WO2018163816A1 - セパレータ、電池モジュール及び電池モジュールの製造方法 - Google Patents

セパレータ、電池モジュール及び電池モジュールの製造方法 Download PDF

Info

Publication number
WO2018163816A1
WO2018163816A1 PCT/JP2018/006137 JP2018006137W WO2018163816A1 WO 2018163816 A1 WO2018163816 A1 WO 2018163816A1 JP 2018006137 W JP2018006137 W JP 2018006137W WO 2018163816 A1 WO2018163816 A1 WO 2018163816A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
separator
batteries
input
external force
Prior art date
Application number
PCT/JP2018/006137
Other languages
English (en)
French (fr)
Inventor
小村 哲司
桃子 平沼
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880014290.1A priority Critical patent/CN110337738B/zh
Priority to JP2019504448A priority patent/JP6948626B2/ja
Priority to US16/489,413 priority patent/US11233267B2/en
Publication of WO2018163816A1 publication Critical patent/WO2018163816A1/ja
Priority to US17/113,834 priority patent/US20210091404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator, a battery module, and a method for manufacturing the battery module.
  • Patent Document 1 discloses a battery stack, a plate-like heat dissipation member that is thermally connected to each battery of the battery stack, a battery stack, and a heat dissipation member.
  • a battery module is disclosed that includes an intervening layer that transfers heat of the laminate to a heat dissipation member.
  • the interstitial layer disposed between the battery stack and the heat radiating member absorbs the dimensional variation of the battery due to manufacturing errors and the like. And thereby, the cooling of the battery stack was made uniform. However, in this structure, the distance between each battery and the heat dissipation member still varies. For this reason, compared with the case where each battery and a heat radiating member are made to contact
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for cooling the battery stack more uniformly.
  • a certain aspect of the present invention is a separator.
  • the separator is a separator used for a battery module having a plurality of stacked batteries, and is disposed between two adjacent batteries to insulate between the two batteries, and an external force when the battery module is assembled. Is input and can be deformed by an external force, and a battery pressing portion that contacts the first surface extending in the battery stacking direction of one battery and presses the first surface by the external force input to the input portion And comprising.
  • the battery module includes a plurality of stacked batteries, a plurality of separators of the above-described aspect that are arranged between two adjacent batteries and insulate between the two batteries, and a battery holding portion of the separator in the plurality of batteries. And a heat dissipating part that dissipates heat from the plurality of batteries in contact with the second surface that faces away from the first surface pressed by the.
  • Still another aspect of the present invention is a battery module manufacturing method.
  • a plurality of batteries and a plurality of separators of the above-described embodiment are alternately stacked, an interposition portion of each separator is disposed between two adjacent batteries, and a battery holding portion is arranged in a stacking direction in one battery.
  • the battery stack can be cooled more uniformly.
  • FIG. 8A and FIG. 8B are process diagrams for explaining a battery module manufacturing method. It is process drawing for demonstrating the manufacturing method of a battery module.
  • FIG. 10 is a diagram for explaining a method for manufacturing a battery module according to Modification 1.
  • FIG. 11A is a perspective view showing a schematic structure of a separator according to Modification 2.
  • FIG. 11B is a perspective view illustrating a schematic structure of the separator according to the third modification.
  • FIG. 1 is a perspective view showing a schematic structure of a battery module according to an embodiment.
  • FIG. 2 is a perspective view showing the battery module with the cover member removed.
  • the battery module 1 includes a battery stack 2, a cover member 8, and a heat dissipation unit 10 as main components.
  • the battery stack 2 includes a plurality of batteries 12, a plurality of separators 14, a pair of end plates 4, and a pair of restraining members 6.
  • 18 batteries 12 are connected in series by a bus bar (not shown) to form a battery stack 2.
  • Each battery 12 is a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, or a nickel-cadmium battery.
  • the battery 12 is a so-called square battery.
  • the plurality of batteries 12 are stacked at a predetermined interval so that the main surfaces of the adjacent batteries 12 face each other.
  • the lamination direction of the battery 12 be the lamination direction X (direction shown by arrow X in FIG.1 and FIG.2).
  • stacking means arranging a plurality of members in one arbitrary direction. Therefore, the stacking of the batteries 12 includes arranging a plurality of batteries 12 in the horizontal direction.
  • the two adjacent batteries 12 are arranged so that the positive output terminal 22 (positive terminal 22a) of one battery 12 and the negative output terminal 22 (negative terminal 22b) of the other battery 12 are adjacent to each other.
  • the positive electrode terminal 22a and the negative electrode terminal 22b are collectively called the output terminal 22.
  • Adjacent positive electrode terminal 22a and negative electrode terminal 22b are electrically connected in series via a bus bar.
  • the bus bar is, for example, a strip-shaped metal plate. One end of the bus bar is electrically connected to the positive terminal 22 a of one battery 12, and the other end of the bus bar is electrically connected to the negative terminal 22 b of the other battery 12.
  • Two adjacent batteries 12 may be arranged such that one positive terminal 22a and the other positive terminal 22a are adjacent to each other.
  • the batteries 12 are arranged so that the output terminals 22 having the same polarity are adjacent to each other.
  • the separator 14 is also called an insulating spacer, and is made of, for example, an insulating resin.
  • the separator 14 is disposed between two adjacent batteries 12 to electrically insulate the two batteries 12 from each other.
  • the separator 14 is disposed between the battery 12 and the end plate 4 to insulate the battery 12 from the end plate 4.
  • the resin constituting the separator 14 include thermoplastic resins such as polypropylene (PP) and polybutylene terephthalate (PBT).
  • the plurality of batteries 12 and the plurality of separators 14 stacked alternately are sandwiched between a pair of end plates 4.
  • the pair of end plates 4 are arranged adjacent to the outermost battery 12 in the stacking direction X via the separator 14.
  • the end plate 4 is made of a metal such as aluminum, for example, and is insulated from the battery 12 by being adjacent to the battery 12 via the separator 14.
  • the main surface of the end plate 4 is provided with a screw hole 4a (see FIG. 6) into which the fastening screw 16 is screwed.
  • the pair of restraining members 6 are arranged in a direction Y (a direction indicated by an arrow Y in FIGS. 1 and 2) perpendicular to the stacking direction X. Between the pair of restraining members 6, an assembly including a plurality of batteries 12, a plurality of separators 14, and a pair of end plates 4 is disposed. Each constraining member 6 has a rectangular planar portion 6a parallel to the side surface of the assembly, and a flange portion 6b that protrudes from the end of each side of the planar portion 6a toward the assembly.
  • the restraining member 6 can be formed by, for example, bending each side of a rectangular metal plate.
  • the two flanges 6 b that face each other in the stacking direction X abut on the main surface of each end plate 4. Therefore, the plurality of batteries 12, the plurality of separators 14, and the pair of end plates 4 are sandwiched in the stacking direction X by the pair of restraining members 6.
  • the two flanges 6b facing each other in the stacking direction X are provided with through holes 6c (see FIG. 9) through which the fastening screws 16 are inserted.
  • the cover member 8 is also called a top cover, and is disposed so as to cover the surface of the battery stack 2 on the side where the output terminal 22 protrudes.
  • a direction in which the battery stack 2 and the cover member 8 are stacked is defined as a direction Z (a direction indicated by an arrow Z in FIGS. 1 and 2).
  • the cover member 8 is a plate-like member and has a shape that matches the shape of the upper surface of the battery stack 2. In the present embodiment, the cover member 8 has a rectangular shape.
  • the cover member 8 prevents contact of condensed water, dust, or the like with the output terminal 22 of the battery 12, a valve portion 24 described later, a bus bar, or the like.
  • the cover member 8 is made of, for example, an insulating resin.
  • cover member 8 examples include thermoplastic resins such as polypropylene (PP) and polybutylene terephthalate (PBT).
  • PP polypropylene
  • PBT polybutylene terephthalate
  • the cover member 8 can be fixed to the upper surface of the battery stack 2 by a known fixing structure (not shown) including screws and a known locking mechanism. Further, the cover member 8 may have a structure in which both end portions are fixed to the battery stack 2 by sandwiching the upper part of the separator 14.
  • the heat dissipation part 10 is a member for radiating heat from the plurality of batteries 12.
  • the heat radiating part 10 has insulation and thermal conductivity.
  • the heat radiating part 10 is a heat transfer sheet made of a silicon-based or acrylic-based resin material or the like.
  • the thermal radiation part 10 may be a laminated body of metal plates, such as iron and aluminum, and an insulating sheet. In a state where the battery stack 2 is mounted on the heat radiating portion 10, each battery 12 abuts on the heat radiating portion 10 (see FIG. 5). The heat generated in each battery 12 is absorbed by the heat radiating unit 10, thereby cooling each battery 12.
  • FIG. 3 is an exploded perspective view showing a schematic structure of the battery 12.
  • the battery 12 includes a flat rectangular parallelepiped outer can 18.
