WO2018164212A1 - き裂先端位置検出方法および接着剤剥離位置検出方法 - Google Patents

き裂先端位置検出方法および接着剤剥離位置検出方法 Download PDF

Info

Publication number
WO2018164212A1
WO2018164212A1 PCT/JP2018/008915 JP2018008915W WO2018164212A1 WO 2018164212 A1 WO2018164212 A1 WO 2018164212A1 JP 2018008915 W JP2018008915 W JP 2018008915W WO 2018164212 A1 WO2018164212 A1 WO 2018164212A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
crack
stress
tip position
load
Prior art date
Application number
PCT/JP2018/008915
Other languages
English (en)
French (fr)
Inventor
寺崎 正
侑輝 藤尾
堀内 伸
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2018164212A1 publication Critical patent/WO2018164212A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Definitions

  • This technology relates to a crack tip position detection method and an adhesive peeling position detection method. Specifically, a method for detecting a tip position when a crack generated in a sample develops by applying a load, an apparatus to which the method is applied, and an adhesive when the adhesive of a sample is peeled by applying a load
  • the present invention relates to an adhesive peeling position detection method for detecting the peeling position of the adhesive and an apparatus to which the method is applied.
  • a fracture toughness test by a double cantilever beam (DCB) test has been performed as a method of measuring the adhesive strength in a sample formed by bonding sample pieces made of CFRP (Carbon Fiber Reinforced Plastics) or the like. Yes.
  • This DCB test is a test method defined by ASTM D5528-13, ISO15024, ISO25217, JIS K7086, etc., and is a test method for measuring the strength by causing delamination in a sample. In these standards, a test method is determined for each delamination mode.
  • a load that pulls the sample in the direction of tearing the sample into two sample pieces is applied to the end of the sample to cause a crack in the sample.
  • the bond strength is calculated based on the length when this crack propagates according to the load described above.
  • the above-described conventional technique captures a crack by acquiring a region different from the sample surface in the image by photographing a sample and generating an image and comparing the hue, brightness, saturation, and the like for each pixel of the generated image. Detect the shape.
  • the above-described conventional technique has a problem in that the processing for detecting the tip position is complicated because the hue and the like are compared for each pixel.
  • the crack length is measured from the direction in which the adhesion surface of the two sample pieces can be seen, so the surface position of the crack is the crack length.
  • the surface position of the crack is the crack length.
  • the present technology has been made in view of the above-described problems. Detection of a tip position when a crack generated in a sample progresses by applying a load, and the adhesive of the sample peels by applying the load. It is intended to simplify the detection of the peeling position of the adhesive at the time.
  • the tip position of the expanding crack A crack tip position detection method and a detection apparatus comprising a tip position detection procedure for detecting the tip position based on the light emission of the applied stress light emitter.
  • the region at the tip of the crack is a portion where fracture is progressing, and is a portion where stress is concentrated.
  • a region where the stress is concentrated is detected by light emission of the stress light emitter. Since the light emitted from the stress-stimulated luminescent material is self-luminous, the hue is different from that of the sample surface. Therefore, the light emission position of the stress light emitter in the sample under test can be easily recognized. Simplification of detection of crack tip position is expected.
  • the stress-stimulated luminescent material may be applied to a surface of the sample where a crack propagates.
  • light emission of the stress light-emitting body of the surface where a crack progresses on the surface is detectable. Detection of the tip position of a crack generated on the surface of the sample is expected.
  • the tip position detection procedure may detect the center of the region where the light emission is generated in the applied stress illuminant as the tip position. In this aspect, even if the light emitting region of the stress-stimulated luminescent material is a relatively wide region, the center of the light emitting region can be detected as the tip position of the crack.
  • the stress-stimulated luminescent material may be applied to a surface that is orthogonal to the surface of the sample where the crack propagates and is parallel to the direction of propagation of the crack.
  • the tip position detection procedure may detect, as the tip position, a line connecting the centers of the linear regions that generate the light emission in the applied stress illuminant. .
  • detection of the shape of the tip of a crack generated inside the sample is expected.
  • the second aspect of the present technology is a method in which a crack formed in the sample progresses by applying a load to the sample coated with a stress luminescent material that emits light according to stress.
  • the tip position detection procedure for detecting the tip position based on the light emission of the applied stress illuminant, the crack before applying the load to the sample, and the crack position based on the detected tip position.
  • a crack length detection method comprising a crack growth length detection procedure for detecting a growth length. Since the tip position of the crack is detected by light emission from a stress-stimulated illuminant having a hue different from that of the sample surface, the detection of the crack length is expected to be simplified.
  • the third aspect of the present technology is a method in which a crack formed on the sample progresses by applying a load to the sample coated with a stress-stimulated luminescent material that emits light according to stress.
  • the tip position detection procedure for detecting the tip position based on the light emission of the applied stress illuminant, the crack before applying the load to the sample, and the crack position based on the detected tip position.
  • It is a sample strength measurement method comprising a crack growth length detection procedure for detecting a growth length and a measurement procedure for measuring the strength of the sample based on the detected crack growth length. Since the tip position of the crack is detected by light emission of a stress illuminant having a hue different from that of the sample surface, simplification of strength measurement is expected.
  • a test unit that applies a load at a constant displacement speed to a sample coated with a stress luminescent material that emits light according to stress, and a sample that is applied to the sample by a load applied by the test unit.
  • the crack length is detected and the load, displacement and
  • a sample strength measurement apparatus comprising: a measurement unit that calculates the strength of a sample based on time and the length of a crack.
  • the measurement unit has a slope ⁇ 1 of the crack length detected by the crack growth length detection unit with respect to the cube root of the compliance per unit width of the sample at the time output from the test unit.
  • the sample strength measuring apparatus is characterized in that the sample strength G 1c is calculated by the following formula using:
  • H is the thickness of the sample
  • P is the tensile load (load) of the test part
  • B is the width of the sample
  • is the compliance.
  • the compliance is a displacement of a load point when a unit load is applied, that is, a reciprocal of rigidity.
  • the sample strength measuring device By configuring the sample strength measuring device in this way, the strength of the sample can be measured more accurately and easily.
  • the measurement unit detects the crack propagation length based on the crack position before the load is applied to the sample and the detected tip position. It exists in the sample strength measuring apparatus as described in an aspect. By configuring the sample strength measuring device in this way, the strength of the sample can be measured more accurately and easily.
  • distance information indicating a distance from a crack position before applying a load is displayed on the sample, and the measurement unit cracks based on the distance information and the detected tip position.
  • the length of the sample is detected.
  • the distance information may be directly printed on the sample, or a sticker or the like on which the distance information is described may be attached.
  • An eighth aspect of the present technology is an adhesive peeling position detection method for detecting a peeling position of an adhesive when a load is applied to the sample joined by the adhesive and the adhesive peels, and is applied to the surface of the sample.
  • the adhesive peel position detecting method is characterized by applying a stress light emitter that emits light according to stress. By this method, the peeling position of the adhesive can be measured more accurately and easily.
  • a test unit that applies a load at a predetermined displacement speed to a sample coated with a stress illuminant that emits light according to stress, and a sample that is applied to the sample by a load applied by the test unit.
  • the detection position of the sample's adhesive from the image output from the camera, and the load, displacement, and adhesive's release position output from the test section And a measuring unit that calculates the adhesive strength of the adhesive.
  • the crack tip position detection method according to the present technology has an excellent effect of simplifying the detection of the tip position when a crack generated in a sample progresses by applying a load. Further, the adhesive peeling position detection method according to the present technology has an excellent effect of simplifying detection of the adhesive peeling position when the sample adhesive peels by applying a load.
  • FIG. 1 is a diagram illustrating a configuration example of a sample strength measuring apparatus according to an embodiment of the present technology.
  • the sample strength measuring apparatus 1 in FIG. 1 includes a test apparatus 2, a camera 3, and a measuring unit 4.
  • the test apparatus 2 performs a tensile test of the sample 10.
  • the test apparatus 2 performs a test by applying a tensile load to the sample 10 as a load.
  • the test apparatus 2 shown in the figure applies a vertical tensile load to the sample 10. Further, the test apparatus 2 measures the load caused by the load and the displacement of the sample 10 while applying the load, and outputs the measured load to the measuring unit 4.
  • the load corresponds to a force applied to the sample 10 by a tensile load.
  • the test apparatus 2 shown in FIG. 1 includes a load cell 21, an actuator 22, and test jigs 23 and 24.
  • the test jigs 23 and 24 hold the sample 10.
  • the test jig 23 holds the sample 10 from above, and the test jig 23 holds the sample 10 from below.
  • These test jigs 23 and 24 pass pins (not shown) through through-holes formed in the load-loading blocks 16 and 17 of the sample 10 to be described later, and these pins are inserted into the U-shaped holding portion of the figure. By being fixed, it is connected to the load loading blocks 16 and 17, respectively. Since the load loading blocks 16 and 17 are bonded to the sample 10, the sample 10 can be held by the test jigs 23 and 24. By connecting the test jigs 23 and 24 and the load loading blocks 16 and 17 via pins, respectively, even when the sample 10 is bent during the test, the direction of the load on the sample 10 (up and down) Direction).
  • the actuator 22 applies a downward tensile load to the sample 10 via the test jig 24.
  • the actuator 22 can apply a tensile load based on a predetermined tensile speed (displacement speed).
  • an actuator driven by hydraulic pressure can be used.
  • the displacement of the sample 10 is measured by a strain gauge (not shown) disposed on the actuator 22 and output to the measuring unit 4.
  • the load cell 21 measures a load (load) applied to the sample 10 via the test jig 23. The measured load is output to the measuring unit 4.
  • the camera 3 photographs the sample 10.
  • the camera 3 shoots the light emission of the sample 10 and the stress luminescent material applied to the sample 10 to generate an image, and outputs the image to the measuring unit 4.
  • the measuring unit 4 measures the adhesive strength of the sample 10.
  • the measuring unit 4 detects the crack length by detecting the crack tip position of the sample 10 from the image output from the camera 3.
  • the measuring unit 4 measures and outputs the adhesive strength based on the load and displacement and the crack length output from the test apparatus 2.
  • the measuring unit 4 is connected to the test apparatus 2 and the camera 3 by signal lines 8 and 9, respectively.
  • the measurement unit 4 can be configured by a computer that performs image processing, for example.
  • the configuration of the sample strength measuring apparatus 1 is not limited to this example.
  • two cameras can be arranged on both sides of the sample 10 to perform photographing.
  • the tip positions of the cracks on both sides of the sample 10 can be detected.
  • FIG. 2 is a diagram illustrating a configuration example of the measurement unit according to the embodiment of the present technology.
  • the measurement unit 4 shown in the figure includes a control unit 41, a strength measurement unit 42, a crack tip position detection unit 43, and a crack growth length detection unit 44.
  • the control unit 41 controls the test apparatus 2.
  • the control unit 41 can control the start and stop of the tensile load with respect to the test apparatus 2.
