WO2018164302A1 - 전자방출 물질 및 이의 제조방법 - Google Patents

전자방출 물질 및 이의 제조방법 Download PDF

Info

Publication number
WO2018164302A1
WO2018164302A1 PCT/KR2017/002609 KR2017002609W WO2018164302A1 WO 2018164302 A1 WO2018164302 A1 WO 2018164302A1 KR 2017002609 W KR2017002609 W KR 2017002609W WO 2018164302 A1 WO2018164302 A1 WO 2018164302A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
emitting material
powder
present
work function
Prior art date
Application number
PCT/KR2017/002609
Other languages
English (en)
French (fr)
Inventor
김성웅
이규형
강세황
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to PCT/KR2017/002609 priority Critical patent/WO2018164302A1/ko
Publication of WO2018164302A1 publication Critical patent/WO2018164302A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/14Solid thermionic cathodes characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Definitions

  • the present invention relates to an electron emitting material and a method for manufacturing the same. More particularly, the present invention relates to an electron emitting material capable of increasing the emission current at a low driving voltage with a low work function and a method for manufacturing the same.
  • Field emission display is a device that emits phosphors and displays images by emitting phosphors, which is one of the core technologies of large area display.
  • the fluorescent tube or lighting device uses a micro electron source with an electron emitter that emits electrons by a strong current. If the diameter of the tube is reduced by using a material having excellent electron emission characteristics, the tube is not only high luminance but also compact in size. It is possible to apply to the backlight of the non-light-emitting display device, such as liquid crystal.
  • the prior art used in FEDs or fluorescent tubes utilizes the principle that electron beams are emitted from electron emitters and phosphors are excited to emit light by applying a high voltage between the electron emitter and the electrode material.
  • a metal or carbon-based material such as Mo is mainly used.
  • Metal or carbon-based materials such as Mo, which are currently used, have a work function directly related to the ease of electron emission at a level of 4 eV, and thus a method of inducing concentration by forming a fine needle structure for electron emission at low voltage is used.
  • An object of the present invention is to provide an electron-emitting material having a very large electron emission effect is expressed by the low work function properties from the presence of the localized electron layer.
  • the present invention provides an electron-emitting material represented by the following formula (1).
  • the electron-emitting material may further include an oxide layer including at least one compound selected from the group consisting of Hf-O and Hf-S-O on its surface.
  • the oxide layer is preferably formed in an area of 0.000001 to 10% of the surface of the electron-emitting material. If it is smaller than the lower limit of the above range, it is impossible to maintain stability, and if it exceeds the upper limit, the efficiency of electron emission is reduced.
  • the present invention also provides an electron emitter comprising the electron-emitting material powder exposed to the surface.
  • This invention also provides the fluorescent tube provided with the said electron emitter.
  • the present invention also comprises a first step of obtaining a compound raw material by heat treatment after mixing the Hf powder and S powder; And it provides a composite electron-emitting material manufacturing method comprising a second step of melting and cooling the compound raw material obtained in the first step.
  • the first step is preferably made by mixing the Hf powder and S powder and then heat treatment for 2 to 4 days at a temperature of 500 to 600 ° C.
  • the melting is preferably carried out in an inert gas atmosphere.
  • the second step is preferably performed repeatedly one or more times.
  • the manufacturing method may further include the step of powdering the prepared electron-emitting material by the method of milling using ball milling, attrition milling, high energy milling, jet milling or mortar.
  • the manufacturing method may further include powdering the prepared electron-emitting material by gas atomization.
  • the Hf powder is preferably added in a ratio of 2 to 2.4 moles with respect to 1 mole of the S powder.
  • the electron-emitting material of the present invention exhibits a very large electron emission effect due to the low work function characteristics expressed from the presence of a localized electron layer of Hf 2 + x S material.
  • the work function of Hf 2 + x S provided in the present invention is not highly dependent on x and shows a value of about 2.7 eV. This is more than 30% lower than the 4 eV work function of commercial electron emission materials such as Mo and carbon. When applied to FED and fluorescent tubes, large emission current can be obtained at low driving voltage without changing the existing device structure. .
  • Hf 2 + x S electron-emitting material manufacturing method provided by the present invention, it is possible to mass-produce the material by simple heat treatment, melt-solidification and mechanical grinding processes.
  • the electron-emitting material provided in the present invention is easy to manufacture and can emit electrons at a low driving voltage. Therefore, it is possible to implement an electron emitter that forms a relatively large emission current based on the same applied voltage reference can be effectively applied to low-voltage driving FED, fluorescent tube and lighting device.
