WO2018164262A1 - 治療有効性の予測方法 - Google Patents

治療有効性の予測方法 Download PDF

Info

Publication number
WO2018164262A1
WO2018164262A1 PCT/JP2018/009199 JP2018009199W WO2018164262A1 WO 2018164262 A1 WO2018164262 A1 WO 2018164262A1 JP 2018009199 W JP2018009199 W JP 2018009199W WO 2018164262 A1 WO2018164262 A1 WO 2018164262A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
specific biomarker
tumor
cells
expression
Prior art date
Application number
PCT/JP2018/009199
Other languages
English (en)
French (fr)
Inventor
高橋 優
元杭 康之
小山 昇
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019503867A priority Critical patent/JP7140103B2/ja
Priority to US16/491,768 priority patent/US20200371106A1/en
Priority to EP18764071.9A priority patent/EP3594357A4/en
Publication of WO2018164262A1 publication Critical patent/WO2018164262A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6804Nucleic acid analysis using immunogens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/42Evaluating a particular growth phase or type of persons or animals for laboratory research
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/71Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B25/00ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images

Definitions

  • the present invention relates to a method for predicting the effectiveness of drugs and treatments mainly using experimental animals.
  • model animals produced by transplanting human-derived cancer (tumor) cells or tissues into experimental animals for example, tumor-bearing mice produced using mice as experimental animals, cancer It may be used as an experimental system that reproduces the environment inside a patient.
  • tumor-bearing mice By using such tumor-bearing mice, the efficacy and safety of the drug or its candidate substance in a relatively human environment, even in the stage of drug discovery research or non-clinical trials conducted prior to human testing. Sex (toxicity) can be verified.
  • cultured cancer cell transplanted mice prepared by planting cultured cells in mice and growing in mice, or tumor tissues or tumor cells collected from patients are planted in mice and grown in mice.
  • a patient tumor tissue-transplanted mouse and the like produced by this method are known.
  • a cultured cancer cell transplanted mouse is prepared using a cultured cell obtained by culturing a tumor cell collected from a patient in a test tube and cloning it. Since such cultured cells can be easily transplanted into mice, mice transplanted with cultured cancer cells can be created relatively easily, and mice transplanted with cloned cultured cells inherit the clonal elements. Multiple tumor-bearing mice with little individual difference can be produced. Because of these advantages, cultured cancer cell transplanted mice have been classically established as experimental animals.
  • a patient tumor-transplanted mouse which has started to be widely used in recent years, is produced by implanting a tumor tissue (tumor part) or tumor cell taken out from a patient.
  • a patient tumor tissue-transplanted mouse prepared by implanting a tumor tissue derived from a patient (human) into an acquired immunodeficient mouse and growing it in the body of the mouse for a certain period of time is PDX (Patient-derived tumoror xenograft (patient-derived tumor). Xenografts)) are called model mice.
  • diagnosis / treatment methods methods for obtaining an index for diagnosis or treatment
  • non-clinical test methods using PDX model mice it is considered that the effect and safety of drugs can be evaluated in a form that highly reproduces the actual human pathology, that is, in an environment close to a human lesion.
  • Non-Patent Document 2 the amount of protein expression in tumor tissue of PDX model mice is evaluated by the IHC (immunohistochemistry) method.
  • IHC immunohistochemistry
  • a staining method in the IHC method a method in which an enzyme-labeled antibody is bound to a target protein (antigen) by a direct method or an indirect method and then reacted with a substrate to develop a color, for example, peroxidase and diaminobenzidine are used.
  • the DAB staining method is widely used.
  • staining with an enzyme such as DAB staining in the IHC method has a problem in that it is difficult to accurately estimate the amount of an actual antigen or the like from the staining concentration because the staining concentration greatly depends on environmental conditions such as temperature and time. There is.
  • the evaluation is often expressed by a score of several stages based on the staining concentration and the like, which is close to qualitative evaluation rather than quantitative.
  • the “qualitative” method correlates with the expression level of the protein and the number of expressed cells, but does not directly handle those numbers or index values closely related to them, but within a predetermined range. This is a method of evaluating with several levels of scores based on a certain number or index value, and typically means a method that relies on the subjective and empirical factors of the observer. For example, an IHC method using DAB staining for HER2 protein expressed on a cell membrane such as a breast cancer cell, and evaluating with a four-stage score based on the staining property and the staining intensity (staining pattern) (“ “HER2 Test Guide 3rd Edition”, created by Trastuzumab Pathology Committee, September 2009) falls under the “qualitative” approach.
  • the “quantitative” method directly deals with the expression level of the protein, the number of expressed cells, or an index value closely related to them, and typically relies on the objective measurement result using an apparatus. This is a method for evaluating.
  • Non-Patent Document 2 only the qualitative analysis of protein expression level in tumor tissue of patients and PDX mice by the IHC (immunohistochemistry) method is performed.
  • companies such as a mouse provider company, a test contract company, and medical institutions such as hospitals have little interest in accurately evaluating protein expression levels. That is, it can be said that the technical significance of quantitatively and accurately grasping the expression level of protein in tumor tissues and the like of PDX mice is not yet known.
  • nano-sized fluorescent particles for example, particles in which fluorescent materials such as fluorescent dyes and quantum dots are integrated as a matrix such as a resin (phosphor integrated particles, Phosphor Integrated Dot: PID). Proposed and put to practical use. Labeling the target protein with fluorescent particles and irradiating it with excitation light suitable for the fluorescent substance, it is possible to observe the protein as a bright spot, so it is expressed The amount of protein can be assessed quantitatively.
  • Patent Document 1 International Publication WO2012 / 029752
  • Patent Document 2 International Publication WO2013 / 035703
  • PID phosphor integrated particles
  • Non-Patent Document 3 suggests the possibility that the effects of treatments and drugs can be predicted based on information derived from tumor tissue gene mutations.
  • a biomolecule specific to the tumor tissue (hereinafter referred to as a specific biomarker) from the genetic information obtained by genetic testing of the tumor tissue, there is a possibility that the effect of treatment or drug can be predicted.
  • the genetic information merely suggests the possibility that a specific biomarker related to the gene is expressed, and does not demonstrate that the specific biomarker is expressed. That is, it is not possible to confirm that the specific biomarker is actually expressed or the specific biomarker is actually involved in, for example, the drug efficacy from the result of the genetic test alone.
  • the present invention has been made in view of the above problems, and by using a laboratory animal transplanted with a human lesion (lesioned tissue), information on the expression state of a specific biomarker is obtained and analyzed.
  • Another object of the present invention is to provide means for predicting the effects and side effects of treatments that are predicted when treatment is actually performed in a patient.
  • the present invention takes the following means in order to solve the above problems. That is, specific biomarkers (protein, RNA, miRNA, etc.) related to human-specific mutation information by analyzing gene information (gene mutation information) of a diseased tissue (lesion site) collected from a human (eg, patient, clinical specimen, etc.) ). Furthermore, the expression state of the specific biomarker in the transplanted diseased tissue of the experimental animal transplanted with the diseased tissue is specified. As a means for specifying such an expression state, preferably, fluorescent staining using fluorescent nanoparticles such as phosphor-aggregated particles is used.
  • the expression state can be quantitatively measured, observed, and further analyzed.
  • the present inventors are able to predict the effects and efficacy of treatment and medication in treatment and clinical trials (clinical trials, clinical research) of individual patients. I found it.
  • a database that integrates such information on the expression state of a specific biomarker, its analysis results, and drug information as a series of information is created, and clinical trials (clinical trials) and A method for predicting the effectiveness in therapy with high accuracy is provided.
  • the effectiveness of drugs and treatments can be achieved at an unprecedented level by analyzing information on the expression state of specific biomarkers from various angles using experimental animals carrying human diseased tissues (lesioned parts). Can be done accurately.
  • FIG. 1 illustrates a distribution pattern of a specific biomarker, which is one piece of information on the expression state of a specific biomarker.
  • Pattern A shows that the specific biomarker is localized in the periphery of the tumor tissue region
  • Pattern B shows that the specific biomarker is localized in the periphery of the tumor tissue region
  • Pattern C shows the tumor tissue The state where the specific biomarker is localized in a colony shape at the center of the region is schematically shown.
  • FIG. 2 is a block diagram of database creation in which one or more information groups including information on the expression state of a specific biomarker are integrated.
  • FIG. 3 is a schematic diagram of database production.
  • FIG. 4 is a block diagram showing an example of a method for predicting the effectiveness of treatment using a database.
  • FIG. 5 is a block diagram showing an example of a method of using a database in a clinical trial.
  • FIG. 6 is a block diagram showing an example of a method for selecting a treatment policy using a
  • the present invention relates to a method for obtaining one or more pieces of information including information related to a specific biomarker described later using a specimen that is a lesion part collected from a human and using the information to predict the effectiveness of treatment. Including.
  • Another aspect of the present invention relates to the expression state of a specific biomarker using a specimen of a lesion part collected from a transplanted part of a laboratory animal transplanted with a tissue of a lesion part collected from a human or a cell derived therefrom. It includes a method of obtaining one or more information including information and using it to predict the effectiveness of a treatment.
  • one or more information including information on the expression state of a specific biomarker is obtained using a specimen that is a lesion part collected from a human, and the tissue of the lesion part collected from the human is further obtained. Or, using a specimen that is a lesion taken from the transplanted part of a laboratory animal transplanted with cells derived from it, obtain one or more pieces of information including information on the expression state of a specific biomarker. Methods used in combination to predict the effectiveness of the treatment.
  • the information may include, for example, information on the form of cells expressing the specific biomarker and the expression state of other biomolecules.
  • Information other than information regarding cells expressing a specific biomarker, such as the occupancy rate of blood vessels in the specimen, may be included.
  • a “human” is a human having a disease (cancer or the like) to be treated as described later or a human suspected of having a disease, and may be referred to as a patient in the present specification.
  • “having a disease” is diagnosed by a doctor or the like, and “suspected of having a disease” is determined to be possibly affected by any known technique. It has been done.
  • the “lesion site” is generally a site that changes as the disease develops and progresses, and includes a diseased tissue (lesion tissue), but can also include surrounding normal tissue.
  • a “lesion” in a cancer patient is a tumor site (or a portion suspected of having a tumor), and may include tumor tissue and surrounding normal tissues and cells.
  • specimen refers to a tissue section or cells collected from a transplant site of a laboratory animal transplanted with a tissue or cell of a lesion site collected from a human or a tissue or cell derived from a human lesion site. In general, it takes the form of a specimen slide prepared according to a predetermined procedure as conventionally used when evaluating the expression of a target protein by immunostaining.
  • the experimental animal is specifically preferably an experimental animal transplanted with a tissue of a human lesion or a cell derived therefrom.
  • a human when the lesion of a human (patient) is a tumor, it may be an experimental animal transplanted with a tumor tissue or cancer cell collected from the tumor portion, or the collected tumor tissue or cancer cell is cloned. It may be an experimental animal transplanted with cultured cells.
  • the “experimental animal” is a tumor-bearing animal.
  • various experimental animals such as an Alzheimer's disease model, a diabetes model, a genetic disease model, an infectious disease model, and the like can be used as experimental animals depending on the purpose.
  • mice examples include mice, rats, rabbits, guinea pigs, gerbils, hamsters, ferrets, dogs, minipigs, monkeys, cows, horses, sheep, etc. Although animals having the requirements are mentioned, mice are widely used especially from the viewpoint of easy breeding and experiments.
  • the technique for causing the experimental animal to retain the tumor part is not particularly limited, and a known technique can be used.
  • various techniques have been attempted, such as incising the mouse body and transplanting a tumor block of the patient, or inserting a tumor tissue removed from the patient or a cultured cell derived therefrom by injection.
  • Tumor bearing model mouse When using a tumor-bearing animal as the experimental animal of the present invention, it is preferable to use a tumor-bearing model mouse, and it is more preferable to use a PDX model mouse described later.
  • Tumor-bearing model mice can be broadly classified into naturally induced tumor mice, cultured cancer cell transplanted mice, and patient tumor tissue transplanted mice (see Table 1; Kohrt et al., Defining the optimal murine models to investigate immune checkpoint blockers). and their combination with other immunotherapies. Annals of Oncology 00: 1-9, 2016).
  • Cultured cancer cell transplanted mice are prepared by culturing tumor cells collected from humans (patients) in test tubes and transplanting the cloned cultured cells into acquired immunodeficient mice.
  • Examples of cultured cancer cell transplanted mice include CDX [Cell-line-derived xenograft] model mice.
  • Examples of mice transplanted with tumor tissues collected from humans (patients) include PDX [Patient-derived xenograft] model mice, Immuno-avatar model mice, hematopoietic lymphoid humanized model mice, and Immune- PDX model mouse etc. are mentioned.
  • PDX mice are created by transplanting patient-derived tumor tissue into acquired immunodeficient mice.
  • Immuno-avatar model mice, hematopoietic lymphoid humanized model mice and Imune-PDX model mice were transplanted with human peripheral blood mononuclear cells, CD34 + human hematopoietic stem cells and their progenitor cells (HSPC) or tumor infiltrating lymphocytes, respectively. It is produced by transplanting tumor tissue from a patient into the acquired immunodeficient mouse.