  • a substantially rectangular opening is provided on one surface of the outer can 18, and an electrode body, an electrolytic solution, and the like are accommodated in the outer can 18 through the opening.
  • a sealing plate 20 for sealing the inside of the outer can 18 is provided at the opening of the outer can 18.
  • the sealing plate 20 is provided with a positive terminal 22a near one end in the longitudinal direction and a negative terminal 22b near the other end.
  • the sealing plate 20 and the output terminal 22 constitute a sealing body.
  • the outer can 18 and the sealing plate 20 are made of metal. Typically, the outer can 18 and the sealing plate 20 are formed of aluminum, an aluminum alloy, or the like.
  • the output terminal 22 is made of a conductive metal.
  • the side on which the sealing body is provided is the upper surface n1 of the battery 12, and the opposite side is the bottom surface n2 of the battery 12.
  • the battery 12 has two main surfaces that connect the upper surface n1 and the bottom surface n2. This main surface is the surface having the largest area among the six surfaces of the battery 12. The remaining two surfaces excluding the upper surface n1, the bottom surface n2, and the two main surfaces are the side surfaces of the battery 12.
  • the upper surface side of the battery 12 is defined as the upper surface of the battery stack 2
  • the bottom surface side of the battery 12 is defined as the bottom surface of the battery stack 2.
  • the battery 12 has a valve portion 24 on its surface for releasing gas generated inside the battery 12.
  • the battery 12 has a valve portion 24 on the upper surface n1.
  • the valve unit 24 is provided between the pair of output terminals 22 in the sealing plate 20. More specifically, the valve portion 24 is disposed at the approximate center in the longitudinal direction of the sealing plate 20.
  • the valve portion 24 is configured to open when the internal pressure of the outer can 18 rises to a predetermined value or more, and to release the internal gas.
  • the valve part 24 is also called a safety valve or a vent part.
  • the battery 12 has an insulating film 42.
  • the insulating film 42 is a shrink tube, for example, and is heated after housing the outer can 18. As a result, the insulating film 42 contracts and covers the surface of the outer can 18. The insulating film 42 can suppress a short circuit between the adjacent batteries 12.
  • FIG. 4 is a perspective view showing a schematic structure of the separator 14.
  • FIG. 5 is a view for explaining an assembled state of the battery 12, the separator 14, the restraining member 6, and the heat radiating unit 10 when viewed from the stacking direction X.
  • illustration of the cover member 8 is abbreviate
  • Separator 14 has a flat intervening portion 14a extending in parallel with the main surface of battery 12, and a wall portion 14b extending in the stacking direction X from the end of intervening portion 14a.
  • the interposition part 14a extends along the opposing main surfaces of the two adjacent batteries 12.
  • the interposition part 14a is disposed between the two adjacent batteries 12 to insulate the two batteries 12 from each other. Further, the interposition part 14 a extends between the battery 12 and the end plate 4. Thereby, the battery 12 and the end plate 4 are insulated. In a state where the separator 14 and the battery 12 are assembled, an end portion of the interposition portion 14a located on the bottom surface side of the battery 12 is located on the upper surface n1 side of the battery 12 with respect to the bottom surface n2 of the battery 12. That is, the lower end portion of the separator 14 is located above the bottom surface n2 of the battery 12.
  • the wall portion 14b a part and side surface of the upper surface n1 of the battery 12 are covered by the wall portion 14b.
  • a short circuit between adjacent batteries 12, between the battery 12 and the end plate 4, or between the battery 12 and the restraining member 6, which may occur due to condensation on the surface of the battery 12 or the end plate 4, or the like. Can be suppressed. That is, the creeping distance between the adjacent batteries 12 or between the battery 12 and the end plate 4 can be secured by the wall portion 14b.
  • the wall part 14b has the notch 32 so that the bottom face n2 of the battery 12 may be exposed.
  • the separator 14 does not have the wall portion 14b at a position corresponding to the bottom surface n2 of the battery 12.
  • a pair of pedestal portions 30 are provided in a region where the wall portion 14 b covering the upper surface n ⁇ b> 1 of the battery 12 and the wall portion 14 b covering the side surface of the battery 12 are connected, that is, both shoulder portions of the separator 14.
  • Each pedestal portion 30 protrudes in the stacking direction X from the wall portion 14b located inside the output terminal 22 in the direction Y.
  • Each pedestal portion 30 has the same direction as the upper surface n1 of the battery 12, that is, the upper surface 30a facing the cover member 8 side, and the lower surface 30b facing the upper surface n1 of the battery 12.
  • each pedestal portion 30 has a frame portion 30c that protrudes in the direction Z on the outer periphery of the upper surface 30a.
  • a first positioning member 34 for positioning the battery 12 is mounted on the upper surface 30 a of the pedestal portion 30.
  • the first positioning member 34 is made of, for example, elastically deformable rubber, and is sandwiched between the pedestal portion 30 and the flange portion 6 b of the restraining member 6.
  • the battery holding part 36 contacts the upper surface n1 of the battery 12.
  • the upper surface n1 of the battery 12 is a first surface extending in the stacking direction X. Further, the bottom surface n2 of the battery 12 with which the heat radiating unit 10 abuts is a second surface facing away from the first surface.
  • the battery holding part 36 contacts only the upper surface n1 of one battery 12 out of the two batteries 12 sandwiching the separator 14. That is, the separator 14 is configured not to restrict the relative displacement of the other battery 12 with respect to itself. Moreover, the separator 14 does not have a fitting structure between the adjacent separators 14. That is, the separators 14 adjacent to each other are configured not to restrict mutual displacement. Accordingly, the displacement of one set of the battery 12 and the separator 14 is not interfered with the other adjacent battery 12 and the separator 14.
  • an input portion 38 that protrudes toward the cover member 8 is provided on the wall portion 14b that covers the upper surface n1 of the battery 12.
  • the input part 38 has a narrow flat plate shape, and at least the tip part thereof is located farther from the battery 12 in the direction Z than the battery holding part 36.
  • two input units 38 are arranged in the direction Y.
  • An external force F1 (see FIG. 8A) is input to the input unit 38 when the battery module 1 is assembled.
  • the input unit 38 can be deformed by the external force F1.
  • the input unit 38 has lower rigidity than the interposition unit 14a. Thereby, the input part 38 can be more reliably deformed by the external force F1.
  • the low rigidity of the input part 38 is realized by the thickness of the input part 38 being thinner than the thickness of the interposition part 14a (see FIG. 8B). Further, in each separator 14 according to the present embodiment, a region that protrudes in the direction Z from the two input units 38 is not provided in the region between the two input units 28 in the direction Y.
  • the input unit 38 is displaced from the battery holding unit 36 in the stacking direction X (see also FIG. 8B). That is, the input unit 38 is disposed so as to be retracted from the space above the battery 12. In the present embodiment, the input unit 38 is disposed so as to overlap with the interposition unit 14a when viewed from the direction Z. In other words, the input part 38 is located on the same plane as the interposition part 14a.
  • the 2nd positioning member 40 is arrange
  • the second positioning member 40 is made of, for example, a resin such as polybutylene terephthalate (PBT) or polypropylene (PP), and is sandwiched between the bottom surface of the battery stack 2 and the flange portion 6 b of the restraining member 6.
  • the second positioning member 40 is interposed between the bottom surface of each battery 12 and the flange portion 6b of the restraining member 6, and insulates the bottom surface of each battery 12 from the restraining member 6.
  • Each battery 12 of the battery stack 2 is positioned in the direction Z with respect to the restraining member 6 by the first positioning member 34 and the second positioning member 40.
  • FIGS. 8A and 8B are process diagrams for explaining a method of manufacturing the battery module 1.
  • a plurality of batteries 12 and a plurality of separators 14 are alternately stacked, and these are sandwiched between a pair of end plates 4 to form an assembly 3.
  • the interposition part 14a of each separator 14 is disposed between two adjacent batteries 12.
  • the battery holding portion 36 is in contact with the upper surface n1 of one battery 12.
  • the first jig 91 is pressed against the upper surface of the assembly 3. Further, the second jig 92 is pressed against the bottom surface of the assembly 3. In addition, the third jig 93 and the fourth jig 94 are pressed against the two side surfaces of the assembly facing in the stacking direction X, that is, the main surface of each end plate 4. Further, the fifth jig 95 and the sixth jig 96 are pressed against the two side surfaces of the assembly facing in the direction Y.
  • the external force F1 in the direction Z by the first jig 91 in other words, the external force F1 in the direction intersecting the upper surface n1 of the battery 12, or the upper surface n1 and the bottom surface n2 of the battery 12 is generated.
  • An external force F ⁇ b> 1 in the direction of alignment is applied to the upper surface of the aggregate 3.
  • an external force F ⁇ b> 2 in the direction Z is applied to the bottom surface of the assembly 3 by the second jig 92.
  • the external force F1 and the external force F2 are forces in directions opposite to each other.
