WO2018164081A1 - 高圧ホース - Google Patents

高圧ホース Download PDF

Info

Publication number
WO2018164081A1
WO2018164081A1 PCT/JP2018/008432 JP2018008432W WO2018164081A1 WO 2018164081 A1 WO2018164081 A1 WO 2018164081A1 JP 2018008432 W JP2018008432 W JP 2018008432W WO 2018164081 A1 WO2018164081 A1 WO 2018164081A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel cord
steel
layer
reinforcing layer
condition
Prior art date
Application number
PCT/JP2018/008432
Other languages
English (en)
French (fr)
Inventor
清 池原
哲兵 柴田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201880017260.6A priority Critical patent/CN110402348A/zh
Priority to EP18763715.2A priority patent/EP3594546A4/en
Publication of WO2018164081A1 publication Critical patent/WO2018164081A1/ja
Priority to US16/564,052 priority patent/US11118708B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/10Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements not embedded in the wall

Definitions

  • the present invention relates to a high pressure hose, and more particularly to a high pressure hose excellent in impact durability.
  • a flexible high pressure hose used for a power steering hose of a construction machine, a machine tool, an automobile, or a measuring instrument is provided with an inner rubber layer and a plurality of reinforcing layers on its outer periphery.
  • fibers such as steel filament, nylon, and polyester are usually used.
  • Winding is also performed so that left-handed winding (hereinafter also referred to as “S-winding”) is alternated.
  • the winding direction of the steel filament as the reinforcing material is arranged so that the winding direction of the inner and outer reinforcing materials is symmetrical with the intermediate layer as a boundary. It is proposed to set up.
  • the interlaminar shear strain inside the high-pressure hose when the high-pressure hose is subjected to bending deformation is offset, the strain of the entire layer is reduced, and durability against repeated bending deformation can be improved.
  • the steel cord made by twisting thin steel filaments is more flexible when compared with the same cross-sectional area.
  • the strength per cross-sectional area becomes harder to obtain with a steel filament of 0.4 mm or more, the strength is easier to obtain by twisting steel filaments with a diameter of 0.4 mm or less, and the weight can be reduced. Therefore, when a product such as a tire that requires flexible and high strength performance is reinforced with steel, a steel cord in which thin steel filaments are twisted is used.
  • an object of the present invention is to provide a high-pressure hose excellent in impact durability while using a steel cord in which steel filaments are twisted together as a reinforcing material.
  • the present inventors obtained the following knowledge as a result of intensive studies to solve the above problems. That is, as a result of detailed observation of the fracture form of the high-pressure hose, the surface of the steel filament constituting the steel cord as the reinforcing material is dotted with dents that appear to be in contact with the steel filament of the other reinforcing layer. It was found that the steel filament was broken starting from the vicinity of the dent. Based on this knowledge, the present inventors have made further studies, and as a result, the above-mentioned problems can be solved by satisfying a predetermined relationship between the winding direction of the steel cord in the reinforcing layer and the twisting direction of the steel filament. The headline and the present invention were completed.
  • the high-pressure hose of the present invention is a high-pressure hose having a structure in which a steel cord formed by twisting a plurality of steel filaments is laminated in a plurality of layers of steel cord reinforcement layers wound in a spiral shape.
  • the winding direction of the steel cord of the steel cord reinforcing layer of the N (N ⁇ 1) layer is different from the winding direction of the steel cord of the steel cord reinforcing layer of the (N + 1) layer
  • the first condition is that the winding direction of the steel cord in the first steel cord reinforcing layer is different from the twist direction of the outermost steel filament of the steel cord in the first steel cord reinforcing layer
  • the twisting direction of the outermost steel filament of the steel cord in the first steel cord reinforcing layer is the same as the twisting direction of the outermost steel filament of the steel cord in the second steel cord reinforcing layer.
  • the winding direction of the steel cord in the steel cord reinforcing layer of the L (L ⁇ 2) layer and the twisting direction of the outermost steel filament of the steel cord in the L steel cord reinforcing layer And the condition that is different from the third condition,
  • the twist direction of the outermost steel filament of the steel cord in the L steel cord reinforcing layer is the same as the twist direction of the outermost steel filament of the steel cord in the (L + 1) -th steel cord reinforcing layer.
  • the condition is the fourth condition, It is preferable that the third condition and the fourth condition are not satisfied at the same time.
  • the twist direction of the outermost steel filament of the steel cord in the first steel cord reinforcing layer is the same as the twist direction of the outermost steel filament of the steel cord in the second steel cord reinforcing layer. It is preferable to satisfy the fifth condition.
  • the winding direction of the steel cord in the steel cord reinforcing layer of the L (L ⁇ 2) layer is different from the twisting direction of the outermost steel filament of the steel cord in the steel cord reinforcing layer of the L layer.
  • the twist direction of the outermost steel filament of the steel cord in the L steel cord reinforcing layer is the same as the twist direction of the outermost steel filament of the steel cord in the (L + 1) -th steel cord reinforcing layer.
  • This condition is the fourth condition,
  • the condition that the direction is different is the 3 ′ condition,
  • the twist direction of the outermost steel filament of the steel cord in the M-th steel cord reinforcing layer is the same as the twist direction of the outermost steel filament of the steel cord in the (M + 1) -th steel cord reinforcing layer.
  • the 4th ′ condition is In the case where the third condition and the fourth condition are satisfied at the same time, the gap between the steel cord of the L-th steel cord reinforcing layer and the steel cord of the (L + 1) -th steel cord reinforcing layer is G1, The distance between the steel cord of the M-th steel cord reinforcing layer and the steel cord of the (M + 1) -th steel cord reinforcing layer in the case where the third 'condition and the fourth' condition are not satisfied simultaneously When G2, It is also preferable that G1> G2.
  • the steel cord reinforcing layer 11 and the intermediate rubber layer 12 are counted from the inner side in the hose radial direction.
  • the outermost layer steel filament is, for example, when the steel cord is a single-stranded steel cord having a (1 ⁇ n) structure, and each steel filament constituting the steel cord is the outermost layer.
  • the steel filament of the outermost layer sheath is the outermost layer.
  • N, L, M representing the number of reinforcing layers, and n representing a steel cord twist structure are arbitrary integers.
  • a high-pressure hose excellent in impact durability can be provided while using a steel cord in which steel filaments are twisted together as a reinforcing material.
  • FIG. 1 is a cross-sectional perspective view of a high-pressure hose according to a preferred embodiment of the present invention.
  • the high-pressure hose 10 of the present invention is formed by laminating a plurality of steel cord reinforcing layers (hereinafter also simply referred to as “reinforcing layers”) 11 in which a steel cord formed by twisting a plurality of steel filaments is wound in a spiral shape.
  • This is a high pressure hose having the following structure.
  • the steel cord reinforcing layer 11 may be laminated via the intermediate rubber layer 12, but only the steel cord reinforcing layer 11 may be laminated continuously. .