  • HSPC progenitor cells
  • mice transplanted with patient tumor tissue were transplanted (passaged) with a mouse (first generation: 0th generation) that had been grown for a certain period after transplanting a patient-derived tumor tissue and a 0th generation tumor site.
  • a mouse and all of the (n + 1) generation mice transplanted (passaged) with a subsequent n generation (n ⁇ 1) tumor site are included.
  • the “specimen” is a part of the tumor-bearing mouse that has been transplanted with tumor cells or tumor tissue, and is prepared from a part that has passed any time after the transplantation. obtain.
  • the “specific biomarker” is a biological material (protein, nucleic acid, etc.) existing in a human lesion, preferably a biological material expressing cells contained in a human lesion. Typically, it is a biological material that is specifically expressed in cells contained in a diseased tissue.
  • a specific biomarker is a gene analysis of a specimen prepared from a lesion (lesioned tissue) collected from a patient by genetic testing, analyzing gene mutation information in the specimen, and specifying based on the mutation information of the gene Can do. For example, predicting the effectiveness of a molecular target drug targeting a specific biomarker by using the protein encoded by the gene causing the mutation as a specific biomarker and acquiring and analyzing information on the specific biomarker can do.
  • mutation information of the gene is analyzed using a tumor tissue or the like collected from a patient, and a protein encoded by the mutated gene is specified as a specific biomarker.
  • a molecular target that targets the specific biomarker to the laboratory animal
  • the specific biomarker is not particularly limited as long as it is present in the specimen, and a specific one kind of biological substance present in the specimen may be selected as the specific biomarker. Two or more types of biological substances may be selected as specific biomarkers.
  • the nucleic acid may be various RNAs such as mRNA, tRNA, miRNA, siRNA, and non-coding-RNA derived from the genome of a cell contained in a tissue of a lesion (lesioned tissue).
  • RNAs such as mRNA, tRNA, miRNA, siRNA, and non-coding-RNA derived from the genome of a cell contained in a tissue of a lesion (lesioned tissue).
  • miR21, miR34a, miR197, miR200, miR513, miR-133a, miR-143, exosomal micro-RNA (miR-181c, miR-27b), let-7a, miR-122, iR4717 and the like are preferable. It is preferable.
  • the protein is preferably a protein that is phosphorylated in cells contained in a tissue of a lesion (lesioned tissue), and examples of such phosphorylated protein include HER2 HER3, EGFR, VEGFR and the like.
  • the information on the specific biomarker includes the total expression level of the protein, the ratio of the phosphorylated protein to the total expression level of the protein, and the phosphorylated type protein. Information such as only the amount may be included.
  • the cells contained therein include not only tumor cells but also cells other than tumor cells, for example, cells such as immune cells that interact with tumor cells. Therefore, the specific biomarker in the present specification is preferably a cancer-related protein expressed in tumor cells and / or a protein expressed in immune cells.
  • Cancer-related protein typically include “immune system proteins expressed in cancer cells”, “pathway proteins expressed in cancer cells”, and “metastatic proteins expressed in cancer cells”. It is done. Various types of cancer-related proteins are known, and appropriate ones can be selected according to the purpose of diagnosis or treatment, the mechanism of action of the drug used, etc. It is not something.
  • genes (770 genes) of the immune system panel, pathway system panel, and metastasis system panel included in the cancer-related gene expression panel provided by nCounter are encoded. These proteins correspond to immune system proteins, pathway proteins, and metastasis proteins expressed in cancer cells, respectively. Mutant proteins corresponding to mutant genes of these genes can also be included in immune system proteins, pathway proteins, and transfer proteins.
  • immune system proteins expressed in cancer cells include CD40, TL1A, GITR-L, 4-188-L, CX4D-L, CD70, HHLA2, ICOS-L, CD85, which are immune checkpoint proteins.
  • pathway proteins expressed in cancer cells include cancer cell growth factor or cancer cell growth factor receptor EGFR (HER1), HER2, HER3, HER4, IGFR, HGFR; cell surface antigen, VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PlGF-1, PlGF-2 which are vascular growth factors or vascular growth factor receptors; interferon and interleukin which are cytokines or cytokine receptors , G-CSF, M-CSF, EPO, SCF, EGF, FGF, IGF, NGF, PDGF, TGF and the like.
  • HER1 cancer cell growth factor or cancer cell growth factor receptor EGFR
  • HER2 HER2, HER3, HER4, IGFR
  • HGFR cell surface antigen
  • VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, PlGF-1, PlGF-2 which are vascular growth factors or vascular growth factor receptor
  • metastatic proteins expressed in cancer cells include, for example, cancer metastasis markers, ACTG2, ALDOA, APC, BRMS1, CADM1, CAMK2A, CAMK2B, CAMK2D, CCL5, CD82, CDKN1A, CDKN2A, CHD4, CNN1, CST7, CTSL, CXCR2, YBB, DCC, DENR, DLC1, EGLN2, EGLN2, EIF4E2, EIF4EBP1, ENO1, ENO2, ENO3, ETV4, FGFR4, GSN, HK2, HK3, HKDC1, KDM1, HLA-DPB11, HLA-DPB11 LDHA, LIFR, MED23, MET, MGAT5, MAP2K4, MT3, MTA1, MTBP, MTOR, MYCL, MYH11, NDRG1, NF2, N KB1, NME1, NME4, NOS2, NR4A3, PDK1, PEBP4, PFKFB1, PF
  • proteins expressed in immune cells include PD-1, CTLA-4, TIM3, Foxp3, CD3, CD4, CD8, CD25, CD27, CD28, CD70, CD40, CD40L, CD80, CD86, CD160, CD57 CD226, CD112, CD155, OX40 (CD134), OX40L (CD252), ICOS (CD278), ICOSL (CD275), 4-1BB (CD137), 4-1BBL (CD137L), 2B4 (CD244), GITR (CD357) , B7-H3 (CD276), LAG-3 (CD223), BTLA (CD272), HVEM (CD270), GITRL, Galectin-9 (Galectin-9), B7-H4, B7-H5, PD-L2, KLRG- 1, E- Cadherin, N-Cadherin, R-Cadherin and IDO, TDO, CSF-1R, HDAC, CXCR4, FLT-3, T
  • the specific biomarker in the present specification may be expressed in cells other than tumor cells and immune cells.
  • Specific examples of biological substances expressed in cells other than tumor cells and immune cells include proteins contained in the stroma.
  • “Stromal” mainly consists of stromal cells such as fibroblasts, endothelial cells, leukocytes (lymphocytes, monocytes, neutrophils, eosinophils, basophils) and proteins such as collagen and proteoglycans. Composed of an extracellular matrix.
  • stromal cells such as fibroblasts, endothelial cells, leukocytes (lymphocytes, monocytes, neutrophils, eosinophils, basophils) and proteins such as collagen and proteoglycans.
  • Biological material present in either stromal cells or extracellular matrix may be used as a specific biomarker, but the effect on the characteristics of transplanted lesions (eg, tumor cells) carried by experimental animals is thought to be greater
  • an appropriate protein can be selected and used from the following membrane proteins, which are stromal cell markers.
  • CD140a is a membrane protein expressed on the surface of cells such as fibroblasts, megakaryocytes, monocytes, erythrocytes, myeloid progenitor cells, and endothelial cells, and is preferable as a stromal cell marker in the present invention.
  • CD106 VCAM-1, INCAM-110) ... activated vascular endothelial cells, dendritic cells; CD109 (Platelet activation factor, 8A3, E123) ... activated T cells, platelets, vascular endothelium, megakaryocytes, CD34 + progenitor cell subset; CD140a (PDGF-R, PDGFR2) ... fibroblasts, megakaryocytes, monocytes, erythrocytes, myeloid progenitor cells, endothelial cells; CD140b (PDGF-R, PDGFR1) ...
  • endothelial cells stromal cells
  • CD141 Thrombomodulin.
  • vascular endothelium myeloid cells, platelets, smooth muscle
  • CD142 Tissue Factor (TF), Thromboplastin): epithelial cells, activated monocytes, activated vascular endothelium
  • CD143 ACE: angiotensin converting enzyme
  • CD144 VE-Cadherin, Cadherin-5) ... vascular endothelium
  • CD145 (7E9, P7A5) ... endothelial cells
  • CD146 MUC18, s-endo, Mel-CAM
  • vascular endothelium activated T cells, melanoma
  • CD147 Basigin, M6, EMMRRIN
  • white blood cells red blood cells
  • vascular endothelium platelets
  • CD201 EPCR: Vascular Endothelial Cell Protein C Receptor
  • CD202 TIE2, TEK
  • Vascular endothelium hematopoietic stem cell subset
  • CD280 Endo180, TEM22, uPARAP (uPAR-associated protein)
  • bone marrow progenitor cells fibroblasts, endothelial cell subsets, macrophage subsets
  • CD299 DC-SIGN-related, L-SIGN (Liver / Lympho node specific ICAM3-grabbing nonintegrin)
  • CD309 Vascular endothelial growth factor receptor2 (Vascular endothelial growth factor receptor2), KDR
  • endothelial cells megakaryocytes, platelets, stem cell subsets
  • CD322 Jobctional adhesion molecule 2
  • endothelial cells monocytes, B cells, T cell subsets
  • CD331 FGFR1 (Fibroblast growth factor receptor 1)
  • fibroblasts epithelial cells
  • CD332 FGFR2, Keratinocyte growth factor receptor
  • CD333 FGFR3, JTK4
  • CD334 FGFR4, JTK2, TKF
  • CD339 Jagged-1, JAG1 ... stromal cells, epithelial cells.
  • the expression state of a specific biomarker in the present invention refers to the expression level of the specific biomarker, the type, number and / or form of cells expressing the specific biomarker, the expression site of the specific biomarker (tumor bearing animal as an experimental animal) In the case of using a model, it refers to a feature formed by information such as tumor tissue or distribution in a tumor part, and a dedicated area.
  • Information on the expression state of the specific biomarker in the method of the present invention includes, for example, (1) the expression level of the specific biomarker per cell or per unit area of the tissue in the specimen (specimen slide), and (2) the specific biomarker Histogram expressed by the expression level per cell of the marker and the number of cells corresponding thereto, (3) Curve expressed by the expression level per cell of the specific biomarker and the number of cells corresponding thereto, (4) Multiple specific bio Information on the mutual position information (distance) of markers, (5) Localization patterns of specific biomarkers in cells, stations in a region of interest (ROI) of a specific cell group (for example, cancer cell group) For example, information relating to a pattern such as a current pattern is included.
  • ROI region of interest
  • Pieces of information are preferably acquired as image information (including those converted as digital images), and more preferably can be converted as quantitative information.
  • the information on the expression state is not limited to any one of the above, but may be a combination of a plurality of information, or a plurality of specific biomarkers may be selected and information on the expression state may be combined. There may be.
  • a method for acquiring information on the expression state of a specific biomarker as image information is not particularly limited.
  • a digital image can be obtained by photographing a specimen (specimen slide) using a high-resolution whole slide scanner (Whole slide Scanner).
  • the converted image information can be acquired, and information on the expression state of the specific biomarker can be quantitatively analyzed by image analysis of the image information. This analysis may be performed using any algorithm generally used for digital image processing or analysis, or may be performed using an algorithm optimized according to a specific biomarker or a detection target.
  • organic fluorescent dyes, quantum dots, or particles such as organic fluorescent dyes or quantum dots integrated on a matrix such as resin are used.
  • the staining method (PID method) performed using the phosphor-aggregated particles is particularly suitable as a method used in the present invention, but is not particularly limited, and may be another method having the same degree of accuracy. There may be.
  • a basic embodiment of the PID method is known from a plurality of patent documents or non-patent documents as described above.
  • the information on the expression state is obtained by performing the PID method in an embodiment according to the case where pathological diagnosis is performed using a specimen slide.
  • a method for acquiring information on the expression state of a specific biomarker by the PID method which is an example of an embodiment of the present invention, will be described in detail.
  • the sample is fluorescently immunized using an anti-specific biomarker antibody bound with phosphor-aggregated particles. After staining and irradiating the stained specimen slide with excitation light having a wavelength corresponding to the used phosphor accumulated particle, observation and imaging are performed, and the phosphor accumulated particle labeled with a specific biomarker appears as a bright spot. Images can be obtained. The number of bright spots in the acquired fluorescent staining image may be used as an index value for the expression level of the specific biomarker.
  • the brightness (luminance, fluorescence intensity) of one luminescent spot is separately measured.
  • the number of phosphor-aggregated particles contained in the bright spot can be calculated, and the number of particles may be used as an index value for the expression level of the specific biomarker.
  • the expression level of a specific biomarker per unit area of a tissue measure the number of bright spots or particles in cells contained in the tissue in a specific region in the image, and then divide by the area of the tissue do it.
  • staining is performed so that the shape of the cells can be identified with a staining agent for morphological observation (for example, eosin) together with the fluorescent immunostaining, and observation and imaging in the bright field are performed, whereby a specific image in the entire image or in the image is identified.
  • a staining agent for morphological observation for example, eosin
  • observation and imaging in the bright field are performed, whereby a specific image in the entire image or in the image is identified.
  • the number of cells contained in a region for example, only tumor tissue
  • the number of bright spots and the number of particles representing the specific biomarker expressed in each cell can be measured.
  • the average expression level per cell calculated by dividing the number of bright spots or particles contained in the entire image by the number of cells may be used, or the number of bright spots of each cell.
  • an average value calculated by measuring the number of particles may be used.
  • the specific biomarker is a nucleic acid
  • a method of specifically staining a gene using a probe labeled with phosphor-aggregated particles eg, FISH method
  • the expression level per unit area can be specified.
  • the distribution (histogram or curve shape, number of peaks), the average value or median, and the variance (CV) value
  • a histogram it is possible to obtain information such as the number of cells (frequency) at which the segment having the maximum number of bright spots or particles per cell is present.
  • the histograms and curves were originally graphed after measuring the expression level (number of bright spots or particles) and the number of expressed cells of a specific biomarker and directly handling those numbers. Therefore, it is classified into information obtained by using a “quantitative” method instead of “qualitative”.
  • the distance between the phosphor integrated particles (bright spots) labeled with the specific biomarkers is determined as the distance between the specific biomarkers. Can be considered.
  • the same specimen tissue section, etc.
  • fluorescent staining for a specific biomarker and fluorescent staining for another specific biomarker (multiple immunostaining).
  • fluorescent labels that fluoresce at different wavelengths to distinguish each specific biomarker.
  • an image (dark-field image) in which phosphor-aggregated particles labeled with the specific biomarker appear as bright spots and a cell shape are represented.