  • the external forces F5 and F6 in the direction Y are applied to the side surface of the assembly 3 by the fifth jig 95 and the sixth jig 96.
  • the external force F5 and the external force F6 are forces in directions opposite to each other.
  • external forces F3 and F4 (see FIG. 9) in the stacking direction X are applied to the side surface of the assembly 3 by the third jig 93 and the fourth jig 94.
  • the external force F3 and the external force F4 are forces in directions opposite to each other.
  • the first jig 91 is in contact with the input portion 38 of each separator 14 while being pressed against the assembly 3. Therefore, the external force F1 is applied to the input unit 38.
  • the size of the battery 12 is often not uniform due to a manufacturing error (tolerance) or the like.
  • the plurality of batteries 12 included in the battery module 1 are different from the other batteries 12 in the length from the bottom surface n2 to the top surface n1.
  • the maximum difference in length is about 1 mm or less. Due to this dimensional error, in the combination of each battery 12 and each separator 14, the length from the bottom surface n ⁇ b> 2 of the battery 12 to the tip of the input portion 38 of the separator 14 is not uniform.
  • the input unit 38 can be deformed by the external force F1.
  • the external force F1 when the external force F1 is applied to the input part 38, as shown to FIG. 8 (B), a front-end
  • the input unit 38 having a higher tip portion is crushed more greatly.
  • the input portion 38 of each separator 14 is aligned so that the height position of the tip portion is aligned with the first jig 91. Therefore, the external force F1 can be input to all the separators 14.
  • the battery holding part 36 of each separator 14 presses the upper surface n1 of the battery 12 by the external force F1 input to the input part 38. Thereby, the bottom surface n2 of each battery 12 is pressed against the second jig 92, and each bottom surface n2 is aligned. As a result, each battery 12 is aligned in the direction Z.
  • the separator 14 of the present embodiment does not have a portion protruding from the two input units 38 between the two input units 38. For this reason, a flat plate-like first jig 91 can be used. That is, although the first jig 91 has a simple shape, the first jig 91 can be brought into contact with only the input portion 38 of each separator 14. Therefore, the use of a jig having a complicated shape can be avoided.
  • the input unit 38 is displaced from the battery holding unit 36 in the stacking direction X. That is, the battery holding part 36 is displaced in the stacking direction X with respect to the input point of the external force F1 in the separator 14. Thereby, the space for arrange
  • the input unit 38 is disposed so as to overlap with the interposition unit 14a when viewed from the direction Z. That is, the input unit 38 is disposed so as to overlap with the interposition unit 14a when viewed from the input direction of the external force F1. Thereby, the external force F1 input into the input part 38 can be reliably transmitted by the interposition part 14a. Since external forces F3 and F4 are applied to the assembly 3, the interposition part 14a is sandwiched between adjacent batteries 12. Thereby, the displacement of the interposition part 14a in the direction Z can be inhibited. On the other hand, the interposition part 14a can be displaced more reliably in the direction Z by arranging the input part 38 so as to overlap the interposition part 14a when viewed from the input direction of the external force F1. That is, the interposition part 14a can be pushed into the gap between the adjacent batteries 12. Thereby, the battery holding
  • Each battery 12 is aligned in the direction Y by pressing the assembly 3 with the fifth jig 95 and the sixth jig 96. Further, each battery 12 is aligned in the stacking direction X by pressing the assembly 3 with the third jig 93 and the fourth jig 94.
  • One jig is fixed in each combination of the first jig 91 and the second jig 92, the third jig 93 and the fourth jig 94, and the fifth jig 95 and the sixth jig 96. Only the other jig may be displaced to apply an external force to the assembly 3.
  • the first positioning member 34 is attached to the assembly 3, and then the pair of restraining members 6 are attached. At this time, the external forces F3 and F4 are kept applied. A part of the assembly 3 enters a space surrounded by the four flanges 6 b in each restraining member 6. Further, the respective restraining members 6 are aligned so that the through holes 6 c provided in the flange portion 6 b overlap the screw holes 4 a of the end plate 4. In this state, the fastening screw 16 (see FIG. 2) is inserted into the through hole 6c and screwed into the screw hole 4a. As a result, the plurality of batteries 12 and the plurality of separators 14 are fastened by the pair of end plates 4 and the pair of restraining members 6.
  • the position of the plurality of batteries 12 in the stacking direction X is fixed by being tightened in the stacking direction X by the two flanges 6b facing each other in the stacking direction X. Further, the positions of the plurality of batteries 12 in the direction Z are fixed by the two flange portions 6b facing each other in the direction Z. Moreover, the position of the direction Y of the some battery 12 is fixed by the plane part 6a.
  • the bus bar is electrically connected to the output terminal 22 of each battery 12, and the battery stack 2 is obtained. Thereafter, the cover member 8 is attached to the upper surface of the battery stack 2, and the heat radiating unit 10 is attached to the bottom of the battery stack 2.
  • the battery module 1 is obtained through the above steps.
  • the separator 14 has the interposition part 14a that is disposed between two adjacent batteries 12 and insulates between the two batteries 12 and the external force F1 when the battery module 1 is assembled.
  • the input portion 38 that is input and deformable by the external force F1 and the first surface extending in the stacking direction X of one battery 12, that is, the upper surface n1, contacts the upper surface n1 by the external force F1 that is input to the input portion 38.
  • a battery pressing part 36 for pressing the battery.
  • each battery 12 can be brought into contact with the heat dissipating part 10.
  • corrugation of the bottom face of the battery laminated body 2 between the battery laminated body 2 and the thermal radiation part 10. FIG. That is, each battery 12 can be brought into direct contact with the heat radiating portion 10. Therefore, the cooling efficiency of the battery stack 2 can be improved.
  • the separator 14 is provided with an input unit 38 having a structure that absorbs the dimensional variation of the battery 12.
  • the separator 14 can avoid that the structure of the 1st jig
  • the first jig 91 is provided with a dimensional variation absorbing structure, it is difficult to cope with a change in the pitch between the batteries 12 and the number of the batteries 12, but by providing the structure in the separator 14, This problem can also be avoided.
  • the input unit 38 is arranged so as to be displaced with respect to the battery holding unit 36 in the stacking direction X. Thereby, a space can be secured immediately above the battery 12.
  • the input part 38 is arrange
  • FIG. 10 is a diagram for explaining a method of manufacturing the battery module according to the first modification.
  • the separator 114 according to this modification is different from the separator 14 according to the embodiment only in the structure of the input unit 138.
  • the flat input portion 138 is inclined with respect to the input direction of the external force F1, in other words, with respect to the normal direction of the upper surface n1. That is, the input unit 138 extends in a direction intersecting with the input direction of the external force F1.
  • the input portion 138 is deformed so as to be bent at the proximal end portion or deformed so as to bend entirely, and the distal end portion approaches the bottom surface n2 of the battery 12. Tilt like so.
  • the input portion 138 of each separator 14 is aligned so that the height position of the tip portion is aligned with the first jig 91.
  • the bottom surface n2 of the battery 12 can be brought into contact with the heat radiating portion 10.
  • the battery stack 2 can be cooled uniformly.
  • FIG. 11A is a perspective view showing a schematic structure of a separator according to Modification 2.
  • FIG. The separator 214 according to this modification is different from the embodiment only in the arrangement of the input unit 238.
  • the input part 238 is disposed at the upper end of the frame part 30 c in the pedestal part 30. Further, the input unit 238 is disposed so as to overlap with the interposition part 14 a when viewed from the direction Z. Even with such a structure, the bottom surface n2 of the battery 12 can be brought into contact with the heat radiating portion 10. As a result, the battery stack 2 can be cooled uniformly.
  • FIG. 11B is a perspective view illustrating a schematic structure of the separator according to the third modification.
  • the separator 314 according to this modification is different from the embodiment only in the arrangement of the input unit 338.
  • the input part 338 is disposed at the upper end of the frame part 30 c in the pedestal part 30. Further, the input unit 338 is arranged so as to overlap the battery holding unit 36 when viewed from the direction Z. Even with such a structure, the bottom surface n2 of the battery 12 can be brought into contact with the heat radiating portion 10. As a result, the battery stack 2 can be cooled uniformly.
  • the battery 12 is a square battery, but the shape of the battery 12 is not particularly limited, and may be a cylindrical shape or the like. Further, the number of batteries 12 included in the battery stack is not particularly limited. Further, the battery 12 may not have the insulating film 42.
  • the separator may have a structure having only one input portion in the center portion in the direction Y. When there are a plurality of input units, it may be necessary to prepare the first jig 91 for each input unit. However, if there is one input unit, only one first jig 91 can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

