zh) * 2021-11-12 2022-02-25 国网江苏省电力有限公司电力科学研究院 一种运行状态下油浸电流互感器内部氢气分布的测量系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008240A (ko) * 2010-07-16 2012-01-30 주식회사 포스코 오일 상태 감지 장치
US20120247187A1 (en) * 2011-03-31 2012-10-04 Qualitrol Company, Llc Sensor mounting into the temperature well of a transformer
KR101221881B1 (ko) * 2012-10-08 2013-01-14 주식회사 과학기술분석센타 변압기용 절연유 내 용존 가스 측정 시스템
KR20150107364A (ko) * 2014-03-14 2015-09-23 신기영 유중 수소 감지 센서
KR101579484B1 (ko) * 2015-03-26 2015-12-22 주식회사 비츠로씨앤씨 고분자가 코팅된 탄소나노튜브를 이용한 변압기 오일의 수소 감지용 나노 센서 및 이의 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450007B1 (en) * 1999-12-01 2002-09-17 Honeywell International Inc. Robust single-chip hydrogen sensor
KR200284076Y1 (ko) 2002-05-02 2002-07-31 하나제어기술 주식회사 변압기의 가스분석정보 통신 장치
US7287412B2 (en) * 2003-06-03 2007-10-30 Nano-Proprietary, Inc. Method and apparatus for sensing hydrogen gas
US7237429B2 (en) * 2002-08-30 2007-07-03 Nano-Proprietary, Inc. Continuous-range hydrogen sensors
KR20070046575A (ko) 2005-10-31 2007-05-03 한국전력공사 알에프아이디용 전자태그에 센서를 결합시킨 변압기열화감지 장치 및 방법
US20080154434A1 (en) * 2006-12-20 2008-06-26 Galloway Douglas B Catalytic Alloy Hydrogen Sensor Apparatus and Process
NZ589088A (en) * 2008-05-09 2013-02-22 Accenture Global Services Ltd Monitoring system for a power distribution grid with communication of sensed conditions
US8781756B2 (en) 2011-07-19 2014-07-15 Arizona Public Service Company Method and system for estimating transformer remaining life
KR101874983B1 (ko) 2011-12-01 2018-07-09 한국전력공사 절연유 상태 진단 장치
KR101990780B1 (ko) 2012-11-01 2019-06-19 한국전력공사 변압기의 유중가스 농도 측정장치 및 방법
US10193328B2 (en) * 2014-01-07 2019-01-29 Easun-Mr Tap Changers (P) Ltd Method and system for protecting transformers from internal fire
EP3263753A4 (en) * 2015-02-27 2018-11-21 Hitachi Zosen Corporation Method for manufacturing carbon nanotube fiber, device for manufacturing carbon nanotube fiber, and carbon nanotube fiber
KR101761838B1 (ko) * 2016-04-29 2017-07-26 한국표준과학연구원 변압기 절연유의 수소가스 농도 측정 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008240A (ko) * 2010-07-16 2012-01-30 주식회사 포스코 오일 상태 감지 장치
US20120247187A1 (en) * 2011-03-31 2012-10-04 Qualitrol Company, Llc Sensor mounting into the temperature well of a transformer
KR101221881B1 (ko) * 2012-10-08 2013-01-14 주식회사 과학기술분석센타 변압기용 절연유 내 용존 가스 측정 시스템
KR20150107364A (ko) * 2014-03-14 2015-09-23 신기영 유중 수소 감지 센서
KR101579484B1 (ko) * 2015-03-26 2015-12-22 주식회사 비츠로씨앤씨 고분자가 코팅된 탄소나노튜브를 이용한 변압기 오일의 수소 감지용 나노 센서 및 이의 제조방법

Also Published As

Publication number Publication date
US20200033280A1 (en) 2020-01-30
US11243266B2 (en) 2022-02-08
KR20180103553A (ko) 2018-09-19
KR101908373B1 (ko) 2018-10-17

Similar Documents

Publication Publication Date Title
WO2018164331A1 (ko) 변압기 수소 가스 감시 시스템, 장치 및 방법
US8610438B1 (en) Branch circuit monitor
WO2018124571A1 (ko) 전력설비의 자산관리 방법
WO2014163318A1 (ko) 다중 부스바용 간섭 보정식 일점감지 전류센서
WO2012002617A1 (ko) 전력 품질 측정 장치 및 방법
WO2017200300A2 (ko) 소음원 가시화 데이터 누적 표시방법 및 음향 카메라 시스템
WO2020045915A1 (ko) 션트 저항의 전류값 보정 시스템 및 방법
WO2013133551A1 (ko) 저항 용접 모니터링 장치 및 그 방법과 시스템
WO2015130044A1 (ko) 매니지먼트 기능이 내장된 전원공급장치
WO2019074254A1 (ko) 컨택터 코일 전류를 이용한 컨택터 수명 진단 시스템 및 방법
WO2020076083A1 (ko) 다중 예측 모델을 적용한 발전소 조기 경보 장치 및 방법
WO2013125754A1 (ko) 전기설비에 대한 고장 예측 시스템 및 방법
WO2021086002A1 (ko) 재난 안전형 스마트 수배전반 관리시스템
WO2016140389A1 (ko) 사용자 모니터링을 위한 착용형 장치 및 시스템
WO2013169089A1 (ko) 집진판 청소시기 판별장치 및 그 방법
WO2011040663A1 (ko) 전력품질 모니터링 시스템 및 전력품질측정 방법
WO2011065692A2 (ko) 더미요청 태그를 이용한 서버의 응답시간 측정 시스템 및 그 방법
WO2020096137A1 (ko) 표준 절연유의 가스 분석값 보정 시스템 및 방법
WO2015147447A1 (ko) 태양광 인버터 진단 시스템 및 그 방법
WO2019189950A1 (ko) 설비의 원격 진단 방법, 시스템 및 프로그램
WO2013022170A1 (ko) 영상 입력 기기의 접속 장애 판별 장치 및 접속 장애 판별 방법
WO2015174742A1 (ko) 인터넷 접속 요청을 하는 클라이언트 단말의 인터넷 접속 요청 트래픽으로부터 동일한 공인 ip를 이용하는 사설 네트워크상의 복수개의 클라이언트 단말의 디바이스 대수를 검출하는 방법 및 공인 ip 공유 상태 검출 시스템
WO2019221362A1 (ko) 셀프 파워 계전기 및 이의 오동작 방지 방법
WO2018062578A1 (ko) 이미지 프로세싱을 이용한 아날로그 계측 기반 가스 설비의 안전 관리 방법 및 시스템
WO2021117987A1 (ko) 배전반의 화재 보험료 할인율 산정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900149

Country of ref document: EP

Kind code of ref document: A1