  • a reinforcing layer using a cord other than a steel cord such as an organic fiber cord may be provided.
  • the illustrated high-pressure hose has a tubular inner rubber layer 13 as the innermost layer and a tubular outer rubber layer 14 as the outermost layer, and four layers are formed between the inner rubber layer 13 and the outer rubber layer 14.
  • the steel cord reinforcing layers 11 and the three intermediate rubber layers 12 may be alternately arranged.
  • the winding direction of the steel cord of the Nth reinforcing layer 11 and the winding direction of the steel cord of the (N + 1) th reinforcing layer 11 are different from each other.
  • the first layer from the inside is composed of four layers, S winding, second layer Z winding, third layer S winding, and fourth layer Z winding, but the first layer is Z winding. It may be composed of four layers: winding, S winding for the second layer, Z winding for the third layer, and S winding for the fourth layer.
  • the number of reinforcing layers 11 is not particularly limited, and may be five or more, and can be appropriately changed depending on the purpose of use. Preferably it is 10 layers or less, More preferably, it is 8 layers or less.
  • FIG. 2 is an explanatory diagram showing an example of the relationship between the winding direction and the twist direction of the N-layer steel cord and the (N + 1) -th steel cord
  • FIG. Explanatory drawing which shows the other example of the relationship of the winding direction and the twist direction with the steel cord of the (N + 1) layer is shown.
  • the steel cord 20a is Z-wound and S-twisted
  • the steel cord 20b is S-wound and S-twisted
  • the steel cord 120a is Z-wound and Z-twisted
  • the steel cord 120b is S winding and Z twisting.
  • arrows A, A ', B, and B' in the drawing indicate the twisting direction of the steel filament that constitutes each steel cord.
  • the steel filaments 20a and 120a are in contact with each other in the hose radial direction outside and the (N + 1) th layer steel cords 20b and 120b are inside the hose radial direction. Therefore, in FIGS. 2 and 3, for the steel cords 20b and 120b in the (N + 1) th layer, the twist direction of the steel filament on the inner side in the hose radial direction is indicated by a broken line.
  • the steel cords are brought into contact with each other when the crossing angle ⁇ N ⁇ (N + 1) of the steel filaments constituting the steel cord approaches 90 °, that is, when the steel cords approach each other as shown in FIG. Since stress concentrates in a narrow area (point contact), fatigue durability deteriorates. Conversely, when the crossing angle ⁇ N ⁇ (N + 1) approaches 0 °, that is, as shown in FIG. 3, when the steel filaments approach each other in parallel, stress is dispersed (line contact) and fatigue durability is improved. .
  • the steel filament outside the hose radial direction of the first steel cord and the hose radial direction of the second steel cord By reducing the crossing angle ⁇ 1-2 with the inner steel filament, the fatigue durability of the high-pressure hose 10 can be improved. That is, in the first reinforcing layer 11a and the second reinforcing layer 11b, the durability of the high-pressure hose 10 can be improved by removing the condition that the crossing angle ⁇ 1-2 between the steel filaments is increased. . Specifically, the following first condition and second condition need not be satisfied at the same time.
  • the first condition is that the winding direction of the steel cord in the first reinforcing layer 11a is different from the twisting direction of the outermost steel filament of the steel cord in the first reinforcing layer 11a.
  • the second condition is that the twist direction of the outermost steel filament of the steel cord in the first reinforcing layer 11a is the same as the twist direction of the outermost steel filament of the steel cord in the second reinforcing layer 11b. It is.
  • the winding direction of the steel cord in the first reinforcing layer 11a and the twisting direction of the outermost steel filament of the steel cord in the first reinforcing layer 11a Are different from the winding direction of the steel cord in the first reinforcing layer 11a and the twisting direction of the outermost steel filament of the steel cord in the first reinforcing layer 11a.
  • the twisting direction of the outermost steel filament of the steel cord in the reinforcing layer 11a of the eye is different from the twisting direction of the outermost steel filament of the steel cord in the second reinforcing layer 11b.
  • the steel cord 20a of the first layer is Z-winding and S-twisting
  • the steel cord 20b of the second layer is S-winding and S-twisting, the first condition and the second condition Meet simultaneously.
  • the crossing angle ⁇ of the steel filament on the outer side in the hose radial direction of the first layer steel cord 20a and the steel filament on the inner side in the hose radial direction of the second layer steel cord 20b 1-2 is the largest, and in the illustrated example, the steel filaments intersect substantially vertically. Therefore, the fatigue durability of the high-pressure hose can be improved by removing combinations that satisfy the first condition and the second condition at the same time in the first reinforcing layer 11a and the second reinforcing layer 11b. .
  • the winding direction of the steel cord of the reinforcing layer 11 of the high-pressure hose 10 is Z winding on the first layer, S winding on the second layer, Z winding on the third layer, and S winding on the fourth layer.
  • the wrapping angle of the steel cord is 54.7 ° with respect to the hose shaft in all layers, all steel cords are S-twisted, and the twist angle of all steel filaments with respect to the cord shaft is 6.9 °.
  • the crossing angle ⁇ 2-3 of the second and third steel filaments is 56.8 °
  • the crossing angle ⁇ 3-4 of the third and fourth steel filaments is 84. 4 °.
  • Such a high-pressure hose in which the intersecting angle ⁇ 1-2 between the reinforcing layer 11a and the reinforcing layer 11b is nearly vertical is not preferable in terms of impact durability.
  • the steel filament on the outer side in the hose radial direction of the steel cord of the first reinforcing layer 11a and the steel filament on the inner side in the hose radial direction of the steel cord of the second reinforcing layer 11b The smaller the crossing angle ⁇ 1-2 is, the better, and it is preferably 72 ° or less.
  • the crossing angle ⁇ N ⁇ (N + 1) can be adjusted by appropriately designing the winding angle of the steel cord and the twist pitch of the steel filament.
  • the high pressure hose 10 of the present invention not only the relationship between the first reinforcing layer 11a and the second reinforcing layer 11b, but also the second and subsequent L reinforcing layers 11 and (L + 1) layers.
  • the relationship with the reinforcing layer 11 is also preferably the same relationship. That is, it is preferable to exclude the condition that the crossing angle ⁇ L ⁇ (L + 1) between steel filaments is the largest from the entire high-pressure hose.
  • the fatigue durability of the high-pressure hose 10 can be further improved. Specifically, it is necessary not to satisfy the following third condition and fourth condition at the same time.
  • the third condition is that the winding direction of the steel cord in the reinforcement layer 11 of the second and subsequent L layers is different from the twisting direction of the outermost steel filament of the steel cord in the reinforcement layer.
  • the twist direction of the outermost steel filament of the steel cord in the L-th reinforcing layer 11 is the same as the twist direction of the outermost steel filament of the steel cord in the (L + 1) -th reinforcing layer 11. It is.