セパレータ(14)は、隣接する2つの電池(12)間に配置されて当該2つの電池(12)間を絶縁する介在部(14a)と、電池モジュールの組立時に外力が入力され、外力により変形可能である入力部(38)と、一方の電池(12)における電池(12)の積層方向Xに延在する第1面に当接し、入力部(38)に入力された外力により第1面を押圧する電池押さえ部(36)とを備える。

Description

セパレータ、電池モジュール及び電池モジュールの製造方法
 本発明は、セパレータ、電池モジュール及び電池モジュールの製造方法に関する。
 例えば車両用等の、高い出力電圧が要求される電源として、複数個の電池が直列接続された電池積層体を有する電池モジュールが知られている。このような電池モジュールに関して、特許文献1には、電池積層体と、電池積層体の各電池に熱的に接続される板状の放熱部材と、電池積層体及び放熱部材を接着するとともに、電池積層体の熱を放熱部材に伝える介在層とを備えた電池モジュールが開示されている。
国際公開第2012/117681号
 上述の電池モジュールでは、電池積層体と放熱部材との間に配置した介在層によって、製造誤差等に起因する電池の寸法ばらつきを吸収していた。そして、これにより電池積層体の冷却の均一化を図っていた。しかしながら、この構造では、各電池と放熱部材との距離には依然としてばらつきがあった。このため、各電池と放熱部材とを直に当接させる場合に比べて、各電池の冷却の程度に差があった。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、電池積層体をより均一に冷却するための技術を提供することにある。
 本発明のある態様は、セパレータである。当該セパレータは、積層された複数の電池を有する電池モジュールに用いられるセパレータであって、隣接する2つの電池間に配置されて当該2つの電池間を絶縁する介在部と、電池モジュールの組立時に外力が入力され、外力により変形可能である入力部と、一方の電池における電池の積層方向に延在する第1面に当接し、入力部に入力された外力により第1面を押圧する電池押さえ部と、を備える。
 本発明の他の態様は、電池モジュールである。当該電池モジュールは、積層された複数の電池と、隣接する2つの電池間に配置されて当該2つの電池間を絶縁する、複数の上記態様のセパレータと、複数の電池における、セパレータの電池押さえ部により押圧される第1面に背向する第2面に当接して、複数の電池を放熱する放熱部と、を備える。
 本発明のさらに他の態様は、電池モジュールの製造方法である。当該製造方法は、複数の電池と、複数の上記態様のセパレータとを交互に積層し、各セパレータの介在部を隣接する2つの電池間に配置し、電池押さえ部を一方の電池における積層方向に延在する第1面に当接させる工程と、各セパレータの入力部に第1治具を押し当て、複数の電池における第1面に背向する第2面に第2治具を押し当てて、複数の電池を位置合わせする工程と、を含む。
 本発明によれば、電池積層体をより均一に冷却することができる。
実施の形態に係る電池モジュールの概略構造を示す斜視図である。 カバー部材を取り外した状態の電池モジュールを示す斜視図である。 電池の概略構造を示す分解斜視図である。 セパレータの概略構造を示す斜視図である。 積層方向から見たときの電池、セパレータ、拘束部材及び放熱部の組み付け状態を説明するための図である。 電池モジュールの製造方法を説明するための工程図である。 電池モジュールの製造方法を説明するための工程図である。 図8(A)及び図8(B)は、電池モジュールの製造方法を説明するための工程図である。 電池モジュールの製造方法を説明するための工程図である。 変形例1に係る電池モジュールの製造方法を説明するための図である。 図11(A)は、変形例2に係るセパレータの概略構造を示す斜視図である。図11(B)は、変形例3に係るセパレータの概略構造を示す斜視図である。
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、同一の部材であっても、各図面間で縮尺等が若干相違する場合もあり得る。また、本明細書または請求項中に用いられる「第1」、「第2」等の用語は、いかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。
 図1は、実施の形態に係る電池モジュールの概略構造を示す斜視図である。図2は、カバー部材を取り外した状態の電池モジュールを示す斜視図である。電池モジュール1は、電池積層体2と、カバー部材8と、放熱部10とを主な構成として備える。
 電池積層体2は、複数の電池12と、複数のセパレータ14と、一対のエンドプレート4と、一対の拘束部材6とを有する。本実施の形態では、一例として18個の電池12がバスバー(図示せず)により直列に接続されて、電池積層体2が形成されている。
 各電池12は、例えば、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池である。電池12は、いわゆる角形電池である。複数の電池12は、隣り合う電池12の主表面同士が対向するようにして所定の間隔で積層される。以下では、電池12の積層方向を、積層方向X(図1及び図2において矢印Xで示す方向)とする。なお、「積層」は、任意の1方向に複数の部材を並べることを意味する。したがって、電池12の積層には、複数の電池12を水平方向に並べることも含まれる。
 隣接する2つの電池12は、一方の電池12の正極の出力端子22(正極端子22a)と他方の電池12の負極の出力端子22(負極端子22b)とが隣り合うように配列される。以下では、出力端子22の極性を区別する必要がない場合、正極端子22aと負極端子22bとをまとめて出力端子22と称する。隣り合う正極端子22aと負極端子22bとは、バスバーを介して電気的に直列に接続される。バスバーは、例えば帯状の金属板である。バスバーの一端側は一方の電池12の正極端子22aに、バスバーの他端側は他方の電池12の負極端子22bに電気的に接続される。なお、隣接する2つの電池12は、一方の正極端子22aと他方の正極端子22aとが隣り合うように配列されてもよい。例えば、隣接する2つの電池12を並列に接続する場合には、同じ極性の出力端子22が隣接するように電池12が配列される。
 セパレータ14は、絶縁スペーサとも呼ばれ、例えば絶縁性を有する樹脂からなる。セパレータ14は、隣接する2つの電池12の間に配置されて、当該2つの電池12間を電気的に絶縁する。また、セパレータ14は、電池12とエンドプレート4との間に配置されて、電池12とエンドプレート4との間を絶縁する。セパレータ14を構成する樹脂としては、ポリプロピレン(PP)やポリブチレンテレフタレート(PBT)等の熱可塑性樹脂が例示される。
 交互に積層された複数の電池12及び複数のセパレータ14は、一対のエンドプレート4で挟まれる。一対のエンドプレート4は、積層方向Xにおける最外側の電池12と、セパレータ14を介して隣り合うように配置される。エンドプレート4は、例えばアルミニウム等の金属からなり、セパレータ14を介して電池12と隣り合うことで、電池12に対して絶縁される。エンドプレート4の主表面には、締結ねじ16が螺合するねじ穴4a(図6参照)が設けられる。
 一対の拘束部材6は、積層方向Xに対して垂直な方向Y(図1及び図2において矢印Yで示す方向)に配列される。一対の拘束部材6の間には、複数の電池12、複数のセパレータ14及び一対のエンドプレート4からなる集合体が配置される。各拘束部材6は、集合体の側面に平行な矩形状の平面部6aと、平面部6aの各辺の端部から集合体側に突出する庇部6bとを有する。拘束部材6は、例えば矩形状の金属板の各辺に折り曲げ加工を施すことで形成することができる。積層方向Xで対向する2つの庇部6bは、各エンドプレート4の主表面に当接する。したがって、一対の拘束部材6により、複数の電池12、複数のセパレータ14及び一対のエンドプレート4が積層方向Xにおいて挟み込まれる。積層方向Xで対向する2つの庇部6bには、締結ねじ16が挿通される貫通孔6c(図9参照)が設けられる。
 カバー部材8は、トップカバーとも呼ばれ、電池積層体2における出力端子22が突出する側の表面を覆うように配置される。電池積層体2とカバー部材8とが積層される方向を方向Zとする(図1及び図2において矢印Zで示す方向)。カバー部材8は、板状の部材であり、電池積層体2の上面の形状に合わせた形状を有する。本実施の形態では、カバー部材8は矩形状である。カバー部材8により、電池12の出力端子22、後述する弁部24、バスバー等への結露水や塵埃等の接触が防止される。カバー部材8は、例えば絶縁性を有する樹脂からなる。カバー部材8を構成する樹脂としては、ポリプロピレン(PP)やポリブチレンテレフタレート(PBT)等の熱可塑性樹脂が例示される。カバー部材8は、ネジや周知の係止機構を含む周知の固定構造(図示せず)により、電池積層体2の上面に固定することができる。また、カバー部材8は、両端部がセパレータ14の上部を挟み込むことで電池積層体2に固定される構造であってもよい。
 放熱部10は、複数の電池12を放熱するための部材である。放熱部10は、絶縁性及び熱伝導性を有する。例えば、放熱部10は、シリコン系やアクリル系の樹脂材料等からなる伝熱シートである。あるいは、放熱部10は、鉄、アルミニウム等の金属板と絶縁シートとの積層体であってもよい。電池積層体2が放熱部10に搭載された状態で、各電池12が放熱部10に当接する(図5参照)。各電池12で発生する熱は放熱部10によって吸熱され、これにより各電池12が冷却される。