  • the control unit 41 controls the entire measurement unit 4.
  • the crack tip position detector 43 detects the tip position of the crack in the sample 10 based on the image generated by the camera 3.
  • the crack tip position detector 43 detects the tip position by performing image processing. Details of the detection of the tip position in the crack tip position detector 43 will be described later.
  • the crack tip position detecting unit 43 is an example of a crack tip position detecting device described in the claims.
  • the crack growth length detector 44 detects the length of crack propagation based on the tip position detected by the crack tip position detector 43. Details of detection of the crack propagation length in the crack propagation length detector 44 will be described later.
  • the strength measurement unit 42 measures the strength of the sample based on the displacement output from the test apparatus 2 and the load and the crack growth length output from the crack growth length detection unit 44. In addition to the adhesive strength of the sample, this strength corresponds to, for example, the peel strength of other members formed on the base material, the breaking strength of a sample composed of a single member, or the like. In the figure, the adhesive strength of the sample 10 is measured. The measured intensity is output as the measured intensity of the test apparatus 1. Details of intensity measurement in the intensity measurement unit 42 will be described later. [Sample structure]
  • FIG. 3 is a diagram illustrating a configuration example of a sample according to the embodiment of the present technology.
  • a in the figure represents the configuration of the sample 10.
  • the sample 10 is a sample configured by bonding two sample pieces 11 and 12 with an adhesive 13.
  • the adhesive strength due to the adhesive becomes a measurement target of the sample strength measuring apparatus 1.
  • an initial crack 14 is formed at the left end portion of the sample 10 in FIG.
  • This initial crack 14 is an area where the adhesive by the adhesive 13 is not performed in the sample 10.
  • the initial crack 14 can be formed by sandwiching a film or the like when the sample pieces 11 and 12 are bonded.
  • Load loading blocks 16 and 17 are respectively bonded to the sample pieces 11 and 12 on which the initial crack 14 is formed.
  • the through holes 18 and 19 are formed in the load loading blocks 16 and 17, respectively.
  • B in the figure represents a case where a tensile load is applied to the sample 10 as a load.
  • the arrows in the figure represent the tensile load applied to the load loading blocks 16 and 17.
  • B in the figure represents an example in which the bonded portion of the sample 10 is broken by a tensile load and a crack 15 is generated.
  • the crack 15 is a crack formed by extending from the end of the initial crack 14. [Measurement of adhesive strength]
  • FIG. 4 is a diagram illustrating an example of intensity measurement according to the embodiment of the present technology. Taking the sample 10 described in FIG. 3b as an example, the principle of measurement of adhesive strength will be described. In the figure, P represents a tensile load (load). Further, ⁇ represents the displacement at the crack opening of the sample 10. A represents the crack length.
  • b represents the width of the sample pieces 11 and 12.
  • the strength measuring unit 42 described in FIG. 2 acquires the displacement ⁇ output from the test apparatus 2 and the load P and the crack length a output from the crack growth length detecting unit 44, and based on the above formula, the strength Is calculated. Thereby, measurement of adhesive strength is performed.
  • the bond strength can be calculated by detecting the crack length.
  • a stress luminescent material is applied to the sample 10, and the tip position of the crack is detected based on the light emission of the applied stress luminescent material.
  • the stress illuminant emits light according to the stress.
  • the stress-stimulated luminescent material for example, a stress-stimulated luminescent material that emits light by deformation caused by a mechanical external force and dispersed in a paint base material such as a resin can be used.
  • Application to the sample 10 can be easily performed by using a paint.
  • a known or unknown material can be adopted as the stress luminescent material.
  • Known stress luminescent materials include, for example, oxides, sulfides, selenides, or tellurium having a spinel structure, a corundum structure, a ⁇ alumina structure, a wurtzite structure, or a zinc blende structure and a structure in which they coexist. Examples thereof include those composed mainly of chemical compounds. For example, a silicate having the above structure or a defect control type aluminate is applicable.
  • stress-stimulated luminescent materials include strontium aluminate containing europium (Eu) ions (hereinafter referred to as SrAl 2 O 4 : Eu), LiSrPO 4 : Eu 2+ , LiBaPO 4: Eu 2+, xSrO ⁇ yAl 2 O 3 ⁇ zMO: Eu 2+ can also be mentioned.
  • SrAl 2 O 4 europium
  • LiSrPO 4 Eu 2+
  • LiBaPO 4 Eu 2+
  • xSrO ⁇ yAl 2 O 3 ⁇ zMO Eu 2+
  • M represents a divalent metal
  • x, y, and z each represents a positive integer.
  • Mg, Ca, or Ba is preferable.
  • FIG. 5 is a diagram illustrating an example of detection of the tip position according to the first embodiment of the present technology.
  • This figure shows the detection of the tip position of a crack by a stress light emitter.
  • a in the figure represents the sample 10 before the test.
  • a stress light emitter 61 is applied to the side surface of the sample 10.
  • a stress light-emitting body can also be apply
  • the side surface is a surface on which the generation and propagation of a crack can be observed from the outside. That is, the stress-stimulated luminescent material 61 is applied to the surface of the sample 10 where the crack propagates.
  • B in the figure represents the sample 10 when the crack 15 propagates.
  • b in the figure is an enlarged region of the tip of the crack 15, and the tip of the crack 15 is represented by a crack tip 71.
  • the stress light emitter 61 emits light.
  • a light emitting area 72 shown in FIG. 7B represents a light emitting area of the stress light emitter 61.
  • the tip of the crack is a portion where the stress is concentrated and the destruction of the adhesive layer (adhesive) 13 of the sample 10 proceeds. Due to the concentration of the stress, the stress illuminant 61 around the crack tip 71 emits strong light, and a light emitting region 72 is generated.
  • the light emitted from the stress-stimulated luminescent material is self-luminous by the excited luminescence center, and can be easily detected by observation with the naked eye or image processing. This is because the hue is different from that of the sample 10 and the background.
  • a light emission image of the stress light emitter 61 can be generated by calculating a difference in luminance in the image of the sample 10 before and after the start of the test. This process is performed by the crack tip position detector 43. Further, since the light emission of the stress illuminant is different from that of the sample 10 or the like, the detection accuracy of the light emitting region can be improved.
  • the crack tip position detection unit 43 emits the stress emitted from the tip of the crack 15 applied to the sample 10 when the crack 15 formed on the sample 10 to which the load is applied advances. It detects based on the light emission area
  • the detection of the crack tip position is simplified by selecting a stress illuminant with a luminescent color different from that of ambient light such as illumination.
  • the detection accuracy of the crack tip position can be improved even in a bright place. For example, when measuring under indoor lighting with a fluorescent lamp, select a stress-stimulated luminescent material that has a stress-stimulated luminescent material that emits a color that is different from the color illuminated by the fluorescent lamp (visible light, mainly 400 to 700 nm). To do.
  • the stress-stimulated luminescent material represented by the general formula Sr ⁇ 1- (2x + 3y + 3z) / 2 ⁇ Al 2 O 4 : xEu 2+ , yCr 3+ , zNd 3+ is a near infrared light (mainly 700 to Since it includes light emission of 1200 nm), it can be selected as a stress-stimulated luminescent material having a hue different from the illumination color of the fluorescent lamp.
  • SrAl 2 O 4 : Eu which exhibits a green emission color, can be selected as a stress-stimulated luminescent material having a hue different from that of ambient light when the illumination color is blue, yellow, orange, or red.
  • the light emission region 72 occupies a relatively wide region. In this case, by setting the center of the light emitting region 72 to the tip position of the crack, the influence of the saturation of the luminance of the stressed light emitter can be reduced.
  • the tip positions based on the light emitting region 72 are detected on each side surface, and the average of these tip positions from the end of the sample 10 is detected. By calculating, the tip position of the crack can be detected.
  • the progress length of the crack 15 can be detected based on the difference in the tip position of the crack of the sample 10 before and after the load is applied. Specifically, the crack tip position of the sample 10 before the load is applied is recorded as an initial position, and the difference between the crack tip position detected by the crack tip position detection unit 43 is calculated, thereby calculating the crack.
  • the crack growth length can be detected. This process is performed by the crack growth length detector 44 described with reference to FIG. Further, when the test is performed on the sample 10 having the initial crack 14 described in FIG. 3, the propagation length can be calculated with the tip position of the initial crack 14 as the initial position. In addition, when the adhesive strength is measured by performing a plurality of cycles of releasing a load after applying a load and developing a crack for the same sample 10, the tip position of the crack in the previous cycle is initially set. The progress length can be calculated as the position.
  • the stress-stimulated luminescent material 61 needs to be applied in a state that does not affect the measurement of the adhesive strength of the sample 10. Specifically, it is necessary to apply the stress light emitting body 61 to a thickness that is sufficiently smaller than the adhesive strength of the adhesive 13. Moreover, the application
  • FIG. 6 is a diagram illustrating an example of an adhesive strength measurement process according to the embodiment of the present technology.
  • the strength measuring unit 42 records the crack tip position (step S101). This is a process performed to grasp the tip position of the crack in the initial state. For example, it can be performed by recording the tip position of the initial crack 14 of the sample 10.
  • the tensile load in the test apparatus 2 is started (step S102). This can be performed by the control unit 41 controlling the test apparatus 2.
  • the displacement speed of the actuator 22 can be controlled to a speed of 1 mm / min, for example.
  • the intensity measuring unit 42 detects a load and a displacement (step S103). This can be done by obtaining the load and displacement output from the test apparatus 2.
  • the crack tip position detector 43 detects the crack tip position (step S104). This is performed by the crack tip position detection unit 43 detecting the light emission of the stress illuminant in the image generated by the camera 3. The image generation by the camera 3 can be performed at a frame rate of 10 fps, for example.
  • the crack growth length detector 44 detects the length of the crack (step S105). This can be done by calculating the difference between the crack tip position recorded in step S101 and the tip position detected in step S104.
  • the control unit 41 determines whether or not a predetermined crack length has been reached (step S106). As this predetermined crack length, for example, a value of 5 mm can be adopted. As a result, when the predetermined crack length has not been reached (step S106: No), the processing from step S103 is executed again.
  • step S106 when the predetermined crack length is reached (step S106: Yes), the tensile load in the test apparatus 2 is stopped (step S107). As in step S102, this can be performed by the control unit 41 controlling the test apparatus 2 to release the tensile load. At this time, the displacement speed of the actuator 22 can be controlled to the same speed as in step S102. Finally, the strength measuring unit 42 measures the adhesive strength (step S108). This can be done by the strength measuring unit 42 calculating the adhesive strength based on the crack length or the like.
  • the configuration of the sample strength measuring apparatus 1 according to the first embodiment of the present technology is not limited to this example.
  • the present invention can also be applied to detection of adhesive strength in other tests, for example, an end face notch flexure (ENF) test.
  • EDF end face notch flexure
  • the present invention can be applied to tests of samples made of various polymer materials and samples made of aluminum (Al), iron (Fe), titanium (Ti), and alloys thereof.
  • the crack tip position detection method detects the tip position based on the emission of the stress illuminant having a hue different from that of the sample 10 or the background. Detection of the crack tip position can be simplified. It is also possible to improve the detection accuracy of the crack tip position.
  • Example 1
  • FIG. 7 shows a photograph of the crack tip when the sample is attached to the above-described sample strength measuring apparatus and the actuator is displaced at a speed of 1 mm / min in the vertical direction.