  • the winding direction of the steel cord in the second and subsequent L-th reinforcing layers 11 and the outermost layer of the steel cord in the L-th reinforcing layer 11 When the twisting direction of the steel filament is the same, the winding direction of the steel cord in the L-th reinforcing layer 11 and the twisting direction of the outermost steel filament of the steel cord in the L-th reinforcing layer 11 are Although it is different, the twist direction of the outermost steel filament of the steel cord in the L-th reinforcing layer 11 is different from the twist direction of the outermost steel filament of the steel cord in the (L + 1) -th reinforcing layer 11. .
  • the twist direction of the outermost steel filament of the steel cord in the first reinforcing layer 11a and the twist direction of the outermost steel filament of the steel cord in the second reinforcing layer 12a are It is preferable to satisfy the fifth condition that they are the same.
  • N- (N + 1) is the smallest. That is, steel cords are in a most preferable relationship from the viewpoint of impact durability. Therefore, the fatigue durability of the high pressure hose 10 can be further improved by satisfying the fifth condition.
  • the fatigue durability can be further improved by widening the distance between the steel cords between the reinforcing layers 11.
  • simply increasing the distance between the steel cords between the reinforcing layers 11 is not preferable because the diameter of the high-pressure hose 10 increases. Therefore, in the high-pressure hose 10 of the present invention, the crossing angle ⁇ L ⁇ (L + 1) between the steel cord between the second and subsequent Lth reinforcing layers and the crossing angle of the (L + 1) th steel cord is large. Only in locations where only the third condition and the fourth condition are satisfied at the same time, by increasing the distance between the steel cords, the diameter of the high-pressure hose is prevented from increasing, and the impact is improved while improving the reinforcement efficiency. Durability can be improved.
  • the distance between the steel cord of the L-th steel cord reinforcing layer and the steel cord of the (L + 1) -th steel cord reinforcing layer is Let it be G1.
  • the condition that the twisting direction of the steel filament is different is the 3 ′ condition, the twisting direction of the outermost steel filament of the steel cord in the M-th steel cord reinforcing layer 11, and the (M + 1) -th steel cord reinforcing layer
  • the steel cord reinforcing layer of the Mth layer when the condition that the twist direction of the outermost steel filament of the steel cord is the same is the 4 ′ condition and the 3 ′ condition and the 4 ′ condition are not satisfied at the same time
  • G1 is preferably 0.1 to 1.0 mm, more preferably 0.2 to 0.6 mm.
  • G2 is preferably 0.04 to 0.6 mm, and more preferably 0.1 to 0.4 mm.
  • interval of steel cords For example, what is necessary is just to provide the intermediate
  • the winding direction of the steel cord in the reinforcing layer 11 and the twisting direction of the steel filament satisfy a predetermined relationship, and for other specific structures and materials, etc. There is no particular limitation.
  • the structure of the steel cord used for the reinforcing layer 11 may be single twist or layer twist.
  • the steel filament constituting the steel cord can be a known one, but the wire diameter is preferably 0.12 to 0.40 mm, the twist angle is preferably 2.6 to 15 °, and 3 to 8 °. Is more preferably 3.5 to 7 °.
  • the winding angle of the steel cord in the reinforcing layer 11 is preferably 50 to 60 °.
  • the wire diameter is less than 0.12 mm, the steel filament drawing productivity is deteriorated, and when it exceeds 0.40 mm, the cost per cross-sectional area is difficult to obtain, and the bending rigidity proportional to the fourth power of the diameter is increased.
  • the twist angle is less than 2.6 °, the steel filament tends to be loosened and the productivity is impaired, and if it exceeds 15 °, the twist productivity is deteriorated.
  • the winding angle of the steel cord is less than 50 °, the hose diameter changes greatly when the hose is pressurized, and if it exceeds 60 °, the hose length changes when the hose is pressurized increases.
  • a spiral, polygonal, corrugated or the like may be brazed on all or some of the steel filaments constituting the cord. Examples of the polygonal brazing include a brazing described in International Publication No. 1995/016816.
  • the rubber used for the high-pressure hose 10 is not particularly limited, and the material of the inner rubber layer 13 can be appropriately selected based on the physical and chemical properties of the substance transported in the high-pressure hose 10.
  • EPM ethylene-propylene copolymer rubber
  • EPDM ethylene-propylene-diene terpolymer rubber
  • ACM acrylic rubber
  • AEM ethylene acrylate rubber
  • C chloroprene rubber
  • SBR styrene-butadiene copolymer rubber
  • NBR acrylonitrile-butadiene copolymer rubber
  • isobutylene-isoprene copolymer rubber butyl rubber, IIR), natural rubber (NR), isoprene
  • examples include rubber (IR), butadiene rubber (BR), urethane rubber, silicone rubber, fluorine rubber, ethylene-vinyl acetate copolymer (EVA), hydrogenated
  • acrylic rubber (ACM), ethylene acrylate rubber (AEM), chloroprene rubber (CR), chlorosulfonated polyethylene rubber, hydrin rubber, acrylonitrile-butadiene copolymer rubber (NBR), hydrogen NBR, silicone rubber, and fluorine rubber are preferable.
  • the rubber composition for the inner rubber layer 13 uses known rubber compounding chemicals and rubber fillers generally used in the rubber industry in consideration of material strength, durability, extrudability and the like. can do.
  • chemicals and fillers include inorganic fillers such as carbon black, silica, calcium carbonate, talc and clay; plasticizers, softeners; vulcanizing agents such as sulfur and peroxides; zinc oxide, stearin Vulcanization aids such as acids; vulcanization accelerators such as dibenzothiazyl disulfide, N-cyclohexyl-2-benzothiazyl-sulfenamide, N-oxydiethylene-benzothiazyl-sulfenamide; antioxidants, ozone degradation inhibitors And the like.
  • These compounding chemicals and fillers may be used alone or in combination of two or more.
  • the thickness of the inner rubber layer 13 varies depending on the material constituting the inner rubber layer 13, but is in the range of 1 to 10 mm, preferably in the range of 1 to 6 mm.
  • the inner diameter of the high-pressure hose is selected according to the purpose, but generally it is preferably in the range of 3 mm to 200 mm.
  • the outer rubber layer 14 can be made of, for example, a thermoplastic resin like the conventional high-pressure hose, and may be made of various rubbers similar to the inner rubber layer 13.
  • the steel cord constituting the reinforcing layer 11 can be protected to prevent the reinforcing layer 11 from being damaged, and the appearance is also preferable.
  • the general thickness of the outer rubber layer 14 is in the range of 1 mm to 20 mm.
  • intermediate rubber layer 12 can be formed of various rubbers similar to the inner rubber layer 13.
  • the high-pressure hose of the present invention can be manufactured in accordance with a conventional method, and in particular, a high-pressure hose used for transporting various high-pressure fluids, and a high-pressure hose used for pumping hydraulic oil of a hydraulic pump to an operating part. Useful as.
  • Examples 1 to 5 and Comparative Examples 1 to 4 A steel filament having a wire diameter of 0.3 mm was twisted at a pitch of 9 mm to produce a steel cord having a (1 ⁇ 3) structure. The twist angle of the steel filament with respect to the steel cord shaft was 6.9 °.
  • a high-pressure hose having the structure shown in FIG. 1 was produced.
  • the winding direction of the steel cord was Z winding for the first layer, S winding for the second layer, Z winding for the third layer, S winding for the fourth layer, and the winding angle was 54.7 °.
  • the twisting direction of the steel filament of each layer and the steel cord interval between the reinforcing layers are as shown in Tables 1 and 2 below.
  • Tables 1 and 2 show that the high-pressure hose of the present invention has excellent impact durability.
  • High-pressure hose 11 Steel cord reinforcement layer (reinforcement layer) 12 Intermediate rubber layer 13 Inner rubber layer 14 Outer rubber layer 20, 120 Steel cord