  • FIG. 1 is a schematic diagram of a crystal structure of Hf 2 S which is a matrix of an electron-emitting material of the present invention. Localized electron layers exist between layers and are the source of low work function characteristics.
  • Figure 2 is a Hf 2 .4 S, Hf 2 .2 X- ray of the S and Hf 2 S is diffraction analysis results produced in Example 1.
  • Figure 3 is a Hf 2 .4 S and the electrical resistance and charge density measurement results for the Hf 2 S produced in Example 1.
  • Figure 4 is a TEM photograph of the microstructure of the Hf and Hf 2 .4 S S 2 powder prepared in Example 1.
  • Figure 5 is one embodiment of Hf 2 .4 embodiment a 120 hour exposure to 120 hours, or S powder in water in the air, for example, a two X- ray diffraction analysis results of the experiment in the manufacturing.
  • Figure 6 is an embodiment 1 and Hf 2 .4 S, a work function of the measurement result of the Hf 2 S, Mo and C prepared in Comparative Example 1.
  • an electron-emitting material having a composition including Hf and S and represented by the following Chemical Formula 1 is provided.
  • the electron-emitting material exhibits a large electron-emitting effect by its low work function, including localized high density interlayer electrons.
  • the electron concentration can be increased by adjusting the ratio of Hf.
  • the Hf 2 + x S powder of Formula 1 may include an oxide layer of several tens to several tens of nm thick consisting of Hf and O or Hf, S and O on the surface.
  • the oxide layer is preferably formed in an area of 0.000001 to 10% of the surface of the electron-emitting material. If it is smaller than the lower limit of the above range, it is impossible to maintain stability, and if it exceeds the upper limit, the efficiency of electron emission is reduced.
  • the electron-emitting material may be in powder or bulk form.
  • the bulk electron-emitting material may be a sintered material prepared by single crystal or sintering.
  • the first step is a step of heat-treating the mixture of each raw material for the preparation of the electron-emitting material for seed phase synthesis before the melting process.
  • the Hf and S raw materials vacuum-sealed in a silica tube is placed in a furnace and heat-treated at 500 to 600 o C for 2 to 4 days.
  • the second step is to increase the purity and homogeneity of the electron-emitting material. Since S is a material having a very low vaporization point, loss of S occurs during melting of the material for synthesis, but as the heat treatment proceeds, the loss of S is minimized during melting, thereby allowing the synthesis of Hf 2 + x S compounds. This heat treatment allows the synthesis of Hf 2 + x S compounds through a simple melt-cooling process.
  • the heat-treated mixture prepared in the first step is placed in an arc melting facility chamber to form an inert gas atmosphere such as Ar at a level capable of arc driving after forming a vacuum atmosphere. Thereafter, an arc is applied to melt the heat-treated mixture to solidify to produce an electron-emitting material.
  • an inert gas atmosphere such as Ar
  • the third step is to prepare a powder.
  • the powder is prepared by using a mechanical grinding process such as ball milling the mass of the mass produced in the third step.
  • the melting may be performed through a commonly used melting method, for example, a process using a high temperature tublar furnace, an ultra high temperature electric furnace, and the like, and preferably, may be performed by arc melting, but is not limited thereto. Anything that can be used by the melting method in the art is possible.
  • the raw material is melted in a process of forming a liquid state by heating the raw material above the melting point in an inert gas atmosphere for preventing oxidation of the mixed raw material. It is possible to obtain an electron-emitting material having a size and a shape corresponding to a sample charging part made of a copper material in an arc melting facility chamber. In order to increase the purity and homogeneity of the electron-emitting material, melting by the arc melting may be repeated.
  • the material of the melt-solidified form is pulverized by a method such as ball milling, attrition milling, high energy milling, jet milling, mortar, etc. It can be prepared in the form of a powder, but is not necessarily limited to these, any method that can be used in the art as a method for producing a powder by grinding the raw material in a dry or wet manner.
  • the electron-emitting material powder may be prepared by gas atomization.
  • the compound raw material prepared by the melting method is heated to a melting point or more to make a liquid state, and rapidly spun into a space of vacuum or argon atmosphere at room temperature through a nozzle to quench the spherical raw material powder.
  • the raw material powder may be any method that can be used in the art as a method for producing the powder by a rapid solidification process, such as a plasma process.
  • Pulverized Hf, S powder was pulverized, vacuum-sealed in a silica tube, put in a furnace and sintered at 500 o C for 72 hours. Since Hf 2 + x S is a phase which appears at high temperature, S has a very low vaporization point, so pure S is converted into Hf-S through the sintering process in order to minimize the loss of S when melting the material for synthesis.