  • the most intensely luminescent part I corresponds to the tip of the crack. That is, it was found that the tip of the crack progressed from the original tip position O of the crack before the load was applied to the portion I that emitted the strongest light.
  • the stress-stimulated luminescent material is applied to the surface of the sample 10 where the crack propagates.
  • the tip position detection method according to the second embodiment of the present technology is different from the first embodiment in that the stress-stimulated luminescent material is applied to a surface different from the surface on which the crack propagates in the sample 10. Different.
  • FIG. 8 is a diagram illustrating an example of detection of the tip position according to the first embodiment of the present technology.
  • the figure shows an example in which the stress light emitter 62 is applied to the upper surface or the lower surface of the sample 10, which is a surface different from the surface on which the crack 15 in the sample 10 propagates.
  • the stress-stimulated luminescent material 62 is applied to a surface that is orthogonal to the side surface that is the surface on which the crack 15 propagates and is parallel to the direction in which the crack 15 propagates.
  • a in the same figure is the figure showing light emission of the stress light-emitting body when a crack progresses.
  • the stress light emitter 62 emits light linearly.
  • the light emitting region 73 is obtained by projecting the tip position of the crack 15 inside the sample 10 including the crack tip 71 onto the upper surface of the sample 10.
  • the crack progresses.
  • the tip of the crack corresponds to the boundary between the region where the sample pieces 11 and 12 are bonded and the region where the sample pieces 11 and 12 are peeled off.
  • the sample pieces 11 and 12 are bent starting from the crack tip position. For this reason, stress concentration also occurs on the surfaces of the sample pieces 11 and 12.
  • This concentration of stress becomes a line shape corresponding to the tip of the crack in the sample 10.
  • the stress illuminant 62 is applied to the surface of the sample piece 11 or 12, that is, the upper surface or the lower surface of the sample 10, thereby detecting the concentration of linear stress as the light emitting region 73. be able to.
  • a line connecting the centers of the light emitting regions 73 can be set to the tip position of the crack 15.
  • the stress light emitter 62 to the upper surface or the lower surface of the sample 10 and detecting the tip position of the crack, it is possible to grasp the progress of the crack inside the sample 10. Thereby, for example, when it is determined whether or not the adhesive strength of the adhesive 13 and the rigidity of the sample 10 are uniform, the detection result of crack propagation can be used.
  • B in the figure is a top view of the sample 10 and represents another example of the curved light emitting region 73.
  • description of the stress light-emitting body 62 is abbreviate
  • the average position of the distances from the left end of the sample 10 of the points 74 and 76 that are the end points of the light emitting region 73 can be set as the tip position of the crack.
  • the point 75 corresponding to the position where the crack has most advanced can be set as the tip position of the crack.
  • the surface of the sample 10 is perpendicular to the surface where the crack 15 propagates and is parallel to the direction where the crack 15 propagates.
  • the tip position is detected based on the light emission of the stress-stimulated luminescent material applied to the surface. Thereby, the tip position of the crack in the sample 10 can be detected.
  • the present invention can be applied to a so-called Wedge test (ASTM D3762 or the like).
  • Wedge test ASTM D3762 or the like.
  • two plate-like sample pieces 11a and 12a are bonded with an adhesive 13 to produce a sample 10a, and the surface (side surface, upper surface and lower surface) of the sample 10a is prepared.
  • a stress-stimulated luminescent material is applied in the same manner as in the first embodiment or the second embodiment.
  • a double-edged wedge 80a is inserted between the sample pieces 11a and 12a.
  • test apparatus is a camera that records the light emission state of the sample 10a in a test apparatus used for a general Wedge test, as in the first or second embodiment. Can be easily configured.
  • the sample 10a is cracked. Then, similarly to the sample of the above-described embodiment, the stress illuminant emits light, and the emitted light can be photographed with a camera.
  • the position of the tip of the crack can be specified by specifying the position with the highest luminance from the obtained image.
  • a plate-shaped sample piece 11b is adhered to an adherend 90 with an adhesive 13 to produce a sample 10b, and the surface of the sample piece 11b (at least one of an upper surface and a side surface).
  • a stress light emitter is applied.
  • a single-edged wedge 80 b is inserted between the sample piece 11 b of this sample and the adherend 90.
  • the test apparatus according to the present embodiment can be configured in the same manner as the test apparatus according to the third embodiment except for the above-described portions. Then, by performing the same operation as that of the test apparatus according to the third embodiment, the same effect as that of the third embodiment can be obtained also in the test apparatus according to the present embodiment. ⁇ 5. Fifth embodiment>
  • the present invention can also be applied to a compact tension test (ASTM D5045-93). Specifically, a stress-stimulated luminescent material is applied to the surface (side surface) of the side surface of the sample 10c used in the compact tension test as shown in FIG.
  • this sample 10c is attached to a compact tension test apparatus and an addition is made in the vertical direction of the sample 10c, as in a general compact tension test device, the sample 10c is cracked.
  • the stress illuminant emits light, and the emitted light can be photographed with a camera.
  • the position of the tip of the crack can be specified by specifying the position with the highest luminance from the obtained image. As a result, a more accurate strength at break can be measured.
  • the stress luminescent material may be applied only to one side surface of the sample 10c, or may be applied to both side surfaces. By applying the stress-stimulated luminescent material on both sides, the tip of the crack can be detected more accurately.
  • test apparatus is a camera that records the light emission state of the sample 10c in the test apparatus used for a general compact tension, as in the first or second embodiment. Can be easily configured. ⁇ 6. Sixth Embodiment>
  • FIG. 12 is a schematic diagram of a sample strength measuring apparatus according to the present embodiment.
  • the sample strength measuring apparatus 101 includes a test unit 102 to which a sample 110 is attached, a camera 103, and a measuring unit 104 via a wiring 105.
  • the surface of the sample 110 is coated with a stress luminescent material.
  • the test unit 102 is not particularly limited as long as it applies a load to the sample 110 at a constant displacement speed, measures the load due to the load and the displacement of the sample 110, and outputs them to the measurement unit 104.
  • Examples of the test unit 102 include the test apparatus according to the first embodiment.
  • the camera 103 is not particularly limited as long as it can capture the light emission state of the stress light emitter applied to the sample 110.
  • An example of the camera is the camera according to the first embodiment.
  • the measurement unit 104 detects the crack length by detecting the tip position of the crack of the sample 110 from the image output from the camera 103 and performs a test.
  • the adhesive strength can be measured based on the load, displacement, and crack length output from the apparatus 2.
  • Examples of the measuring unit 104 include a personal computer having the above-described functions.
  • the wiring 105 is not particularly limited as long as the data of the test unit 102 and the camera 103 can be transmitted to the measurement unit 104, and a commercially available wiring, a wireless device, or the like can be used.
  • FIG. 13 is a flowchart showing the operation of the sample strength measuring apparatus 101.
  • the test unit 102 applies a load to the sample 110 at a constant displacement speed (S1).
  • the displacement speed is not particularly limited.
  • the stress light emitter applied to the sample 110 emits light at the tip position of the crack generated in the sample 110
  • the emitted light is photographed at a predetermined timing (predetermined unit time) (S2).
  • predetermined unit time Such an operation is continuously repeated up to a predetermined upper limit of displacement of the test unit 102 (S3).
  • the measurement unit 104 calculates the length of the crack at each timing (time) (S4). Then, an inclination ⁇ 1 of the crack length with respect to each timing (time) is calculated (S5).
  • H is the thickness of the sample
  • P is the tensile load (load) of the test part
  • B is the width of the sample
  • is the compliance.
  • the compliance ⁇ can be obtained by dividing the (opening) displacement of the test section 102 by the tensile load P.
  • the sample strength measuring device By configuring the sample strength measuring device as described above, the same effects as those of the first embodiment can be obtained, and after attaching the sample to the test unit 102, a more accurate sample strength G 1c can be obtained. It can be calculated automatically.
  • the crack length is calculated based on each timing (time) and the light emission position of the stress light emitter applied to the sample 110, but the present invention is not limited to this. Not. For example, as shown in FIG. 15, distance information indicating the distance from the position of the crack before the load is applied may be displayed on the surface of the specimen 110 where the crack occurs.
  • m0 in FIG. 17 indicates the position of the crack before the load is applied
  • m1 and m2 are distance information indicating the distance from m0.
  • the unit and numerical value of the distance information can be appropriately changed according to the test conditions and the like.
  • the present invention can also be applied to an adhesive peel strength test.
  • it can also be applied to a T-type peel test (JIS K 6854-3 etc.) as shown in FIG. 16 and a 90 degree peel test (JIS K 6854-1 etc.) as shown in FIG.
  • two tape-shaped sample pieces 11d and 12d are bonded with an adhesive 13 to prepare a sample 10d, and the surface (side surface, upper surface, and lower surface) of the sample 10d is prepared.
  • a stress-stimulated luminescent material is applied in the same manner as in the first embodiment or the second embodiment.
  • the right end of the sample piece 11d is pulled up in the upward direction, and the sample piece 12d is pulled down in the downward direction.
  • the stress light emitter at the location corresponding to the position where the adhesive 13 is peeled off emits light, and the emitted light can be photographed with a camera described later.
  • the peeling position of an adhesive agent can be easily specified by specifying the position with the highest brightness
  • a tape-like sample piece 11e is adhered to an adherend 90 with an adhesive 13 to produce a sample 10e, and the surface of the sample piece 11e (at least one of the upper surface and the side surface).
  • a stress light emitter is applied.
  • the right end of the sample piece 11e is pulled upward.
  • the stress light emitter at the location corresponding to the position where the adhesive 13 is peeled off emits light, and the emitted light can be photographed with a camera described later.
  • the peeling position of the adhesive agent 13 can be easily specified by specifying the position with the highest luminance, for example, from the obtained image. As a result, the peel adhesion strength of the adhesive can be accurately measured.
  • test apparatus (adhesive adhesive strength measuring apparatus) 101A can be configured as shown in FIG. 18, for example. That is, as in the first embodiment or the second embodiment, the test apparatus (adhesive bond strength measuring apparatus) used for a general peel adhesive strength test is similar to the sample 10d or the sample 10e. It can be easily configured by adding a camera for photographing light emission.
  • the sample 110A is not particularly limited as long as the sample is used for the peel adhesive strength test of the adhesive and a stress-stimulated luminescent material is applied like the samples 10d and 10e as described above.
  • the test unit 102A is not particularly limited as long as it applies a load to the sample 110A as described above, measures the load due to the load and the displacement of the sample 110A, and outputs them to the measurement unit 104.
  • Examples of the test unit 102 include the test apparatus according to the first embodiment.
  • the other cameras 103, measurement unit 104, and wiring 105 can be the same as those described in the sixth embodiment.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • this recording medium for example, a CD (Compact Disc), a DVD (Digital Versatile Disc), a memory card, and the like can be used.
  • the method for detecting the tip position of the sample crack from the image output from the camera is not particularly limited.
  • the tip position of the crack of the sample may be detected from the image by visual observation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】負荷を加えることにより試料に生じたき裂が進展する際の先端位置の検出を簡略化する。 【解決手段】本技術のき裂先端位置検出方法は、先端位置検出手順を具備する。このき裂先端位置検出方法が具備するき裂先端位置検出方法は、応力に応じて発光する応力発光体が塗布された試料に負荷を加えることによりその試料に形成されたき裂が進展する際の、その進展するき裂の先端位置をその塗布された応力発光体の発光に基づいて検出する。