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

補強材にスチールフィラメントを撚り合わせたスチールコードを用いながらも、衝撃耐久性に優れた高圧ホースを提供する。 N(N≧1)層目のスチールコード補強層のスチールコードの巻き付け方向と、(N+1)層目のスチールコード補強層のスチールコードの巻き付け方向と、が互いに異なり、1層目のスチールコード補強層11aにおけるスチールコードの巻き付け方向と、1層目のスチールコード補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第1条件、1層目のスチールコード補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目のスチールコード補強層11bにおけるスチールコードの最外層スチールフィラメントの撚り方向、が同じであるという条件を第2条件、としたとき、第1条件と第2条件とを同時に満たさない。

Description

高圧ホース
 本発明は、高圧ホースに関し、詳しくは、衝撃耐久性に優れた高圧ホースに関する。
 建設機械、工作機械、自動車のパワーステアリングホースや、測定機器等に使用される可撓性を有する高圧ホースは、一般に、内側ゴム層とその外周に複数層の補強層とが設けられている。この補強層を備えた高圧ホースの補強材には、通常、スチールフィラメントや、ナイロン、ポリエステル等の繊維が使用され、例えば、4層構造の高圧ホースの場合には、右巻付け(以下、「Z巻き」とも称す)と、左巻付け(以下、「S巻き」とも称す)とが交互になるように巻き付けられている。
 このような高圧ホースの改良に関する技術として、例えば、特許文献1では、補強材であるスチールフィラメントの巻付け方向を、中間層を境として、内外補強材の巻付け方向が対称となるように配設することが提案されている。このような構成とすることで、高圧ホースが曲げ変形を受けた際における高圧ホース内部の層間剪断歪みが相殺され、層全体の歪みが低減して繰返し曲げ変形に対する耐久性を向上させることができる。
特開平11-315969号公報
 ここで、スチールフィラメントの曲げ剛性は、直径の4乗に比例するため、同じ断面積で比較すると、細いスチールフィラメントを撚り合わせたスチールコードの方が柔軟である。また、断面積あたりの強度は、0.4mm以上のスチールフィラメントでは太くなるほど得にくくなるため、直径0.4mm以下のスチールフィラメントを撚り合わせた方が強度を得やすく、軽量化が可能である。そこで、タイヤ等の柔軟で高強度の性能が必要な製品をスチールで補強する場合は、細いスチールフィラメントを撚り合わせたスチールコードが使用されている。
 従来、高圧ホースの補強では、タイヤほどの強度と柔軟性の両立が求められないことから、スチールフィラメントを撚り合わせるという工数をかけたスチールコードは、一般には使用されていない。しかしながら、さらに高圧で使用される高圧ホースに、高強度と柔軟性を付与するためには、単線のスチールフィラメントでは限界があり、高圧ホースにもタイヤの補強に使用されているような、スチールフィラメントを撚り合わせたスチールコードの適用が考えられる。ところが、スチールフィラメントを撚り合わせたスチールコードを補強材として用いた高圧ホースは、衝撃耐久性が十分に向上しない場合があるという新たな課題が生じた。
 そこで、本発明の目的は、補強材にスチールフィラメントを撚り合わせたスチールコードを用いながらも、衝撃耐久性に優れた高圧ホースを提供することにある。
 本発明者らは、上記課題を解消するために鋭意検討した結果、以下の知見を得た。すなわち、高圧ホースの破壊形態を詳細に観察した結果、補強材であるスチールコードを構成するスチールフィラメントの表面に、他の補強層のスチールフィラメントと接触して発生したとみられる凹みが点在しており、この凹み付近を起点に、スチールフィラメントが破断していることを見出した。かかる知見をもとに、本発明者らは、さらに鋭意検討した結果、補強層におけるスチールコードの巻き付け方向、およびスチールフィラメントの撚り方向が所定の関係を満足することにより、上記課題を解消できることを見出し、本発明を完成するに至った。
 すなわち、本発明の高圧ホースは、複数本のスチールフィラメントが撚り合わされてなるスチールコードが、スパイラル状に巻き付けられてなるスチールコード補強層が複数層積層されてなる構造を有する高圧ホースにおいて、
 N(N≧1)層目の前記スチールコード補強層のスチールコードの巻き付け方向と、(N+1)層目の前記スチールコード補強層のスチールコードの巻き付け方向と、が互いに異なり、
 1層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、1層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第1条件、
 1層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向、が同じであるという条件を第2条件、としたとき、
 第1条件と第2条件とを同時に満たさないことを特徴とするものである。
 本発明の高圧ホースにおいては、L(L≧2)層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第3条件、
 L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、(L+1)層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという条件を第4条件、としたとき、
 第3条件と第4条件とを同時に満たさないことが好ましい。
 また、1層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという第5条件を満たすことが好ましい。
 さらにまた、L(L≧2)層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第3条件、
 L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、(L+1)層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという条件を第4条件、
 M(M≧1であって、LとMは異なる)層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、M層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第3’条件、
 M層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、(M+1)層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという条件を第4’条件とし、
 第3条件と第4条件とを同時に満たす場合における、L層目の前記スチールコード補強層のスチールコードと、(L+1)層目の前記スチールコード補強層のスチールコードと、の間隔をG1、
 第3’条件と第4’条件とを同時に満たさない場合における、M層目の前記スチールコード補強層のスチールコードと、(M+1)層目の前記スチールコード補強層のスチールコードと、の間隔をG2、としたとき、
 G1>G2であることも好ましい。
 ここで、本発明の高圧ホース10においては、スチールコード補強層11および中間ゴム層12は、ホース径方向内側から数えるものとする。また、最外層スチールフィラメントとは、例えば、スチールコードが(1×n)構造の単撚りのスチールコードの場合は、スチールコードを構成する各スチールフィラメントが最外層となり、層撚りスチールコードの場合は、最外層シースのスチールフィラメントが最外層となる。さらに、本発明の高圧ホース10において、補強層の枚数を表すN、L、Mおよびスチールコードの撚り構造を表すnは、任意の整数である。
 本発明によれば、補強材にスチールフィラメントを撚り合わせたスチールコードを用いながらも、衝撃耐久性に優れた高圧ホースを提供することができる。
本発明の一好適な実施の形態に係る高圧ホースの断面斜視図である。 N層目のスチールコードと(N+1)層目のスチールコードとの巻き付け方向および撚り方向の関係の一例を示す説明図ある。 N層目のスチールコードと(N+1)層目のスチールコードとの巻き付け方向および撚り方向の関係の他の例を示す説明図である。
 以下、本発明の高圧ホースについて、図面を用いて詳細に説明する。
 図1は、本発明の一好適な実施の形態に係る高圧ホースの断面斜視図である。本発明の高圧ホース10は、複数本のスチールフィラメントが撚り合わされてなるスチールコードが、スパイラル状に巻き付けられてなるスチールコード補強層(以下、単に「補強層」とも称す)11が複数層積層されてなる構造を有する高圧ホースである。本発明の高圧ホースにおいては、図示するように、スチールコード補強層11が中間ゴム層12を介して積層されていてもよいが、スチールコード補強層11のみが連続して積層されていてもよい。また、スチールコード補強層11が複数層積層された構造の他に、例えば、有機繊維コード等のスチールコード以外のコードを用いた補強層を有していてもよい。例えば、スチールコード補強層よりもホース径方向内側に、ビニロン、ナイロン、ポリエチレンテレフタレート(PET)等の有機繊維補強層を有していてもよい。図示する高圧ホースは、最内層に管状の内側ゴム層13が、最外層に管状の外側ゴム層14が、形成されており、内側ゴム層13と外側ゴム層14との間に、4層のスチールコード補強層11と3層の中間ゴム層12とが、交互に配置されてもよい。