  • the intermediate materials made by sintering are synthesized by arc melting method and then crushed by ball milling.
  • the prepared raw material forms a single phase identical to the Hf 2 S crystal structure in the range of 0 ⁇ x ⁇ 0.4 of the Hf 2 + x S composition, as can be seen from the XRD pattern shown in FIG. 2.
  • the synthesized Hf 2 + x S is shaped into a rectangular parallelepiped shape, and then, four terminals for resistance measurement and Au electrodes for Hall coefficient measurement are deposited. Samples with the electrodes formed are placed in the instrument and the resistance and Hall coefficient change with temperature are measured.
  • the prepared raw material is a typical metallic material having a low resistivity at low temperature.
  • the charge density measurement through Hall coefficient measurement it has a high level of charge density of ⁇ 10 22 cm 3 .
  • This raw material does not have a large change in specific resistance and charge density in the range of 0 ⁇ x ⁇ 0.4 of Hf 2 + x S composition.
  • the work function of the prepared raw material was measured using XPS.
  • the raw material was placed in the XPS, and the measurement was performed after removing the surface by plasma for 40 hours.
  • Hf 2 S as shown in Fig. 5] is a work function of 2.7eV
  • Hf 2 .4 S was determined at a low value that can be compared with the work function of the alkali metal to 2.67eV 0 ⁇ x ⁇ 0.4 There was little change in work function in the range.
  • the work function was measured in the same manner as in Example 1 for Mo and C.
  • TEM imaging and EDS measurements confirmed the condition of the raw material surface.
  • an amorphous layer composed of Hf and O was formed on the surface of the raw material to a thickness of several tens of nm to suppress further raw material oxidation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

본 발명은 Hf 및 S를 포함하는 전자방출 물질 및 그 제조방법에 대한 것이다. 본 발명의 전자방출 물질은 낮은 일함수 특성으로 낮은 구동 전압에서 방출 전류를 크게 할 수 있어 FED 및 형광관에 유용하게 사용될 수 있다. 본 발명에서 제공되는 Hf2+xS의 일함수는 x에 크게 의존하지 않으며 약 2.7 eV의 값을 나타낸다. 이는 상용 전자방출 소재인 Mo 및 카본의 4 eV 수준의 일함수와 비교하여 30% 이상 낮은 특성으로, FED 및 형광관에 적용하면 기존 디바이스 구조의 변경 없이 낮은 구동 전압에서 큰 방출 전류를 얻을 수 있다.

Description

[규칙 제26조에 의한 보정 24.03.2017] 전자방출 물질 및 이의 제조방법
본 발명은 전자방출(electron emitting) 물질 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 낮은 일함수 특성으로 낮은 구동 전압에서 방출 전류를 크게 할 수 있는 전자방출 물질 및 그 제조 방법에 관한 것이다.
필드 이미션 디스플레이(FED, Field Emission Display)는 전자를 방출하는 물질로 형광체를 발광하여 화상을 표시하는 장치로 박형화의 장점이 있어 대면적 디스플레이의 핵심 기술 중 하나이다. 또한 형광관이나 조명장치는 강한 전류에 의해 전자를 방출시키는 전자 이미터를 구비한 미소 전자원을 사용하고 있어 전자방출 특성이 우수한 물질을 이용하여 관의 직경을 작게 하면 고휘도화는 물론 장치의 소형화를 가능하게 하므로 액정 등의 비발광형 디스플레이 장치의 백라이트로의 응용이 가능하다.
FED 또는 형광관에 이용되는 종래 기술은 전자 이미터와 전극 물질 사이에 고전압을 인가함에 의해 전자 이미터로부터 전자선이 방출되고 형광체가 여기 되어 발광하는 원리를 이용한다. 전자방출 물질로는 Mo 등의 금속 또는 카본계 물질이 주로 사용된다.
미소 전자원의 구동을 용이하게 하기 위해서는 저전압에서 구동하는 것이 요구되며, 특히 FED와 같이 구동 전압의 온/오프에 의해 전자방출을 제어하는 경우에는 구동 전압을 낮게 하는 것이 필수적이다. 따라서 낮은 구동 전압에서 전자 이미터로부터의 방출 전류를 크게 할 수 있는 일함수가 작은 물질 개발이 필요하다.