 続いて、電池12及びセパレータ14の構造を詳細に説明する。図3は、電池12の概略構造を示す分解斜視図である。電池12は、扁平な直方体形状の外装缶18を有する。外装缶18の一面には略長方形状の開口が設けられ、この開口を介して外装缶18に電極体や電解液等が収容される。外装缶18の開口には、外装缶18の内部を封止する封口板20が設けられる。封口板20には、長手方向の一端寄りに正極端子22aが設けられ、他端寄りに負極端子22bが設けられる。封口板20と出力端子22とで封口体が構成される。外装缶18及び封口板20は、金属で形成される。典型的には、外装缶18及び封口板20は、アルミニウムやアルミニウム合金等で形成される。出力端子22は、導電性を有する金属で形成される。
 本実施の形態では、封口体が設けられる側を電池12の上面n1、反対側を電池12の底面n2とする。また、電池12は、上面n1及び底面n2をつなぐ2つの主表面を有する。この主表面は、電池12が有する6つの面のうち面積の最も大きい面である。上面n1、底面n2及び2つの主表面を除いた残り2つの面は、電池12の側面とする。電池12の上面側を電池積層体2の上面とし、電池12の底面側を電池積層体2の底面とする。
 電池12は、電池12内部で発生したガスを放出するための弁部24を表面に有する。本実施の形態では、電池12は、上面n1に弁部24を有する。弁部24は、封口板20における一対の出力端子22の間に設けられる。より具体的には、弁部24は、封口板20の長手方向の略中央に配置される。弁部24は、外装缶18の内圧が所定値以上に上昇した際に開弁して、内部のガスを放出できるように構成される。弁部24は、安全弁あるいはベント部とも呼ばれる。
 また、電池12は、絶縁フィルム42を有する。絶縁フィルム42は、例えばシュリンクチューブであり、外装缶18を収容した後に加熱される。これにより絶縁フィルム42は収縮し、外装缶18の表面を被覆する。絶縁フィルム42により、隣り合う電池12間の短絡を抑制することができる。
 図4は、セパレータ14の概略構造を示す斜視図である。図5は、積層方向Xから見たときの電池12、セパレータ14、拘束部材6及び放熱部10の組み付け状態を説明するための図である。なお、図5では、カバー部材8の図示を省略している。セパレータ14は、電池12の主表面に平行に延在する平板状の介在部14aと、介在部14aの端部から積層方向Xに延在する壁部14bとを有する。介在部14aは、隣接する2つの電池12の対向する主表面に沿って延在する。
 隣接する2つの電池12間に介在部14aが配置されることで、2つの電池12間が絶縁される。また、介在部14aは、電池12とエンドプレート4との間に延在する。これにより、電池12とエンドプレート4とが絶縁される。セパレータ14と電池12とが組み付けられた状態で、介在部14aにおける電池12の底面側に位置する端部は、電池12の底面n2よりも電池12の上面n1側に位置する。すなわち、セパレータ14の下端部は、電池12の底面n2よりも上方に位置する。
 また、壁部14bによって、電池12の上面n1の一部及び側面が覆われる。これにより、電池12又はエンドプレート4の表面での結露等が原因で生じ得る、隣り合う電池12間、電池12とエンドプレート4との間、あるいは電池12と拘束部材6との間の短絡を抑制することができる。すなわち、壁部14bによって、隣り合う電池12間あるいは電池12とエンドプレート4との間の沿面距離を確保することができる。また、壁部14bは、電池12の底面n2が露出するように切り欠き32を有する。言い換えれば、セパレータ14は、電池12の底面n2に対応する位置に壁部14bを有しない。これにより、電池積層体2を放熱部10に搭載した際に、電池12の底面n2を放熱部10に当接させることができる。
 電池12の上面n1を覆う壁部14bと、電池12の側面を覆う壁部14bとがつながる領域、すなわちセパレータ14の両肩部には、一対の台座部30が設けられる。各台座部30は、方向Yにおいて出力端子22の内側に位置する壁部14bよりも、積層方向Xに突出する。各台座部30は、電池12の上面n1と同じ方向、すなわちカバー部材8側を向く上面30aと、電池12の上面n1と対向する下面30bとを有する。また、各台座部30は、上面30aの外周において方向Zに突出する枠部30cを有する。
 台座部30の上面30aには、電池12を位置決めするための第1位置決め部材34が搭載される。第1位置決め部材34は、例えば弾性変形可能なゴムで構成され、台座部30と拘束部材6の庇部6bとで挟まれる。台座部30の下面30bには、電池12に向かって突出する電池押さえ部36が設けられる。電池押さえ部36は、電池12の上面n1に当接する。電池12の上面n1は、積層方向Xに延在する第1面である。また、放熱部10が当接する電池12の底面n2は、第1面に背向する第2面である。
 電池押さえ部36は、セパレータ14を挟む2つの電池12のうち、一方の電池12の上面n1のみに当接する。すなわち、セパレータ14は、自身に対する他方の電池12の相対的な変位を規制しないように構成されている。また、セパレータ14は、隣接するセパレータ14との間で嵌合構造を有しない。すなわち、隣り合うセパレータ14同士が互いの変位を規制しないように構成されている。したがって、一組の電池12及びセパレータ14の変位は、隣接する他の組の電池12及びセパレータ14に干渉されない。
 また、電池12の上面n1を覆う壁部14bには、カバー部材8側に突出する入力部38が設けられる。入力部38は、細幅の平板状であり、少なくともその先端部は電池押さえ部36よりも方向Zで電池12から離間した位置にある。本実施の形態では、2つの入力部38が方向Yに並んで配置されている。入力部38には、電池モジュール1の組立時に外力F1(図8(A)参照)が入力される。入力部38は、外力F1により変形可能である。本実施の形態では、入力部38は介在部14aよりも剛性が低い。これにより、外力F1によって入力部38をより確実に変形させることができる。入力部38の低剛性は、入力部38の厚さが介在部14aの厚さよりも薄いことで実現されている(図8(B)参照)。また、本実施の形態の各セパレータ14において、方向Yにおける2つの入力部28の間の領域には、2つの入力部38よりも方向Zに突出する部分が設けられていない。
 また、入力部38は、積層方向Xにおいて電池押さえ部36に対してずれている(図8(B)も参照)。すなわち、入力部38は、電池12の上方の空間から退避するように配置されている。本実施の形態では、入力部38は、方向Zから見て介在部14aと重なるように配置される。言い換えれば、入力部38は、介在部14aと同一平面上に位置する。
 電池12の底面における方向Yの両端部には、第2位置決め部材40が配置される。第2位置決め部材40は、例えばポリブチレンテレフタレート(PBT)やポリプロピレン(PP)等の樹脂で構成され、電池積層体2の底面と拘束部材6の庇部6bとで挟まれる。第2位置決め部材40は、各電池12の底面と拘束部材6の庇部6bとの間に介在され、各電池12の底面と拘束部材6とを絶縁する。電池積層体2の各電池12は、第1位置決め部材34及び第2位置決め部材40により、拘束部材6に対する方向Zの位置決めがなされる。
(電池モジュールの製造方法)
 図6、図7、図8(A)、図8(B)及び図9は、電池モジュール1の製造方法を説明するための工程図である。まず、図6に示すように、複数の電池12と複数のセパレータ14とが交互に積層され、これらが一対のエンドプレート4で挟まれて集合体3が形成される。集合体3が形成された状態で、各セパレータ14の介在部14aが隣接する2つの電池12間に配置される。また、電池押さえ部36(図8(A)、図8(B)参照)が一方の電池12の上面n1に当接する。
 続いて、図7に示すように、集合体3の上面に第1治具91が押し当てられる。また、集合体3の底面に第2治具92が押し当てられる。また、積層方向Xで対向する集合体の2つの側面、すなわち各エンドプレート4の主表面に、第3治具93及び第4治具94が押し当てられる。さらに、方向Yで対向する集合体の2つの側面に、第5治具95及び第6治具96が押し当てられる。
 これにより、図8(A)に示すように、第1治具91によって方向Zの外力F1、言い換えれば電池12の上面n1と交わる方向の外力F1、あるいは電池12の上面n1と底面n2とが並ぶ方向の外力F1が、集合体3の上面に印加される。また、第2治具92によって方向Zの外力F2が集合体3の底面に印加される。外力F1及び外力F2は、互いに対向する方向の力である。また、第5治具95及び第6治具96によって、方向Yの外力F5,F6が集合体3の側面に印加される。外力F5及び外力F6は、互いに対向する方向の力である。また、第3治具93及び第4治具94によって、積層方向Xの外力F3,F4(図9参照)が集合体3の側面に印加される。外力F3及び外力F4は、互いに対向する方向の力である。
 第1治具91は、集合体3に押し当てられた状態で、各セパレータ14の入力部38に当接する。したがって、外力F1は入力部38に印加される。ここで、一般に電池12は、製造誤差(公差)等により寸法が揃わないことが多い。このため、電池モジュール1に含まれる複数の電池12の少なくとも一部は、底面n2から上面n1までの長さが他の電池12と異なる。当該長さの最大差は、約1mm以下である。この寸法誤差のために、各電池12と各セパレータ14との組み合わせにおいて、電池12の底面n2からセパレータ14の入力部38の先端部までの長さが不揃いとなる。当該長さが不揃いのままでは、第1治具91を集合体3に押し当てても、全ての電池12の底面n2を第2治具92に当接させることは困難である。つまり、各電池12の底面n2を面一に揃えることは困難である。