 本発明の高圧ホース10においては、N層目の補強層11のスチールコードの巻き付け方向と、(N+1)層目の補強層11のスチールコードの巻き付け方向と、が互いに異なる。図示例においては、内側から1層目がS巻き、2層目がZ巻き、3層目がS巻き、4層目がZ巻き、の4層で構成されているが、1層目がZ巻き、2層目がS巻き、3層目がZ巻き、4層目がS巻き、の4層で構成されていてもよい。なお、本発明の高圧ホース10においては、補強層11の層数には特に制限はなくは、5層以上としてもよく、使用目的に応じて適宜変更することができる。好ましくは10層以下、より好ましくは8層以下である。
 次に、図2に、N層目のスチールコードと(N+1)層目のスチールコードとの巻き付け方向および撚り方向の関係の一例を示す説明図を、図3に、N層目のスチールコードと(N+1)層目のスチールコードとの巻き付け方向および撚り方向の関係の他の例を示す説明図を示す。図2においては、スチールコード20aはZ巻き、S撚りであり、スチールコード20bはS巻き、S撚りであり、図3においては、スチールコード120aはZ巻き、Z撚りであり、スチールコード120bはS巻き、Z撚りである。また、図中の矢印A、A’、B、B’は、各スチールコードを構成するスチールフィラメントの撚り方向を示している。ここで、スチールフィラメント同士が接触する位置は、N層目のスチールコード20a、120aのホース径方向外側と、(N+1)層目のスチールコード20b、120bのホース径方向内側と、である。そこで、図2,3においては、(N+1)層目のスチールコード20b、120bについては、ホース径方向内側におけるスチールフィラメントの撚り方向を破線で表している。
 スチールコードがスパイラル状に巻き付けられてなる補強層11を有する高圧ホースに圧力をかけると、内層ほどスチールコードに大きな応力が加わる。積層された補強層11の層間には、通常、中間ゴム層12が設けられているが、繰り返し付加される圧力によって、中間ゴム層12は疲労し、やがて積層された補強層11のスチールコード同士が接触するようになる。この接触点が繰り返し応力の極大部となり、その付近を起点に疲労破断が発生し、やがて高圧ホース10として圧力を保持できなくなり寿命に至る。その際、スチールコード同士の接触は、スチールコードを構成するスチールフィラメントの交差角度θN-(N+1)が90°に近づくとき、すなわち、図2に示すように、スチールコード同士が垂直に近づくと狭い領域に応力が集中するため(点接触)、疲労耐久性が悪化する。逆に交差角度θN-(N+1)が0°に近づくとき、すなわち、図3に示すように、スチールフィラメント同士が平行に近づくと応力が分散され(線接触)、疲労耐久性が良好になる。
 したがって、最も大きな応力が加わる1層目の補強層11aと2層目の補強層11bにおいて、1層目のスチールコードのホース径方向外側のスチールフィラメントと、2層目のスチールコードのホース径方向内側のスチールフィラメントと、の交差角度θ1-2を小さくすることで、高圧ホース10の疲労耐久性を向上させることができる。すなわち、1層目の補強層11aと2層目の補強層11bにおいて、スチールフィラメント同士の交差角度θ1-2が大きくなる条件を除くことで、高圧ホース10の耐久性を向上させることができる。具体的には、以下の第1条件と第2条件とを同時に満たさない必要がある。
 第1条件は、1層目の補強層11aにおけるスチールコードの巻き付け方向と、1層目の補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なる。次に、第2条件は、1層目の補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目の補強層11bにおけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じである。
 すなわち、第1条件と第2条件とを同時に満たさないとは、1層目の補強層11aにおけるスチールコードの巻き付け方向と、1層目の補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じである場合と、1層目の補強層11aにおけるスチールコードの巻き付け方向と、1層目の補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるが、1層目の補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目の補強層11bにおけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なる場合である。
 図2においては、1層目のスチールコード20aは、Z巻き、かつ、S撚りであり、2層目のスチールコード20bは、S巻き、かつ、S撚りであり、第1条件および第2条件を同時に満たす。第1条件と第2条件とを同時に満足する場合、1層目のスチールコード20aのホース径方向外側におけるスチールフィラメントと、2層目のスチールコード20bのホース径方向内側におけるスチールフィラメントの交差角度θ1-2は最も大きくなり、図示例においては、スチールフィラメントは略垂直に交差している。したがって、1層目の補強層11aと2層目の補強層11bとにおいて、第1条件と第2条件とを同時に満足する組み合わせを除くことで、高圧ホースの疲労耐久性を改善することができる。
 図2を例にとって、より具体的に説明する。高圧ホース10の補強層11のスチールコードの巻き付け方向を、内側から1層目がZ巻き、2層目がS巻き、3層目がZ巻き、4層目がS巻きとし、補強層11におけるスチールコードの巻き付け角度を、全ての層共にホース軸に対して54.7°、全スチールコードをS撚りとし、コード軸に対する全スチールフィラメントの撚り角度を6.9°とする。
 ここで、1層目のスチールコードはZ巻きなので、ホース軸に対して右に54.7°の方向に巻かれており、2層目と接する外側でS撚りスチールフィラメントの撚り角度は、スチールコード軸に対して左6.9°となるので、スチールフィラメントの撚り方向は、ホース軸に対しては右に54.7°-6.9°=47.8°となる。一方、2層目については、スチールコードはS巻きなので、ホース軸に対して左に54.7°方向に巻かれており、1層目と接する内側のスチールフィラメントはS撚りの場合、スチールコード軸に対して右に6.9°となり、ホース軸に対しては左に54.7-6.9=47.8°となる。結果として、これら1層目の補強層11aのスチールフィラメントと2層目の補強層11bのスチールフィラメントは47.8+47.8=95.6°、すなわち、84.4°と垂直に近い角度で交差していることになる。なお、同様に考えると、2層目と3層目のスチールフィラメントの交差角度θ2-3は56.8°、3層目と4層目のスチールフィラメントの交差角度θ3-4は84.4°となる。このような、補強層11aと補強層11bとの交差角度θ1-2が垂直に近い高圧ホースは、衝撃耐久性において好ましくない。
 本発明の高圧ホース10においては、1層目の補強層11aのスチールコードのホース径方向外側のスチールフィラメントと、2層目の補強層11bのスチールコードのホース径方向内側のスチールフィラメントと、の交差角度θ1-2は小さいほどよく、好ましくは72°以下である。なお、交差角度θN-(N+1)は、スチールコードの巻き付け角度と、スチールフィラメントの撚りピッチを適宜設計することで、調整することができる。
 本発明の高圧ホース10においては、1層目の補強層11aと2層目の補強層11bとの関係だけではなく、2層目以降のL層目の補強層11と(L+1)層目の補強層11との関係においても、同様の関係にあることが好ましい。すなわち、高圧ホース全体から、スチールフィラメント同士の交差角度θL-(L+1)が最も大きくなる条件を排除することが好ましい。このような構造とすることにより、さらに高圧ホース10の疲労耐久性を向上させることができる。具体的には、以下の第3条件と第4条件とを同時に満たさない必要がある。
 第3条件は、2層目以降のL層目の補強層11におけるスチールコードの巻き付け方向と、同補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なる。第4の条件は、L層目の補強層11におけるスチールコードの最外層スチールフィラメントの撚り方向と、(L+1)層目の補強層11におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じである。すなわち、第3条件と第4条件とを同時に満たさないとは、2層目以降のL層目の補強層11におけるスチールコードの巻き付け方向と、L層目の補強層11におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じである場合と、L層目の補強層11におけるスチールコードの巻き付け方向と、L層目の補強層11におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるが、L層目の補強層11におけるスチールコードの最外層スチールフィラメントの撚り方向と、(L+1)層目の補強層11におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なる場合である。