Description

き裂先端位置検出方法および接着剤剥離位置検出方法
 本技術は、き裂先端位置検出方法および接着剤剥離位置検出方法に関する。詳しくは、負荷を加えることにより試料に生じたき裂が進展する際の先端位置を検出する方法および当該方法が適用された装置並びに、負荷を加えることにより試料の接着剤が剥離する際の接着剤の剥離位置を検出する接着剤剥離位置検出方法および当該方法が適用された装置に関する。
 従来、CFRP(Carbon Fiber Reinforced Plastics)等からなる試料片を貼り合わせて形成された試料における接着強度を計測する方法として双片持ち梁(DCB:Double Cantilever Beam)試験による破壊靱性試験が行われている。このDCB試験は、ASTM D5528-13、ISO15024、ISO25217およびJIS K 7086等により規定された試験方法であり、試料に層間剥離を生じさせて強度を測定する試験方法である。これらの規格において、層間剥離のモード毎に試験方法が決められている。例えば、開口形(モードI)の試験モードでは、試料を2つの試料片に断裂させる方向に引っ張る荷重(負荷)をその試料の端部に加え、試料にき裂を生じさせる。このき裂が上述の負荷に応じて進展した際の長さに基づいて接着強度が算出される。
 このき裂長さを取得するため、進展するき裂の先端位置を検出する必要がある。このき裂の先端位置を検出する方法として、例えば、試料の表面色と背景色等とを色対比させることによりき裂の成長を検出するシステムが使用されている(例えば、特許文献1参照。)。当該システムにおいては、試料の表面の色と、背景や試料内部の色とを対比させることによりき裂の形状を検出し、き裂の先端位置を検出する。
特開2016-50937
 上述の従来技術は、試料を撮影して画像を生成し、生成した画像の画素毎に色相や明度、彩度等を対比させて画像における試料表面とは異なる領域を取得することにより、き裂の形状を検出する。しかし、上述の従来技術では、画素毎に色相等を対比させるため、先端位置の検出の処理が複雑になるという問題点がある。
 また、上述した従来技術では、き裂の先端位置を特定することが難しく、き裂の先端位置を特定する際に、測定者の主観が含まれてしまうという問題点があった。
 同様に、上述した従来技術では、2つの試料片の接着面が見える方向からき裂の長さを測定することから、き裂の表面位置をき裂の長さとしているが、その表面位置が本当にき裂の平均の長さに等しいのか不明であるという問題点があった。
 さらに、被着体の塑性変形・微小破壊が含まれることもあり、接着層の変形エネルギーの算出が困難であるという問題点があった。
 本技術は、上述した問題点に鑑みてなされたものであり、負荷を加えることにより試料に生じたき裂が進展する際の先端位置の検出、および負荷を加えることにより試料の接着剤が剥離する際の接着剤の剥離位置の検出を簡略化することを目的としている。
 本技術の第1の態様は、応力に応じて発光する応力発光体が塗布された試料に負荷を加えることにより上記試料に形成されたき裂が進展する際の、当該進展するき裂の先端位置を上記塗布された応力発光体の発光に基づいて検出する先端位置検出手順を具備するき裂先端位置検出方法および検出装置である。き裂の先端の領域は、破壊が進行している部分であり、応力が集中する部分である。この応力が集中する領域を応力発光体の発光により検出する。この応力発光体の発光は自発光であるため、試料表面とは異なる色相となる。そのため、試験中の試料における応力発光体の発光位置を容易に認識することができる。き裂の先端位置の検出の簡略化が期待される。
 また、本技術の第1の態様において、上記試料におけるき裂が進展する面に上記応力発光体が塗布されてもよい。当該態様においては、表面をき裂が進展する面の応力発光体の発光を検出することができる。試料の表面に生じたき裂の先端位置の検出が期待される。
 また、本技術の第1の態様において、上記先端位置検出手順は、上記塗布された応力発光体における上記発光を生じた領域の中心を上記先端位置として検出してもよい。当該態様においては、応力発光体の発光領域が比較的広い領域であっても、当該発光領域の中心をき裂の先端位置として検出することができる。
 また、本技術の第1の態様において、上記試料におけるき裂が進展する面と直交するとともに上記き裂の進展する方向と平行な面に上記応力発光体が塗布されてもよい。当該態様においては、内部をき裂が進展する面の応力発光体の発光を検出することができる。試料の内部に生じたき裂の先端位置の検出が期待される。
 また、本技術の第1の態様において、上記先端位置検出手順は、上記塗布された応力発光体における上記発光を生じた線状の領域の中心を結ぶ線を上記先端位置として検出してもよい。当該態様においては、試料内部に生じたき裂の先端の形状の検出が期待される。
 また、本技術の第2の態様は、応力に応じて発光する応力発光体が塗布された試料に負荷を加えることにより上記試料に形成されたき裂が進展する際の、当該進展するき裂の先端位置を上記塗布された応力発光体の発光に基づいて検出する先端位置検出手順と、上記試料に上記負荷を加える前の上記き裂と上記検出された先端位置とに基づいて上記き裂の進展長さを検出するき裂進展長さ検出手順とを具備するき裂長さ検出方法である。試料表面とは異なる色相である応力発光体の発光によりき裂の先端位置を検出するため、き裂長さの検出の簡略化が期待される。
 また、本技術の第3の態様は、応力に応じて発光する応力発光体が塗布された試料に負荷を加えることにより上記試料に形成されたき裂が進展する際の、当該進展するき裂の先端位置を上記塗布された応力発光体の発光に基づいて検出する先端位置検出手順と、上記試料に上記負荷を加える前の上記き裂と上記検出された先端位置とに基づいて上記き裂の進展長さを検出するき裂進展長さ検出手順と、上記検出されたき裂進展長さに基づいて上記試料の強度を計測する計測手順とを具備する試料強度計測方法である。試料表面とは異なる色相である応力発光体の発光によりき裂の先端位置を検出するため、強度の計測の簡略化が期待される。
 本技術の第4の態様は、応力に応じて発光する応力発光体が塗布された試料に一定の変位速度で負荷を加える試験部と、試験部により加えられた負荷により、試料に塗布された応力発光材料の発光状態を撮影するカメラと、カメラから出力された画像から試料のき裂の先端位置を検出することにより、き裂長さを検出すると共に、試験部から出力された負荷、変位および時間と、き裂の長さとに基づいて試料の強度を算出する計測部と、を具備することを特徴とする試料強度計測装置にある。このように試料強度計測装置を構成することにより、試料の強度を正確かつ容易に計測することができる。
 本技術の第5の態様は、計測部は、試験部から出力された時間における試料の単位幅当たりのコンプライアンスの立方根に対する、き裂進展長さ検出部により検出されたき裂の長さの傾きα1を用いて、次式により試料強度G1cを算出することを特徴とする第4の態様に記載の試料強度計測装置にある。
Figure JPOXMLDOC01-appb-M000002
(Hは試料の厚み、Pは試験部の引張荷重(負荷)、Bは試料の幅、λはコンプライアンスを示す。)
 ここで、コンプライアンスとは、単位荷重を作用させたときの荷重点の変位、すなわち剛性の逆数である。
 このように試料強度計測装置を構成することにより、試料の強度をより正確かつ容易に計測することができる。
 本発明の第6の態様は、計測部は、試料に負荷を加える前のき裂の位置と検出された先端位置とに基づいてき裂の進展長さを検出することを特徴とする第4の態様に記載の試料強度計測装置にある。このように試料強度計測装置を構成することにより、試料の強度をより正確かつ容易に計測することができる。
 本技術の第7の態様は、試料には、負荷を加える前のき裂の位置からの距離を示す距離情報が表示され、計測部は、距離情報と検出された先端位置とに基づいてき裂の進展長さを検出することを特徴とする第4の態様に記載の試料強度計測装置にある。
 ここで、距離情報は、試料に直接印刷等されてもよいし、距離情報が記載されたシール等を貼りつけるようにしてもよい。
 このように試料強度計測装置を構成することにより、試料の強度をより容易に計測することができる。
 本技術の第8の態様は、接着剤により接合された試料に負荷を加えて接着剤が剥離する際の接着剤の剥離位置を検出する接着剤剥離位置検出方法であって、試料の表面に応力に応じて発光する応力発光体を塗布することを特徴とする接着剤剥離位置検出方法にある。この方法により、接着剤の剥離位置をより正確かつ容易に計測することができる。
 本技術の第9の態様は、応力に応じて発光する応力発光体が塗布された試料に所定の変位速度で負荷を加える試験部と、試験部により加えられた負荷により、試料に塗布された応力発光材料の発光を撮影するカメラと、カメラから出力された画像から試料の接着剤の剥離位置を検出すると共に、試験部から出力された負荷と、変位と、接着剤の剥離位置とに基づいて接着剤の接着強度を算出する計測部と、を具備することを特徴とする接着剤の接着強度計測装置にある。このように接着強度計測装置を構成することにより、接着剤の接着強度をより正確かつ容易に計測することができる。
 本技術に係るき裂先端位置検出方法は、負荷を加えることにより試料に生じたき裂が進展する際の先端位置の検出を簡略化するという優れた効果を奏する。また、本技術に係る接着剤の剥離位置検出方法は、負荷を加えることにより試料の接着剤が剥離する際の接着剤の剥離位置の検出を簡略化するという優れた効果を奏する。
本技術の実施の形態に係る試料強度計測装置の構成例を示す図である。 本技術の実施の形態に係る計測部の構成例を示す図である。 本技術の実施の形態に係る試料の構成例を示す図である。 本技術の実施の形態に係る強度の計測の一例を示す図である。 本技術の第1の実施の形態に係る先端位置の検出の一例を示す図である。 本技術の実施の形態に係る接着強度の計測処理の一例を示す図である。 実施例1に係る試料の発光状態を示す写真である。 本技術の第2の実施の形態に係る先端位置の一例を示す図である。 本技術の第3の実施の形態に係る試料の側面の概略を示す図である。 本技術の第4の実施の形態に係る試料の側面の概略を示す図である。 本技術の第5の実施の形態に係る試料の側面の概略を示す図である。 本技術の第6の実施の形態に係る試料強度計測装置の概略を示す図である。 本技術の第6の実施の形態に係る試料強度計測装置の動作のフローチャートを示す図である。 本技術の第6の実施の形態における時間の立方根と、き裂の長さとの関係を示すグラフである。 本技術の第6の実施の形態に係る試料の一例の側面の概略を示す図である。 本技術の第7の実施の形態に係る試料の一例の側面の概略を示す図である。 本技術の第7の実施の形態に係る試料の一例の側面の概略を示す図である。 本技術の第7の実施の形態に係る接着剤の剥離接着強さ試験装置の概略を示す図である。
 次に、図面を参照して、本技術を実施するための形態(以下、実施の形態と称する)を説明する。以下の図面において、同一または類似の部分には同一または類似の符号を付している。ただし、図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 <1.第1の実施の形態>
 [試料強度計測装置の構成]
 図1は、本技術の実施の形態に係る試料強度計測装置の構成例を示す図である。同図の試料強度計測装置1は、試験装置2と、カメラ3と、計測部4とを備える。