 これに対し、入力部38は、外力F1により変形可能である。このため、入力部38に外力F1が印加されると、図8(B)に示すように、先端部の高さ位置に応じて先端部が押し潰されて変形する。先端部が高い位置にある入力部38ほど、大きく押し潰される。これにより、各セパレータ14の入力部38は、先端部の高さ位置が第1治具91に合わせて面一に揃えられる。よって、全てのセパレータ14に外力F1を入力することができる。各セパレータ14の電池押さえ部36は、入力部38に入力された外力F1により電池12の上面n1を押圧する。これにより、各電池12の底面n2が第2治具92に押し当てられ、各底面n2が面一に揃えられる。この結果、各電池12が方向Zに位置合わせされる。
 なお、本実施の形態のセパレータ14は、2つの入力部38の間に当該2つの入力部38よりも突出する部分を有しない。このため、平板状の第1治具91を用いることができる。すなわち、第1治具91が単純な形状であるにもかかわらず、第1治具91を各セパレータ14の入力部38のみに当接させることができる。よって、複雑な形状の治具の使用を回避することができる。
 入力部38は、積層方向Xにおいて電池押さえ部36に対してずれている。すなわち、電池押さえ部36は、セパレータ14における外力F1の入力点に対して積層方向Xにずれている。これにより、電池押さえ部36部の上方に、第1位置決め部材34を配置するためのスペースを確保することができる。
 また、入力部38は、方向Zから見て介在部14aと重なるように配置されている。すなわち、入力部38は、外力F1の入力方向から見て介在部14aと重なるように配置されている。これにより、入力部38に入力された外力F1を介在部14aにより確実に伝えることができる。集合体3には外力F3,F4が印加されているため、介在部14aは隣り合う電池12に挟み込まれる。これにより、介在部14aの方向Zの変位が阻害され得る。これに対し、外力F1の入力方向から見て介在部14aと重なるように入力部38を配置することで、より確実に介在部14aを方向Zに変位させることができる。すなわち、介在部14aを隣り合う電池12の隙間に押し込むことができる。これにより、電池押さえ部36をより確実に電池12の上面n1に押し当てることができる。
 第5治具95と第6治具96とで集合体3を押さえ込むことで、各電池12が方向Yに位置合わせされる。また、第3治具93と第4治具94とで集合体3を押さえ込むことで、各電池12が積層方向Xに位置合わせされる。なお、第1治具91と第2治具92、第3治具93と第4治具94、第5治具95と第6治具96のそれぞれの組み合わせにおいて、一方の治具を固定し他方の治具のみを変位させて、集合体3に外力を印加するようにしてもよい。
 その後、図9に示すように、集合体3に第1位置決め部材34が取り付けられ、続いて一対の拘束部材6が取り付けられる。このとき、外力F3,F4は印加したままの状態とする。集合体3の一部は、各拘束部材6における4つの庇部6bで囲まれる空間に進入する。また、各拘束部材6は、庇部6bに設けられた貫通孔6cがエンドプレート4のねじ穴4aと重なるように位置合わせされる。この状態で、締結ねじ16(図2参照)が貫通孔6cに挿通され、またねじ穴4aに螺合される。この結果、複数の電池12と複数のセパレータ14とが一対のエンドプレート4と一対の拘束部材6とによって締結される。
 複数の電池12は、積層方向Xで対向する2つの庇部6bによって積層方向Xに締め付けられることで、積層方向Xの位置が固定される。また、複数の電池12は、方向Zで対向する2つの庇部6bによって方向Zの位置が固定される。また、複数の電池12は、平面部6aによって方向Yの位置が固定される。この状態で、各電池12の出力端子22にバスバーが電気的に接続されて、電池積層体2が得られる。その後、カバー部材8が電池積層体2の上面に取り付けられ、放熱部10が電池積層体2の底面に取り付けられる。以上の工程により、電池モジュール1が得られる。
 以上説明したように、本実施の形態に係るセパレータ14は、隣接する2つの電池12間に配置されて当該2つの電池12間を絶縁する介在部14aと、電池モジュール1の組立時に外力F1が入力され、外力F1により変形可能である入力部38と、一方の電池12における積層方向Xに延在する第1面、すなわち上面n1に当接し、入力部38に入力された外力F1により上面n1を押圧する電池押さえ部36とを備える。このようなセパレータ14を電池モジュール1に組み込むことで、各電池12における第1面に背向する第2面、すなわち底面n2を、面一に揃えることができる。
 これにより、電池積層体2の底面に放熱部10を配置した際に、各電池12の底面n2を放熱部10に当接させることができる。この結果、各電池12と放熱部10との距離が等しくなるため、電池積層体2を均一に冷却することができる。よって、電池積層体2に局所的な熱集中が起こることを回避することができる。また、本実施の形態によれば、電池積層体2と放熱部10との間に、電池積層体2の底面の凹凸を埋めるための介在層を設ける必要がない。すなわち、各電池12を直に放熱部10に当接させることができる。よって、電池積層体2の冷却効率を向上させることができる。
 また、本実施の形態では、電池12の寸法ばらつきを吸収する構造である入力部38を、セパレータ14に設けている。これにより、第1治具91の構造が複雑になることを回避することができる。また、第1治具91に寸法ばらつきの吸収構造を設けた場合、電池12間のピッチや電池12の数の変化に対応することが困難であるが、セパレータ14に当該構造を設けることで、この問題も回避することができる。
 また、入力部38は、積層方向Xにおいて電池押さえ部36に対してずれるように配置されている。これにより、電池12の直上にスペースを確保することができる。また、入力部38は、外力F1の入力方向から見て介在部14aと重なるように配置される。これにより、各電池12の底面n2をより確実に揃えることができる。
 本発明は、上述した実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更などのさらなる変形を加えることも可能であり、さらなる変形が加えられた実施の形態も本発明の範囲に含まれる。上述した実施の形態への変形の追加によって生じる新たな実施の形態は、組み合わされる実施の形態、及び変形それぞれの効果をあわせもつ。
(変形例1)
 図10は、変形例1に係る電池モジュールの製造方法を説明するための図である。図10に示すように、本変形例に係るセパレータ114は、入力部138の構造のみが実施の形態に係るセパレータ14と異なる。平板状の入力部138は、外力F1の入力方向に対して、言い換えれば上面n1の法線方向に対して傾斜している。すなわち、入力部138は、外力F1の入力方向と交わる方向に延在している。このため、入力部138は、第1治具91が押し当てられると、基端部において折り曲がるように変形するか、あるいは全体が撓むように変形して、先端部が電池12の底面n2に近づくように傾倒する。これにより、各セパレータ14の入力部138は、先端部の高さ位置が第1治具91に合わせて面一に揃えられる。このような構造によっても、電池12の底面n2を放熱部10に当接させることができる。この結果、電池積層体2を均一に冷却することができる。なお、実施の形態における入力部の剛性の低減と、本変形例における入力部の傾斜とを組み合わせてもよい。
(変形例2)
 図11(A)は、変形例2に係るセパレータの概略構造を示す斜視図である。本変形例に係るセパレータ214は、入力部238の配置のみが実施の形態と異なる。入力部238は、台座部30における枠部30cの上端に配置されている。また、入力部238は、方向Zから見て介在部14aと重なるように配置されている。このような構造によっても、電池12の底面n2を放熱部10に当接させることができる。この結果、電池積層体2を均一に冷却することができる。
(変形例3)
 図11(B)は、変形例3に係るセパレータの概略構造を示す斜視図である。本変形例に係るセパレータ314は、入力部338の配置のみが実施の形態と異なる。入力部338は、台座部30における枠部30cの上端に配置されている。また、入力部338は、方向Zから見て電池押さえ部36と重なるように配置されている。このような構造によっても、電池12の底面n2を放熱部10に当接させることができる。この結果、電池積層体2を均一に冷却することができる。
(その他)
 上述した実施の形態では、電池12は角形電池であるが、電池12の形状は特に限定されず、円筒状等であってもよい。また、電池積層体が備える電池12の数も特に限定されない。また、電池12は絶縁フィルム42を有していなくともよい。セパレータは、方向Yの中央部に1つだけ入力部を有する構造であってもよい。入力部が複数の場合、各入力部に対して第1治具91を用意する必要が生じ得るが、入力部が1つであれば第1治具91を1つで済ませることができる。
 以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 1 電池モジュール、 10 放熱部、 12 電池、 14,114,214,314 セパレータ、 14a 介在部、 36 電池押さえ部、 38,138,238,338 入力部、 91 第1治具、 92 第2治具。