 本発明の高圧ホース10においては、1層目の補強層11aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目の補強層12aにおけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという第5条件を満たすことが好ましい。ここで、図3に示すスチールコード同士の関係は、N層目のスチールコードはZ巻き、かつ、Z撚りであり、(N+1)層目のスチールコードは、S巻き、かつ、Z撚りであり、N=1とすれば、第5条件を満足する場合に該当する。このように、第5条件を満足する場合、N層目のスチールコードのホース径方向外側のスチールフィラメントと、(N+1)層目のスチールコードのホース径方向内側のスチールフィラメントと、の交差角度θN-(N+1)が最も小さくなる。すなわち、スチールコード同士が、衝撃耐久性の観点から最も好ましい関係にある。したがって、第5条件を満足させることで、高圧ホース10のさらに疲労耐久性を向上させることができる。
 本発明の高圧ホース10においては、補強層11間におけるスチールコード同士の間隔を広げることで、より疲労耐久性を向上させることができる。しかしながら、補強層11間におけるスチールコード同士の間隔を単純に広げると、高圧ホース10の径が大きくなってしまうため好ましくない。したがって、本発明の高圧ホース10においては、2層目以降のL層目の補強層間のスチールコードと、(L+1)層目のスチールコードの交差角度との交差角度θL-(L+1)が大きくなる箇所のみ、すなわち、第3条件および第4条件を同時に満たす箇所のみ、スチールコード同士の間隔を大きくすることで、高圧ホースの径が大きくなることを防止し、補強効率を向上させつつ、衝撃耐久性を向上させることができる。
 具体的には、第3条件と第4条件とを同時に満たす場合における、L層目のスチールコード補強層のスチールコードと、(L+1)層目のスチールコード補強層のスチールコードと、の間隔をG1とする。また、新たに、M(M≧1であって、LとMは異なる)層目のスチールコード補強層11におけるスチールコードの巻き付け方向と、M層目のスチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第3’条件、M層目のスチールコード補強層11におけるスチールコードの最外層スチールフィラメントの撚り方向と、(M+1)層目のスチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという条件を第4’条件とし、第3’条件と第4’条件とを同時に満たさない場合における、M層目のスチールコード補強層のスチールコードと、(M+1)層目のスチールコード補強層のスチールコードと、の間隔をG2、としたとき、G1>G2であることが好ましい。より好ましくは、G1>G2×1.5であり、さらに好ましくはG1>G2×3である。また、高圧ホースの耐久性の観点から、G1は、0.1~1.0mmが好ましく、より好ましくは0.2~0.6mmである。また、G2は、0.04~0.6mmが好ましく、より好ましくは、0.1~0.4mmである。なお、スチールコード同士の間隔を広げる手段については特に制限はなく、例えば、補強層11と補強層11との間に、図1に示すように中間ゴム層12を設ければよい。
 本発明の高圧ホース10においては、補強層11におけるスチールコードの巻き付け方向、およびスチールフィラメントの撚り方向が所定の関係を満足することが重要であり、それ以外の具体的な構造や材質等については、特に制限されるものではない。
 例えば、補強層11に用いるスチールコードの構造としては、単撚りであってもよく、層撚りであってもよい。また、スチールコードを構成するスチールフィラメントは、既知のものを用いることができるが、線径は0.12~0.40mmが好ましく、撚り角度は2.6~15°が好ましく、3~8°がより好ましく、3.5~7°がさらに好ましい。さらに補強層11におけるスチールコードの巻き付け角度は50~60°が好ましい。線径が0.12mm未満になるとスチールフィラメント伸線生産性が悪くなり、0.40mmを越えると断面積あたりのコストが得にくく、また直径の4乗に比例する曲げ剛性が高くなる。また撚り角度は2.6°未満となるとスチールフィラメントがばらけ易くなって生産性を阻害し、15°を超えると撚りの生産性を悪くする。また、スチールコードの巻き付け角度が50°未満になるとホースに圧力がかかった時のホース径変化が大きくなり、60°を超えるとホースに圧力がかかった時のホ-ス長さ変化が大きくなる。なお、スチールフィラメントを撚り合わせる際、コードを構成するスチールフィラメント全部または一部のスチールフィラメントに対して、螺旋、多角形、波型等の癖付けをしてもよい。多角形の癖付けについては、例えば、国際公開第1995/016816号に記載されているような癖付けを挙げることができる。
 また、高圧ホース10に用いるゴムについても特に制限はなく、内側ゴム層13の材質は、高圧ホース10内を輸送される物質の物理的および化学的性状等に基づき、適宜選択することができる。具体的には、例えば、エチレン-プロピレン共重合ゴム(EPM)、エチレン-プロピレン-ジエン三元共重合ゴム(EPDM)、アクリルゴム(ACM)、エチレンアクリレ-トゴム(AEM)、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム、ヒドリンゴム、スチレン-ブタジエン共重合ゴム(SBR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、イソブチレン-イソプレン共重合体ゴム(ブチルゴム,IIR)、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、ウレタン系ゴム、シリコーン系ゴム、フッ素系ゴム、エチレン-酢酸ビニル共重合体(EVA)、水素化NBR等が挙げられる。これらのゴム成分は、1種を単独で用いても、2種以上の任意のブレンド物として用いてもよい。
 上記ゴム成分の中でも、耐油性の観点からはアクリルゴム(ACM)、エチレンアクリレートゴム(AEM)、クロロプレンゴム(CR)、クロロスルホン化ポリエチレンゴム、ヒドリンゴム、アクリロニトリル-ブタジエン共重合ゴム(NBR)、水素化NBR、シリコーン系ゴム、フッ素系ゴムが好ましい。
 また、内側ゴム層13用のゴム組成物には、材料強度や耐久性、押出し成形性等を考慮して、ゴム工業界で一般に用いられている公知のゴム配合薬品やゴム用充填材を使用することができる。このような配合薬品および充填材としては、例えば、カーボンブラックやシリカ、炭酸カルシウム、タルク、クレー等の無機充填材;可塑剤、軟化剤;硫黄、パーオキサイド等の加硫剤;酸化亜鉛、ステアリン酸等の加硫助剤;ジベンゾチアジルジスルフィド、N-シクロヘキシル-2-ベンゾチアジル-スルフェンアミド、N-オキシジエチレン-ベンゾチアジル-スルフェンアミド等の加硫促進剤;酸化防止剤、オゾン劣化防止剤等の添加剤が挙げられる。これらの配合薬品および充填材は、1種を単独で使用してもよいし、2種以上を併用してもよい。
 内側ゴム層13の厚みは、内側ゴム層13を構成する材料の種類によっても異なるが、1~10mmの範囲、好ましくは1~6mmの範囲である。また、高圧ホースの内径は目的に応じて選択されるが、一般的には、3mm~200mmの範囲であることが好ましい。
 また、外側ゴム層14は、従来の高圧ホースと同様に、例えば、熱可塑性樹脂等からなるものとすることができ、内側ゴム層13と同様の各種ゴムにより構成してもよい。外側ゴム層14を設けることで、補強層11を構成するスチールコードを保護して、補強層11の外傷を防止することができるとともに、外観上も好ましいものとなる。なお、外側ゴム層14の一般的な肉厚は、1mm~20mmの範囲である。
 さらに、中間ゴム層12は、内側ゴム層13と同様の各種ゴムにより形成することがで
きる。
 本発明の高圧ホースは、常法に従い製造することができるものであり、特に、各種高圧流体の輸送に用いられる高圧ホース、油圧ポンプの作動油を作動部分に圧送するのに使用される高圧ホースとして有用である。
 以下、本発明を、実施例を用いてより詳細に説明する。
<実施例1~5および比較例1~4>
 線径0.3mmのスチールフィラメントをピッチ9mmにて撚り合わせて(1×3)構造のスチールコードを作製した。スチールコード軸に対するスチールフィラメントの撚り角度は、6.9°であった。得られたスチールコードを補強層の補強材として用い、図1に示す構造の高圧ホースを作製した。スチールコードの巻き付け方向は、1層目をZ巻き、2層目をS巻き、3層目をZ巻き、4層目をS巻きとし、巻き付け角度は54.7°とした。また、各層のスチールフィラメントの撚り方向および各補強層間におけるスチールコード間隔は、下記表1、2に示すとおりである。
<衝撃耐久性>
 JIS K6330-8に準拠した衝撃圧力試験を行い、各高圧ホースが破裂するまで実施された圧力試験の回数を記録した。表1、2に、各高圧ホースの圧力試験回数を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2より、本発明の高圧ホースは、衝撃耐久性が優れていることがわかる。
  10 高圧ホース
  11 スチールコード補強層(補強層)
  12 中間ゴム層
  13 内側ゴム層
  14 外側ゴム層
  20、120 スチールコード