 試験装置2は、試料10の引張試験を行うものである。この試験装置2は、試料10に引張荷重を負荷として加えることにより試験を行う。同図の試験装置2は、試料10に対して上下方向の引張荷重を加える。また、試験装置2は、荷重を加えながら、当該荷重による負荷と試料10の変位とを測定し、計測部4に対して出力する。ここで、負荷には、引張荷重により試料10に加えられる力が該当する。同図の試験装置2は、ロードセル21と、アクチュエータ22と、試験治具23および24とを備える。
 試験治具23および24は、試料10を保持するものである。試験治具23は試料10を上方から保持し、試験治具23は試料10を下方から保持する。これら試験治具23および24は、後述する試料10の荷重負荷用ブロック16および17に形成された貫通孔にピン(不図示)を通し、このピンを同図のコの字形状の保持部に固定することにより、荷重負荷用ブロック16および17とそれぞれ連結される。荷重負荷用ブロック16および17は試料10に接着されているため、試験治具23および24により試料10を保持することができる。ピンを介して試験治具23および24と荷重負荷用ブロック16および17とをそれぞれ連結することにより、試験中に試料10にたわみを生じた場合であっても、試料10に対する荷重の方向(上下方向)を保つことができる。
 アクチュエータ22は、試験治具24を介して試料10に下方向の引張荷重を加えるものである。例えば、アクチュエータ22は、所定の引張速度(変位速度)に基づいて引張荷重を加えることができる。このアクチュエータ22には、油圧により駆動されるアクチュエータを使用することができる。なお、試料10の変位は、アクチュエータ22に配置されたひずみゲージ(不図示)により測定され、計測部4に対して出力される。
 ロードセル21は、試験治具23を介して試料10に加えられた荷重(負荷)を測定するものである。測定された負荷は、計測部4に対して出力される。
 カメラ3は、試料10を撮影するものである。このカメラ3は、試料10および試料10に塗布された応力発光体の発光を撮影して画像を生成し、計測部4に対して出力する。
 計測部4は、試料10の接着強度を計測するものである。この計測部4は、カメラ3から出力された画像から試料10のき裂先端位置を検出することにより、き裂長さを検出する。また、計測部4は、試験装置2から出力された負荷および変位とき裂長さとに基づいて接着強度を計測し、出力する。同図に表したように、計測部4は、信号線8および9により試験装置2およびカメラ3にそれぞれ接続される。計測部4は、例えば、画像処理を行うコンピュータにより構成することができる。
 なお、試料強度計測装置1の構成は、この例に限定されない。例えば、2つのカメラを試料10の両側に配置して、撮影を行う構成にすることができる。この場合には、図5において後述するように、試料10の両側におけるき裂の先端位置を検出することができる。また、カメラを試料10の上方もしくは下方または両方に配置して、撮影を行うこともできる。この場合には、図8において後述するように、試料10の上面や下面における応力発光体の発光を検出することができる。
 [計測部の構成]
 図2は、本技術の実施の形態に係る計測部の構成例を示す図である。同図の計測部4は、制御部41と、強度計測部42と、き裂先端位置検出部43と、き裂進展長さ検出部44とを備える。
 制御部41は、試験装置2を制御するものである。この制御部41は、試験装置2に対して引張荷重の開始および停止の制御を行うことができる。また、制御部41は、計測部4の全体を制御する。
 き裂先端位置検出部43は、カメラ3が生成した画像に基づいて試料10におけるき裂の先端位置を検出するものである。このき裂先端位置検出部43は、画像処理を行うことにより、先端位置を検出する。き裂先端位置検出部43における先端位置の検出の詳細については後述する。なお、き裂先端位置検出部43は、特許請求の範囲に記載のき裂先端位置検出装置の一例である。
 き裂進展長さ検出部44は、き裂先端位置検出部43が検出した先端位置に基づいてき裂が進展した長さを検出するものである。き裂進展長さ検出部44におけるき裂進展長さの検出の詳細については後述する。
 強度計測部42は、試験装置2から出力された変位および負荷とき裂進展長さ検出部44から出力されたき裂進展長さとに基づいて試料の強度を計測するものである。この強度には、試料の接着強度のほかに、例えば、基材上に形成された他の部材の剥離強度や単一の部材により構成された試料の破壊強度等が該当する。同図においては、試料10の接着強度が計測される。計測された強度は、試験装置1の計測強度として出力される。強度計測部42における強度の計測の詳細については後述する。
 [試料の構成]
 図3は、本技術の実施の形態に係る試料の構成例を示す図である。同図におけるaは、試料10の構成を表したものである。試料10は、2つの試料片11および12が接着剤13により貼り合わされて構成された試料である。試料片11および12には、例えば、CFRPにより構成された試料片を使用することができる。この接着剤による接着強度が試料強度計測装置1の計測対象となる。また、同図における試料10の左端部には、初期き裂14が形成されている。この初期き裂14は、試料10において接着剤13による接着が行われていない領域である。この初期き裂14は、試料片11および12を接着する際に、フィルム等を挟持させることにより形成することができる。この初期き裂14が形成された試料片11および12には、それぞれ荷重負荷用ブロック16および17がそれぞれ接着される。この荷重負荷用ブロック16および17には、前述の貫通孔18および19がそれぞれ形成されている。
 同図におけるbは、試料10に引張荷重が負荷として加えられた場合を表したものである。同図の矢印は、荷重負荷用ブロック16および17に加えられる引張荷重を表したものである。同図におけるbは、引張荷重により試料10の接着部が破壊してき裂15を生じた例を表したものである。き裂15は、初期き裂14の端部より進展して形成されたき裂である。
 [接着強度の計測]
 図4は、本技術の実施の形態に係る強度の計測の一例を示す図である。図3におけるbにおいて説明した試料10を例に挙げて、接着強度の計測の原理を説明する。同図において、Pは引張荷重(負荷)を表す。また、δは、試料10のき裂開口部における変位を表す。また、aは、き裂長さを表す。同図の試料10の接着強度Gは、例えば、次式により算出することができる。
  G=3×P×δ/(2×b×a)
ここで、bは、試料片11および12の幅を表す。図2において説明した強度計測部42は、試験装置2から出力された変位δおよび負荷Pとき裂進展長さ検出部44から出力されたき裂長さaとを取得し、上記の式に基づいて強度を算出する。これにより、接着強度の計測が行われる。
 このように、き裂長さを検出することにより、接着強度を算出することができる。き裂長さを検出するためには、試料10におけるき裂の先端位置を検出する必要がある。図1において説明した試料強度計測装置1では、試料10に応力発光体を塗布し、この塗布された応力発光体の発光に基づいてき裂の先端位置を検出する。ここで、応力発光体とは、応力に応じて発光するものである。この、応力発光体として、例えば、機械的な外力により生じる変形によって発光する応力発光材料を樹脂等の塗料基材に分散させて塗料状にしたものを使用することができる。塗料状にすることにより、試料10への塗布を容易に行うことができる。
 応力発光材料には、既知又は未知の材料を採用することができる。既知の応力発光材料としては、例えば、スピネル構造、コランダム構造、βアルミナ構造、ウルツ鉱型構造、または閃亜鉛鉱型構造ならびにこれらが共存する構造等を有する酸化物、硫化物、セレン化物またはテルル化物を主成分として構成されるもの等を挙げることができる。例えば、上記構造を有するケイ酸塩や欠陥制御型アルミン酸塩が該当する。
 また、応力発光材料について、より具体的な代表例を挙げるならば、ユーロピウム(Eu)イオンを含むアルミン酸ストロンチウム(以下SrAl:Euのように記載する。)、LiSrPO:Eu2+、LiBaPO:Eu2+、xSrO・yAl・zMO:Eu2+を挙げることもできる。ここで、Mは二価金属を表し、x、yおよびzはそれぞれ正の整数を表す。なお、Mは二価金属であれば限定されるものではないが、Mg、CaまたはBaが好ましい。
 また、他の例として以下の物質を挙げることができる。発光色とともに記載する。xSrO・yAl・zSiO(発光色:緑~赤)、BaTiO-CaTiO:Pr(発光色:赤)、ZnS:M(Mは二価金属であれば限定されるものではないが、Mn、GaおよびCu等が望ましい。)(発光色:赤~黄色)、SrSiO:EuDy(発光色:黄)、SrAl:Eu(発光色:緑)、CaAlSi:Eu(発光色:青)、CaAlSiO:Ce(発光色:青)、CaMgSi:Ce(発光色:青)、SrAl:Ce(発光色:青)、CaYAl:Eu(発光色:青)、SrAl:HoCe(発光色:紫外)、一般式Sr{1-(2x+3y+3z)/2}Al:xEu2+,yCr3+,zNd3+により表される物質(ただし、x、yおよびzは、0.25~10mol%、好ましくは0.5~2  mol%である。)(発光色:近赤外)。
 [先端位置の検出]
 図5は、本技術の第1の実施の形態に係る先端位置の検出の一例を示す図である。同図は、応力発光体によるき裂の先端位置の検出を表したものである。同図におけるaは、試験前の試料10を表したものである。この試料10の側面には、応力発光体61が塗布されている。なお、同図における紙面の反対側の試料10の側面にも応力発光体を塗布することができる。当該側面は、き裂の発生および進展を外部から観察することができる面である。すなわち、試料10におけるき裂が進展する面に応力発光体61が塗布される。
 同図におけるbは、き裂15が進展した場合の試料10を表したものである。また、同図におけるbは、き裂15の先端の領域を拡大したものであり、き裂15の先端をき裂先端71により表したものである。き裂15の進展に伴って応力発光体61が発光する。同図におけるbに表した発光領域72は、応力発光体61の発光領域を表したものである。き裂の先端は、応力が集中して試料10の接着層(接着剤)13の破壊が進行している部分である。この応力の集中により、き裂先端71の周囲の応力発光体61が強く発光し、発光領域72を生じる。なお、試料10のき裂先端71の近傍の領域には、比較的小さな応力が掛かる。このため、この近傍領域に塗布された応力発光体61においても弱い発光(不図示)を生じる。き裂の先端を検出する際には、このき裂先端近傍の発光領域を除外する必要がある。例えば、カメラ3により生成された画像の領域毎の輝度を所定の閾値と比較することにより、弱い応力に基づく応力発光体61の発光を除去し、同図に表した発光領域72を検出することができる。
 応力発光体の発光は、励起された発光中心による自発光であり、肉眼による観察や画像処理による検出を容易に行うことができる。試料10や背景と色相が異なるためである。具体的には、試験開始前後における試料10の画像において輝度の差分を算出することにより、応力発光体61の発光画像を生成することができる。この処理は、き裂先端位置検出部43により行われる。また、応力発光体の発光は試料10等と色相が異なるため、発光領域の検出精度を向上させることができる。また、上述のSrAl:Euを有する応力発光体は応力による発光の応答速度が速いため、この応力発光体を適用することにより、進展するき裂の先端位置の検出精度をさらに向上させることができる。このように、き裂先端位置検出部43は、負荷を加えられた試料10に形成されたき裂15が進展する際の、その進展するき裂15の先端位置を試料10に塗布された応力発光体61の発光である発光領域72に基づいて検出する。