Claims (9)

  1.  積層された複数の電池を有する電池モジュールに用いられるセパレータであって、
     隣接する2つの電池間に配置されて当該2つの電池間を絶縁する介在部と、
     電池モジュールの組立時に外力が入力され、前記外力により変形可能である入力部と、
     一方の電池における電池の積層方向に延在する第1面に当接し、前記入力部に入力された前記外力により前記第1面を押圧する電池押さえ部と、
    を備えることを特徴とするセパレータ。
  2.  前記入力部は、前記積層方向において前記電池押さえ部に対してずれている請求項1に記載のセパレータ。
  3.  前記入力部は、前記外力の入力方向から見て前記介在部と重なるように配置される請求項1又は2に記載のセパレータ。
  4.  前記入力部は、前記介在部よりも剛性が低い請求項1乃至3のいずれか1項に記載のセパレータ。
  5.  前記入力部は、前記介在部よりも厚さが薄い請求項4に記載のセパレータ。
  6.  前記入力部は、前記外力の入力方向に対して傾斜している請求項1乃至5のいずれか1項に記載のセパレータ。
  7.  積層された複数の電池と、
     隣接する2つの前記電池間に配置されて当該2つの電池間を絶縁する、複数の請求項1乃至6のいずれか1項に記載のセパレータと、
     前記複数の電池における、前記セパレータの前記電池押さえ部により押圧される前記第1面に背向する第2面に当接して、前記複数の電池を放熱する放熱部と、
    を備えることを特徴とする電池モジュール。
  8.  前記複数のセパレータはそれぞれ、隣接するセパレータの変位を規制しない請求項7に記載の電池モジュール。
  9.  複数の電池と、複数の請求項1乃至6のいずれか1項に記載のセパレータとを交互に積層し、各セパレータの前記介在部を隣接する2つの電池間に配置し、前記電池押さえ部を一方の電池における前記積層方向に延在する前記第1面に当接させる工程と、
     各セパレータの前記入力部に第1治具を押し当て、前記複数の電池における前記第1面に背向する第2面に第2治具を押し当てて、前記複数の電池を位置合わせする工程と、
    を含むことを特徴とする電池モジュールの製造方法。
PCT/JP2018/006137 2017-03-07 2018-02-21 セパレータ、電池モジュール及び電池モジュールの製造方法 WO2018163816A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880014290.1A CN110337738B (zh) 2017-03-07 2018-02-21 电池模块以及电池模块的制造方法
JP2019504448A JP6948626B2 (ja) 2017-03-07 2018-02-21 セパレータ、電池モジュール及び電池モジュールの製造方法
US16/489,413 US11233267B2 (en) 2017-03-07 2018-02-21 Separator, battery module and battery module production method
US17/113,834 US20210091404A1 (en) 2017-03-07 2020-12-07 Separator, battery module and battery module production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042458 2017-03-07
JP2017042458 2017-03-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/489,413 A-371-Of-International US11233267B2 (en) 2017-03-07 2018-02-21 Separator, battery module and battery module production method
US17/113,834 Division US20210091404A1 (en) 2017-03-07 2020-12-07 Separator, battery module and battery module production method