Claims (4)

  1.  複数本のスチールフィラメントが撚り合わされてなるスチールコードが、スパイラル状に巻き付けられてなるスチールコード補強層が複数層積層されてなる構造を有する高圧ホースにおいて、
     N(N≧1)層目の前記スチールコード補強層のスチールコードの巻き付け方向と、(N+1)層目の前記スチールコード補強層のスチールコードの巻き付け方向と、が互いに異なり、
     1層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、1層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第1条件、
     1層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向、が同じであるという条件を第2条件、としたとき、
     第1条件と第2条件とを同時に満たさないことを特徴とする高圧ホース。
  2.  L(L≧2)層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第3条件、
     L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、(L+1)層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという条件を第4条件、としたとき、
     第3条件と第4条件とを同時に満たさない請求項1記載の高圧ホース。
  3.  1層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、2層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという第5条件を満たす請求項2記載の高圧ホース。
  4.  L(L≧2)層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第3条件、
     L層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、(L+1)層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという条件を第4条件、
     M(M≧1であって、LとMは異なる)層目の前記スチールコード補強層におけるスチールコードの巻き付け方向と、M層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が異なるという条件を第3’条件、
     M層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、(M+1)層目の前記スチールコード補強層におけるスチールコードの最外層スチールフィラメントの撚り方向と、が同じであるという条件を第4’条件とし、
     第3条件と第4条件とを同時に満たす場合における、L層目の前記スチールコード補強層のスチールコードと、(L+1)層目の前記スチールコード補強層のスチールコードと、の間隔をG1、
     第3’条件と第4’条件とを同時に満たさない場合における、M層目の前記スチールコード補強層のスチールコードと、(M+1)層目の前記スチールコード補強層のスチールコードと、の間隔をG2、としたとき、
     G1>G2である請求項1記載の高圧ホース。
PCT/JP2018/008432 2017-03-10 2018-03-05 高圧ホース WO2018164081A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880017260.6A CN110402348A (zh) 2017-03-10 2018-03-05 高压软管
EP18763715.2A EP3594546A4 (en) 2017-03-10 2018-03-05 HIGH PRESSURE HOSE
US16/564,052 US11118708B2 (en) 2017-03-10 2019-09-09 High pressure hose

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017046759A JP2018150979A (ja) 2017-03-10 2017-03-10 高圧ホース
JP2017-046759 2017-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/564,052 Continuation US11118708B2 (en) 2017-03-10 2019-09-09 High pressure hose

Publications (1)

Publication Number Publication Date
WO2018164081A1 true WO2018164081A1 (ja) 2018-09-13

Family

ID=63447529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008432 WO2018164081A1 (ja) 2017-03-10 2018-03-05 高圧ホース

Country Status (5)

Country Link
US (1) US11118708B2 (ja)
EP (1) EP3594546A4 (ja)
JP (1) JP2018150979A (ja)
CN (1) CN110402348A (ja)
WO (1) WO2018164081A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272678A (ja) * 1992-01-29 1993-10-19 Yokohama Rubber Co Ltd:The ホース
WO1995016816A1 (en) 1993-12-15 1995-06-22 N.V. Bekaert S.A. Open steel cord structure
JPH11315969A (ja) 1998-05-06 1999-11-16 Yokohama Rubber Co Ltd:The ホース
US20050241716A1 (en) * 2004-04-07 2005-11-03 Tibor Nagy High-pressure hose comprising several layers of reinforcing plies
JP2007162818A (ja) * 2005-12-13 2007-06-28 Toyo Tire & Rubber Co Ltd ゴムホース
JP2012036927A (ja) * 2010-08-04 2012-02-23 Yokohama Rubber Co Ltd:The ゴムホース

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008472B1 (ko) * 1985-11-05 1995-07-31 요꼬하마 고무 가부시키가이샤 고무 조성물 및 그것의 층으로 구성되는 호오스
US5316046A (en) * 1986-12-27 1994-05-31 The Yokohama Rubber Co., Ltd. Power steering hose
EP0553686B1 (en) 1992-01-29 1997-10-22 The Yokohama Rubber Co., Ltd. Pressure endurable hose
US6109306A (en) * 1998-06-29 2000-08-29 Parker Hannifin Gmbh Kink-resistant, high pressure hose construction having a composite, spiral wound innermost reinforcement layer
JP4277967B2 (ja) * 1999-04-16 2009-06-10 横浜ゴム株式会社 高圧ゴムホース及びその製造方法
JP4561662B2 (ja) * 2006-03-22 2010-10-13 ティアック株式会社 光ディスク装置
US7694695B2 (en) * 2008-02-26 2010-04-13 The Gates Corporation Controlled expansion hose
US7950420B2 (en) * 2008-06-27 2011-05-31 E. I. Du Pont De Nemours And Company Flexible hose for conveying fluids or gases
DE112009002153T9 (de) 2008-09-04 2012-09-20 The Yokohama Rubber Co., Ltd. Verfahren zum Herstellen eines durch Stahlcords verstärkten Gummischlauchs, und durch Stahlcord verstärkter Gummischlauch
AU2010239073A1 (en) * 2009-04-20 2011-10-13 Flexpipe Systems Inc. Metal cord reinforced flexible pipe
CN203421355U (zh) * 2013-08-28 2014-02-05 桑文杰 一种新型罐车专用钢丝缠绕卸料管
CN107735610B (zh) * 2015-06-26 2020-08-21 株式会社普利司通 软管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272678A (ja) * 1992-01-29 1993-10-19 Yokohama Rubber Co Ltd:The ホース
WO1995016816A1 (en) 1993-12-15 1995-06-22 N.V. Bekaert S.A. Open steel cord structure
JPH11315969A (ja) 1998-05-06 1999-11-16 Yokohama Rubber Co Ltd:The ホース
US20050241716A1 (en) * 2004-04-07 2005-11-03 Tibor Nagy High-pressure hose comprising several layers of reinforcing plies
JP2007162818A (ja) * 2005-12-13 2007-06-28 Toyo Tire & Rubber Co Ltd ゴムホース
JP2012036927A (ja) * 2010-08-04 2012-02-23 Yokohama Rubber Co Ltd:The ゴムホース

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594546A4 *

Also Published As

Publication number Publication date
CN110402348A (zh) 2019-11-01
US11118708B2 (en) 2021-09-14
EP3594546A1 (en) 2020-01-15
JP2018150979A (ja) 2018-09-27
EP3594546A4 (en) 2021-01-06
US20200003342A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
US7487803B2 (en) Flat high-tensile wire as hose reinforcement
US7614428B2 (en) Power steering hose design for performance in high pressure and low to high volumeric expansion environments
US6677018B1 (en) High pressure rubber hose and manufacturing method thereof
US20200182381A1 (en) High pressure hose
JP6951214B2 (ja) 摩擦伝動ベルト
WO2018164081A1 (ja) 高圧ホース
WO2018164082A1 (ja) 高圧ホース
JP6892292B2 (ja) 高圧ホース
JP5774279B2 (ja) ホース
JP7323551B2 (ja) アクチュエータ
JP2000018444A (ja) 媒体輸送用ホース
JP2015203435A (ja) 高圧ホース
KR102241023B1 (ko) 구슬밴드를 포함하는 다층 복합 고무 호스 및 이의 제조 방법
WO2021124956A1 (ja) 高圧ホース
JP4386499B2 (ja) ホース
JP2004286143A (ja) 高圧ホース
JP4882253B2 (ja) 高圧ゴムホース
JP2009274798A (ja) コンベヤベルト
JP2022113350A (ja) ホースおよびホースの使用方法
JPH09264465A (ja) 油圧用ホース
CN114811207A (zh) 软管用金属线的规格决定方法及软管
JP2005147345A (ja) 高圧ホース
JP2015003486A (ja) 車両用配管ホース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018763715

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018763715

Country of ref document: EP

Effective date: 20191010