 試料10のき裂の進展の検出を併用して計測を行う場合には、照明等の環境光とは異なる色相の発光色の応力発光体を選択することにより、き裂先端位置の検出を簡略化し、明所下でもき裂先端位置の検出精度を向上させることができる。例えば、蛍光灯による室内照明下において計測を行う場合には、蛍光灯による照明色(可視光、主に400~700nm)とは異なる色相の発光色となる応力発光材料を有する応力発光体を選択する。具体的には、前述の一般式Sr{1-(2x+3y+3z)/2}Al:xEu2+,yCr3+,zNd3+により表される応力発光材料は、近赤外光(主に700~1200nm)の発光を含むため、蛍光灯による照明色とは異なる色相の応力発光材料として選択することができる。また、例えば、緑色の発光色を示すSrAl:Euは、照明色が青色、黄色、橙色または赤色の場合に、環境光とは異なる色相の応力発光材料として選択することができる。
 なお、応力に対して応力発光体61の発光輝度が飽和する場合には、発光領域72が比較的広い領域を占めることとなる。この場合には、発光領域72の中心をき裂の先端位置にすることにより、応力発光体の輝度の飽和の影響を軽減することができる。
 前述のように応力発光体61を試料10の2つの側面に塗布した場合には、それぞれの側面において発光領域72に基づく先端位置を検出し、これらの先端位置の試料10の端部からの平均を算出することにより、き裂の先端位置を検出することができる。
 き裂15の進展長さは、負荷を加える前および後の試料10のき裂の先端位置の差分に基づいて検出することができる。具体的には、負荷を加える前の試料10のき裂の先端位置を初期位置として記録し、き裂先端位置検出部43により検出されたき裂の先端位置との差分を算出することにより、き裂の進展長さを検出することができる。この処理は、図2において説明したき裂進展長さ検出部44により行われる。また、図3において説明した初期き裂14を有する試料10に対して試験を行う場合には、この初期き裂14の先端位置を初期位置として進展長さを算出することができる。また、同一の試料10に対し、負荷を加えてき裂を進展させた後に負荷を解放する処理を複数サイクル実行して接着強度を計測する際には、前回のサイクルにおけるき裂の先端位置を初期位置として進展長さを算出することができる。
 応力発光体61は、試料10の接着強度の計測に影響を及ぼさない状態に塗布する必要がある。具体的には、塗布された応力発光体61の強度が接着剤13の接着強度と比較して十分小さくなる厚みに塗布する必要がある。また、試料10の接着剤13の領域やその近傍に塗布することにより、先端位置の検出精度を向上させることができる。また、き裂の先端位置を識別可能とするため、応力発光体61における発光材の比率を調整する必要がある。また、試験開始前に、応力発光体61を紫外線光励起する必要がある。
 [接着強度の計測]
 図6は、本技術の実施の形態に係る接着強度の計測処理の一例を示す図である。まず、強度計測部42は、き裂先端位置を記録する(ステップS101)。これは、初期状態におけるき裂の先端位置を把握するために行う処理である。例えば、試料10の初期き裂14の先端位置を記録することにより行うことができる。次に、試験装置2における引張荷重を開始する(ステップS102)。これは、制御部41が試験装置2を制御することにより行うことができる。この際、アクチュエータ22の変位速度を、例えば、1mm/分の速度に制御することができる。次に、強度計測部42は、負荷および変位を検出する(ステップS103)。これは、試験装置2から出力される負荷および変位を取得することにより行うことができる。
 次に、き裂先端位置検出部43がき裂先端位置を検出する(ステップS104)。これは、き裂先端位置検出部43が、カメラ3により生成された画像の応力発光体の発光を検出することにより行う。カメラ3による画像の生成は、例えば、10fpsのフレームレートにより行うことができる。次に、き裂進展長さ検出部44がき裂の長さを検出する(ステップS105)。これは、ステップS101において記録したき裂先端位置とステップS104により検出された先端位置との差分を算出することにより行うことができる。次に、制御部41は、所定のき裂長さに達したか否かを判断する(ステップS106)。この所定のき裂長さとして、例えば、5mmの値を採用することができる。この結果、所定のき裂長さに達していない場合には(ステップS106:No)、再度ステップS103からの処理が実行される。
 一方、所定のき裂長さに達した場合には(ステップS106:Yes)、試験装置2における引張荷重を停止する(ステップS107)。これは、ステップS102と同様に、制御部41が試験装置2を制御し、引張荷重を解放することにより行うことができる。この際、アクチュエータ22の変位速度をステップS102と同じ速度に制御することができる。最後に、強度計測部42が接着強度を計測する(ステップS108)。これは、強度計測部42がき裂長さ等に基づいて接着強度を算出することにより行うことができる。
 なお、本技術の第1の実施の形態の試料強度計測装置1の構成は、この例に限定されない。他の試験、例えば、端面切欠き曲げ(ENF:End Notches Flexure)試験等における接着強度の検出に適用することもできる。また、CFRP以外の材料により構成された試料の試験に適用することも可能である。例えば、各種高分子材料により構成された試料やアルミニウム(Al)、鉄(Fe)およびチタン(Ti)ならびにこれらの合金等により構成された試料の試験に適用することもできる。
 以上説明したように、本技術の第1の実施の形態のき裂の先端位置検出方法は、試料10や背景と色相が異なる応力発光体の発光に基づいて先端位置を検出することにより、き裂先端位置の検出を簡略化することができる。また、き裂先端位置の検出精度を向上させることも可能である。
(実施例1)
 長さ182mm、幅25mm、厚さ4mmのアルミニウム製の2枚の試料片をエポキシ系接着剤(Denatite2204,ナガセケムテックス製)で接着させ、その接着面Sが現れている表面上に厚さ50μmの応力発光体(SrAl:Eu)を塗布して試料を作製した。この試料を上述した試料強度計測装置に取り付け、上下方向に1mm/分の速度でアクチュエータを変位させた際の、き裂先端部の写真を図7に示す。
 この図に示すように、最も強く発光している部分Iが、き裂の先端部に対応することが分かった。すなわち、き裂の先端部が、荷重をかける前のき裂の元の先端位置Oから最も強く発光している部分Iまで進展したことが分かった。
 したがって、応力発光体が最も強く発光している部分Iの位置を計測することにより、き裂の先端部の位置を特定できるので、荷重をかける前のき裂の元の先端位置Oと、荷重をかけた時に最も強く発光している部分Iとから、進展したき裂の長さを容易に計測できることが分かった。
 <2.第2の実施の形態>
 上述の第1の実施の形態の先端位置検出方法は、試料10におけるき裂が進展する面に応力発光体を塗布していた。これに対し、本技術の第2の実施の形態の先端位置検出方法は、試料10におけるき裂が進展する面とは異なる面に応力発光体を塗布する点で、第1の実施の形態と異なる。
 [先端位置の検出]
 図8は、本技術の第1の実施の形態に係る先端位置の検出の一例を示す図である。同図は、試料10におけるき裂15が進展する面とは異なる面である試料10の上面または下面に応力発光体62が塗布される例を表したものである。具体的には、き裂15が進展する面である側面と直交するとともにき裂15の進展する方向と平行な面に応力発光体62が塗布される。同図におけるaは、き裂が進展した際の応力発光体の発光を表した図である。同図におけるaでは、応力発光体62が線状に発光する。この発光領域73は、き裂先端71を含む試料10の内部におけるき裂15の先端位置を試料10の上面に投影したものとなる。
 前述のように、試料10のき裂先端71の領域に応力が集中する結果、き裂が進展する。一方、き裂の先端は、試料片11および12が接着されている領域と剥離した領域との境界に該当する。試料片11および12は、き裂の先端位置を始点として屈曲することとなる。このため、試料片11および12の表面においても応力の集中を生じる。この応力の集中は、試料10の内部におけるき裂の先端に応じた線形状となる。同図におけるaに表したように、試料片11または12の表面、すなわち、試料10の上面または下面に応力発光体62を塗布することにより、線形状の応力の集中を発光領域73として検出することができる。具体的には、この発光領域73の中心を結ぶ線をき裂15の先端位置にすることができる。
 また、試料10の上面または下面に応力発光体62を塗布してき裂の先端位置を検出することにより、試料10の内部のき裂の進展の様子を把握することができる。これにより、例えば、接着剤13の接着強度や試料10の剛性等が均一であるか否かを判断する際に、き裂の進展の検出結果を使用することができる。同図におけるbは、試料10の上面図であり、曲線状の発光領域73の他の例を表したものである。なお、応力発光体62の記載は省略している。このように発光領域73が曲線状になる場合には、試料10の内部のき裂の進展が均一でないと判断することができる。
 同図におけるbにおいては、例えば、発光領域73の端点である点74および76の試料10の左端からの距離の平均の位置をき裂の先端位置にすることができる。また、例えば、き裂が最も進展した位置に対応する点75をき裂の先端位置にすることもできる。また、例えば、発光領域73により表される曲線を構成する要素の平均位置を算出してき裂の先端位置とすることも可能である。
 これ以外の試料強度計測装置1の構成は本技術の第1の実施の形態において説明した試料強度計測装置1と同様であるため、説明を省略する。
 以上説明したように、本技術の第2の実施の形態のき裂の先端位置検出方法では、試料10におけるき裂15が進展する面と直交するとともにき裂15の進展する方向と平行な面に塗布された応力発光体の発光に基づいて先端位置を検出する。これにより、試料10の内部におけるき裂の先端位置を検出することができる。
 <3.第3の実施の形態>
 上述した実施の形態では、いわゆるDCB試験に対して本発明を適用した場合について記載したが、本発明はこれに限定されない。
 例えば、本発明は、いわゆるWedge test(ASTM D3762等)にも適用することができる。具体的には、図9に示すように、2つの板状の試料片11a、12aを接着剤13で接着させて試料10aを作製し、その試料10aの表面(側面、上面および下面の少なくとも何れか1つ)に、第1の実施の形態または第2の実施の形態と同様に、応力発光体を塗布する。そして、この試料の試料片11a、12aの間に、両刃のくさび80aを挿入する。
 なお、本実施の形態に係る試験装置は、一般的なWedge testに用いられる試験装置に、第1の実施の形態または第2の実施の形態と同様に、試料10aの発光状態を記録するカメラを追加することにより容易に構成することができる。