Publications (1)

Publication Number Publication Date
WO2018163816A1 true WO2018163816A1 (ja) 2018-09-13

Family

ID=63447717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006137 WO2018163816A1 (ja) 2017-03-07 2018-02-21 セパレータ、電池モジュール及び電池モジュールの製造方法

Country Status (4)

Country Link
US (2) US11233267B2 (ja)
JP (1) JP6948626B2 (ja)
CN (1) CN110337738B (ja)
WO (1) WO2018163816A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066060A1 (ja) * 2018-09-26 2020-04-02 ビークルエナジージャパン株式会社 電池パック
JP2021009786A (ja) * 2019-06-28 2021-01-28 三洋電機株式会社 電源装置とこの電源装置を備える電動車両及び蓄電装置、電池セルユニット、電源装置の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021136101A (ja) * 2020-02-26 2021-09-13 マツダ株式会社 バッテリモジュール
US11955656B2 (en) 2021-11-16 2024-04-09 Beta Air, Llc Battery pack for an electric aircraft
CN114784441B (zh) * 2022-06-22 2022-10-25 宁德时代新能源科技股份有限公司 电池以及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103007A1 (ja) * 2012-12-28 2014-07-03 日立ビークルエナジー株式会社 組電池
JP2015201289A (ja) * 2014-04-07 2015-11-12 株式会社Gsユアサ 蓄電装置
JP2015201288A (ja) * 2014-04-07 2015-11-12 株式会社Gsユアサ 蓄電装置、ホルダ及び蓄電装置の組立方法
JP2016219246A (ja) * 2015-05-20 2016-12-22 株式会社Gsユアサ 蓄電装置
JP2017021898A (ja) * 2015-07-07 2017-01-26 株式会社Gsユアサ 蓄電装置、及びスペーサ
JP2017041311A (ja) * 2015-08-18 2017-02-23 株式会社豊田自動織機 電池モジュールユニット及び電池パック

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087962A1 (ja) * 2005-02-18 2006-08-24 Toyota Jidosha Kabushiki Kaisha 組電池
JP2008166191A (ja) * 2006-12-28 2008-07-17 Sanyo Electric Co Ltd 電池パック
JP5270326B2 (ja) * 2008-12-17 2013-08-21 プライムアースEvエナジー株式会社 組電池
JP5465440B2 (ja) * 2009-01-28 2014-04-09 三洋電機株式会社 組電池
JP2012160260A (ja) * 2011-01-28 2012-08-23 Nifco Inc バッテリパック
US9431686B2 (en) 2011-02-28 2016-08-30 Sanyo Electric Co., Ltd. Cell module and manufacturing method for cell module
JP6073583B2 (ja) * 2012-06-28 2017-02-01 三洋電機株式会社 電源装置及びこの電源装置を備える車両並びに蓄電装置
KR20140011207A (ko) * 2012-07-18 2014-01-28 에스케이이노베이션 주식회사 셀 댐퍼를 포함한 이차전지모듈
JP6174381B2 (ja) * 2013-06-06 2017-08-02 日立オートモティブシステムズ株式会社 蓄電ブロックおよび蓄電モジュール
US10090494B2 (en) * 2014-03-31 2018-10-02 Ford Global Technologies, Llc Support structure for battery cells within a traction battery assembly
KR101767634B1 (ko) * 2014-07-31 2017-08-14 주식회사 엘지화학 배터리 모듈
JP6274053B2 (ja) * 2014-09-04 2018-02-07 株式会社Gsユアサ 蓄電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103007A1 (ja) * 2012-12-28 2014-07-03 日立ビークルエナジー株式会社 組電池
JP2015201289A (ja) * 2014-04-07 2015-11-12 株式会社Gsユアサ 蓄電装置
JP2015201288A (ja) * 2014-04-07 2015-11-12 株式会社Gsユアサ 蓄電装置、ホルダ及び蓄電装置の組立方法
JP2016219246A (ja) * 2015-05-20 2016-12-22 株式会社Gsユアサ 蓄電装置
JP2017021898A (ja) * 2015-07-07 2017-01-26 株式会社Gsユアサ 蓄電装置、及びスペーサ
JP2017041311A (ja) * 2015-08-18 2017-02-23 株式会社豊田自動織機 電池モジュールユニット及び電池パック

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066060A1 (ja) * 2018-09-26 2020-04-02 ビークルエナジージャパン株式会社 電池パック
CN112272886A (zh) * 2018-09-26 2021-01-26 日本汽车能源株式会社 电池组装体
JPWO2020066060A1 (ja) * 2018-09-26 2021-03-11 ビークルエナジージャパン株式会社 電池パック
CN112272886B (zh) * 2018-09-26 2022-11-08 日本汽车能源株式会社 电池组装体
JP2021009786A (ja) * 2019-06-28 2021-01-28 三洋電機株式会社 電源装置とこの電源装置を備える電動車両及び蓄電装置、電池セルユニット、電源装置の製造方法
JP7242445B2 (ja) 2019-06-28 2023-03-20 三洋電機株式会社 電源装置とこの電源装置を備える電動車両及び蓄電装置、電池セルユニット、電源装置の製造方法

Also Published As

Publication number Publication date
CN110337738A (zh) 2019-10-15
JPWO2018163816A1 (ja) 2020-01-09
JP6948626B2 (ja) 2021-10-13
US20210091404A1 (en) 2021-03-25
CN110337738B (zh) 2022-05-13
US11233267B2 (en) 2022-01-25
US20200075988A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2018163816A1 (ja) セパレータ、電池モジュール及び電池モジュールの製造方法
JP5852092B2 (ja) 電池モジュールおよび電池モジュールの製造方法
JP6391152B2 (ja) バッテリパック
JP6279948B2 (ja) バッテリシステムの製造方法とこの方法で製造されるバッテリシステム
JP7476792B2 (ja) 蓄電装置
US20120040226A1 (en) Battery Module
JP6176085B2 (ja) 電池モジュール
WO2019058937A1 (ja) 電池モジュール
CN109643833B (zh) 电池模块
US20150064543A1 (en) Battery module
WO2015098382A1 (ja) 蓄電モジュールユニット及び蓄電モジュールユニットの製造方法
WO2018012349A1 (ja) 電池モジュール
JP2013051048A (ja) 電源装置
WO2020166182A1 (ja) 電池モジュール
JP7235040B2 (ja) 蓄電装置
JP2015185413A (ja) バッテリシステムとその製造方法
WO2019065152A1 (ja) 拘束部材および電池モジュール
WO2020235279A1 (ja) バスバープレート
JP2015026424A (ja) 蓄電モジュール
JP2017041311A (ja) 電池モジュールユニット及び電池パック
JP7134626B2 (ja) 蓄電装置
CN111712940A (zh) 电池模块
WO2015146584A1 (ja) 蓄電装置
JP7106920B2 (ja) 蓄電装置
WO2021153523A1 (ja) 蓄電モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764693

Country of ref document: EP

Kind code of ref document: A1