  • the distribution state in the image showing the distribution of the biomarker in each cell obtained by superimposing the images stained in the image (bright-field image) by image processing in any number of patterns (for example, in the center of the cell) Accumulation, accumulation in the cell edge (near the cell membrane), diffusion in the whole cell, etc.). It is also possible to determine the localization pattern of a specific biomarker in the specimen (tissue) by determining the one that occupies the largest number among the localization patterns of all the cells included in the image.
  • the region that becomes the region of interest in the image obtained by superimposing the bright field image and the dark field image is set and specified What is necessary is just to classify the localization pattern in a cell group (for example, cancer cell group).
  • a specific biomarker is identified based on mutation information obtained by genetic analysis of a specimen that is a lesion (lesion tissue) collected from a patient, and a lesion of an experimental animal transplanted with the lesion Information on the state of expression of the specific biomarker in the tissue (including image information) and its analysis results, treatment information (drugs) in the experimental animal, drug information such as side effects and prognosis, etc.
  • the disease to be treated is not particularly limited, and is, for example, a neurological disease, an infectious disease, a genetic disease, a tumor (cancer), and typically a tumor (cancer).
  • the tumor is not particularly limited, but for example, cell tumor, melanoma, sarcoma, brain tumor, head and neck cancer, stomach cancer, lung cancer, breast cancer, liver cancer, colon cancer, cervical cancer, prostate , Solid cancer such as bladder cancer, leukemia, lymphoma, and multiple myeloma.
  • the treatment method is not particularly limited as long as it is applicable to the target disease.
  • examples include surgery, radiation (proton beam, proton beam) therapy, drug therapy, etc., typically by administration of anticancer drugs, hormone drugs, immunostimulants, etc.
  • Drug therapy especially molecular targeting drugs that target specific biomarkers (for example, antibody drugs that recognize the biomarkers and ADC (Antibody-Drug Conjugate) drugs) are preferably used. .
  • the drug before administering the drug to the patient, it is administered to an experimental animal (for example, PDX mouse) transplanted with the above-mentioned lesion of the patient and the effect or side effect of the drug is evaluated. ”Can be used to obtain a more accurate prediction result.
  • an experimental animal for example, PDX mouse
  • the method for evaluating the effect of the drug is not particularly limited.
  • a change in the size of a transplanted lesion (tumor) before and after administration of the drug may be used as an index, or a known tumor marker or infection marker in blood. It is also possible to use numerical values such as these, or the results (changes) of other pathological tests as indices.
  • the method for evaluating side effects and the like is not particularly limited, but the numerical value of blood cells, the result of a histopathological examination of the digestive tract, and the like can be used as an index.
  • one or more information including information on the expression state of a specific biomarker can be provided for predicting and evaluating the effectiveness of the treatment.
  • a method for treating a disease by providing, for example, a medical institution or company as a database that integrates a group of information including information on the expression state of a specific biomarker, analysis results thereof, medical information, and other information -It can be usefully used in various situations such as prediction of drug effects, clinical trials / clinical trials, construction of treatment plans, etc.
  • These pieces of information may include publicly known information, and may include information acquired by performing fluorescent immunostaining using fluorescent nanoparticles in various specimens.
  • the creation and use form of a database using a PDX mouse will be described, but it is not particularly limited.
  • a tumor tissue is collected from a PDX mouse to prepare a specimen (specimen slide).
  • Gene analysis of tumor tissue based on information on gene mutation occurring in the tumor cell, a protein related to the mutation information, for example, a protein encoded by a mutated gene is used as a specific biomarker, Furthermore, by performing fluorescent immunostaining for labeling the specific biomarker with PID, the expression state of the specific biomarker in the specimen is imaged, and the image information is analyzed to obtain the expression state information.
  • the drug is administered to PDX mice, and the effect of the drug is evaluated by means such as measuring the tumor volume before and after administration, or by sampling the digestive organs, blood and behavior, etc. Information such as determining the presence or absence of side effects.
  • Each of the drugs to be administered may be administered as a single agent, or a plurality of drugs may be administered in combination. Further, more detailed information can be obtained by changing the administration form, administration route, administration period, administration frequency, and the like.
  • a database is created by assembling genetic (mutation) information, biomarker expression status, and pharmaceutical information in PDX mice carrying tumor tissue derived from various patients by the above procedure.
  • Such a database is provided so that it can be used by a user via a network.
  • an optical disc compact disc (CD), digital versatile disc (DVD), etc.
  • flash memory SSD (Solid State Drive)
  • It can be provided to the user in a state stored in a computer-readable recording medium such as a memory card.
  • the accuracy of prediction of the drug effect and the like can be further increased. Furthermore, by adding the expression status and medical information of the specific biomarker acquired in this PDX mouse to the database and accumulating the information, it is possible to increase the amount of information in the database and improve the accuracy of the information provided. it can.
  • PDX mice and their databases can also be used effectively in clinical trials and clinical trials. For example, in clinical trials, there are three stages called 1 to 3 phases, and the safety and effectiveness of the drug at each stage are confirmed.
  • a PDX mouse is produced by transplanting tumor tissues collected from a plurality of clinical trial participants who are cancer patients who are candidates for a therapeutic candidate drug into an acquired immunodeficient mouse. An expression state of a specific biomarker that is a target molecule of a candidate therapeutic drug in each PDX mouse and pharmaceutical information obtained by administering the candidate therapeutic drug to each mouse are acquired. From these pieces of information, it is possible to predict the degree of drug efficacy and the possible side effects that can be expected from the administration of candidate therapeutics in each patient.
  • the information on the expression state is similar.
  • Can extract one or more samples from the database predict the effects and risks of drugs that can be expected from the drug information contained in the samples, and determine whether or not they are appropriate for the target person.
  • the clinical trial can be conducted while suppressing the above.
  • the expression status of specific biomarkers in PDX mice and pharmaceutical information obtained in this way are further added to the database to accumulate information, thereby increasing the amount of information in the database and improving the accuracy of the information provided. It can be used to predict the effects of drugs and possible side effects when taking medication as an actual therapeutic means.
  • the database can be used to determine a treatment policy for a specific patient. For example, information on the expression status of various specific biomarkers (for example, multiple cancer-related proteins and nucleic acids) in a sample collected from a cancer patient or a sample of a PDX mouse transplanted with a tissue collected from a patient is obtained. By extracting a sample with similar information on the expression state by collating with the database, it is predicted which drug will be selected and how it will be effectively administered to the tumor tissue I can do it.
  • various specific biomarkers for example, multiple cancer-related proteins and nucleic acids
  • the drug to be administered can be determined more efficiently and a dosage plan can be established. can do.
  • the amount of information in that area included in the database can be further enhanced. And more accurate prediction is possible.
  • the linker reagent “Maleimide-PEG2-Biotin” (Thermo Scientific, product number 21901) was adjusted to 0.4 mM using DMSO. 8.5 ⁇ L of this linker reagent solution was added to the antibody solution, mixed, and reacted at 37 ° C. for 30 minutes to bind biotin to the anti-rabbit IgG antibody via the PEG chain.
  • the reaction solution was purified through a desalting column.
  • the absorbance at a wavelength of 300 nm was measured using a spectrophotometer (Hitachi “F-7000”) to calculate the concentration of protein (biotin-modified secondary antibody) in the reaction solution.
  • a solution in which the concentration of the biotin-modified secondary antibody was adjusted to 250 ⁇ g / mL using a 50 mM Tris solution was used as a biotin-modified secondary antibody solution.
  • the cooled solution was dispensed into a plurality of centrifuge tubes and centrifuged at 12,000 rpm for 20 minutes to precipitate Texas red-integrated melamine resin particles contained in the solution as a mixture.
  • the supernatant was removed and the precipitated particles were washed with ethanol and water.
  • the average particle size was 152 nm.
  • the Texas red-integrated melamine resin particles thus produced were surface-modified with streptavidin according to the following procedure, and the resulting streptavidin-modified Texas red-integrated melamine resin particles were converted into the phosphor-integrated particles in Examples 1 and 3 ( PID).
  • the particles subjected to the above surface amination treatment are adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and the final concentration of this solution is 10 mM.
  • SM (PEG) 12 manufactured by Thermo Fisher Scientific, succinimidyl-[(N-maleimidopropionamido) -dodecaethyleneglycol] ester
  • streptavidin manufactured by Wako Pure Chemical Industries, Ltd.
  • SATA N-succinimidyl S-acetylthioacetate
  • the above Texas Red-integrated melamine resin particles and streptavidin were mixed in PBS containing 2 mM of EDTA and reacted at room temperature for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to produce streptavidin-modified Texas red integrated melamine resin particles.
  • Tumor volume was measured before and after administration, and tissue sections (tumor tissues) were collected from mice sacrificed at each time point before the first administration, 1 week, 2 weeks, 3 weeks and 4 weeks after the first administration. did.
  • tissue sections tumor tissues
  • formalin fixation and paraffin embedding were performed according to a conventional method, and further sliced to prepare two specimen slides for each mouse at each treatment point.
  • Example 1 Immunostaining of HER2 protein (1-1) Sample slide pretreatment The sample slide prepared in Evaluation Preparation-1 was deparaffinized and then washed with water. The washed specimen slide was autoclaved at 121 ° C. for 15 minutes in 10 mM citrate buffer (pH 6.0) to carry out antigen activation treatment. The tissue slide after the activation treatment was washed with PBS, and the washed specimen slide was subjected to blocking treatment with PBS containing 1% BSA for 1 hour.
  • the sample was dropped onto each of two specimen slides corresponding to the above, and reacted at 4 ° C. overnight.
  • a solution of the biotin-modified anti-rabbit IgG antibody prepared in Preparation Example 1 and further diluted to 6 ⁇ g / mL using PBS containing 1 W / W% BSA was dropped onto a specimen slide washed with PBS. The reaction was allowed to proceed for 30 minutes at room temperature.
  • the specimen was irradiated with excitation light corresponding to Texas Red contained in the phosphor-aggregated particles used for HER2 staining to emit fluorescence, and an immunostained image was taken in that state.
  • the wavelength of the excitation light was set to 575 to 600 nm using the excitation light optical filter provided in the fluorescence microscope, and the wavelength of the fluorescence to be observed was set to 612 to 692 nm using the fluorescence optical filter.
  • the intensity of the excitation light at the time of observation and image photographing with a fluorescence microscope was such that the irradiation energy near the center of the visual field was 900 W / cm 2 .
  • the exposure time at the time of image shooting was adjusted within a range in which the luminance of the image was not saturated, and set to, for example, 4000 ⁇ sec.
  • Such fluorescent immunostained images and morphological observation stained images were taken in the same visual field, then the same operation was repeated while changing the visual field, and 5 visual fields were performed per specimen slide.
  • the stained image for morphological observation and the fluorescent immunostained image were overlapped by image processing to extract bright spots representing Texas Red integrated melamine resin particles labeled with HER2 expressed on the cell membrane. Since HER2 is not expressed in the stromal cell region, the bright spot located in the stromal cell was treated as a nonspecific signal, that is, noise.
  • the number of shining spots on the cell membrane whose brightness is equal to or higher than a predetermined value is measured, and the brightness of the luminescent spot is divided by the brightness per one phosphor integrated particle (PID) particle, and converted to the number of particles.
  • PID phosphor integrated particle
  • the expression level (number of particles) of HER2 was measured for 1000 cells per specimen slide (5 fields of view), and the average value was calculated as the “PID score” of the specimen slide. Furthermore, the average value of the PID score in each of the two specimen slides corresponding to each patient (AE) was calculated.
  • trastuzumab is selected as a therapeutic agent for patient A, while another therapeutic agent is selected and administered to patient E. It will be possible to select and judge a treatment (medication) method suitable for each patient, and to construct an efficient medication and treatment plan.
  • PID score information on such genetic information, medical information, and expression information
  • EGFR immunostaining was performed in the same manner as HER2, except that an anti-EGFR rabbit monoclonal antibody (clone “5B7” Roche) was used instead of the anti-HER2 rabbit monoclonal antibody “4B5” (Ventana).
  • the average value of the PID score was calculated by performing photographing and image processing, and classified into three patterns of localization A to C based on the localized state in the cell.
  • Table 3 summarizes information on gene mutation of each patient, drug resistance to gefitinib at 100 days after administration, and changes in EGFR expression pattern and tumor volume at each time point for the corresponding mice.
  • PDX mice prepared by transplanting tumor tissues of patients F and H whose drug resistance was confirmed on the 100th day after drug administration, the tumor volume once decreased at 100 days, but the tumor volume increased thereafter. It can be determined that resistance to gefitinib has appeared. Further, in the tumor tissues collected from these PDX mice, it was observed that the localization state of EGFR changed between the first day and the 100th day after administration of gefitinib.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Hospice & Palliative Care (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本発明は、ヒトから採取した病変部を移植した実験動物を用いて、当該病変部における特定バイオマーカーの発現状態の情報を含む1以上の情報を取得し、解析を行なうことによって、当該情報を治療の有効性の予測のために用いる方法に関する。