 このような試料を用いて構成された試験装置において、くさび80aにX方向の荷重をかけると、試料10aに亀裂が入る。すると、上述した実施の形態の試料と同様に、応力発光体が発光し、その発光をカメラで撮影することができる。そして得られた画像から、最も輝度が高い位置を特定することにより、き裂の先端の位置を特定することができる。
 したがって、第1の実施の形態に係る試験装置と同様の操作を行うことにより、本実施の形態に係る試験装置においても、第1の実施の形態または第2の実施の形態と同様の効果が得られる。
 <4.第4の実施の形態>
 上述した第3の実施の形態では、2枚の試料片を接着剤で接着させて作製した試料の接着強度に関する試験について、本発明を適用した場合について記載したが、本発明はこれに限定されない。
 例えば、図10に示すように、被着体90上に板状の試料片11bを接着剤13で接着させて試料10bを作製し、試料片11bの表面(上面および側面の少なくともいずれか1つ)に、第1の実施の形態または第2の実施の形態と同様に、応力発光体を塗布する。そして、この試料の試料片11bと被着体90との間に、片刃のくさび80bを挿入する。
 本実施の形態に係る試験装置は、上述の部分を除き、第3の実施の形態に係る試験装置と同様に構成することができる。そして、第3の実施の形態に係る試験装置と同様の操作を行うことにより、本実施の形態に係る試験装置においても、第3の実施の形態と同様の効果が得られる。
 <5.第5の実施の形態>
 本発明は、さらにコンパクトテンション試験(Compact Tension Test:ASTM D5045-93)にも適用することができる。具体的には、図11に示すようなコンパクトテンション試験に用いられる試料10cの側面の表面(側面)に、応力発光体を塗布する。
 そして、この試料10cをコンパクトテンション試験装置に取り付け、一般的なコンパクトテンション試験と同様に、試料10cの上下方向に付加を加えると、試料10cにき裂が入る。すると、上述した実施の形態の試料と同様に、応力発光体が発光し、その発光をカメラで撮影することができる。そして得られた画像から、最も輝度が高い位置を特定することにより、き裂の先端部の位置を特定することができる。その結果、より正確な破断時強度を計測することができる。
 ここで、試料10cの一方の側面にのみ応力発光体を塗布してもよいし、両側面に塗布してもよい。応力発光材料を両側面に塗布することにより、き裂の先端部をより正確に検出することができる。
 なお、本実施の形態に係る試験装置は、一般的なコンパクトテンションに用いられる試験装置に、第1の実施の形態または第2の実施の形態と同様に、試料10cの発光状態を記録するカメラを追加することにより容易に構成することができる。
 <6.第6の実施の形態>
 本実施の形態では、試料の強度を連続的に測定する試料強度測定装置(DCB試験装置)に関して詳細に説明する。図12は、本実施の形態に係る試料強度測定装置の概略図である。
 この図に示すように、本実施の形態に係る試料強度測定装置101は、配線105を介して、試料110が取り付けられる試験部102と、カメラ103と、計測部104で構成されている。
 ここで、試料110は、第1の実施の形態に係る試料と同様に、その表面に応力発光体が塗布されている。
 また。試験部102は、試料110に、一定の変位速度で荷重を加えながら、その荷重による負荷と試料110の変位とを測定し、計測部104に対してそれらを出力するものであれば特に限定されない。試験部102としては、例えば第1の実施の形態に係る試験装置等が挙げられる。
 また、カメラ103も、試料110に塗布された応力発光体の発光状態を撮影することができるものであれば特に限定されない。カメラとしては、例えば第1の実施の形態に係るカメラ等が挙げられる。
 計測部104は、第1の実施の形態に係る計測部と同様に、カメラ103から出力された画像から試料110のき裂の先端位置を検出することにより、き裂長さを検出すると共に、試験装置2から出力された負荷および変位とき裂長さとに基づいて接着強度を計測することができるものであれば特に限定されない。計測部104としては、上述した機能を有するパーソナルコンピュータ等が挙げられる。
 なお、配線105は、試験部102およびカメラ103のデータを計測部104に送信することができるものであれば特に限定されず、市販の配線や無線機器等を用いることができる。
 次に、本実施の形態に係る試料強度測定装置の動作について説明する。図13は、試料強度測定装置101の動作を示すフローチャートである。この図に示すように、試料110が試験部102に取り付けられ、測定が開始されると、試験部102は、一定の変位速度で試料110に負荷を加える(S1)。なお、変位速度は特に限定されない。すると、試料110に生じたき裂の先端位置で、試料110に塗布された応力発光体が発光するので、所定のタイミング(所定の単位時間)で、その発光を撮影する(S2)。そして、このような動作を予め定めておいた試験部102の変位の上限まで連続で繰り返す(S3)。
 その後、計測部104により、各タイミング(時間)におけるき裂の長さを算出する(S4)。そして、各タイミング(時間)に対するき裂の長さの傾きαを計算する(S5)。
 ここで、図14に示すように、各タイミング(時間)における単位幅に対するコンプライアンスの立方根と、き裂の長さとの間には線形の関係を有することから、き裂の長さの傾きαは、最小二乗法等を用いることにより容易に求めることができる。
 そして、得られたαおよびこの試験に用いた各数値を次の式に当てはめ、最終的に試料強度G1cを算出(S6)し、終了する。
Figure JPOXMLDOC01-appb-M000003
 Hは試料の厚み、Pは試験部の引張荷重(負荷)、Bは試料の幅、λはコンプライアンスを示す。ここで、コンプライアンスλは、試験部102の(開口)変位を引張荷重Pで除することにより求めることができる。
 上述したように試料強度測定装置を構成することにより、第1の実施の形態と同様の効果が得られることに加え、試料を試験部102に取り付けた後は、より正確な試料強度G1cを自動的に算出することができる。
 なお、本実施の形態では、各タイミング(時刻)と、試料110に塗布された応力発光体の発光位置に基づいて、き裂の長さを算出するようにしたが、本発明はこれに限定されない。例えば、図15に示すように、試料110のき裂が発生する表面に、負荷を加える前のき裂の位置からの距離を示す距離情報を表示するようにしてもよい。
 ここで、図17中のm0は負荷を加える前のき裂の位置を示し、m1およびm2はm0からの距離を示す距離情報である。なお、距離情報の単位や数値は、試験条件等に合わせて適宜変更できるのは言うまでもない。
 このようにすることにより、所定のタイミングにおける画像から、き裂の長さを容易に算出することができる。その結果、より容易に試料強度G1cを自動的に算出することができる。
 <7.第7の実施の形態>
 本発明は、接着剤の剥離接着強さ試験にも適用することができる。例えば、図16に示すようなT型剥離試験(JIS K 6854-3等)や、図17に示すような90度剥離試験(JIS K 6854-1等)にも適用することができる。
 具体的には、図16に示すように、2つのテープ状の試料片11d、12dを接着剤13で接着させて試料10dを作製し、その試料10dの表面(側面、上面および下面の少なくとも何れか1つ)に、第1の実施の形態または第2の実施の形態と同様に、応力発光体を塗布する。
 そして、試料片11dの右側端部を直上方向に引き上げると共に、試料片12dを直下方向に引き下げる。すると、上述した実施の形態の試料と同様に、接着剤13が剥がれる位置に対応する場所の応力発光体が発光し、その発光を後述するカメラで撮影することができる。そして得られた画像から、最も輝度が高い位置を特定することにより、接着剤の剥離位置を容易に特定することができる。その結果、接着剤の剥離接着強さを正確に測定することができる。
 また、図17に示すように、被着体90上にテープ状の試料片11eを接着剤13で接着させて試料10eを作製し、試料片11eの表面(上面および側面の少なくともいずれか1つ)に、第1の実施の形態または第2の実施の形態と同様に、応力発光体を塗布する。
 そして、試料片11eの右側端部を直上方向に引き上げる。すると、上述した実施の形態の試料と同様に、接着剤13が剥がれる位置に対応する場所の応力発光体が発光し、その発光を後述するカメラで撮影することができる。そして得られた画像から、例えば最も輝度が高い位置を特定することにより、接着剤13の剥離位置を容易に特定することができる。その結果、接着剤の剥離接着強さを正確に測定することができる。
 なお、本実施の形態に係る試験装置(接着剤の接着強度計測装置)101Aは、例えば図18に示すように構成することができる。すなわち、一般的な剥離接着強さ試験に用いられる試験装置(接着剤の接着強度計測装置)に、第1の実施の形態または第2の実施の形態と同様に、試料10dまたは試料10e等の発光を撮影するカメラを追加することにより容易に構成することができる。
 ここで、試料110Aは、上述したような試料10d、10eのように、接着剤の剥離接着強さ試験に用いられる試料に応力発光体が塗布されたものであれば特に限定されない。
 試験部102Aは、上述したような試料110Aに荷重を加えながら、その荷重による負荷と試料110Aの変位とを測定し、計測部104に対してそれらを出力するものであれば特に限定されない。試験部102としては、例えば第1の実施の形態に係る試験装置等が挙げられる。
 この他のカメラ103、計測部104、配線105は、第6の実施の態様で説明したものと同様のものを用いることができる。
 そして、このような試験装置101Aを、上述した試験装置と同様に動作させることにより、接着剤の剥離位置検出を容易に検出することができる。その結果、接着剤の接着強度を正確にかつ容易に測定することができる。
<他の実施の形態>
 最後に、上述した各実施の形態の説明は本技術の一例であり、本技術は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本技術に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(CompactDisc)、DVD(DigitalVersatileDisc)およびメモリカード等を用いることができる。
 さらに、カメラから出力された画像から試料のき裂の先端位置を検出する方法は特に限定されない。例えば、目視により、その画像から試料のき裂の先端位置を検出してもよい。
 1、101 試料強度計測装置
 2 試験装置
 3、103 カメラ
 4、104 計測部
 10、10a、10b、10c、10d、10e、110、110A 試料
 11、11a、11b、11d、11e、12、12a、12d 試料片
 13 接着剤
 14 初期き裂
 15 き裂
 16、17 荷重負荷用ブロック
 18、19 貫通孔
 21 ロードセル
 22 アクチュエータ
 23、24 試験治具
 41 制御部
 42 強度計測部
 43、143 先端位置検出部
 44、144 き裂進展長さ検出部
 61、62 応力発光体
 71 き裂先端
 72、73 発光領域
 80a、80b くさび
 90 被着体
 101A 接着強度計測装置
 102、102A 試験部
 105 配線