현재 사용되고 있는 Mo 등 금속 또는 카본계 물질은 전자방출의 용이성과 직접 연관된 일함수가 4 eV 수준으로 크기 때문에 낮은 전압에서 전자방출을 위해서는 미세한 침상 구조를 형성하여 집중을 유도하는 방법이 사용된다.
예를 들어, Mo의 경우 높이 1 μm 정도의 원뿔형 형태로 가공이 필요하며, 카본의 경우 탄소나노튜브와 같은 직경이 수십 nm인 구조체를 사용하는 것이 필요하다. 그러나 이러한 형상의 전자 이미터 구조체는 전극 가공이 어렵고, 또한 전극 간격을 좁게 하면 소자 제작이나 구동 신뢰성에 문제를 수반하게 된다.
본 발명의 목적은 국재화된 전자층의 존재로부터 낮은 일함수 특성이 발현되어 매우 큰 전자방출 효과를 갖는 전자방출 물질을 제공하는 데 있다.
본 발명의 목적은 또한 상기 전자방출 물질의 제조방법을 제공하는 데 있다.
본 발명은 하기 화학식 1로 표현되는 전자방출 물질을 제공한다.
<화학식 1>
Hf2 + xS(0 ≤ x ≤ 0.4)
상기 전자방출 물질은 표면에 Hf-O 및 Hf-S-O로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하여 이루어지는 산화물층을 더 포함할 수 있다. 이때, 상기 산화물층은 상기 전자방출 물질 표면의 0.000001 내지 10%의 면적에 형성되는 것이 바람직하다. 상기 범위의 하한보다 작을 경우 안정성의 유지가 불가능하며, 상한을 넘을 경우 전자방출의 효율이 저감한다.
본 발명은 또한, 상기 전자방출 물질 분말을 표면에 노출되게 포함하는 것을 특징으로 하는 전자 이미터를 제공한다.
본 발명은 또한, 상기 전자 이미터를 구비하고 있는 것을 특징으로 하는 형광관을 제공한다.
본 발명은 또한, Hf 분말 및 S 분말을 혼합한 후 열처리하여 화합물 원료를 얻는 제1 단계; 및 상기 제1 단계에서 얻어진 화합물 원료를 용융하고 냉각하는 제2 단계를 포함하는 복합체형 전자방출 물질 제조방법을 제공한다.
상기 제1 단계는 Hf 분말 및 S 분말을 혼합한 후 500 내지 600 oC의 온도로 2일 내지 4일 동안 열처리함에 의해 이루어지는 것이 바람직하다.
상기 용융은 비활성 기체 분위기에서 진행되는 것이 바람직하다.
상기 제2 단계는 1회 또는 2회 이상 반복하여 수행하는 것이 바람직하다.
상기 제조방법은 제조된 전자방출 물질을 볼 밀링, 어트리션 밀링, 고에너지 밀링, 제트 밀링 또는 막자 사발을 이용한 분쇄의 방법으로 분말화하는 단계를 더 포함할 수 있다.
상기 제조방법은 제조된 전자방출 물질을 가스 원자화에 의해 분말화하는 단계를 더 포함할 수 있다.
상기 제1 단계에서 상기 Hf 분말은 상기 S 분말 1몰 대비 2 내지 2.4몰의 비율로 첨가되는 것이 바람직하다.
본 발명의 전자방출 물질은 Hf2 + xS 물질의 국재화된 전자층의 존재로부터 낮은 일함수 특성이 발현되어 매우 큰 전자방출 효과를 나타낸다.
본 발명에서 제공되는 Hf2 + xS의 일함수는 x에 크게 의존하지 않으며 약 2.7 eV의 값을 나타낸다. 이는 상용 전자방출 소재인 Mo 및 카본의 4 eV 수준의 일함수와 비교하여 30% 이상 낮은 특성으로, FED 및 형광관에 적용하면 기존 디바이스 구조의 변경 없이 낮은 구동 전압에서 큰 방출 전류를 얻을 수 있다.
본 발명에서 제공되는 Hf2 + xS 전자방출 물질 제조방법을 사용함으로써, 단순한 열처리, 용융-응고 및 기계적 분쇄 공정으로 물질을 대량 제조할 수 있다.
본 발명에서 제공되는 전자방출 물질은, 제조가 용이하고 낮은 구동전압으로 전자를 방출할 수 있다. 따라서 동일한 인가전압 기준으로 상대적으로 큰 방출 전류를 형성하는 전자 이미터의 구현을 가능하게 하여 저전압 구동 FED, 형광관 및 조명장치에 효과적으로 적용될 수 있다.
도 1은 본 발명의 전자방출 물질의 모체인 Hf2S의 결정구조 모식도이다. 층간에 국재화된 전자층이 존재하며 낮은 일함수 특성의 근원이 된다.
도 2는 실시예 1에서 제조된 Hf2 .4S, Hf2 .2S 및 Hf2S에 대한 X-선 회절 분석 결과이다.
도 3은 실시예 1에서 제조된 Hf2 .4S 및 Hf2S에 대한 전기저항 및 전하밀도 측정 결과이다.
도 4는 실시예 1에서 제조된 Hf2 .4S 및 Hf2S 분말에 대한 TEM 미세구조 사진이다.
도 5는 실시예 1에서 제조된 Hf2 .4S 분말을 공기 중에 120시간 혹은 물 속에 120시간 노출한 실시예 2 실험 후의 X-선 회절 분석 결과이다.
도 6은 실시예 1 및 비교예 1에서 제조된 Hf2 .4S, Hf2S, Mo 및 C의 일함수 측정 결과이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시예를 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 실시예로 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다.
본 명세서에서 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
따라서, 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적 설명이 생략될 수 있다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함하며, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다.
이하, 본 발명에 따른 전자방출 물질 및 이의 제조방법에 대해 상세하게 설명한다.
본 발명의 일 구현예에 따라, Hf 및 S를 포함하고 하기 화학식 1로 표시되는 조성의 전자방출 물질이 제공된다.
<화학식 1>
Hf2+xS(0 ≤ x ≤ 0.4)
상기 전자방출 물질은 국재화된 고밀도의 층간 전자를 포함하여 낮은 일함수 특성에 의해 큰 전자방출 효과를 발현한다. Hf의 비율을 조절하여 전자농도를 증대할 수 있다.
일 구현예에서, 화학식 1의 Hf2 + xS 분말은 표면에 Hf와 O 또는 Hf, S 및 O로 구성된 수~수십 nm 두께의 산화물층을 포함할 수 있다.
여기서, 상기 산화물층은 상기 전자방출 물질 표면의 0.000001 내지 10%의 면적에 형성되는 것이 바람직하다. 상기 범위의 하한보다 작을 경우 안정성의 유지가 불가능하며, 상한을 넘을 경우 전자방출의 효율이 저감한다.
상기 전자방출 물질은 분말 또는 벌크상일 수 있다. 상기 벌크상 전자방출 물질은 단결정 또는 소결에 의하여 제조되는 소결물일 수 있다.
또한, 본 발명의 일 구현예에 따라, Hf 분말 및 S 분말을 혼합한 후 열처리하여 화합물 원료를 얻는 제1 단계; 및 상기 제1 단계에서 얻어진 화합물 원료를 용융하고 냉각하는 제2 단계를 포함하는 복합체형 전자방출 물질 제조방법이 제공된다.
상기 제1 단계는 용융공정 이전에 seed 상 합성을 위한 전자방출 물질 제조를 위한 각 원료 물질의 혼합물을 열처리하는 단계이다.
구체적으로, silica tube에 진공 봉입한 Hf 및 S 원료를 furnace에 넣고 500 내지 600 oC에서 2일 내지 4일 동안 열처리한다.
상기 제2 단계는 전자방출 물질의 순도 및 균질성을 높이는 단계이다. S는 기화점이 매우 낮은 물질이므로 합성을 위한 물질 용융시 S의 손실이 발생하게 되나, 열처리 과정을 거침에 따라 용융시 S의 손실을 최소화하여 Hf2 + xS 화합물의 합성이 가능하게 한다. 이처럼 열처리 과정을 거침으로써 용융-냉각의 간단한 공정을 통해 Hf2+xS 화합물의 합성이 가능하게 된다.
구체적으로, 제1 단계에서 제조한 열처리된 혼합물을 arc melting 설비 챔버에 넣고 진공 분위기 형성 후 arc 구동이 가능한 수준의 Ar 등의 불활성 가스 분위기를 형성한다. 이후 arc를 인가하여 열처리된 혼합물을 용융 후 응고하여 전자방출 물질을 제조한다.
상기 제3 단계는 분말을 제조하는 단계이다.
구체적으로, 제3 단계에서 제조한 덩어리 형태의 물질을 ball milling 등 기계적 분쇄 공정을 이용하여 분말을 제조한다.
상기 용융은 통상적으로 사용되는 용융법, 예를 들어, 고온 tublar furnace, 초고온 전기로 등을 이용한 공정을 통해 수행될 수 있으며, 바람직하게는 arc 용융에 의행 수행될 수 있으나, 반드시 이들로 한정되지 않으며 당해 기술분야에서 용융법으로 사용될 수 있는 것이라면 모두 가능하다.
상기 arc 용융법을 사용함에 의하여 전자방출 물질의 산업적인 대량 생산이 가능하다. 상기 arc 용융법이 아닌 일반적인 용융법이 사용되는 경우에도 향상된 물성이 얻어질 수 있다.
상기 arc 용융법에서는 혼합 원료의 산화 방지를 위한 불활성 가스 분위기에서 원료를 융점 이상으로 가열하여 액체 상태를 만드는 과정으로 용융한다. Arc melting 설비 챔버 내의 구리재질로 제조한 샘플 장입부에 해당하는 크기와 형상의 전자방출 물질을 얻을 수 있다. 전자방출 물질의 순도 및 균질도를 높이기 위해 상기 arc melting에 의한 용융을 반복 시행할 수 있다.
상기 용융-응고된 형태의 물질은 볼 밀링(ball milling), 어트리션 밀링(attrition milling), 고에너지 밀링(high energy milling), 제트 밀링(zet milling), 막자 사발 등에서 분쇄하는 방법 등으로 분쇄하여 분말 형태로 제조될 수 있으나, 반드시 이들로 한정되지 않으며, 건식 또는 습식으로 원료를 분쇄하여 분말을 제조하는 방법으로서 당해 기술분야에서 사용할 수 있는 것이라면 모두 가능하다.
또는, 상기 전자방출 물질 분말은 가스 원자화(gas atomization)에 의하여 준비될 수 있다. 가스원자화법은 용융법으로 제조한 상기 화합물 원료를 융점 이상으로 가열하여 액체 상태를 만들고 노즐을 통하여 상온의 진공 또는 아르곤 분위기의 공간으로 급속 분출하여 급랭시키면 구형태의 원료 분말을 얻을 수 있다. 또한, 상기 원료 분말은 플라즈마 공정 등과 같이 급속 응고 공정으로 분말을 제조하는 방법으로서 당해 기술분야에서 사용할 수 있는 것이라면 모두 가능하다.
<실시예 1> Hf2 + xS(x = 0, 0.2, 0.4) 제조 및 특성 측정
분쇄하여 섞은 Hf, S 파우더를 펠렛화하여 silica tube에 진공 봉입한 뒤 furnace에 넣고 500 oC에서 72시간 소결한다. Hf2 + xS는 고온에서 나타나는 상인데 비해 S는 기화점이 매우 낮은 물질이므로 합성을 위한 물질 용융 시 S의 손실을 최소화하기 위해 상기 소결과정을 통해 순수한 S를 Hf-S의 화합물로 만든다. 소결로 만들어진 중간 물질을 arc 용융법으로 합성한 뒤 ball milling 등과 같은 방법으로 분쇄한다.
제조된 원료는 [도2]에 나타낸 XRD pattern에서 확인할 수 있듯이 Hf2 + xS 조성의 0 ≤ x ≤ 0.4 범위에서 Hf2S 결정구조와 동일한 단일상을 형성한다.
합성된 Hf2 + xS를 판상 직육면체 모양으로 성형한 뒤 저항 측정을 위한 4단자 및 Hall 계수 측정을 위한 Au 전극을 증착한다. 전극이 형성된 샘플을 장비에 넣고 온도에 따른 저항 및 Hall 계수의 변화를 측정한다.
온도에 따른 비저항 측정 결과 제조된 원료는 저온에서 비저항이 낮아지는 전형적인 금속성 물질임을 확인하였다. Hall 계수 측정을 통한 전하밀도 측정 결과 ~1022cm3 으로 높은 수준의 전하밀도를 가지고 있다. 본 원료는 Hf2 + xS 조성의 0 ≤ x ≤ 0.4 범위에서 비저항 및 전하밀도의 변화가 크지 않다.
제조된 원료의 일함수를 XPS를 이용해 측정하였다. 표면에 존재할 수 있는 산화막을 제거하기 위하여 XPS 내에 원료를 넣고 플라즈마로 40시간 동안 표면을 제거한 뒤 측정을 수행하였다.
[도 5]에 나타낸 바와 같이 Hf2S의 일함수는 2.7eV, Hf2 .4S의 일함수는 2.67eV로 알칼리 금속의 일함수와 비견될 수 있는 낮은 값으로 측정되었으며 0 ≤ x ≤ 0.4 범위에서 일함수의 변화가 거의 없었다.
<비교예 1> Mo 및 C 일함수 측정
Mo 및 C에 대해 실시예 1과 동일한 방법으로 일함수를 측정하였다.
[도 5]에 보이는 것처럼 전자방출 물질로서 기존에 많이 사용되는 Mo나 카본계 물질의 경우 4eV이상의 일함수를 가지고 있다. 그러나 본 연구진이 합성한 Hf2 + xS 원료의 경우 0 ≤ x ≤ 0.4 범위에서 x의 조성과 무관하게 ~2.6eV 근방의 일함수를 가지는 물질로서 Mo와 같은 금속이나 카본계 물질의 일함수보다 현저히 낮은 일함수를 가지므로 낮은 전압에서 전자방출이 용이하다.
<실시예 2> Hf2 + xS 안정성 평가
Hf2+xS의 안정성을 평가하기 위하여 원료의 분말을 물속에서 120시간 산화를 시도하였다. [도 5]의 XRD pattern에서 나타낸 바와 같이 물속에서 산화를 시도한 경우 120시간 이후에도 산화물의 피크가 나타나지 않았다.
추가로 TEM 이미징 및 EDS 측정을 통해 원료 표면의 상태를 확인하였다. [도 4]에서 확인할 수 있듯이 원료 표면에 Hf과 O로 이뤄진 비정질 층이 수 - 수십 nm두께로 형성되어 더 이상의 원료 산화를 억제하였다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 하기 화학식 1로 표현되는 전자방출 물질.
    <화학식 1>
    Hf2+xS(0 ≤ x ≤ 0.4)
  2. 제1항에 있어서,
    표면에 Hf-O 및 Hf-S-O로 이루어진 군에서 선택되는 1종 이상의 화합물을 포함하여 이루어지는 산화물층을 더 포함하는 전자방출 물질.
  3. 제2항에 있어서,
    상기 산화물층은 상기 전자방출 물질 표면의 0.000001 내지 10%의 면적에 형성되는 것을 특징으로 하는 전자방출 물질.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 전자방출 물질 분말을 표면에 노출되게 포함하는 것을 특징으로 하는 전자 이미터.
  5. 제4항에 따른 전자 이미터를 구비하고 있는 것을 특징으로 하는 형광관.
  6. Hf 분말 및 S 분말을 혼합한 후 열처리하여 화합물 원료를 얻는 제1 단계; 및
    상기 제1 단계에서 얻어진 화합물 원료를 용융하고 냉각하는 제2 단계를 포함하는 전자방출 물질 제조방법.
  7. 제6항에 있어서,
    상기 제1 단계는,
    Hf 분말 및 S 분말을 혼합한 후 500 내지 600 oC의 온도로 2일 내지 4일 동안 열처리함에 의해 이루어지는 것을 특징으로 하는 전자방출 물질 제조방법.
  8. 제6항에 있어서,
    상기 용융은 비활성 기체 분위기에서 진행되는 것을 특징으로 하는 전자방출 물질 제조방법.
  9. 제6항에 있어서,
    상기 제2 단계는 1회 또는 2회 이상 반복하여 수행하는 것을 특징으로 하는 전자방출 물질 제조방법.
  10. 제6항에 있어서,
    제조된 전자방출 물질을 볼 밀링, 어트리션 밀링, 고에너지 밀링, 제트 밀링 또는 막자 사발을 이용한 분쇄의 방법으로 분말화하는 단계를 더 포함하는 것을 특징으로 하는 전자방출 물질 제조방법.
  11. 제6항에 있어서,
    제조된 전자방출 물질을 가스 원자화에 의해 분말화하는 단계를 더 포함하는 것을 특징으로 하는 전자방출 물질 제조방법.
  12. 제6항에 있어서,
    상기 제1 단계에서 상기 Hf 분말은 상기 S 분말 1몰 대비 2 내지 2.4몰의 비율로 첨가되는 것을 특징으로 하는 전자방출 물질의 제조방법.
PCT/KR2017/002609 2017-03-10 2017-03-10 전자방출 물질 및 이의 제조방법 WO2018164302A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/002609 WO2018164302A1 (ko) 2017-03-10 2017-03-10 전자방출 물질 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/002609 WO2018164302A1 (ko) 2017-03-10 2017-03-10 전자방출 물질 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2018164302A1 true WO2018164302A1 (ko) 2018-09-13

Family

ID=63447701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002609 WO2018164302A1 (ko) 2017-03-10 2017-03-10 전자방출 물질 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2018164302A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080290319A1 (en) * 2007-05-23 2008-11-27 Soshchin Naum Red Light Phosphor and Multilayer Photo-Transforming Film
US20100264812A1 (en) * 2005-09-09 2010-10-21 Sumitomo Chemical Company, Limited Metal complex, light-emitting material, and light-emitting device
KR20110011586A (ko) * 2009-07-28 2011-02-08 성균관대학교산학협력단 산질화물계 형광체 분말, 질화물계 형광체 분말, 및 이들의 제조 방법
KR20110081685A (ko) * 2010-01-08 2011-07-14 한국과학기술연구원 상온에서 증착된 Mg2Hf5O12를 포함하는 유전체 박막, 이를 포함하는 캐퍼시터 및 트랜지스터와 이들의 제조방법
KR20120096221A (ko) * 2011-02-22 2012-08-30 성균관대학교산학협력단 형광체 분말 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100264812A1 (en) * 2005-09-09 2010-10-21 Sumitomo Chemical Company, Limited Metal complex, light-emitting material, and light-emitting device
US20080290319A1 (en) * 2007-05-23 2008-11-27 Soshchin Naum Red Light Phosphor and Multilayer Photo-Transforming Film
KR20110011586A (ko) * 2009-07-28 2011-02-08 성균관대학교산학협력단 산질화물계 형광체 분말, 질화물계 형광체 분말, 및 이들의 제조 방법
KR20110081685A (ko) * 2010-01-08 2011-07-14 한국과학기술연구원 상온에서 증착된 Mg2Hf5O12를 포함하는 유전체 박막, 이를 포함하는 캐퍼시터 및 트랜지스터와 이들의 제조방법
KR20120096221A (ko) * 2011-02-22 2012-08-30 성균관대학교산학협력단 형광체 분말 및 그의 제조 방법

Similar Documents

Publication Publication Date Title
KR101757309B1 (ko) 전자방출 물질 및 이의 제조방법
JP5082849B2 (ja) 電子エミッタ、フィールドエミッションディスプレイ装置、冷陰極蛍光管、平面型照明装置、および電子放出材料
Darbari et al. High electron emission from branched tree-like carbon nanotubes suitable for field emission applications
WO2018139868A1 (ko) 리튬 이차전지 복합전극용 슬러리 조성물, 이를 이용한 복합전극 제조방법 및 이를 포함하는 리튬 이차전지 제조방법
US20120153805A1 (en) Electrode for discharge lamp and manufacturing method thereof
Liu et al. Synthesis and characterization of ZnO nanorods
US9373954B2 (en) ESD protection device and method for producing the same
WO2018164302A1 (ko) 전자방출 물질 및 이의 제조방법
KR20030047888A (ko) 촉매적 성장 탄소 섬유 전장 이미터 및 그로부터 제조된전장 이미터 캐쏘드
WO2013058458A1 (ko) 저융점 나노 유리 분말의 제조방법 및 제조장치
KR101857550B1 (ko) 낮은 일함수 전자방출 물질 및 이의 제조방법
WO2011147083A1 (zh) 场发射用的荧光材料及其制备方法
KR100924425B1 (ko) 저항이 감소된 유전 조성물
WO2019156337A1 (ko) 공기 중에서 안정한 비정질 전자방출 물질 및 이의 제조방법
WO2016111405A1 (en) Carbon nanotube paste for a high power field emission emitter and method of manufacturing the same
KR20050087376A (ko) 평판표시소자의 전자방출원 형성용 조성물 및 이를 이용한전자방출원
WO2020130658A1 (ko) 텅스텐이 도핑된 산화 그래핀 필름 및 이의 제조 방법, 이를 포함하는 전자 방출기
KR100814838B1 (ko) 전계 방출 소자의 카본 나노튜브 에미터 형성용 조성물 및그 제조 방법
CN102714119B (zh) 电子发射源用膏料、使用该电子发射源用膏料的电子发射源和电子发射元件以及它们的制造方法
WO2019146913A1 (ko) 구리 프로모터를 포함하는 수소발생 반응용 촉매
KR102042836B1 (ko) 낮은 일함수 전자방출 물질 및 이의 제조방법
Yoon et al. Improved field emission stability and uniformity of printed carbon nanotubes prepared using high energy-milled glass frit
JP2012067167A (ja) 蛍光体、フェイスプレート及び画像表示装置の製造方法
Haq Construction of thermionic alkali-ion sources
KR100436774B1 (ko) 전계 방출 표시 소자의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899302

Country of ref document: EP

Kind code of ref document: A1