Description

治療有効性の予測方法
 本発明は、主に実験動物を使用して、薬剤や治療の有効性を予測するための方法に関する。
 がんの治療薬の開発において候補となる薬剤が有効であるかは、臨床試験(治験、臨床研究)において患者に実際に投与することで確認することが通例となっている。一例として例えば、患者に薬剤を投与する前および投与した後、それぞれの時点で採取した患者腫瘍組織について免疫染色を行うことで薬剤投与前後におけるタンパク質発現の変化を比較する方法が挙げられる(非特許文献1(Figure3))。しかしながら、患者を対象とする実験系では多くの患者の協力を得ることが必要不可欠となっており、また患者に薬剤を実際に投与することから、医師の関与が必須であり、さらに予期しない副作用等が生じるリスクを伴うなど患者に対する負担も大きいといえる。そのようなリスクや負担を減らすために、実際に患者における試験を行う前に臨床検体(患者)に近い環境においてあらかじめ確認試験を行ない、臨床検体(患者)に実際に投与した際の薬剤の効果や副作用等を前もって予測する手段が求められている。
 そのような需要に鑑みて、ヒト由来のがん(腫瘍)細胞もしくは組織を実験動物に移植して作製されるモデル動物、例えばマウスを実験動物として用いて作製される担腫瘍マウスを、がん患者生体内の環境を再現した実験系として用いることがある。このような担腫瘍マウスを用いることにより、ヒトを対象とする試験の前に行われる創薬研究または非臨床試験の段階においても、比較的ヒトに近い環境において薬剤またはその候補物質の効果や安全性(毒性)を検証することができる。
 担腫瘍マウスとしては、培養細胞をマウスに植え付け、マウス内で成長させることによって作製された培養がん細胞移植マウスや、患者から採取した腫瘍組織または腫瘍細胞をマウスに植え付け、マウス内で成長させることによって作製された患者腫瘍組織移植マウス等が知られている。
 培養がん細胞移植マウスは、患者から採取した腫瘍細胞を試験管で培養してクローン化した培養細胞を用いて作成される。そのような培養細胞はマウスへの移植が容易であるため、培養がん細胞移植マウスは比較的容易に作成することができ、またクローン化した培養細胞を移植したマウスはクローン的要素を引き継ぐため個体差の少ない担腫瘍マウスを複数作製することができる。このような利点から培養がん細胞移植マウスは古典的に実験動物としての地位が確立されてきた。
 一方、近年広く用いられ始めた患者腫瘍移植マウスは、患者から取り出した腫瘍組織(腫瘍部)または腫瘍細胞をマウスに植え付けることで作製される。例えば、患者(ヒト)由来の腫瘍組織を獲得免疫不全マウスに植え付けて、一定期間、マウス等の体内で成長させることで作製した患者腫瘍組織移植マウスはPDX(Patient-derived tumor xenograft(患者由来腫瘍異種移植片))モデルマウスと呼ばれている。
 患者腫瘍組織移植マウスは培養がん細胞移植マウスよりも、がん細胞の複雑さ(それを生み出す成因(遺伝子変異など)を含め)がマウスの世代を超えて安定的に維持されることが確認されてきており、試験の信頼性や再現性の高さが認識されている。
 例えば、PDXモデルマウスを用いた非臨床的な試験方法による、診断・治療方法(診断または治療のための指標を得る方法)の開発が盛んになってきている。PDXモデルマウスを用いた試験では、実際のヒトの病態を高度に再現した形、つまりヒトの病変部に近い環境において、薬剤の効果や安全性を評価することができると考えられている。
 非特許文献2では、PDXモデルマウスの腫瘍組織におけるタンパク質の発現量をIHC(免疫組織化学)法によって評価している。IHC法における染色手法としては、目的とするタンパク質(抗原)に酵素標識された抗体を直接法または間接法により結合させた後、基質を反応させて発色させる方法、例えば、ペルオキシダーゼおよびジアミノベンジジンを用いるDAB染色法が広く用いられている。
 しかしながら、IHC法におけるDAB染色のような酵素による染色は、染色濃度が温度・時間などの環境条件により大きく左右されるため、染色濃度から実際の抗原等の量を正確に見積もることが難しいという問題がある。また、非特許文献2に示されているように評価は染色濃度などに基づいて数段階のスコアで表される場合が多く、定量的というよりは定性的な評価に近いものであった。
 「定性的」な手法とは、タンパク質の発現量や発現細胞数等と相関しているものの、それらの数またはそれと密接に関連する指標値を直接的に取り扱うのではなく、所定の範囲内にある数または指標値に基づいて数段階のスコアで評価する方法であり、典型的には観察者の主観的・経験的な要素に依拠する手法をいう。例えば、乳がん細胞等の細胞膜に発現するHER2タンパク質を対象としたDAB染色を用いるIHC法であって、染色性およびその染色強度(染色パターン)に基づいて、4段階のスコアで評価する方法(「HER2検査ガイド第三版」,トラスツズマブ病理部会作成,2009年9月)は「定性的」な手法に該当する。
 一方、「定量的」な手法とは、タンパク質の発現量や発現細胞数またはそれらと密接に関連する指標値を直接的に取り扱い、典型的には装置を用いた客観的な測定結果に依拠して評価を行う手法をいう。
 現在のところ、アカデミアの研究においては、非特許文献2のように、IHC(免疫組織化学)法による患者およびPDXマウスの腫瘍組織におけるタンパク質の発現量を定性的に分析しているにすぎない。また、マウス提供会社や試験受託会社等の企業や病院等の医療機関においても、タンパク質の発現量を正確に評価することについてほとんど関心を示していない。つまり、PDXマウスの腫瘍組織等におけるタンパク質の発現量等を定量的に正確に把握することの技術的意義はまだ知られていないといえる。
 近年、タンパク質を標識するために、ナノサイズの蛍光粒子、例えば蛍光色素や量子ドットなどの蛍光体を樹脂等母体として集積させた粒子(蛍光体集積粒子、Phosphor Integrated Dot:PID)を用いる方法が提案され、実用化が進められている。蛍光体集積粒子を用いて目的とするタンパク質を標識し、蛍光物質に適合する励起光を照射することで、タンパク質が輝度の高い輝点として観察することが可能となることから、発現しているタンパク質の量を定量的に評価することができる。例えば、国際公開WO2012/029752号(特許文献1)、国際公開WO2013/035703号(特許文献2)などには、蛍光体集積粒子(蛍光物質集積ナノ粒子と呼ばれることもある)を用いて目的とするタンパク質の免疫染色を行う方法が記載されている。このようなPIDを初めとした蛍光ナノ粒子は褪色しにくいため比較的長時間にわたって観察や撮像が可能であり、さらに、その輝度の高さから目的となるタンパク質の位置を高い精度で示すことができる。
 また近年では腫瘍組織における遺伝子検査の精度や結果解析が格段に進歩したことから、上述したようなタンパク質ベースの検証に加えて遺伝子ベースの解析も盛んに行われるようになっている。例えば、腫瘍組織特有の遺伝子変異の解析や、それに関連した特有の生体分子(タンパク質やRNA)の発現状態についての研究や成果が公表されている。例えば、非特許文献3では、腫瘍組織遺伝子変異由来の情報をもとに治療や薬剤の効果を予測できるという可能性について示唆している。
 このような状況から、主に遺伝子情報に基づいて薬剤の効果を予測することで薬剤の効果が得られそうな患者を層別することが新薬開発の臨床現場において注目されるようになってきている。また遺伝子情報による薬や治療の効果を予測することで一人一人に適した予防や検査、治療を行う高精度医療[Precision Medicine]と呼ばれる開発手法による成功例も出始めている。しかし、遺伝子変異はメンデルの遺伝の法則のみに従うとは言い切れず、放射線・食物・加齢・感染症・自己免疫などの要因によっても後天的に発生し得るので、遺伝子変異のプロファイルは一人として同じ人はいないと極論されるような状況となっており、したがって遺伝子変異由来の情報をもとに治療や薬剤の効果を予測するには膨大な遺伝子情報(遺伝子変異情報)から導き出さなければならないことも示唆されている。
国際公開WO2012/029752号 国際公開WO2013/035703号
Nature Communications, 2016; Vol.7, 12624 Oncotarget, 2015; Vol.6, No. 25, 21522-21532 Journal of Clinical Oncology 2016; 34:3638-3647.
 上述したように腫瘍組織の遺伝子検査によって取得された遺伝子情報から、当該腫瘍組織特有の生体分子(以下特定バイオマーカーという)を特定することで、治療や薬剤の効果を予測できる可能性がある。しかしながら遺伝子情報はその遺伝子に関連した特定バイオマーカーが発現している可能性を示唆するものに過ぎず、当該特定バイオマーカーが発現していることを実証するものではない。つまり遺伝子検査の結果のみからは特定バイオマーカーが実際に発現していること、またはその特定バイオマーカーが例えば薬剤の薬効に実際に関与することを確認することはできない。
 本発明は、上記問題に鑑みてなされたものであって、ヒトの病変部(病変組織)を移植した実験動物を用いて、特定バイオマーカーの発現状態の情報を取得して解析を行なうことにより、実際に患者において治療を行なった場合に予測される治療の効果や副作用等を予測する手段を提供することを課題とする。
 本発明は、上記課題を解決するために以下のような手段をとる。すなわちヒト(例えば患者、臨床検体等)より採取した病変組織(病変部)の遺伝子情報(遺伝子変異情報)を解析することでヒト特有の変異情報に関連した特定バイオマーカー(タンパク質、RNA、miRNA等)を特定する。さらに当該病変組織を移植した実験動物の当該移植された病変組織における特定バイオマーカーの発現状態を特定する。このような発現状態の特定手段としては、好ましくは蛍光体集積粒子のような蛍光ナノ粒子を用いた蛍光染色が挙げられる。蛍光染色した病変組織について撮影を行い、特定バイオマーカーの発現状態を画像情報とすることで、当該発現状態を定量的に測定、観察し、さらに解析を行なうことができる。本発明者らはこのように特定バイオマーカーの発現状態の情報を解析することで、個々の患者の治療および臨床試験等(治験、臨床研究)における治療や投薬の効果、効能等を予測できることを見出した。
 すなわち本発明は一つの側面において、ヒト病変組織を移植した実験動物の当該移植された病変組織における、特定バイオマーカーの発現状態の情報の取得および当該実験動物での治療について有効性の評価(効果だけでなく副作用等の副次的な評価も含む)を行い、さらに上記発現状態の情報と評価とを関連づけることで、ヒトに対して実際行われる臨床試験(治験)や治療における有効性を高い精度で予測する方法を提供する。
 さらに他の側面においては、このような特定バイオマーカーの発現状態の情報やその解析結果、医薬情報などを一連の情報として統合したデータベースを作製し、当該データベスを利用して臨床試験(治験)や治療における有効性を高い精度で予測する方法を提供する。
 本発明により、ヒトの病変組織(病変部)を担持した実験動物を用いて特定バイオマーカーの発現状態の情報を多角的に解析することで、薬剤や治療の有効性をこれまでにない水準で正確に行うことができる。
 また、臨床試験、治験または治療を実際に行なう前に実験動物において代替試験[Surrogate test]を行なうことで、効果の見込まれる治療方法や薬剤を適切に選択してより効果的な治療を行なうことができ、期間短縮、費用削減、成功確率向上などの医療経済的効果も期待できる。
図1は、特定バイオマーカーの発現状態の情報の1つである特定バイオマーカーの分布状態のパターンを例示している。パターンAは腫瘍組織領域の周辺部に特定バイオマーカーがコロニー状に局在している様子を、パターンBは腫瘍組織領域の周辺部に帯状に局在している様子を、パターンCは腫瘍組織領域の中心部に特定バイオマーカーがコロニー状に局在している様子を、それぞれ模式的に示している。 図2は、特定バイオマーカーの発現状態の情報を含む1以上の情報群を統合したデータベース作製のブロック図である。 図3は、データベース作製の模式図である。 図4は、データベースを利用した治療の有効性の予測方法の一例をあらわしたブロック図である。 図5は、治験におけるデータベースの利用方法の一例をあらわしたブロック図である。 図6はデータベースを利用した治療方針の選択方法の一例をあらわしたブロック図である。
 本発明は、ヒトから採取した病変部である検体を用いて、後述する特定バイオマーカーに関する情報を含む1以上の情報を取得して、その情報を治療の有効性を予測するために用いる方法を含む。
 本発明の別の側面では、ヒトから採取した病変部の組織またはそれに由来する細胞を移植した実験動物の、当該移植部から採取した病変部である検体を用いて、特定バイオマーカーの発現状態に関する情報を含む1以上の情報を取得して、治療の有効性を予測するために用いる方法を含む。
 本発明のさらに別の側面では、ヒトから採取した病変部である検体を用いて、特定バイオマーカーの発現状態の情報を含む1以上の情報を取得し、さらに当該ヒトから採取した病変部の組織またはそれに由来する細胞を移植した実験動物の、当該移植部から採取した病変部である検体を用いて、特定バイオマーカーの発現状態の情報を含む1以上の情報を取得し、取得された情報を組み合わせて治療の有効性の予測のために用いる方法を含む。
 前記情報には特定バイオマーカーの発現状態に関する情報の他に、例えば、特定バイオマーカーを発現している細胞の形態や他の生体分子の発現状態についての情報などが含まれていてもよいし、検体中の血管占有率などの特定バイオマーカーを発現している細胞に関する情報以外の情報が含まれていてもよい。
 本発明において「ヒト」は、後述する治療の対象となる疾患(がん等)を有しているヒトまたは疾患を有する疑いがあるヒトであり、本明細書においては患者と称することもある。なお、「疾患を有している」とは医師等によりその罹患を診断されたものであり、「疾患を有する疑いがある」とは公知の何等かの手法により罹患の可能性があると判定されたものである。
 「病変部」は、一般的に疾患の発症や進行に伴い変化する部位であり、病変した組織(病変組織)を含むが、周辺の正常組織も含まれ得る。例えば、がん患者における「病変部」とは腫瘍部(または腫瘍を有する疑いのある部分)であり、腫瘍組織および周辺の正常組織や細胞が含まれ得る。
 本発明において「検体」は、ヒトから採取した病変部の組織もしくは細胞、またはヒトの病変部由来の組織もしくは細胞を移植した実験動物の当該移植部から採取した組織切片や細胞をいう。一般的には免疫染色法により目的とするタンパク質の発現を評価する際などに従来慣用されているような、所定の手順に従って作製された標本スライドの形態をとる。
 (実験動物)
 本発明において実験動物は、具体的にはヒトの病変部の組織またはそれに由来する細胞が移植された実験動物であることが好ましい。例えば、ヒト(患者)の病変部が腫瘍である場合、腫瘍部から採取した腫瘍組織またはがん細胞を移植した実験動物であってもよいし、採取した腫瘍組織またはがん細胞をクローン化した培養細胞を移植した実験動物であってもよく、換言すればそのような場合「実験動物」は担腫瘍動物である。またその他にも、目的に応じて様々な実験動物、例えば、アルツハイマー病モデル、糖尿病モデル、遺伝病モデル、感染症モデルなどの病変モデル動物を実験動物として用いることができる。動物種の例としては、マウス、ラット、ウサギ、モルモット、スナネズミ、ハムスター、フェレット、イヌ、ミニブタ、サル、ウシ、ウマ、ヒツジなど、ある程度の遺伝学的な制御がなされており、均質な遺伝的要件を備えている動物が挙げられるが、飼育や実験が容易であるという観点から特にマウスが広く用いられている。
 実験動物として担腫瘍動物を用いる場合、実験動物に腫瘍部を保持させるための手法は特に限定されるものではなく、公知の手法を用いることができる。例えば、マウスの体を切開して患者の腫瘍のブロックを移植したり、患者から取り出した腫瘍組織やそれに由来する培養細胞を注射により挿入するなど、さまざまな手技が試みられている。
(担腫瘍モデルマウス)
 本発明の実験動物として担腫瘍動物を用いる場合、担腫瘍モデルマウスを用いることが好ましく、後述するPDXモデルマウスを用いることがより好ましい。担腫瘍モデルマウスは、大きく自然誘発腫瘍マウス、培養がん細胞移植マウス、患者腫瘍組織移植マウスの3つに分類できる(表1参照;Kohrt et al., Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Annals of Oncology 00: 1-9, 2016)。
 培養がん細胞移植マウスはヒト(患者)から採取した腫瘍細胞を試験管で培養してクローン化した培養細胞を獲得免疫不全マウスに移植して作成される。培養がん細胞移植マウスとしては、CDX[Cell-line derived xenograft]モデルマウスが挙げられる。ヒト(患者)から採取した腫瘍組織が移植されたマウスとしては、PDX[Patient derived xenograft]モデルマウスのほか、Immuno-avatarモデルマウス、造血リンパ系ヒト化[Hemato-lymphoid humanized]モデルマウス、Immune-PDXモデルマウスなどが挙げられる。
Figure JPOXMLDOC01-appb-T000001
 PDXマウスは患者由来の腫瘍組織を獲得免疫不全マウスに移植することによって作製される。また、Immuno-avatar モデルマウス、造血リンパ系ヒト化モデルマウスおよびImmune-PDXモデルマウスは、それぞれヒトの末梢血単核細胞、CD34+ヒト造血幹細胞およびその前駆細胞(HSPC)または腫瘍浸潤リンパ球を移植した獲得免疫不全マウスに、患者由来の腫瘍組織を移植することによって作製される。
 患者腫瘍組織移植マウスには、患者由来の腫瘍組織を移植してから一定期間成長させたマウス(初代:第0世代)と、第0世代の腫瘍部が移植された(継代された)第1世代のマウス、およびそれ以降の第n世代(n≧1)の腫瘍部が移植された(継代された)第n+1世代のマウスの全てが含まれる。
 したがって、本発明において実験動物が担腫瘍マウスの場合、「検体」は担腫瘍マウスにおいてその作成時に腫瘍細胞または腫瘍組織を移植された部分であって、移植から任意の時間経過した部分から作製され得る。
(特定バイオマーカー)
 本発明において「特定バイオマーカー」とは、ヒトの病変部に存在している生体物質(タンパク質、核酸等)であり、好ましくはヒトの病変部に含まれる細胞が発現している生体物質であり、典型的には病変組織に含まれる細胞に特異的に発現する生体物質である。
 特定バイオマーカーは、遺伝子検査により患者から採取した病変部(病変組織)から作製した検体の遺伝子解析を行い、前記検体における遺伝子の変異情報を解析し、当該遺伝子の変異情報に基づいて特定することができる。例えば、変異を起こしている遺伝子にコードされているタンパク質を特定バイオマーカーとし、該特定バイオマーカーに関する情報を取得して解析することにより、特定バイオマーカーを標的とする分子標的薬の有効性を予測することができる。
 より具体的には、患者から採取した腫瘍組織等を用いてその遺伝子の変異情報を解析し、変異した遺伝子にコードされているタンパク質を特定バイオマーカーとして特定する。また当該腫瘍組織等の一部を実験動物に移植して、適当な時間の経過後、当該移植部分の特定バイオマーカーに関する情報について解析を行うとともに当該実験動物に特定バイオマーカーを標的とする分子標的薬を投与し、取得されたバイオマーカーの発現状態の情報および薬剤の効果などの医療情報をひもづけすることで、実際に患者に投与した場合の薬剤の効果などを予測することができる。
 本発明において、特定バイオマーカーは、検体中に存在するものであれば特に限定されるものではなく、さらに検体中に存在する特定の1種類の生体物質を選択して特定バイオマーカーとしてもよいし、2種類以上の生体物質を選択して特定バイオマーカーとしてもよい。
 特定バイオマーカーが核酸である場合、前記核酸は、病変部(病変組織)の組織に含まれる細胞のゲノム由来のmRNA,tRNA,miRNA,siRNA,non-cording-RNAなどの各種RNAであることが好ましく、なかでもmiR21、miR34a、miR197、miR200、miR513、miR-133a、miR-143、exosomal micro-RNA(miR-181c、miR-27b)、let-7a、miR-122、iR4717などのmiRNAであることが好ましい。
 特定バイオマーカーがタンパク質である場合、前記タンパク質は病変部(病変組織)の組織に含まれる細胞においてリン酸化されるタンパク質であることが好ましく、そのようなリン酸化されるタンパク質としては、例えば、HER2、HER3、EGFR、VEGFRなどが挙げられる。前記リン酸化されるタンパク質を特定バイオマーカーとする場合、前記特定バイオマーカーに関する情報には、当該タンパク質の全発現量、当該タンパク質の全発現量に対するリン酸化型タンパク質の割合、およびリン酸化型のタンパク質のみの量など情報が含まれていてもよい。
 検体が腫瘍組織または腫瘍部に由来する場合、そこに含まれる細胞には腫瘍細胞だけでなく、腫瘍細胞以外の細胞、例えば腫瘍細胞と相互作用する免疫細胞のような細胞も含まれる。したがって本明細書における特定バイオマーカーは、腫瘍細胞に発現するがん関連タンパク質および/または免疫細胞に発現するタンパク質であることが好ましい。
 (がん関連タンパク質)
 「がん関連タンパク質」としては、代表的には「がん細胞に発現する免疫系タンパク質」、「がん細胞に発現するパスウェイ系タンパク質」、「がん細胞に発現する転移系タンパク質」が挙げられる。それぞれに分類されるがん関連タンパク質には様々なものが知られており、診断または治療の目的、使用する薬剤の作用機序等に応じて適切なものを選択することができ、特に限定されるものではない。なお、nCounterが提供するがん関連遺伝子発現パネルに含まれる、免疫系(Immune)遺伝子パネル、パスウェイ系(Pathway)遺伝子パネル、転移系(Progression)遺伝子パネルの遺伝子(各770遺伝子)がコードしているタンパク質が、それぞれがん細胞に発現する免疫系タンパク質、パスウェイ系タンパク質、転移系タンパク質に該当する。また、これらの遺伝子の変異遺伝子に対応する変異タンパク質も、免疫系タンパク質、パスウェイ系タンパク質、転移系タンパク質に含むことができる。
 「がん細胞に発現する免疫系タンパク質」としては、例えば、免疫チェックポイントタンパク質であるCD40、TL1A、GITR-L、4-188-L、CX4D-L、CD70、HHLA2、ICOS-L、CD85、CD86、CD80、MHC-II、PDL1、PDL2、VISTA、BTNL2、B7-H3、B7-H4、CD48、HVEM、CD40L、TNFRSF25、GITR、4-188、OX40、CD27、TMIGD2、ICOS、CD28、TCR、LAG3、CTLA4、PD1、CD244、TIM3、BTLA、CD160、LIGHTなどが挙げられる。
 「がん細胞に発現するパスウェイ系タンパク質」としては、例えば、がん細胞増殖因子あるいはがん細胞増殖因子受容体であるEGFR(HER1)、HER2、HER3、HER4、IGFR、HGFR;細胞表面抗原、血管増殖因子あるいは血管増殖因子受容体であるVEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-E、PlGF-1、PlGF-2;サイトカインあるいはサイトカイン受容体であるインターフェロン、インターロイキン、G-CSF、M-CSF、EPO、SCF、EGF、FGF、IGF、NGF、PDGF、TGFなどが挙げられる。
 「がん細胞に発現する転移系タンパク質」としては、例えば、がん転移マーカーであるACTG2、ALDOA、APC、BRMS1、CADM1、CAMK2A、CAMK2B、CAMK2D、CCL5、CD82、CDKN1A、CDKN2A、CHD4、CNN1、CST7、CTSL、CXCR2、YBB、DCC、DENR、DLC1、EGLN2、EGLN3、EIF4E2、EIF4EBP1、ENO1、ENO2、ENO3、ETV4、FGFR4、GSN、HK2、HK3、HKDC1、HLA-DPB1、HUNKIL11、KDM1A、KISS1、LDHA、LIFR、MED23、MET、MGAT5、MAP2K4、MT3、MTA1、MTBP、MTOR、MYCL、MYH11、NDRG1、NF2、NFKB1、NME1、NME4、NOS2、NR4A3、PDK1、PEBP4、PFKFB1、PFKFB4、PGK1、PLAUR、PTTG1、RB1、RORB、SET、SLC2A1、SNRPF、SSTR2、TCEB1、TCEB2、TCF20、TF、TLR4、TNFSF10、TP53、TSHR、MMP、MMP2、MMP10、HIF1などが挙げられる。
 (免疫細胞におけるタンパク質)
 「免疫細胞に発現するタンパク質」としては、例えば、PD-1、CTLA-4、TIM3、Foxp3、CD3、CD4、CD8、CD25、CD27、CD28、CD70、CD40、CD40L、CD80、CD86、CD160、CD57、CD226、CD112、CD155、OX40(CD134)、OX40L(CD252)、ICOS(CD278)、ICOSL(CD275)、4-1BB(CD137)、4-1BBL(CD137L)、2B4(CD244)、GITR(CD357)、B7-H3(CD276)、LAG-3(CD223)、BTLA(CD272)、HVEM(CD270)、GITRL、ガレクチン-9(Galectin-9)、B7-H4、B7-H5、PD-L2、KLRG-1、E-Cadherin、N-Cadherin、R-CadherinおよびIDO、TDO、CSF-1R、HDAC、CXCR4、FLT-3、TIGITが挙げられる。
 (間質に含まれるタンパク質)
 また、本明細書における特定バイオマーカーは、腫瘍細胞および免疫細胞以外の細胞において発現するものであってもよい。腫瘍細胞および免疫細胞以外の細胞において発現する生体物質の具体例としては、間質に含まれるタンパク質等が挙げられる。
 「間質」は主に、線維芽細胞、内皮細胞、白血球(リンパ球、単球、好中球、好酸球、好塩基球)などの間質細胞と、コラーゲン、プロテオグリカンなどのタンパク質からなる細胞外マトリックスとによって構成される。間質細胞および細胞外マトリックスのどちらに存在している生体物質を特定バイオマーカーとしてもよいが、実験動物が担持する移植された病変部(例えば腫瘍細胞)の形質に対する影響がより大きいと考えられる、間質細胞が発現する生体物質を特定バイオマーカーとして選択することが好ましく、代表的な間質細胞である線維芽細胞が発現している生体物質を選択することがより好ましい。
 間質細胞に含まれるタンパク質としては、例えば間質細胞マーカーである、以下に示すような膜タンパク質の中から適切なものを選択して利用することができる。なかでも、CD140aは、線維芽細胞、巨核球、単球、赤血球、骨髄系前駆細胞、内皮細胞などの細胞表面に発現する膜タンパク質であり、本発明における間質細胞マーカーとして好ましい。
 以下間質細胞マーカーの具体例およびそれぞれの主な分布について記載する。
 CD106(VCAM-1、INCAM-110)…活性化血管内皮細胞、樹状細胞;
 CD109(Platelet activation factor、 8A3、 E123)…活性化T細胞、血小板、血管内皮、巨核球、CD34+前駆細胞サブセット;
 CD140a(PDGF-R、 PDGFR2)…線維芽細胞、巨核球、単球、赤血球、骨髄系前駆細胞、内皮細胞;
 CD140b(PDGF-R、 PDGFR1)…内皮細胞、ストローマ細胞;
 CD141(Thrombomodulin)…血管内皮、骨髄系細胞、血小板、平滑筋;
 CD142(Tissue Factor(TF)、 Thromboplastin)…上皮細胞、活性化単球、活性化血管内皮;
 CD143(ACE: アンジオテンシン転換酵素)…血管内皮、上皮細胞、活性化マクロファージ;
 CD144(VE-Cadherin、 Cadherin-5)…血管内皮;
 CD145(7E9、 P7A5)…内皮細胞;
 CD146(MUC18、 s-endo、Mel-CAM)…血管内皮、活性化T細胞、黒色腫;
 CD147(Basigin、 M6、 EMMRRIN)…白血球、赤血球、血管内皮、血小板;
 CD201(EPCR:血管内皮細胞プロテインCレセプター)…血管内皮;
 CD202(TIE2、TEK)…血管内皮、造血幹細胞サブセット;
 CD280(Endo180、TEM22、uPARAP(uPAR-associated protein))…骨髄前駆細胞,線維芽細胞,内皮細胞サブセット,マクロファージサブセット;
 CD299(DC-SIGN-related、 L-SIGN(Liver/Lympho node specific ICAM3-grabbing nonintegrin))…内皮細胞;
 CD309(VEGFR2( Vascular endothelial growth factor receptor2)、 KDR)…内皮細胞、巨核球、血小板、幹細胞サブセット;
 CD322(JAM2(Junctional adhesion molecule 2))…内皮細胞、単球、B細胞、T細胞サブセット;
 CD331(FGFR1(Fibroblast growth factor receptor1))…線維芽細胞、上皮細胞;
 CD332(FGFR2、Keratinocyte growth factor receptor)…上皮細胞;
 CD333(FGFR3、 JTK4)…線維芽細胞、上皮細胞;
 CD334(FGFR4、JTK2、 TKF)…線維芽細胞、上皮細胞;
 CD339(Jagged-1、 JAG1)…ストローマ細胞、上皮細胞。
(特定バイオマーカーの発現状態)
 本発明における特定バイオマーカーの発現状態とは、特定バイオマーカーの発現量、特定バイオマーカーを発現している細胞の種類、数および/または形態、特定バイオマーカーの発現部位(実験動物として担腫瘍動物モデルを用いる場合には、腫瘍組織または腫瘍部内の分布、専有面積)等の情報によって形作られる特徴をいう。
 (特定バイオマーカーの発現状態の情報)
 本発明の方法における特定バイオマーカーの発現状態の情報としては、例えば検体(標本スライド)における、(1)特定バイオマーカーの細胞当たりの、または組織の単位面積あたりの発現量、(2)特定バイオマーカーの細胞あたりの発現量とそれに対応する細胞数によって表されるヒストグラム、(3)特定バイオマーカーの細胞あたりの発現量とそれに対応する細胞数によって表される曲線、(4)複数の特定バイオマーカーの相互の位置情報(距離)に関する情報、(5)特定バイオマーカーの細胞内における局在パターン、特定細胞群(例えば、がん細胞群)の注目領域内(ROI:region of intrest)における局在パターンなどのパターンに係る情報等が挙げられる。これらの情報は画像情報(デジタル画像として変換されたものを含む)として取得されたものであることが好ましく、さらに定量的な情報として変換し得るものであることが好ましい。発現状態の情報は上記のいずれか一つだけでなく、複数が組み合わされたものであってもよいし、また、特定バイオマーカーを複数選択してそれぞれの発現状態の情報が組み合わされたものであってもよい。
 特定バイオマーカーの発現状態の情報を画像情報として取得する方法は特に限定されないが、例えば高解像度の全体スライドスキャナ(Whole slide Scanner)を用いて検体(標本スライド)を撮影することにより、デジタル画像として変換された画像情報を取得することができ、当該画像情報の画像解析により、特定バイオマーカーの発現状態の情報を定量的に解析することができる。この解析はデジタル画像の処理や解析に一般的に用いられる任意のアルゴリズムを用いて行なってもよいし、特定バイオマーカーや検出対象に応じて好適化したアルゴリズムを用いて行なってもよい。
 画像情報から発現状態の情報を定量的に取得するためには、代表的には有機蛍光色素、量子ドット、または樹脂等の母体に有機蛍光色素や量子ドットなどの蛍光体を集積させた粒子である蛍光体集積粒子(Phosphor Integrated Dot:PID)のように、直径がナノサイズの粒子を用いて、検体(標本スライド)の染色を行なうことで特定バイオマーカーを標識する手法が用いられる。なかでも、蛍光体集積粒子を用いて行われる染色方法(PID法)は、本発明で用いる手法として特に好適であるが特に限定されるものではなく、それと同程度の精度を有するその他の手法であってもよい。PID法の基本的な実施形態は、上述したように複数の特許文献または非特許文献により公知である。本明細書の実施例でも、標本スライドを用いて病理診断を行う場合に準じた実施形態で、PID法を実施して発現状態の情報を取得している。以下、本発明における実施形態の1例である、PID法による特定バイオマーカーの発現状態の情報を取得する方法の例について詳細に説明する。
 (1)特定バイオマーカーが例えばタンパク質の場合において細胞あたりの平均発現量を定量する場合には、例えば、蛍光体集積粒子が結合した抗特定バイオマーカー抗体を用いて検体(標本スライド)を蛍光免疫染色を行い、用いた蛍光体集積粒子に対応する波長を有する励起光を染色した標本スライドに照射して観察および撮像を行うことで、特定バイオマーカーを標識した蛍光体集積粒子が輝点として表れている画像を取得することができる。取得した蛍光染色画像における、該輝点数を特定バイオマーカーの発現量の指標値として用いてもよい。また、複数の蛍光体集積粒子が1つの輝点を形成している場合もあるので、ある1つの輝点の明るさ(輝度、蛍光強度)を、別途測定しておいた蛍光体集積粒子1つあたりの明るさで割ることにより、その輝点に含まれる蛍光体集積粒子の粒子数を算出することができ、その粒子数を特定バイオマーカーの発現量の指標値として用いてもよい。
同様に特定バイオマーカーの組織の単位面積あたりの発現量を求める場合、画像中の特定の領域にある組織に含まれる細胞における輝点数または粒子数について計測した後、その組織の面積で割るようにすればよい。
 また、前記蛍光免疫染色と共に形態観察用染色剤(例えばエオジン)によって細胞の形状が特定できるように染色を行い、明視野における観察および撮像を行うことで、画像全体の、または画像中の特定の領域(例えば腫瘍組織のみ)に含まれる細胞数を計測することができる。蛍光染色画像と形態観察用染色画像の2枚の画像を、画像処理により重ねあわせることで、それぞれの細胞において発現している特定バイオマーカーを表す輝点数や粒子数を計測することができる。特定バイオマーカーの発現量の指標としては、画像全体に含まれる輝点数または粒子数を細胞数で割ることにより算出される細胞当たりの平均発現量を用いてもよいし、それぞれの細胞の輝点数や粒子数を計測して算出した平均値を用いてもよい。
 特定バイオマーカーが核酸の場合には、免疫染色の代わりに蛍光体集積粒子で標識したプローブを用いて遺伝子を特異的に染色する方法(例;FISH法)を行なうことで、同様に細胞当たりや単位面積あたりの発現量を特定することができる。
 (2)特定バイオマーカーの細胞あたりの発現量とそれに対応する細胞数によって表されるヒストグラムを作成する場合、まず、(1)と同様にして、画像全体に含まれる、または画像中の特定の領域(例えば腫瘍組織のみ)に含まれる、個々の細胞について、発現している特定バイオマーカーを表す輝点数または粒子数を求める。そして、横軸に細胞あたりの特定バイオマーカーの発現量を所定の数ごとに区切ってとり(例えば、本明細書に記載した実施例で行っているように、1~300個までを20個ごとに分けて、0個区分を含めた16の範囲に区切り)、それぞれの区切りに対応する細胞数(頻度)を計測して縦軸にとることにより、ヒストグラムを作成することができる。
 (3)特定バイオマーカーの細胞あたりの発現量とそれに対応する細胞数によって表される曲線を作成する場合、まず、(2)と同様にして、画像全体に含まれる、または画像中の特定の領域(例えば腫瘍組織のみ)に含まれる、個々の細胞について、発現している特定バイオマーカーを表す輝点数または粒子数を求める。そして、細胞あたりの特定バイオマーカーの発現量を連続的に(ヒストグラムのように区切らずに)横軸にとり、それぞれの発現量に対応する細胞数(頻度)を計測して縦軸にとることにより、曲線を作成することができる。
 前記(2)のヒストグラムおよび(3)の曲線からは、分布(ヒストグラムまたは曲線の形状、ピークの数)がどのようになっているか、平均値または中央値、分散(CV)がどのような値か、また特にヒストグラムの場合、細胞あたりの輝点数または粒子数が最大の区切りがどの程度の細胞数(頻度)であるか、などの情報を得ることができる。なお、当該ヒストグラムおよび曲線は、もともとは特定バイオマーカーの発現量(輝点数または粒子数)および発現細胞数を計測し、それらの数を直接的に取り扱った上で、グラフ化されたものであるから、「定性的」ではなく「定量的」な手法を用いて得られる情報に分類される。
 (4)複数の特定バイオマーカーの相互の位置情報(距離)を定量する場合には、それぞれの特定バイオマーカーを標識した蛍光体集積粒子(輝点)の距離を、それぞれの特定バイオマーカーの距離とみなすことができる。この工程を実施する場合、同一の検体(組織切片等)に対して、ある特定バイオマーカーのための蛍光染色および他の特定バイオマーカーのための蛍光染色を行えばよく(多重免疫染色)、このとき、それぞれの特定バイオマーカーを区別するために異なる波長の蛍光を発する蛍光標識を用いることが適切である。
 (5)特定バイオマーカーの細胞内における局在パターンを取得する場合には、特定バイオマーカーを標識した蛍光体集積粒子が輝点として表れている画像(暗視野画像)と細胞の形状を表すように染色されている画像(明視野画像)を、画像処理により重ねあわせて取得したそれぞれの細胞におけるバイオマーカーの分布が現れた画像における分布状態を任意のいくつかのパターン(例えば、細胞中心部に集積・細胞辺縁(細胞膜近辺)に集積・細胞全体に拡散など)に分類すればよい。画像に含まれるすべての細胞の局在パターンのうち最も多数を占めるものを決定してその検体(組織)における特定バイオマーカーの局在パターンとすることもできる。また、関心領域内(ROI:region of intrest)における局在パターンを取得するためには、明視野画像と暗視野画像を重ね合わせた画像において関心領域となる領域を設定し、そこに含まれる特定細胞群(例えば、がん細胞群)における局在パターンを分類すればよい。
 (治療方法の有効性の判定・治療方法の選択)
 本発明の1つの側面においては、患者から採取した病変部(病変組織)である検体の遺伝子解析による変異情報をもとに特定バイオマーカーを特定し、さらに当該病変部を移植した実験動物の病変組織における当該特定バイオマーカーの発現状態の情報(画像情報を含む)およびその解析結果、当該実験動物における治療(薬剤)の効果や副作用および予後などの医薬情報などを一連の情報として関連付けて多角的に解析することで、当該患者における治療の有効性について精度の高い予測が可能となる。
 治療の対象となる疾患は特に限定されるものではないが、例えば、神経疾患、感染性疾患、遺伝性疾患、腫瘍(がん)であり、典型的には腫瘍(がん)である。腫瘍は、特に限定されるものではないが、例えば、細胞腫、黒色腫、肉腫、脳腫瘍、頭頸部がん、胃がん、肺がん、乳がん、肝がん、大腸がん、子宮頸がん、前立腺がん、膀胱がんなどの固形がん、白血病、リンパ腫、および多発性骨髄腫、などが挙げられる。
 治療方法については、対象となる疾患に適用されるものであれば特に限定されるものではない。例えば前記疾患が腫瘍である場合には、手術、放射線(重量子線、陽子線)療法、薬物療法等が挙げられ、典型的には抗がん剤、ホルモン剤、免疫賦活剤等の投与による薬物療法であり、特に特定バイオマーカーを標的分子とする分子標的薬(例えばそのバイオマーカーを認識する抗体医薬やADC(抗体-薬物複合体(Antibody-Drug Conjugate))医薬など)が好適に用いられる。
 以下、薬剤を用いておこなう腫瘍に対する治療の有効性の予測方法について説明するが、特にこの実施形態に限定されるものではない。
 患者から採取した病変部(腫瘍組織)である検体の遺伝子解析により特定バイオマーカーを特定する。さらに実験動物に当該病変部を移植し、適当な時間の経過後に当該移植した病変部を採取して検体とし、当該特定バイオマーカーの発現状態の情報を取得する。その発現状態の情報やその解析結果によってその特定バイオマーカーをターゲットとする薬剤の有効性を評価する。例えば、薬剤の標的である特定バイオマーカーが病変組織に発現していないか発現しても発現している細胞の割合が小さかったりすると、実際にその治療を行なったとしても(薬剤を実際に投与したとしても)、効果が期待できないと予測することができる。
 また、その薬剤を患者に投与する前に、前述のような患者の病変部を移植した実験動物(例えばPDXマウス)に投与し、その薬剤の効果や副作用等を評価する、代替試験「Surrogate test」を行なうことで、より精度の高い予測結果を得ることができる。
 薬剤の効果を評価する方法は特に限定されないが、例えば薬剤の投与前後における移植した病変部(腫瘍)の大きさの変化を指標としてもよいし、あるいは血液中の公知の腫瘍マーカー、感染症マーカー等の数値、またはその他病理学的試験の結果(変化)などを指標としてもよい。副作用等を評価する方法も特に限定されないが、血球細胞の数値や消化管等の病理組織検査の結果等を指標にすることができる。
 (データベース化した情報の提供)
 本発明のさらなる側面では、特定バイオマーカーの発現状態の情報を含む1以上の情報を治療の有効性の予測や評価のために提供することができる。具体的には特定バイオマーカーの発現状態の情報、その解析結果、医薬情報およびその他の情報を含めた情報群を統合したデータベースとして、例えば医療機関や企業等に提供することで、疾患の治療方法・薬剤の効果の予測、治験・臨床試験、治療計画の構築等、様々な場面で有用に用いることができる。これらの情報は公開されている公知の情報が含まれてもよく、さまざまな検体における蛍光ナノ粒子を用いた蛍光免疫染色を行なうことによって取得した情報が含まれていてもよい。以下、PDXマウスを用いたデータベースの作製や利用形態について説明するが、特に限定されるものではない。
 ある一定のプロトコールの下に、PDXマウスから腫瘍組織を採取し、検体(標本スライド)を作製する。腫瘍組織の遺伝子解析を行い、当該腫瘍細胞において起きている遺伝子変異に関する情報をもとにその変異情報に関連したタンパク質、例えば変異している遺伝子がコードしているタンパク質を、特定バイオマーカーとし、さらに当該特定バイオマーカーをPIDで標識する蛍光免疫染色を行なうことで、検体における特定バイオマーカーの発現状態を画像化し、画像情報を解析して発現状態の情報を取得する。
 医薬情報としては、PDXマウスに、薬剤を投与して、投与前および投与後の腫瘍体積を計測するなどの手段で薬剤の効果を評価したり、消化器、血液および行動などをサンプリングすることによって副作用の有無を判定するなど、の情報が挙げられる。投与する薬剤はそれぞれ単剤で投与してもよいし、複数の薬剤を組み合わせる形で投与してもよい。また投与形態、投与経路、投与期間や投与回数などをそれぞれ変えることで、より詳細な情報を得ることができる。
 以上のような手順で様々な患者由来の腫瘍組織を担持したPDXマウスにおける遺伝(変異)情報、バイオマーカーの発現状態、医薬情報を集成することでデータベースを作成する。
 このようなデータベースは、ネットワークを介してユーザーが利用可能なように提供したり、例えば、光ディスク(コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)など)やフラッシュメモリ(SSD(Solid State Drive)、メモリーカードなど)などのコンピュータ可読記録媒体に記憶した状態でユーザーに提供することができる。
 (データベースの利用‐1)
 例えば患者から採取した検体、または患者から採取した組織を移植したPDXマウスの検体における特定バイオマーカーの発現状態と前記データベースとを照合して、発現状態に係る情報が類似しているサンプルをデータベースから1以上抽出し、そのサンプルに含まれる医薬情報を参照して、当該患者における薬剤の効果や副作用を投薬前に予測することが可能となる。
 さらに薬剤を実際に患者に投与する前に当該PDXマウスに投与する代替試験[surrogate test]を行なうことでさらに薬剤の効果等の予測の精度を上げることができる。さらにこのPDXマウスにおいて取得された特定バイオマーカーの発現状態および医薬情報をさらにデータベースに加え、情報を蓄積していくことで、データベースの情報量を増加させ、提供する情報の精度を向上させることができる。
 (データベースの利用‐2)
 また、PDXマウスやそのデータベースを治験や臨床試験において有効に使用することもできる。例えば治験では1~3の3つのフェーズと呼ばれる各段階があり、それぞれの段階での薬剤の安全性や有効性を確認している。実際に患者(ヒト)において候補となる薬剤を投与する前に、PDXマウスを作製し、試験を行なうことで、薬効の期待度や起こり得るリスクを予測することができる。以下にその具体的な一例をあげる。
 治療候補薬の対象であるがん患者である複数の治験参加候補者から採取した腫瘍組織を獲得免疫不全マウスに移植することでPDXマウスを作製する。それぞれのPDXマウスにおける候補治療薬の標的分子である特定バイオマーカーの発現状態と、それぞれのマウスに候補治療薬を投与することによる医薬情報を取得する。これらの情報から、各患者における候補治療薬の投与により期待できる薬効の程度や起こり得る副作用等を予測することができる。
 治験対象者である患者から採取した検体、または患者から採取した組織を移植したPDXマウスから採取した検体における特定バイオマーカーの発現状態とデータベースとを照合して、発現状態に係る情報が類似しているサンプルをデータベースから1以上抽出し、そのサンプルに含まれる医薬情報により期待できる薬剤の効果やそのリスクを予測し、対象者として適切であるかどうかを決定することができ、より効率よくまたリスクを抑えて治験を行なうことができる。 そうして得られたPDXマウスにおける特定バイオマーカーの発現状態および医薬情報をさらにデータベースに加え、情報を蓄積していくことで、データベースの情報量を増加させ、提供する情報の精度を向上させることができ、実際の治療手段として投薬を行なう際の薬剤の効果や起こり得る副作用等の予測に用いることができる。
 (評価モデルの利用‐3)
 さらに、データベースに含まれるサンプルの多い、つまり対象患者の多い領域(例えば乳がんや肺がんなど)においては、ある特定の患者の治療方針を決定するためにデータベースを利用することもできる。例えば、あるがん患者から採取した検体、または患者から採取した組織を移植したPDXマウスの検体において様々な特定バイオマーカー(例えば複数のがん関連タンパク質や核酸等)の発現状態の情報を取得し、データベースとを照合して発現状態に係る情報が類似しているサンプルを抽出することで、その腫瘍組織にはどの薬剤を選択し、さらにどのように投与することが効果的であるかを予測できることができる。
 さらにその患者のPDXマウスを複数作製し、候補となり得る薬剤を様々な方法で投与して薬剤の効果等を評価することによって、さらに効率的に実際に投与する薬剤を決定したり投与計画を構築することができる。また、以上のような手法で取得したバイオマーカーの発現状態の情報や医薬情報をさらにデータベースに加えて情報を蓄積していくことで、データベースに含まれるその領域の情報量をさらに充実させることができ、さらに精度の高い予測が可能となる。
 [作製例1]ビオチン修飾抗ウサギIgG抗体の作製
 50mMTris溶液に、2次抗体として用いる抗ウサギIgG抗体50μgを溶解した。この溶液に、最終濃度3mMとなるようにDTT(ジチオトレイトール)溶液を添加、混合し、37℃で30分間反応させた。その後、反応溶液を脱塩カラム「Zeba Desalt Spin Columns」(サーモサイエンティフィック社、Cat.#89882)に通して、DTTで還元化した2次抗体を精製した。精製した抗体全量のうち200μLを50mMTris溶液に溶解して抗体溶液を調製した。その一方で、リンカー試薬「Maleimide-PEG2-Biotin」(サーモサイエンティフィック社、製品番号21901)を、DMSOを用いて0.4mMとなるように調整した。このリンカー試薬溶液8.5μLを前記抗体溶液に添加、混合し、37℃で30分間反応させることにより、抗ウサギIgG抗体にPEG鎖を介してビオチンを結合させた。この反応溶液を脱塩カラムに通して精製した。脱塩した反応溶液について、波長300nmにおける吸光度を、分光高度計(日立製「F-7000」)を用いて測定することにより、反応溶液中のタンパク質(ビオチン修飾2次抗体)の濃度を算出した。50mMTris溶液を用いて、ビオチン修飾2次抗体の濃度を250μg/mLに調整した溶液を、ビオチン修飾2次抗体の溶液とした。
 [作製例2]テキサスレッド集積メラミン樹脂粒子の作製
 テキサスレッド色素分子「Sulforhodamine 101」(シグマアルドリッチ社)2.5mgを純水22.5mLに溶解した後、ホットスターラーにより溶液の温度を70℃に維持ながら20分間撹拌した。撹拌後の溶液に、メラミン樹脂「ニカラックMX-035」(日本カーバイド工業株式会社)1.5gを加え、さらに同一条件で5分間加熱撹拌した。撹拌後の溶液にギ酸100μLを加え、溶液の温度を60℃に維持しながら20分間攪拌した後、その溶液を放置して室温まで冷却した。冷却した後の溶液を複数の遠心用チューブに分注して、12,000rpmで20分間遠心分離して、溶液に混合物として含まれるテキサスレッド集積メラミン樹脂粒子を沈殿させた。上澄みを除去し、沈殿した粒子をエタノールおよび水で洗浄した。得られた粒子の1000個についてSEM観察を行い、平均粒子径を測定したところ、平均粒子径152nmであった。このようにして作製されたテキサスレッド集積メラミン樹脂粒子を、次の手順に従ってストレプトアビジンで表面修飾し、得られたストレプトアビジン修飾テキサスレッド集積メラミン樹脂粒子を実施例1および3における蛍光体集積粒子(PID)として使用した。
 [作製例3]ストレプトアビジン修飾テキサスレッド集積メラミン樹脂粒子の作製
 作製例2で得られた粒子0.1mgをEtOH1.5mL中に分散し、アミノプロピルトリメトキシシラン「LS-3150」(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。
 次いで、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて上記表面アミノ化処理を行なった粒子を3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモフィッシャーサイエンティフィック社製、succinimidyl-[(N-maleimidopropionamido)-dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いたテキサスレッド集積メラミン樹脂粒子を得た。
 一方、ストレプトアビジン(和光純薬社製)にN-succinimidyl S-acetylthioacetate(SATA)を反応させた後、脱保護してチオール基付加処理を行った。この反応液をゲルろ過カラムによるろ過に付し、テキサスレッド集積メラミン樹脂粒子に結合可能なストレプトアビジン溶液を得た。
 上記のテキサスレッド集積メラミン樹脂粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、室温で1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン修飾テキサスレッド集積メラミン樹脂粒子を作製した。
 <評価準備-1>
 5名の乳がん患者(A~E)それぞれの乳がん組織について網羅的遺伝子解析を行い、得られた遺伝子の変異情報に基づいてバイオマーカーを特定した。特定されたバイオマーカー(特定バイオマーカー)は、HER2およびERであった。また当該5名の患者の乳がん組織から単離したがん細胞をSCID(Sevefe Combined ImmunoDeficiency)マウスの皮下に移植した(各患者の腫瘍組織に対して5匹ずつ作製、計25匹)作製した。腫瘍体積が約100mm3となった時点(移植約3か月後)から、これらのマウスにトラスツズマブ(商品名:ハーセプチン)尾静脈内投与を開始した(15mg/kg:4日に1回:計4回)。投与前後における腫瘍体積の測定を行なうとともに、初回投与前、初回投与から1週間後、2週間後、3週間後および4週間後の各時点において堵殺したマウスから組織切片(腫瘍組織)を採取した。採取した各組織切片について常法に従ってホルマリン固定およびパラフィン包埋を行い、さらに薄切することで、各処理時点のマウスについてそれぞれ二枚ずつの標本スライドを作製した。
 [実施例1]
 (1)HER2タンパク質の免疫染色
  (1-1)標本スライド前処理
 評価準備-1において作製した標本スライドを脱パラフィン処理した後、水で洗浄した。洗浄した標本スライドを10mMクエン酸緩衝液中(pH6.0)中で121℃、15分間オートクレーブ処理することで、抗原の賦活化処理を行った。賦活化処理後の組織スライドをPBSにより洗浄し、洗浄した標本スライドに対してBSAを1%含有するPBSを用いて1時間ブロッキング処理を行った。
  (1-2)蛍光免疫染色工程
 上記処理を行った各処理時点のマウスの標本スライドについて目的タンパク質HER2の蛍光免疫染色を行った。
 BSAを1W/W%含有するPBSを用いて、抗HER2ウサギモノクローナル抗体「4B5」(ベンタナ社)を0.05nMの濃度に希釈したものを工程(1)で作製した各患者(A~E)に対応する標本スライド各2枚に滴下し、4℃で1晩反応させた。反応後PBSで洗浄を行った標本スライドに、作製例1で作製したビオチン修飾抗ウサギIgG抗体の溶液を、さらにBSAを1W/W%含有するPBSを用いて6μg/mLに希釈したものを滴下して、室温で30分間反応させた。
 反応後PBSで洗浄を行った標本スライドに、作製例3で作製したストレプトアビジン修飾テキサスレッド集積メラミン樹脂粒子を、蛍光体集積粒子用希釈液(カゼイン:BSA=5%)を用いて0.02nMに希釈したものを滴下し、中性のpH環境下(pH6.9~7.4)において室温で3時間反応させた。
  (1-3)形態観察用染色工程
 蛍光標識処理を行った標本スライドを、マイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った後、45℃の流水で3分間洗浄した。
  (1-4)標本後処理工程
 各染色を終えた標本スライドに対して、純エタノールに5分間浸漬する操作を4回行う固定化・脱水処理を行った。続いて、キシレンに5分間浸漬する操作を4回行う透徹処理を行った。最後に、標本に封入剤「エンテランニュー」(メルク社)を載せて、カバーガラスを被せる封入処理を行い、観察に用いる標本とした。
 (2)HER2タンパク質の発現状態の評価
  (2-1)観察・撮影工程
 この工程における励起光の照射および蛍光の発光の観察には蛍光顕微鏡「BX-53」(オリンパス株式会社)を用い、蛍光免疫染色像および形態観察用染色像(各400倍)の撮影には、当該蛍光顕微鏡に取り付けた顕微鏡用デジタルカメラ「DP73」(オリンパス株式会社)を用いた。
 まず、HER2の染色に用いた蛍光体集積粒子に含まれるテキサスレッドに対応する励起光を標本に照射して蛍光を発光させ、その状態で免疫染色像を撮影した。この際、励起光の波長は、蛍光顕微鏡が備える励起光用光学フィルターを用いて575~600nmに設定し、観察する蛍光の波長は、蛍光用光学フィルターを用いて612~692nmに設定した。蛍光顕微鏡による観察および画像撮影時の励起光の強度は、視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像撮影時の露光時間は、画像の輝度が飽和しないような範囲で調節し、例えば4000μ秒に設定した。
 次に、明視野において観察および画像撮影を行い、ヘマトキシリン染色による形態観察用染色像を撮影した。
 このような蛍光免疫染色像および形態観察用染色像の撮影は、同一視野において行った後、視野を変えて同じ操作を繰り返し、1つの標本スライドにつき5視野ずつ行った。
  (2-2)画像処理・計測工程
 この工程における画像処理には、画像処理ソフトウェア「ImageJ」(オープンソース)を用いた。
 形態観察用染色像および蛍光免疫染色像とを画像処理により重ねあわせて、細胞膜上に発現しているHER2を標識したテキサスレッド集積メラミン樹脂粒子を表す輝点を抽出した。なお、間質細胞領域にはHER2は発現しないので、間質細胞内に位置する輝点は非特異的シグナルすなわちノイズとして処理した。細胞膜上の輝く点のうち輝度が所定の値以上のものの数を計測し、その輝点の輝度を上記蛍光体集積粒子(PID)1粒子あたりの輝度で除して粒子数に換算し、これをその細胞のHER2の発現量として取り扱った。そして、1つの標本スライド(5視野)あたり1000個の細胞についてHER2の発現量(粒子数)を測定し、その平均値を算出して、その標本スライドの「PIDスコア」とした。さらに各患者(A~E)に対応する各2枚の標本スライドにおけるPIDスコアの平均値をそれぞれ算出した。
 [実施例2]
 (1‐2)において抗HER2ウサギモノクローナル抗体「4B5」を抗ERウサギポリクローナル抗体「ab180900、アブカム社」を用いる以外は、HER2と同様の方法によってERの免疫染色および発現状態の評価を行った。
 (結果および考察)
 実施例1および2の結果を表2-1および表2-2に示す。遺伝子が大きな変異をおこしている患者由来のPDXマウスの方が、投薬によるHER2タンパク質の減少率が大きいことが確認された。また、遺伝子情報との関連性が大きいと判断された患者A、B間、あるいは遺伝子情報との関連性が中程度とされた患者C、D間であっても、HER2の発現量(PIDスコア)の推移には若干の差が見られる。
 この結果から、実験動物において代替試験を行うことで各患者における薬効の予測ができると考えられる。例えば、患者Aにおいてはその患者に対応するPDXマウスにおいて腫瘍が縮小していることから、トラスツズマブの投薬により治療効果があらわれるとの予測をすることができるという可能性がある。同様に患者Eにおいてはトラスツズマブを投薬しても効果が期待できないと考えることができる。このようなPDXマウスを用いた薬効の予測を行なうことで、例えば、患者Aには治療薬としてトラスツズマブを選択し、一方で患者Eにおいては別の治療薬を選択して投与するというように、それぞれの患者に適した治療(投薬)方法を選択、判断することが可能になり、効率のよい投薬や治療計画を構築することが可能になると考えられる。
さらにこのような遺伝情報、医薬情報、発現情報(PIDスコア)についての情報を集積し、他の患者の治療にあたっても当該患者の情報と蓄積された情報とを照合することで、当該患者においてもその医薬の有効性の有無を判断することができるという可能性を提示することができる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 <評価準備-2>
 肺がん患者4名(F、G、H、I)から採取した腫瘍組織について遺伝子解析を行ない、特定バイオマーカーとしてEGRFを特定した。さらに各患者に投薬を開始すると同時に腫瘍組織を採取し、当該腫瘍組織の2mm角をSCID(Sevefe Combined ImmunoDeficiency)マウスの皮下へ移植した(各患者の腫瘍組織に対してマウス5匹ずつ作製、計20匹)。腫瘍体積が約300mm3となった時点(移植約1か月後)から各マウスに、抗ヒトEGFRモノクローナル抗体医薬品であるゲフィチニブ(商品名;イレッサ(Iressa))100mg/kgを1日2回、計4回尾静脈内投与した。投与1日後および投与100日後のマウスから腫瘍組織を採取して評価準備-1と同様の手法を用いて標本スライドを作製した。
 [実施例3]
 抗HER2ウサギモノクローナル抗体「4B5」(ベンタナ社)の代わりに、抗EGFRウサギモノクローナル抗体(clone「5B7」ロッシュ社)を用いる以外は、HER2と同様の方法によってEGFRの免疫染色を行ない、さらに観察・撮影・画像処理を行ってPIDスコアの平均値をそれぞれ算出するとともに、細胞内における局在状態に基づいて局在A~Cの3パターンに分類した。
 表3は、各患者の遺伝子の変異情報と投与100日後の時点におけるゲフィチニブに対する薬剤耐性、および対応するマウスについて各時点におけるEGFRの発現パターンと腫瘍体積の変化についてまとめたものである。薬剤投与後100日目において薬剤耐性が確認された患者F、Hの腫瘍組織を移植して作製されたPDXマウスにおいては、100日後の時点で一旦腫瘍体積が減少したが、その後腫瘍体積の増加が確認され、ゲフィチニブに対する耐性が現れたと判断できる。また、これらのPDXマウスから採取した腫瘍組織においては、ゲフィチニブの投与1日目と100日目において、EGFRの局在状態が変化する様子が観察された。
 一方、薬剤投与後100日目において薬剤耐性が確認されなかった患者B、Dの腫瘍組織を移植して作製されたPDXマウスにおいては、だんだん腫瘍体積が減少していることから、耐性が現れていない、つまり薬効が持続していると判断できる。また、これらのPDXマウスから採取した腫瘍組織を用いて作製した標本スライドにおいては、EGFRの局在状態の変化は確認できなかった。
 さらに、抗EGFR抗体を抗変異EGFR抗体に変更して同様の蛍光免疫染色を行なった場合においても、患者F、Hに由来するマウスの標本スライドでは局在の変化が観察され、一方患者B、Dに由来するマウスの組織スライドでは局在状態は変化しないという同様の結果が得られた。なお、抗変異EGFR抗体を用いてDAB染色を行った場合には感度が低くて局在の様子は観察できなかった。
(考察)
 以上の結果から、薬剤耐性を引き起こした患者の腫瘍組織から作製したPDXマウスにおいては患者と同様に薬剤耐性が確認されることがわかる。このことから、候補となる治療薬を実際に患者に投与する前にPDXマウスに投与することで、患者が薬剤耐性を引き起こす可能性があるかどうかをあらかじめ予測することが可能となるのではないかと考えられる。また、薬剤耐性(医療情報)と特定バイオマーカーの発現を関連させた情報を集積することで、より短い日数で薬剤耐性が起きる可能性を予測することができるようになる。本実施例を例にあげると、100日後の時点でPDXマウスにおいて薬剤耐性が確認されず、特定バイオマーカー(EGFR)の局在が変化していなかったら薬剤耐性は発現しないことが期待できる。一方で、100日後の時点でPDXマウスにおいて薬剤耐性が確認されなかったとしても、特定バイオマーカーの局在(EGFR)が変化していたら薬剤耐性が起きる可能性があると予測され、患者においても同様に薬剤耐性が引き起こされると予測することができ、その時点で他の薬や治療法を選択するという決定が可能になり得る。
Figure JPOXMLDOC01-appb-T000004

Claims (16)

  1.  ヒトから採取した病変部である検体を用いて、特定バイオマーカーの発現状態の情報を含む1以上の情報を取得して、当該情報を治療の有効性の予測のために用いる方法。
  2.  ヒトから採取した病変部の組織またはそれに由来する細胞を移植した実験動物の、当該移植部から採取した病変部である検体を用いて、特定バイオマーカーの発現状態の情報を含む1以上の情報を取得して、当該情報を治療の有効性の予測のために用いる方法。
  3.  ヒトから採取した病変部である検体を用いて、特定バイオマーカーの発現状態の情報を含む1以上の情報を取得し、さらに当該ヒトから採取した病変部の組織またはそれに由来する細胞を移植した実験動物の、当該移植部から採取した病変部である検体を用いて、特定バイオマーカーの発現状態の情報を含む1以上の情報を取得し、取得された情報を組み合わせて治療の有効性の予測のために用いる方法。
  4.  遺伝子検査により、前記検体における遺伝子の変異情報を解析し、当該遺伝子の変異情報から前記特定バイオマーカーを特定する、請求項1または3に記載の方法。
  5.  前記治療が、特定バイオマーカーをターゲットとした薬剤である分子標的薬の投薬である請求項1~4のいずれか一項に記載の方法。
  6.  前記特定バイオマーカーが、免疫チェックポイントタンパク質、がん細胞増殖因子、がん細胞増殖因子受容体、細胞表面抗原、血管増殖因子、血管増殖因子受容体、サイトカインおよびサイトカイン受容体からなる群より選択される少なくとも1つである、請求項1~5のいずれか一項に記載の方法。
  7.  前記病変部が腫瘍である請求項1~6のいずれか一項に記載の方法。
  8.  前記特定バイオマーカーが、腫瘍組織に発現するタンパク質である、請求項1~7のいずれか一項に記載の方法。
  9.  前記分子標的薬が抗がん剤である請求項5~8のいずれか一項に記載の方法。
  10.  前記特定バイオマーカーの発現状態の情報が当該特定バイオマーカーの発現量および発現分布を含む、請求項1~9のいずれか一項に記載の方法。
  11.  前記特定バイオマーカーの発現状態の情報が画像情報によって取得される、請求項1~10のいずれか一項に記載の方法。
  12.  前記特定バイオマーカーの発現状態の情報が画像情報を解析することによって取得される、請求項1~11のいずれか一項に記載の方法。
  13.  前記画像情報が、蛍光ナノ粒子の輝点が表された蛍光画像である、請求項11または12に記載の方法。
  14.  前記画像情報が、蛍光ナノ粒子を用いた免疫染色法により取得される、請求項11~13のいずれか一項に記載の方法。
  15.  前記特定バイオマーカーが、リン酸化されるタンパク質である、請求項1~14のいずれか一項に記載の試験方法。
  16.  前記発現状態の情報が、検体中の血管占有率に関する情報を含む、請求項1~15のいずれか一項に記載の方法。
PCT/JP2018/009199 2017-03-10 2018-03-09 治療有効性の予測方法 WO2018164262A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019503867A JP7140103B2 (ja) 2017-03-10 2018-03-09 治療有効性の予測方法
US16/491,768 US20200371106A1 (en) 2017-03-10 2018-03-09 Method for estimating therapeutic efficacy
EP18764071.9A EP3594357A4 (en) 2017-03-10 2018-03-09 METHOD OF ESTIMATING THERAPEUTIC EFFICACY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046234 2017-03-10
JP2017-046234 2017-03-10

Publications (1)

Publication Number Publication Date
WO2018164262A1 true WO2018164262A1 (ja) 2018-09-13

Family

ID=63447874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009199 WO2018164262A1 (ja) 2017-03-10 2018-03-09 治療有効性の予測方法

Country Status (4)

Country Link
US (1) US20200371106A1 (ja)
EP (1) EP3594357A4 (ja)
JP (1) JP7140103B2 (ja)
WO (1) WO2018164262A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169994A (ja) * 2019-04-03 2020-10-15 メクウィンズ, エセ.アー.Mecwins, S.A. バイオマーカを光学的に検出するための方法
WO2024090265A1 (ja) * 2022-10-28 2024-05-02 株式会社biomy 情報処理装置、情報処理方法及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115910214B (zh) * 2022-10-13 2023-10-13 南京普恩瑞生物科技有限公司 一种利用肿瘤活组织生物样本库模拟临床试验评估抗肿瘤药物药效的方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209101A (ja) * 2010-03-30 2011-10-20 Japan Health Science Foundation CapGをマーカーとする悪性腫瘍の予後予測検査方法
WO2012029752A1 (ja) 2010-08-31 2012-03-08 コニカミノルタエムジー株式会社 生体物質検出方法
WO2013035703A1 (ja) 2011-09-09 2013-03-14 コニカミノルタエムジー株式会社 生体物質検出方法
JP2014532184A (ja) * 2011-10-12 2014-12-04 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill 多重化キナーゼ阻害剤ビーズ及びその使用
WO2016041932A1 (en) * 2014-09-17 2016-03-24 Institut Curie Map3k8 as a marker for selecting a patient affected with an ovarian cancer for a treatment with a mek inhibitor
JP2016510748A (ja) * 2013-03-05 2016-04-11 ユニバーシティ オブ テネシー リサーチ ファウンデーション 癌の処置のための組成物
JP2017500028A (ja) * 2013-12-12 2017-01-05 アッヴィ・ステムセントルクス・エル・エル・シー 新規の抗dpep3抗体および使用方法
WO2017141987A1 (ja) * 2016-02-19 2017-08-24 コニカミノルタ株式会社 実験動物検体を定量評価することを特徴とする、非臨床試験方法
WO2018030193A1 (ja) * 2016-08-08 2018-02-15 コニカミノルタ株式会社 実験動物の腫瘍組織の評価に関する方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133047A1 (ja) * 2011-03-25 2012-10-04 コニカミノルタエムジー株式会社 免疫組織染色法、およびこれを用いた抗体医薬の有効性を判定する方法
JP6524833B2 (ja) * 2015-07-17 2019-06-05 コニカミノルタ株式会社 蛍光体集積ナノ粒子を用いたfishまたは免疫染色スライドの封入方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209101A (ja) * 2010-03-30 2011-10-20 Japan Health Science Foundation CapGをマーカーとする悪性腫瘍の予後予測検査方法
WO2012029752A1 (ja) 2010-08-31 2012-03-08 コニカミノルタエムジー株式会社 生体物質検出方法
WO2013035703A1 (ja) 2011-09-09 2013-03-14 コニカミノルタエムジー株式会社 生体物質検出方法
JP2014532184A (ja) * 2011-10-12 2014-12-04 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill 多重化キナーゼ阻害剤ビーズ及びその使用
JP2016510748A (ja) * 2013-03-05 2016-04-11 ユニバーシティ オブ テネシー リサーチ ファウンデーション 癌の処置のための組成物
JP2017500028A (ja) * 2013-12-12 2017-01-05 アッヴィ・ステムセントルクス・エル・エル・シー 新規の抗dpep3抗体および使用方法
WO2016041932A1 (en) * 2014-09-17 2016-03-24 Institut Curie Map3k8 as a marker for selecting a patient affected with an ovarian cancer for a treatment with a mek inhibitor
WO2017141987A1 (ja) * 2016-02-19 2017-08-24 コニカミノルタ株式会社 実験動物検体を定量評価することを特徴とする、非臨床試験方法
WO2018030193A1 (ja) * 2016-08-08 2018-02-15 コニカミノルタ株式会社 実験動物の腫瘍組織の評価に関する方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF CLINICAL ONCOLOGY, vol. 34, 2016, pages 3638 - 3647
KOHRT ET AL.: "Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies", ANNALS OF ONCOLOGY, vol. 00, 2016, pages 1 - 9
NATURE COMMUNICATIONS, vol. 7, 2016, pages 12624
ONCOTARGET, vol. 6, no. 25, 2015, pages 21522 - 21532
See also references of EP3594357A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169994A (ja) * 2019-04-03 2020-10-15 メクウィンズ, エセ.アー.Mecwins, S.A. バイオマーカを光学的に検出するための方法
JP7467205B2 (ja) 2019-04-03 2024-04-15 メクウィンズ,エセ.アー. バイオマーカを光学的に検出するための方法
WO2024090265A1 (ja) * 2022-10-28 2024-05-02 株式会社biomy 情報処理装置、情報処理方法及びプログラム

Also Published As

Publication number Publication date
US20200371106A1 (en) 2020-11-26
JP7140103B2 (ja) 2022-09-21
EP3594357A1 (en) 2020-01-15
EP3594357A4 (en) 2020-03-11
JPWO2018164262A1 (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6648842B2 (ja) 抗体−薬物複合体の構成成分の検出方法
JP7140103B2 (ja) 治療有効性の予測方法
JP7139569B2 (ja) 中枢神経系における悪性腫瘍の検出及び治療
WO2017141987A1 (ja) 実験動物検体を定量評価することを特徴とする、非臨床試験方法
JP7396578B2 (ja) 病変組織内への薬剤到達を予測する方法
WO2019131727A1 (ja) 医薬の評価方法
WO2018030193A1 (ja) 実験動物の腫瘍組織の評価に関する方法
JP6922444B2 (ja) 蛍光ナノ粒子を用いた、病理学的完全奏効(pCR)の予測を支援するための検査支援方法
JP6443581B2 (ja) がんまたは免疫系が関係する疾患の診断または治療のための情報取得方法
de Fraga et al. ‘A picture is worth a thousand words’: The use of microscopy for imaging neuroinflammation
JP5307426B2 (ja) 補体活性検査方法
WO2021096783A1 (en) Use of mog for priming a treatment for glioblastoma
WO2019098385A1 (ja) 薬剤評価方法
US10392598B2 (en) Methods of measuring cell purity for making quality control determinations and related compositions
Ramli et al. Immunohistochemistry as a detection tool for ion channels involved in dental pain signaling
US11275087B2 (en) Test support method for supporting prediction of pathological complete response (pCR) using fluorescent nanoparticles
JP2018130094A (ja) 静止期癌幹細胞の効率的分離方法
JP6956402B2 (ja) 解析方法
WO2024167409A1 (en) Cell receptor single-molecule tracking with paint imaging for diagnostics and precision medicine
CN1502044A (zh) 癌症诊断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018764071

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018764071

Country of ref document: EP

Effective date: 20191010