Claims (14)

  1.  応力に応じて発光する応力発光体が塗布された試料に負荷を加えることにより前記試料に形成されたき裂が進展する際の、当該進展するき裂の先端位置を前記塗布された応力発光体の発光に基づいて検出する先端位置検出手順を具備するき裂先端位置検出方法。
  2.  前記試料におけるき裂が進展する面に前記応力発光体が塗布される請求項1記載のき裂先端位置検出方法。
  3.  前記先端位置検出手順は、前記塗布された応力発光体における前記発光を生じた領域の中心を前記先端位置として検出する請求項2記載のき裂先端位置検出方法。
  4.  前記試料におけるき裂が進展する面と直交するとともに前記き裂の進展する方向と平行な面に前記応力発光体が塗布される請求項1記載のき裂先端位置検出方法。
  5.  前記先端位置検出手順は、前記塗布された応力発光体における前記発光を生じた線状の領域の中心を結ぶ線を前記先端位置として検出する請求項4記載のき裂先端位置検出方法。
  6.  応力に応じて発光する応力発光体が塗布された試料に負荷を加えることにより前記試料に形成されたき裂が進展する際の、当該進展するき裂の先端位置を前記塗布された応力発光体の発光に基づいて検出する先端位置検出手順と、
     前記試料に前記負荷を加える前の前記き裂と前記検出された先端位置とに基づいて前記き裂の進展長さを検出するき裂進展長さ検出手順と
    を具備するき裂長さ検出方法。
  7.  応力に応じて発光する応力発光体が塗布された試料に負荷を加えることにより前記試料に形成されたき裂が進展する際の、当該進展するき裂の先端位置を前記塗布された応力発光体の発光に基づいて検出する先端位置検出手順と、
     前記試料に前記負荷を加える前の前記き裂と前記検出された先端位置とに基づいて前記き裂の進展長さを検出するき裂進展長さ検出手順と、
     前記検出されたき裂進展長さに基づいて前記試料の強度を計測する計測手順と
    を具備する試料強度計測方法。
  8.  応力に応じて発光する応力発光体が塗布された試料に負荷を加えることにより前記試料に形成されたき裂が進展する際の、当該進展するき裂の先端位置を前記塗布された応力発光体の発光に基づいて検出する先端位置検出部を具備するき裂先端位置検出装置。
  9.  応力に応じて発光する応力発光体が塗布された試料に一定の変位速度で負荷を加える試験部と、
     前記試験部により加えられた負荷により、前記試料に塗布された応力発光材料の発光を撮影するカメラと、
     前記カメラから出力された画像から前記試料のき裂の先端位置を検出することにより、き裂長さを検出すると共に、前記試験部から出力された負荷、変位および時間と、き裂の長さとに基づいて前記試料の強度を算出する計測部と、
    を具備することを特徴とする試料強度計測装置。
  10.  前記計測部は、前記試験部から出力された時間における単位幅当たりのコンプライアンスの立方根に対する、前記き裂進展長さ検出部により検出されたき裂の長さの傾きαを用いて、次式により試料強度G1cを算出することを特徴とする請求項9に記載の試料強度計測装置。
    Figure JPOXMLDOC01-appb-I000001
    (Hは試料の厚み、Pは試験部の引張荷重(負荷)、Bは試料の幅、λはコンプライアンスを示す。)
  11.  前記計測部は、前記試料に負荷を加える前の前記き裂の位置と前記検出された先端位置とに基づいて前記き裂の進展長さを検出することを特徴とする請求項10に記載の試料強度計測装置。
  12.  前記試料には、前記負荷を加える前の前記き裂の位置からの距離を示す距離情報が表示され、
     前記計測部は、前記距離情報と前記検出された先端位置とに基づいて前記き裂の進展長さを検出することを特徴とする請求項10に記載の試料強度計測装置。
  13.  接着剤により接合された試料に負荷を加えて前記接着剤が剥離する際の接着剤の剥離位置を検出する接着剤剥離位置検出方法であって、前記試料の表面に応力に応じて発光する応力発光体を塗布することを特徴とする接着剤剥離位置検出方法。
  14.  応力に応じて発光する応力発光体が塗布された試料に所定の変位速度で負荷を加える試験部と、
     前記試験部により加えられた負荷により、前記試料に塗布された応力発光材料の発光を撮影するカメラと、
     前記カメラから出力された画像から前記試料の接着剤の剥離位置を検出すると共に、前記試験部から出力された負荷と、変位と、接着剤の剥離位置とに基づいて前記接着剤の接着強度を算出する計測部と、
    を具備することを特徴とする接着剤の接着強度計測装置。
     
PCT/JP2018/008915 2017-03-09 2018-03-08 き裂先端位置検出方法および接着剤剥離位置検出方法 WO2018164212A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045037A JP2020073863A (ja) 2017-03-09 2017-03-09 き裂先端位置検出方法
JP2017-045037 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018164212A1 true WO2018164212A1 (ja) 2018-09-13

Family

ID=63448596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008915 WO2018164212A1 (ja) 2017-03-09 2018-03-08 き裂先端位置検出方法および接着剤剥離位置検出方法

Country Status (2)

Country Link
JP (1) JP2020073863A (ja)
WO (1) WO2018164212A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019130689A1 (ja) * 2017-12-26 2020-12-24 国立研究開発法人産業技術総合研究所 破壊可視化用センサおよびそれを用いた破壊可視化システム
WO2020261631A1 (ja) * 2019-06-25 2020-12-30 株式会社島津製作所 応力発光測定装置、応力発光測定方法および応力発光測定システム
WO2021095863A1 (ja) * 2019-11-14 2021-05-20 学校法人早稲田大学 破壊靭性試験装置及び破壊靭性試験方法
JPWO2020017199A1 (ja) * 2018-07-19 2021-09-09 国立研究開発法人産業技術総合研究所 接合状態検出膜、接合状態検出装置および接合状態検出方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022003848A1 (ja) * 2020-07-01 2022-01-06 株式会社島津製作所 検査方法、検査システムおよび応力発光測定装置
JP7415833B2 (ja) 2020-07-27 2024-01-17 Agc株式会社 割裂接着強さ試験機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739308A (en) * 1980-08-22 1982-03-04 Akashi Seisakusho Co Ltd Automatic measuring device for crack length
JP2006038586A (ja) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology 接着剤層内部の応力分布の測定方法
JP2010190865A (ja) * 2009-02-20 2010-09-02 National Institute Of Advanced Industrial Science & Technology 応力発光解析装置、応力発光解析方法、応力発光解析プログラムおよび記録媒体
JP5007978B2 (ja) * 2007-09-21 2012-08-22 独立行政法人産業技術総合研究所 構造体の欠陥を検知するための方法及びシステム
JP2015075477A (ja) * 2013-10-11 2015-04-20 独立行政法人産業技術総合研究所 応力発光評価装置並びに応力発光評価方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739308A (en) * 1980-08-22 1982-03-04 Akashi Seisakusho Co Ltd Automatic measuring device for crack length
JP2006038586A (ja) * 2004-07-26 2006-02-09 National Institute Of Advanced Industrial & Technology 接着剤層内部の応力分布の測定方法
JP5007978B2 (ja) * 2007-09-21 2012-08-22 独立行政法人産業技術総合研究所 構造体の欠陥を検知するための方法及びシステム
JP2010190865A (ja) * 2009-02-20 2010-09-02 National Institute Of Advanced Industrial Science & Technology 応力発光解析装置、応力発光解析方法、応力発光解析プログラムおよび記録媒体
JP2015075477A (ja) * 2013-10-11 2015-04-20 独立行政法人産業技術総合研究所 応力発光評価装置並びに応力発光評価方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019130689A1 (ja) * 2017-12-26 2020-12-24 国立研究開発法人産業技術総合研究所 破壊可視化用センサおよびそれを用いた破壊可視化システム
JP7165415B2 (ja) 2017-12-26 2022-11-04 国立研究開発法人産業技術総合研究所 破壊可視化用センサおよびそれを用いた破壊可視化システム
JPWO2020017199A1 (ja) * 2018-07-19 2021-09-09 国立研究開発法人産業技術総合研究所 接合状態検出膜、接合状態検出装置および接合状態検出方法
JP7217544B2 (ja) 2018-07-19 2023-02-03 国立研究開発法人産業技術総合研究所 接合状態検出膜、接合状態検出装置および接合状態検出方法
WO2020261631A1 (ja) * 2019-06-25 2020-12-30 株式会社島津製作所 応力発光測定装置、応力発光測定方法および応力発光測定システム
JPWO2020261631A1 (ja) * 2019-06-25 2021-11-18 株式会社島津製作所 応力発光測定装置、応力発光測定方法および応力発光測定システム
JP7099634B2 (ja) 2019-06-25 2022-07-12 株式会社島津製作所 応力発光測定装置、応力発光測定方法および応力発光測定システム
WO2021095863A1 (ja) * 2019-11-14 2021-05-20 学校法人早稲田大学 破壊靭性試験装置及び破壊靭性試験方法
JP2021081191A (ja) * 2019-11-14 2021-05-27 学校法人早稲田大学 破壊靭性試験装置及び破壊靭性試験方法
JP7279880B2 (ja) 2019-11-14 2023-05-23 学校法人早稲田大学 破壊靭性試験装置及び破壊靭性試験方法

Also Published As

Publication number Publication date
JP2020073863A (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
WO2018164212A1 (ja) き裂先端位置検出方法および接着剤剥離位置検出方法
JP5007978B2 (ja) 構造体の欠陥を検知するための方法及びシステム
Xu et al. Dynamic visualization of stress distribution by mechanoluminescence image
US20090286076A1 (en) Material to be measured for stress analysis, coating liquid for forming coating film layer on the material to be measured, and stress-induced luminescent structure
WO2019184040A1 (zh) 一种利用有机力致发光材料检测机械部件的力学响应的方法
JP4761215B2 (ja) 生体骨または模擬骨若しくはそれらに装着する部材の応力分布測定方法および測定部材
JP2016180637A (ja) 欠陥検査装置および方法
JP2020034468A (ja) 応力発光計測装置及び応力発光計測方法
JP2020016624A (ja) 接着強度可視化膜、接着強度可視化装置および接着強度可視化方法
Aizawa et al. Long afterglow phosphorescent sensor materials for fiber-optic thermometer
US20230175936A1 (en) Stress measuring method, stress measuring apparatus, and computer readable non-transitory storage medium
JP5464569B2 (ja) 複層型応力発光積層体
JP2020034450A (ja) 応力発光計測装置及び応力発光計測方法
Aizawa et al. Fibre-optic thermometer using sensor materials with long fluorescence lifetime
ATE356355T1 (de) Verfahren zur prozessführung chemilumineszenter bindungstests
CN109490263B (zh) 一种用于钢箱梁裂纹测量的裂纹扩展片及其使用方法
Pedersen et al. Wire bond degradation under thermo-and pure mechanical loading
US20090180587A1 (en) Method of detecting fine surface defects
JP2019158437A (ja) 残留応力算出方法、残留応力算出装置、及び残留応力算出プログラム
JP7217544B2 (ja) 接合状態検出膜、接合状態検出装置および接合状態検出方法
JP4306554B2 (ja) 接着剤層内部の応力分布の測定方法
US11360009B2 (en) Fracture-visualization sensor and fracture-visualization system using same
Wang et al. Visualization of stress distribution using smart mechanoluminescence sensor
JP6870849B2 (ja) 構造物の補修方法及び補修評価装置
CN217688578U (zh) 力致发光检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP