WO2018163808A1 - アーク溶接方法 - Google Patents

アーク溶接方法 Download PDF

Info

Publication number
WO2018163808A1
WO2018163808A1 PCT/JP2018/006102 JP2018006102W WO2018163808A1 WO 2018163808 A1 WO2018163808 A1 WO 2018163808A1 JP 2018006102 W JP2018006102 W JP 2018006102W WO 2018163808 A1 WO2018163808 A1 WO 2018163808A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
base material
magnetic
location
arc
Prior art date
Application number
PCT/JP2018/006102
Other languages
English (en)
French (fr)
Inventor
勇人 馬塲
Original Assignee
株式会社ダイヘン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヘン filed Critical 株式会社ダイヘン
Publication of WO2018163808A1 publication Critical patent/WO2018163808A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/08Arrangements or circuits for magnetic control of the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to a consumable electrode type arc welding method.
  • the consumable electrode arc welding method is a technique in which an arc is generated between a welding wire fed to a welded portion of a base material and the base material, and the base material is welded by the heat of the arc.
  • the base material is a magnetic material
  • an arc deflection phenomenon or arc break phenomenon called magnetic blowing occurs due to a magnetic field generated in the base material, causing welding instability and welding defects.
  • JP 2006-305612 A Japanese Patent Laid-Open No. 2001-300728
  • the magnetic field generated in the vicinity of the arc generation point is caused by various influences in a complicated manner.
  • the welding method and welding conditions, the welding direction that is the traveling direction of the welding wire, the member shape, the jig system, the magnetization of the member and the jig Depending on the situation and the like, the proper grounding point differs.
  • Patent Document 1 it is considered that grounding before the ground point is taken forward in the welding direction is effective, but as general knowledge regarding magnetic blowing, the magnetic grounding is performed by rear grounding that is welded away from the ground point. It is said that can be reduced.
  • the proper ground point varies depending on the case, and even if the proper ground point is taken, the magnetic field itself cannot be extinguished only by changing the current path. 2 does not completely eliminate the magnetic blow.
  • the greatest factor that the magnetic blow cannot be eliminated by the above technique is the influence of the magnetic field generated by the current flowing between the electrode, the arc, and the base material.
  • the direction of the current is determined by the direction of the torch, and the current path cannot be changed by changing the ground point.
  • a magnetic field in which the magnetic flux density concentrates in front of the welding direction near the arc generation point is formed. If it is in a plate-shaped uniform conductor with no gap, the magnetic field is formed concentrically with respect to the current, but in butt welding of a plate-shaped base material made of a magnetic material, a magnetic field is preferentially formed in the magnetic material. Therefore, a magnetic field is less likely to be formed in the gap present in the welded portion in front of the welding direction, and a magnetic field is likely to be formed in the slight molten metal portion existing in front of the arc.
  • the magnetic flux density formed at the front of the welding direction and in the vicinity of the arc generation point becomes relatively larger than the magnetic flux density formed at the rear of the welding direction, and a backward electromagnetic force is generated with respect to the arc. Magnetically deflect backward in the direction.
  • the arc length is often long and is easily affected by the magnetic field.
  • the arc length can be shortened by lowering the voltage.
  • the arc voltage is lowered, a space is formed in the molten metal, and the arc length is reduced. Cannot be shortened, and the influence of the magnetic field becomes more remarkable.
  • the present invention has been made in view of such circumstances, and the object thereof is to form a short-circuit magnetic path having a magnetic permeability higher than that of other parts to be welded in front of the welding direction, thereby achieving a large current of 300 A or more. Also in current arc welding, it is providing the arc welding method which can reduce the magnetic flux density ahead of the welding direction in the vicinity of an arc generating point, and can suppress magnetic blowing.
  • the arc welding method generates an arc while moving the welding wire from the first location to the second location along the welded portions of the first base material and the second base material to be joined. It is a consumable electrode type arc welding method for welding a base material and a second base material, and the permeability between the first base material and the second base material on the second location side relative to the first location is higher than that of other locations. Supplying a welding current having an average current of 300 A or more to the welding wire while moving the welding wire from the first location to the second location of the welded portion. A welding step of welding the first base material and the second base material.
  • the first base material and the second base material are welded by supplying a welding current of 300 A or more.
  • a welding current of 300 A or more When welding is performed with a large current of 300 A or more, the arc length is often long, and it is easily affected by the magnetic flux density concentrated near the arc generation point, particularly in the welding direction, and the problem of magnetic blowing becomes significant. Therefore, in the arc welding method of this aspect, when welding the first base material and the second base material while moving the welding wire from the first location to the second location, the first base material and the second base material on the second location side are used. A short-circuit magnetic path is formed between the base materials.
  • the magnetic field formed around the welding current flowing between the welding wire and the first base material and the second base material is The first location side bead formed by welding and the second location side short circuit magnetic path are passed. Therefore, without being affected by various conditions such as welding conditions, it is possible to prevent the magnetic flux density from concentrating forward in the welding direction during welding, and to suppress magnetic blowing. Therefore, high current arc welding with suppressed magnetic blowing becomes possible.
  • the magnetic path forming step preferably includes a step of welding at least one location on the second location side.
  • the magnetic path forming step preferably includes a step of discretely welding a plurality of locations between the first location and the second location.
  • a plurality of short-circuit magnetic paths are formed by discretely welding a plurality of locations between the first location and the second location. Therefore, the positional relationship between the arc and the nearest short-circuit magnetic path does not fluctuate greatly, the fluctuation of the magnetic flux density in the front of the welding direction accompanying the movement of the welding wire can be suppressed, and high current arc welding with suppressed magnetic blowing is achieved. It becomes possible.
  • the magnetic path forming step includes a step of arranging a magnetic material straddling the first base material and the second base material.
  • the magnetic body of the short-circuit magnetic path is moved to the second location side together with the welding wire, the positional relationship between the arc and the magnetic body does not vary greatly, and welding accompanying the movement of the welding wire is performed. Fluctuations in the magnetic flux density in the front direction can be suppressed, and high current arc welding with suppressed magnetic blowing becomes possible.
  • the magnetic path forming step includes a step of arranging magnetic powder between the first base material and the second base material on the second location side.
  • the short-circuit magnetic path can be formed by arranging the magnetic powder between the first base material and the second base material on the second location side.
  • the positional relationship between the arc and the nearest short-circuit magnetic path does not vary greatly, and the fluctuation of the magnetic flux density in the front of the welding direction is not moved in the movement of the welding wire. High current arc welding with reduced magnetic blowing is possible.
  • the welding step includes the tip portion in a space surrounded by a concave molten portion formed in the first base material and the second base material by an arc generated between the tip portion of the welding wire and the welded portion. It is preferable that the first base material and the second base material are welded by allowing them to enter.
  • the welding direction in the vicinity of the arc generation point can be reduced, and magnetic blowing can be suppressed without being affected by various conditions such as welding conditions.
  • FIG. It is a schematic diagram which shows one structural example of the arc welding apparatus which concerns on this Embodiment 1.
  • FIG. It is a flowchart which shows the procedure of the arc welding method which concerns on this Embodiment 1.
  • FIG. It is a perspective view which shows the base material of welding object. It is a perspective view which shows the magnetic path formation process by welding. It is a perspective view which shows the welding process of a base material. It is a sectional side view which shows a buried arc welding method.
  • It is a schematic diagram which shows the mode of the magnetic field formed when welding is performed without forming a short circuit magnetic path.
  • It is a schematic diagram which shows the magnetic flux density around a welding current in the case of welding, without forming a short circuit magnetic path.
  • FIG. 1 is a schematic diagram illustrating a configuration example of an arc welding apparatus according to the first embodiment.
  • the arc welding apparatus according to the first embodiment is a consumable electrode type gas shielded arc welding machine capable of high current buried arc welding of 300 A or more, and includes a welding power source 1, a torch 2, and a wire feeding unit 3. Further, the arc welding apparatus includes a welding robot 10 a and a control device 10 for automatically performing arc welding of the base material 4 by moving the torch 2.
  • the control device 10 communicates with the welding power source 1 and the welding robot 10 a to control the operations of the welding robot 10 a and the welding power source 1.
  • the arc welding method according to the first embodiment makes it possible to effectively suppress magnetic blowing without being affected by various conditions such as welding conditions in buried arc welding using the arc welding apparatus. .
  • the welding robot 10a includes a base that is fixed to an appropriate location on the floor surface.
  • a plurality of arms are rotatably connected to the base via a shaft.
  • a torch 2 is held at the tip of the arm connected to the tip side.
  • a motor is provided at the connecting portion of the arms, and each arm rotates around the shaft portion by the rotational driving force of the motor.
  • the rotation of the motor is controlled by the control device 10.
  • the control device 10 can move the torch 2 up, down, front, back, left, and right with respect to the base material 4 by rotating each arm.
  • An encoder that outputs a signal indicating the rotation position of the arm to the control device 10 is provided at the connecting portion of each arm.
  • the control device 10 determines the position of the torch 2 based on the signal output from the encoder. recognize. Further, the control device 10 communicates with the welding power source 1 to control the feeding of the welding wire 5 and the supply of the welding current Iw.
  • the torch 2 is made of a conductive material such as a copper alloy, guides the welding wire 5 to the welded portion 4c (see FIG. 5) of the base material 4, and requires a welding current necessary for generating the arc 8 (see FIG. 5). It has a cylindrical contact tip for supplying Iw. The contact tip contacts the welding wire 5 that is inserted through the contact tip, and supplies the welding current Iw to the welding wire 5.
  • the torch 2 has a hollow cylindrical shape surrounding the contact tip and has a nozzle for injecting a shielding gas to the welded portion 4c.
  • the shield gas is for preventing oxidation of the base material 4 and the welding wire 5 melted by the arc 8.
  • the shield gas is, for example, carbon dioxide, a mixed gas of carbon dioxide and argon, an inert gas such as argon, or the like.
  • the welding wire 5 is, for example, a solid wire and has a diameter of 0.9 mm to 1.6 mm and functions as a consumable electrode.
  • the welding wire 5 is, for example, a pack wire housed in a pail pack in a spirally wound state, or a reel wire wound around a wire reel.
  • the wire feeding unit 3 includes a feeding roller that feeds the welding wire 5 to the torch 2 and a motor that rotates the feeding roller.
  • the wire feeding unit 3 rotates the feeding roller to pull out the welding wire 5 from the wire reel and supplies the drawn welding wire 5 to the torch 2.
  • the feeding method of the welding wire 5 is an example, and is not particularly limited.
  • the welding power source 1 is connected to the contact tip of the torch 2 and the base material 4 through a power supply cable, and supplies a power source 11 that supplies a welding current Iw, and a feed rate control unit that controls the feed rate of the welding wire 5.
  • the power supply unit 11 and the feed speed control unit 12 may be configured separately.
  • the power supply unit 11 is a power supply having a constant voltage characteristic, and includes a power supply circuit 11a that outputs a PWM-controlled DC current, an output voltage setting circuit 11b, a frequency setting circuit 11c, a current amplitude setting circuit 11d, an average current setting circuit 11e, a voltage A detection unit 11f, a current detection unit 11g, and a comparison circuit 11h are provided.
  • the voltage detection unit 11f detects the welding voltage Vw and outputs a voltage value signal Ed indicating the detected voltage value to the comparison circuit 11h.
  • the current detector 11g detects, for example, a welding current Iw that is supplied from the welding power source 1 to the welding wire 5 via the torch 2 and flows through the arc 8, and outputs a current value signal Id indicating the detected current value to an output voltage setting circuit. To 11b.
  • the frequency setting circuit 11c outputs a frequency setting signal for setting a frequency for periodically changing the welding voltage Vw and the welding current Iw between the base material 4 and the welding wire 5 to the output voltage setting circuit 11b.
  • the frequency setting circuit 11c is a frequency setting signal indicating a frequency of 10 Hz to 1000 Hz, preferably a frequency of 50 Hz to 300 Hz, more preferably a frequency of 80 Hz to 200 Hz. Is output. Note that changing the welding current Iw is not an essential welding condition for performing buried arc welding.
  • the current amplitude setting circuit 11d outputs an amplitude setting signal for setting the amplitude of the welding current Iw that varies periodically to the output voltage setting circuit 11b.
  • the current amplitude setting circuit 11d exhibits a current amplitude of 50 A or more, preferably a current amplitude of 100 A or more and 500 A or less, more preferably a current amplitude of 200 A or more and 400 A or less.
  • the average current setting circuit 11e outputs an average current setting signal for setting the average current of the welding current Iw that varies periodically to the output voltage setting circuit 11b and the feed speed control unit 12.
  • the average current setting circuit 11e has an average current of 300A or more, preferably an average current of 300A to 1000A, more preferably an average current of 500A to 800A.
  • An average current setting signal indicating is output.
  • the output voltage setting circuit 11b Based on the current value signal Id, the frequency setting signal, the amplitude setting signal, and the average current setting signal output from each unit, the output voltage setting circuit 11b makes the welding current Iw have the target frequency, current amplitude, and average current. For example, an output voltage setting signal Ecr indicating a target voltage having an arbitrary waveform such as a rectangular wave shape or a triangular wave shape is generated, and the generated output voltage setting signal Ecr is output to the comparison circuit 11h.
  • the comparison circuit 11h compares the voltage value signal Ed output from the voltage detection unit 11f with the output voltage setting signal Ecr output from the output voltage setting circuit 11b, and sends a difference signal Ev indicating the difference to the power supply circuit 11a. Output.
  • the power supply circuit 11a includes an AC-DC converter for AC / DC conversion of commercial AC, an inverter circuit for converting AC / DC converted DC into required AC by switching, a rectifier circuit for rectifying the converted AC, and the like.
  • the power supply circuit 11a performs PWM control of the inverter according to the difference signal Ev output from the comparison circuit 11h, and outputs a voltage to the welding wire 5.
  • a welding voltage Vw that varies periodically is applied between the base material 4 and the welding wire 5, and the welding current Iw is energized.
  • the welding power source 1 is configured such that an output instruction signal is input from the outside via a control communication line, and the power source 11 triggers the welding current Iw to the power circuit 11a using the output instruction signal as a trigger. Start supplying.
  • the output instruction signal is output from the control device 10 to the welding power source 1.
  • the power supply unit 11 of the welding power supply 1 has a constant voltage characteristic.
  • the power supply unit 11 has an external characteristic that a decrease in the welding voltage Vw with respect to an increase in the welding current Iw of 100 A is 2 V or more and 20 V or less.
  • a decrease in the welding voltage Vw is less than 2 V
  • the variation in the welding voltage Vw is small with respect to the variation in the arc length due to the disturbance factor, and the welding current Iw varies greatly.
  • the melted portion 9 (see FIG. 6) swings greatly, and it becomes difficult to maintain the state of the buried arc.
  • the perturbation of the melted portion 9 is suppressed, and it becomes easy to maintain the buried arc state.
  • the value of the welding current Iw is increased, the melting rate of the welding wire 5 is increased, and the arc length is increased.
  • the value of the welding current Iw decreases, the melting rate of the welding wire 5 decreases, and the arc length becomes shorter (arc length self-control action).
  • the voltage drop is preferably 2.5 V or more.
  • the voltage drop is preferably 15 V or less.
  • FIG. 2 is a flowchart showing a procedure of the arc welding method according to the first embodiment
  • FIG. 3 is a perspective view showing a base material 4 to be welded.
  • a base material 4 to be joined by butt welding for example, a plate-like first base material 41 and a second base material 42 having an I groove in the welded portion 4c are prepared (step S11).
  • the first base material 41 and the second base material 42 are steel plates made of a magnetic material such as mild steel, carbon steel for machine structure, alloy steel for machine structure, and the thickness thereof is 19 mm.
  • the welding power source 1 sets the welding conditions so that the wire feed speed is 23 m / min, the average current is 600 A, and the welding voltage Vw is 48 V according to the control of the control device 10.
  • the wire diameter of the welding wire 5 prepared here is an iron-type wire of 1.4 mm, for example.
  • This welding condition is an example, and in order to stabilize the molten metal during buried arc welding, the welding condition of the welding current Iw is set within a frequency range of 10 Hz to 1000 Hz, an average current of 300 A or more, and a current amplitude of 50 A or more. May be.
  • the feeding speed of the welding wire 5 is set, for example, within a range of about 5 to 70 m / min, preferably within a range of 10 m / min to 70 m / min. Note that the feeding speed of the welding wire 5 may be a constant speed or may be periodically changed.
  • step S13 in the previous step of performing arc welding while moving the welding wire 5 from the first location 4a to the second location 4b along the welded portion 4c of the first base material 41 and the second base material 42, the first location Between the first base material 41 and the second base material 42 closer to the second location 4b than 4a, a short-circuit magnetic path 6 having a higher magnetic permeability than other locations is formed (step S13).
  • FIG. 4 is a perspective view showing a magnetic path forming process by welding.
  • the welded portions 4c of the first base material 41 and the second base material 42 are linear, and the first location 4a and the second location 4b are both ends of the welded portion 4c.
  • the short circuit magnetic path 6 is formed by welding one place on the second place 4b side of the welded portion 4c. More specifically, the welding robot 10a moves the torch 2 to the second location 4b side according to the control command of the control device 10, and the welding power source 1 supplies the required welding current Iw according to the control command of the control device 10. It supplies to the welding wire 5 and forms the short circuit magnetic path 6 by welding.
  • FIG. 5 is a perspective view showing a welding process of the base material 4
  • FIG. 6 is a side sectional view showing a buried arc welding method.
  • the welding robot 10 a moves the torch 2 from the first location 4 a to the second location 4 b of the welded portion 4 c, as shown in FIG.
  • a welding current Iw having an average current of 300 A or more is supplied to the welding wire 5 moving along 4c to weld the welded portions 4c of the first base material 41 and the second base material 42 (step S14).
  • a large current of 300 A or more is supplied to the welding wire 5, as shown in FIG.
  • a concave melted portion 9 is formed in the base material 4 by the arc 8 generated between the tip 5 a of the welding wire 5 and the base material 4.
  • the buried arc welding in which the tip 5a of the welding wire 5 enters the space 9a formed and surrounded by the molten portion 9 is realized.
  • the welding power source 1 uses a molten metal by varying the welding current Iw so that the frequency of the welding current Iw is 10 Hz to 1000 Hz, the average current is 300 A or more, and the current amplitude is 50 A or more in buried arc welding. May be stabilized.
  • the power source unit 11 of the welding power source 1 detects the welding voltage Vw and the welding current Iw by the voltage detection unit 11f and the current detection unit 11g, and the frequency, current amplitude, and average current of the detected welding current Iw are set.
  • a target voltage is generated and the welding voltage Vw is PWM-controlled so that the welding current Iw periodically varies in accordance with the conditions.
  • FIG. 7 is a schematic diagram showing the state of a magnetic field formed when welding is performed without forming the short-circuit magnetic path 6, and FIG. 8 is a welding current Iw when welding is performed without forming the short-circuit magnetic path 6.
  • FIG. 9 is a schematic diagram showing an electromagnetic force acting on the welding current Iw when welding is performed without forming the short-circuit magnetic path 6.
  • broken lines indicate magnetic lines of force
  • black arrows in FIG. 8 indicate magnetic flux densities
  • white arrows in FIG. 9 indicate magnetic forces.
  • FIG. 10 is a schematic diagram showing a state of a magnetic field formed when the short-circuit magnetic path 6 is formed and welding is performed.
  • the magnetic field formed around the welding current Iw flowing between the welding wire 5 and the first base material 41 and the second base material 42 is generated by welding the bead 7 on the first location 4a side formed by welding, and the second. It passes through the short-circuit magnetic path 6 on the location 4b side. As shown in FIG.
  • the magnetic field formed on the welding direction side of the welding wire 5 is applied to the short-circuit magnetic path 6 by forming the short-circuit magnetic path 6 by temporary attachment on the second location 4 b side, that is, in front of the welding direction. It becomes easy to form and the magnetic flux density ahead of the welding direction in the vicinity of the arc generation point can be reduced. Therefore, magnetic blowing can be suppressed.
  • the arc welding method according to the first embodiment even when buried arc welding is performed with a large current of 300 A, magnetic blowing is suppressed and the arc 8 can be stabilized. Further, since the deflection of the arc 8 is eliminated, the arc 8 is maintained downward and a deep penetration can be obtained. Therefore, magnetic blowing is suppressed and stable large current buried arc welding is possible.
  • the short-circuit magnetic path 6 can be easily formed by welding at least one location on the second location 4b side without preparing a special magnetic structure.
  • the short-circuit magnetic path 6 is formed by welding, but a magnetic body made of a magnetic material such as steel straddling the first base material 41 and the second base material 42 is fixedly arranged on the second location 4b side. May be.
  • the magnetic body may be disposed on the front surface, side surface, or back surface side of the first base material 41 and the second base material 42.
  • the magnetic body may be welded to the first base material 41 and the second base material 42 by welding. You may arrange
  • a bridge-type jig made of a magnetic material straddling the first base material 41 and the second base material 42 is created, and the jig is a magnetic short circuit 6.
  • position to the 1st base material 41 and the 2nd base material 42 is a body.
  • welds the 2nd location 4b side one place was demonstrated, you may form two or more short circuit magnetic paths 6 in the several location between the 1st location 4a and the 2nd location 4b.
  • FIG. 11 is a perspective view showing the short-circuit magnetic path 6 formed at a plurality of locations.
  • the arc welding apparatus may discretely form the plurality of short-circuit magnetic paths 6 by welding a plurality of locations on the second location 4b side of the welded portion 4c in step S13 of the first embodiment. It is desirable that the plurality of weld locations are equally spaced.
  • the short-circuit magnetic path 6 is formed at a plurality of locations between the first location 4a and the second location 4b, so that the positional relationship between the arc 8 and the nearest short-circuit magnetic path 6 does not vary greatly.
  • the fluctuation of the magnetic flux density ahead of the welding direction accompanying the movement of the welding wire 5 can be suppressed. Therefore, high current arc welding with suppressed magnetic blowing is possible.
  • FIG. 12 is a perspective view showing a welding process of the base material 4 performed while moving the magnetic body 206 which is a short circuit magnetic path.
  • the arc welding apparatus according to the second embodiment includes a cylindrical magnetic body 206, and the magnetic body 206 is supported at an appropriate position of the arc welding apparatus so that the center line can be rotated about a rotation axis.
  • the torch 2 is provided with a support bar that protrudes obliquely downward, and the magnetic body 206 is rotatably supported by the support bar.
  • the support rod is made of, for example, an elastic material.
  • the arc welding apparatus moves the torch 2 to the first location 4a side without temporarily attaching the second location 4b side, and By moving in the direction approaching the material 4, the magnetic body 206 is brought into contact with the first base material 41 and the second base material 42. And an arc welding apparatus welds the to-be-welded part 4c, moving the torch 2 and the welding wire 5 from the 1st location 4a side to the 2nd location 4b side.
  • the cylindrical magnetic body 206 disposed on the second location 4b side from the welding wire 5 moves from the first location 4a to the second location 4b side as the welding wire 5 moves.
  • the magnetic body 206 that functions as a short circuit magnetic path together with the welding wire 5 is moved to the second location 4b side, the positional relationship between the arc 8 and the magnetic body 206 does not vary greatly.
  • the fluctuation of the magnetic flux density ahead of the welding direction accompanying the movement of the welding wire 5 can be suppressed. Therefore, high current arc welding with suppressed magnetic blowing is possible.
  • the rotatable cylindrical magnetic body 206 has been described.
  • the shape and moving mechanism of the magnetic body 206 are not particularly limited, and the first base material 41 and the second base material 42 are not limited. Any magnetic material that can form a short-circuit magnetic path with high permeability therebetween and that can move with the welding wire 5 may be used.
  • the magnetic body 206 may be in the form of a brush made of a magnetic material.
  • a bridge-type jig made of a magnetic material straddling the first base material 41 and the second base material 42 is disposed on the first base material 41 and the second base material 42 as the magnetic body 206, and the welding wire 5 Along with the movement, the surfaces of the first base material 41 and the second base material 42 may be slid.
  • the form which provided the wheel which consists of magnetic materials in the both ends of the rod member which consists of magnetic materials may be sufficient. Each wheel contacts the first base material 41 and the second base material 42. As a result, a short-circuit magnetic path having a higher magnetic permeability than that of the other welded portion 4c is formed by the rod member and the wheel.
  • FIG. 13 is a perspective view showing a magnetic path forming step by arranging magnetic powder 306.
  • the magnetic path formation process of step S13 described in the first embodiment instead of temporarily attaching the second location 4b side, the first base material 41 and the second base material 42 on the second location 4b side rather than the first location 4a.
  • the magnetic powder 306 By arranging the magnetic powder 306 between them, a short-circuit magnetic path that is higher than that of other portions is formed (step S13).
  • the magnetic powder 306 is desirably uniformly distributed along the welded portion 4c.
  • the magnetic powder 306 is, for example, a cut welding wire 5 made of a magnetic material.
  • the magnetic powder 306 may be distributed manually, or a spraying device may be provided in the arc welding device and automatically distributed.
  • the arc welding apparatus melts the magnetic powder 306 by the arc 8 without removing the magnetic powder 306, and welds the first base material 41 and the second base material 42 together with the magnetic powder 306.
  • the magnetic powder 306 by arranging the magnetic powder 306 between the first base material 41 and the second base material 42 on the second location 4b side, a short-circuit magnetic path can be easily formed. it can. Further, when the magnetic powder 306 is uniformly arranged along the welded portion 4 c, the positional relationship between the arc 8 and the nearest magnetic powder 306 does not vary greatly, and the magnetic flux ahead in the welding direction accompanying the movement of the welding wire 5. Variation in density can be suppressed. Therefore, high current arc welding with suppressed magnetic blowing is possible.
  • the magnetic powder 306 obtained by cutting the welding wire 5 has been described.
  • the manufacturing method, material, and shape of the magnetic powder 306 are not limited to specific ones.
  • the magnetic powder 306 includes granular magnetic materials, linear magnetic materials, cotton-like magnetic materials, thin-film magnetic materials, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

接合される第1母材(41)及び第2母材(42)の被溶接部に沿って、第1箇所から第2箇所へ溶接ワイヤ(5)を移動させながらアーク(8)を発生させ、第1母材(41)及び第2母材(42)を溶接する消耗電極式のアーク溶接方法は、第1箇所よりも第2箇所側における第1母材(41)及び第2母材(42)間に、透磁率が他箇所に比べて高い短絡磁路を形成する磁路形成工程と、被溶接部の第1箇所から第2箇所へ溶接ワイヤ(5)を移動させながら、溶接ワイヤ(5)に平均電流(30)(0A)以上の溶接電流を供給して第1母材(41)及び第2母材(42)を溶接する溶接工程とを備える。

Description

アーク溶接方法
 本発明は、消耗電極式のアーク溶接方法に関する。
 溶接方法の一つに、消耗電極式のアーク溶接法がある。消耗電極式アーク溶接法は、母材の被溶接部に送給された溶接ワイヤと、母材との間にアークを発生させ、アークの熱によって母材を溶接する手法である。母材が磁性材料である場合、母材に生じる磁界によって、磁気吹きと呼ばれるアーク偏向現象又はアーク切れ現象が起こり、溶接の不安定化及び溶接欠陥の原因となることが知られている。
 この問題を解決する技術として、溶接電源と母材を接続する給電ケーブルの母材側の接点位置、いわゆるアース点の位置を工夫することで、溶接電流の経路を調整し、磁気吹きを起こりにくくする施工技術が考案されている。場合によっては、多数のアース点を取ることや、アース点を対照的に取ることによっても、効果的に磁気吹きを緩和できるとされている。
特開2006-305612号公報 特開2001-300728号公報
 しかしながら、アーク発生点近傍に生じる磁場は様々な影響を複雑に受けて生じるものであり、溶接方法や溶接条件、溶接ワイヤの進行方向である溶接方向、部材形状、冶具システム、部材や冶具の磁化状況などによって、適正なアース点の取り方は異なってくる。例えば、特許文献1においては、溶接方向前方にアース点を取る前アースが効果的とされているが、磁気吹きに関する一般的な知見としては、アース点から遠ざかる方向に溶接する後ろアースによって磁気吹きを軽減できるとされている。
 このように、適正なアース点は場合によって異なる上、仮に適正なアース点を取ったとしても、電流の経路が変わるだけで、磁場そのものを消滅させることができるわけではないため、特許文献1、2によって磁気吹きが完全に解消されるものではない。
 特に、上記技術で磁気吹きを解消できない最大の要因として、電極、アーク及び母材間に流れる電流によって生じる磁場の影響が挙げられる。上記電流の方向はトーチの向きによって決定され、アース点の取り方を変えても電流経路を変えることができない。
 例として、溶接ワイヤが正極となるような直流アーク溶接による突合せ溶接を考える。この場合、アース点の位置に関わらず、アーク発生点近傍の溶接方向前方に磁束密度が集中する磁場が形成される。間隙の無い板状の均一導体中であれば、電流に対して磁場は同心円状に形成されるが、磁性材料からなる板状母材の突き合わせ溶接においては磁性体中に優先的に磁場が形成されるため、溶接方向前方の被溶接部に存在する空隙には磁場が形成されにくくなり、アークの前方に存在する僅かな溶融金属部に磁場が形成されやすくなる。その結果、溶接方向後方に形成される磁束密度に対して、溶接方向前方かつアーク発生点近傍に形成される磁束密度は比較的大きくなり、アークに対して後向きの電磁気力が生じ、アークが溶接方向後方に磁気偏向する。
 特に大電流溶接では、アーク長が長くなることが多く、上記磁場の影響を受けやすい。また、通常のアーク溶接では、電圧を下げることによりアーク長を短くすることができるが、大電流の埋れアーク溶接においては、アーク電圧を下げても、溶融金属中に空間が形成され、アーク長を短くすることができず、上記磁場の影響がより顕著となる。
 本発明は斯かる事情に鑑みてなされたものであり、その目的は、溶接方向前方に、被溶接部の他箇所に比べて透磁率が高い短絡磁路を形成することにより、300A以上の大電流アーク溶接においても、アーク発生点近傍における溶接方向前方の磁束密度を低減することができ、磁気吹きを抑制することができるアーク溶接方法を提供することにある。
 本態様に係るアーク溶接方法は、接合される第1母材及び第2母材の被溶接部に沿って、第1箇所から第2箇所へ溶接ワイヤを移動させながらアークを発生させ、第1母材及び第2母材を溶接する消耗電極式のアーク溶接方法であって、第1箇所よりも第2箇所側における第1母材及び第2母材間に、透磁率が他箇所に比べて高い短絡磁路を形成する磁路形成工程と、前記被溶接部の第1箇所から第2箇所へ前記溶接ワイヤを移動させながら、前記溶接ワイヤに平均電流300A以上の溶接電流を供給して第1母材及び第2母材を溶接する溶接工程とを備える。
 本態様にあっては、300A以上の溶接電流を供給することによって、第1母材及び第2母材を溶接する。300A以上の大電流で溶接を行う場合、アーク長が長くなることが多く、アーク発生点近傍、特に溶接方向前方に集中する磁束密度の影響を受けやすくなり、磁気吹きの問題が顕著になる。そこで、本態様のアーク溶接方法では、溶接ワイヤを第1箇所から第2箇所へ移動させながら第1母材及び第2母材を溶接する際、第2箇所側における第1母材及び第2母材間に短絡磁路を形成する。短絡磁路が形成された第1母材及び第2母材の溶接を行う場合、溶接ワイヤと、第1母材及び第2母材との間に流れる溶接電流の回りに形成される磁場は、溶接によって形成される第1箇所側のビードと、第2箇所側の短絡磁路とを通る。従って、溶接条件等の諸条件に影響されること無く、溶接時において溶接方向前方に磁束密度が集中することを防ぐことができ、磁気吹きを抑制することができる。よって、磁気吹きを抑えた大電流アーク溶接が可能になる。
 また、前記磁路形成工程は、第2箇所側の少なくとも一箇所を溶接する工程を含むことが好ましい。
 本態様によれば、特別な磁性体構造物を用意せずとも、第2箇所側の少なくとも一箇所を溶接することによって、簡便に短絡磁路を形成することができ、磁気吹きを抑えた大電流アーク溶接が可能になる。
 更に、前記磁路形成工程は、第1箇所及び第2箇所間の複数箇所を離散的に溶接する工程を含むことが好ましい。
 本態様によれば、第1箇所及び第2箇所間の複数箇所を離散的に溶接することによって、複数の短絡磁路が形成される。従って、アークと、直近の短絡磁路との位置関係は大きく変動せず、溶接ワイヤの移動に伴う溶接方向前方の磁束密度の変動を抑えることができ、磁気吹きを抑えた大電流アーク溶接が可能になる。
 更にまた、前記磁路形成工程は、第1母材及び第2母材に跨る磁性体を配する工程を含むことが好ましい。
 本態様によれば、第2箇所側において第1母材及び第2母材に跨る磁性体を配することによって、短絡磁路を形成することができ、磁気吹きを抑えた大電流アーク溶接が可能になる。
 更にまた、前記溶接ワイヤより第2箇所側に配された前記磁性体を、前記溶接ワイヤの移動に伴って第2箇所側へ移動させる工程を備えることが好ましい。
 本態様によれば、溶接ワイヤと共に短絡磁路の磁性体を第2箇所側へ移動させる構成であるため、アークと、磁性体との位置関係は大きく変動せず、溶接ワイヤの移動に伴う溶接方向前方の磁束密度の変動を抑えることができ、磁気吹きを抑えた大電流アーク溶接が可能になる。
 更にまた、前記磁路形成工程は、第2箇所側の第1母材及び第2母材間に磁性粉末を配する工程を含むことが好ましい。
 本態様によれば、第2箇所側の第1母材及び第2母材間に磁性粉末を配することによって、短絡磁路を形成することができる。特に、被溶接部に沿って磁性粉末が均一に配された場合、アークと、直近の短絡磁路との位置関係は大きく変動せず、溶接ワイヤの移動に溶接方向前方の磁束密度の変動を抑えることができ、磁気吹きを抑えた大電流アーク溶接が可能になる。
 更にまた、前記溶接工程は、前記溶接ワイヤの先端部及び前記被溶接部間に発生したアークによって第1母材及び第2母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部を進入させて第1母材及び第2母材を溶接することが好ましい。
 本態様によれば、磁気吹きを抑えた埋もれアーク溶接により、第1母材及び第2母材を溶接することが可能である。
 本態様によれば、溶接方向前方に、被溶接部の他箇所に比べて透磁率が高い短絡磁路を形成することにより、300A以上の大電流アーク溶接においても、アーク発生点近傍における溶接方向前方の磁束密度を低減することができ、溶接条件等の諸条件に影響されずに磁気吹きを抑制することができる。
本実施形態1に係るアーク溶接装置の一構成例を示す模式図である。 本実施形態1に係るアーク溶接方法の手順を示すフローチャートである。 溶接対象の母材を示す斜視図である。 溶接による磁路形成工程を示す斜視図である。 母材の溶接工程を示す斜視図である。 埋もれアーク溶接方法を示す側断面図である。 短絡磁路を形成せずに溶接を行う場合に形成される磁場の様子を示す模式図である。 短絡磁路を形成せずに溶接を行う場合における溶接電流回りの磁束密度を示す模式図である。 短絡磁路を形成せずに溶接を行う場合における溶接電流に働く電磁気力を示す模式図である。 短絡磁路を形成して溶接を行う場合に形成される磁場の様子を示す模式図である。 複数箇所に形成された短絡磁路を示す斜視図である。 短絡磁路である磁性体を移動させながら行う母材の溶接工程を示す斜視図である。 磁性粉末を配することによる磁路形成工程を示す斜視図である。
 以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
 図1は、本実施形態1に係るアーク溶接装置の一構成例を示す模式図である。本実施形態1に係るアーク溶接装置は、300A以上の大電流埋もれアーク溶接が可能な消耗電極式のガスシールドアーク溶接機であり、溶接電源1、トーチ2及びワイヤ送給部3を備える。また、アーク溶接装置は、トーチ2を移動させて母材4のアーク溶接を自動で行うための溶接ロボット10a及び制御装置10を備える。制御装置10は、溶接電源1及び溶接ロボット10aとの間で通信を行い、溶接ロボット10a及び溶接電源1の動作を制御する。
 本実施形態1に係るアーク溶接方法は、上記アーク溶接装置を用いた埋もれアーク溶接において、溶接条件等の諸条件に影響されずに磁気吹きを効果的に抑制することを可能にするものである。
 溶接ロボット10aは、床面の適宜箇所に固定される基部を備える。基部には、複数のアームが軸部を介して回動可能に連結している。先端側に連結されたアームの先端部には、トーチ2が保持されている。アームの連結部分にはモータが設けられており、モータの回転駆動力によって軸部を中心に各アームが回動する。モータの回転は制御装置10によって制御されている。制御装置10は、各アームを回動させることによって、母材4に対してトーチ2を上下前後左右に移動させることができる。各アームの連結部分には、アームの回動位置を示す信号を制御装置10へ出力するエンコーダが設けられており、制御装置10は、エンコーダから出力された信号に基づいて、トーチ2の位置を認識する。また、制御装置10は溶接電源1と通信を行い、溶接ワイヤ5の送給及び溶接電流Iwの供給を制御する。
 トーチ2は、銅合金等の導電性材料からなり、母材4の被溶接部4c(図5参照)へ溶接ワイヤ5を案内すると共に、アーク8(図5参照)の発生に必要な溶接電流Iwを供給する円筒形状のコンタクトチップを有する。コンタクトチップは、その内部を挿通する溶接ワイヤ5に接触し、溶接電流Iwを溶接ワイヤ5に供給する。また、トーチ2は、コンタクトチップを囲繞する中空円筒形状をなし、被溶接部4cへシールドガスを噴射するノズルを有する。シールドガスは、アーク8によって溶融した母材4及び溶接ワイヤ5の酸化を防止するためのものである。シールドガスは、例えば炭酸ガス、炭酸ガス及びアルゴンガスの混合ガス、アルゴン等の不活性ガス等である。
 溶接ワイヤ5は、例えばソリッドワイヤであり、その直径は0.9mm以上1.6mm以下であり、消耗電極として機能する。溶接ワイヤ5は、例えば、螺旋状に巻かれた状態でペールパックに収容されたパックワイヤ、あるいはワイヤリールに巻回されたリールワイヤである。
 ワイヤ送給部3は、溶接ワイヤ5をトーチ2へ送給する送給ローラと、当該送給ローラを回転させるモータとを有する。ワイヤ送給部3は、送給ローラを回転させることによって、ワイヤリールから溶接ワイヤ5を引き出し、引き出された溶接ワイヤ5をトーチ2へ供給する。なお、かかる溶接ワイヤ5の送給方式は一例であり、特に限定されるものでは無い。
 溶接電源1は、給電ケーブルを介して、トーチ2のコンタクトチップ及び母材4に接続され、溶接電流Iwを供給する電源部11と、溶接ワイヤ5の送給速度を制御する送給速度制御部12とを備える。なお、電源部11及び送給速度制御部12を別体で構成しても良い。電源部11は、定電圧特性の電源であり、PWM制御された直流電流を出力する電源回路11a、出力電圧設定回路11b、周波数設定回路11c、電流振幅設定回路11d、平均電流設定回路11e、電圧検出部11f、電流検出部11g及び比較回路11hを備える。
 電圧検出部11fは、溶接電圧Vwを検出し、検出した電圧値を示す電圧値信号Edを比較回路11hへ出力する。
 電流検出部11gは、例えば、溶接電源1からトーチ2を介して溶接ワイヤ5へ供給され、アーク8を流れる溶接電流Iwを検出し、検出した電流値を示す電流値信号Idを出力電圧設定回路11bへ出力する。
 周波数設定回路11cは、母材4及び溶接ワイヤ5間の溶接電圧Vw及び溶接電流Iwを周期的に変動させる周波数を設定するための周波数設定信号を出力電圧設定回路11bへ出力する。本実施形態1に係るアーク溶接方法を実施する場合、周波数設定回路11cは、10Hz以上1000Hz以下の周波数、好ましくは50Hz以上300Hz以下の周波数、より好ましくは80Hz以上200Hz以下の周波数を示す周波数設定信号を出力する。なお、溶接電流Iwを変動させることは、埋もれアーク溶接を実施する必須の溶接条件では無い。
 電流振幅設定回路11dは、周期的に変動する溶接電流Iwの振幅を設定するための振幅設定信号を出力電圧設定回路11bへ出力する。本実施形態1に係るアーク溶接方法を実施する場合、電流振幅設定回路11dは、50A以上の電流振幅、好ましくは、100A以上500A以下の電流振幅、より好ましくは200A以上400A以下の電流振幅を示す振幅設定信号を出力する。
 平均電流設定回路11eは、周期的に変動する溶接電流Iwの平均電流を設定するための平均電流設定信号を出力電圧設定回路11b及び送給速度制御部12へ出力する。本実施形態1に係るアーク溶接方法を実施する場合、平均電流設定回路11eは、300A以上の平均電流、好ましくは平均電流を300A以上1000A以下の平均電流、より好ましくは500A以上800A以下の平均電流を示す平均電流設定信号を出力する。
 出力電圧設定回路11bは、各部から出力された電流値信号Id、周波数設定信号、振幅設定信号、平均電流設定信号に基づいて、溶接電流Iwが目標とする周波数、電流振幅及び平均電流となるように、例えば、矩形波状又は三角波状等の任意波形の目標電圧を示す出力電圧設定信号Ecrを生成し、生成した出力電圧設定信号Ecrを比較回路11hへ出力する。
 比較回路11hは、電圧検出部11fから出力された電圧値信号Edと、出力電圧設定回路11bから出力された出力電圧設定信号Ecrとを比較し、その差分を示す差分信号Evを電源回路11aへ出力する。
 電源回路11aは、商用交流を交直変換するAC-DCコンバータ、交直変換された直流をスイッチングにより所要の交流に変換するインバータ回路、変換された交流を整流する整流回路等を備える。電源回路11aは、比較回路11hから出力された差分信号Evに従って、インバータをPWM制御し、電圧を溶接ワイヤ5へ出力する。その結果、母材4及び溶接ワイヤ5間に、周期的に変動する溶接電圧Vwが印加され、溶接電流Iwが通電する。なお、溶接電源1には、制御通信線を介して外部から出力指示信号が入力されるように構成されており、電源部11は、出力指示信号をトリガにして、電源回路11aに溶接電流Iwの供給を開始させる。出力指示信号は、例えば、制御装置10から溶接電源1へ出力される。
 溶接電源1の電源部11は、定電圧特性を有する。例えば、電源部11は、100Aの溶接電流Iwの増加に対する溶接電圧Vwの低下が2V以上20V以下となる外部特性を有する。電源部11の外部特性をこのように設定することにより、埋もれアーク状態を維持することが容易となる。
 上記溶接電圧Vwの低下が2V未満の場合、外乱要因によるアーク長の変動に対して溶接電圧Vwの変動が小さく、溶接電流Iwが大きく変動する。その結果、溶融部分9(図6参照)が大きく搖動して、埋もれアークの状態を維持することが難しくなる。上記溶接電圧Vwの低下を2V以上とすることにより、溶融部分9の搖動が抑制され、埋もれアーク状態を維持することが容易となる。
 また、外乱要因によってアーク長が短くなった場合、溶接電流Iwの値が増加して溶接ワイヤ5の溶融速度が増大し、アーク長が長くなる。一方、外乱要因によってアーク長が長くなった場合、溶接電流Iwの値が減少して溶接ワイヤ5の溶融速度が低下し、アーク長が短くなる(アーク長の自己制御作用)。上記溶接電圧Vwの低下が20Vを超える場合、外乱要因によるアーク長の変動に対して溶接電流Iwの変動が小さいため、上記アーク長の自己制御作用が小さくなる。その結果、埋もれアークの状態を維持することが難しくなる。上記溶接電圧Vwの低下を20V以下とすることにより、上記アーク長の自己制御作用が維持され、埋もれアーク状態を維持することが容易となる。
 なお、上記電圧低下は2.5V以上とすることが好ましい。また、上記電圧低下は15V以下とすることが好ましい。
 図2は、本実施形態1に係るアーク溶接方法の手順を示すフローチャート、図3は、溶接対象の母材4を示す斜視図である。まず、突き合わせ溶接により接合されるべき母材4、例えば被溶接部4cにI開先を有する板状の第1母材41及び第2母材42を用意する(ステップS11)。第1母材41及び第2母材42は、例えば軟鋼、機械構造用炭素鋼、機械構造用合金鋼等の磁性材料からなる鋼板であり、その板厚は19mmである。また、裏当てとして非磁性材料の銅合金を用いると良い。
 次いで、溶接電源1の各種設定を行う(ステップS12)。具体的には、溶接電源1は、制御装置10の制御に従って、ワイヤ送給速度23m/分、平均電流が600A、溶接電圧Vwが48Vとなるように溶接条件を設定する。また、ここで用意される溶接ワイヤ5のワイヤ径は例えば1.4mmの鉄系ワイヤである。なお、かかる溶接条件は一例であり、埋もれアーク溶接時に溶融金属を安定化させるべく、周波数10Hz以上1000Hz以下、平均電流300A以上、電流振幅50A以上の範囲内で溶接電流Iwの溶接条件を設定しても良い。また、溶接ワイヤ5の送給速度は、例えば、約5~70m/分の範囲内、好ましくは10m/分以上70m/分以下の範囲内で設定される。なお、溶接ワイヤ5の送給速度は一定速度であっても良いし、周期的に変動させても良い。
 次いで、第1母材41及び第2母材42の被溶接部4cに沿って、第1箇所4aから第2箇所4bへ溶接ワイヤ5を移動させながらアーク溶接を行う前工程において、第1箇所4aよりも第2箇所4b側における第1母材41及び第2母材42間に、透磁率が他箇所に比べて高い短絡磁路6を形成する(ステップS13)。
 図4は、溶接による磁路形成工程を示す斜視図である。図4に示すように、第1母材41及び第2母材42の被溶接部4cは直線状であり、第1箇所4a及び第2箇所4bは被溶接部4cの両端部である。ステップS13の磁路形成工程においては、例えば、被溶接部4cの第2箇所4b側の一箇所を溶接することによって、短絡磁路6を形成する。より具体的には、溶接ロボット10aは、制御装置10の制御命令に従って、トーチ2を第2箇所4b側へ移動させ、溶接電源1は、制御装置10の制御命令に従って、所要の溶接電流Iwを溶接ワイヤ5へ供給し、溶接にて短絡磁路6を形成する。
 図5は、母材4の溶接工程を示す斜視図、図6は、埋もれアーク溶接方法を示す側断面図である。溶接ロボット10aは、短絡磁路6を形成した後、図5に示すように、被溶接部4cの第1箇所4aから第2箇所4bへトーチ2を移動させ、溶接電源1は、被溶接部4cに沿って移動する溶接ワイヤ5に平均電流が300A以上の溶接電流Iwを供給して第1母材41及び第2母材42の被溶接部4cを溶接する(ステップS14)。300A以上の大電流が溶接ワイヤ5に供給されると、図6に示すように、溶接ワイヤ5の先端部5a及び母材4間に発生したアーク8によって母材4に凹状の溶融部分9が形成され、当該溶融部分9によって囲まれる空間9aに溶接ワイヤ5の先端部5aが進入した埋もれアーク溶接が実現される。
 なお、溶接電源1は、埋もれアーク溶接において、溶接電流Iwの周波数が10Hz以上1000Hz以下、平均電流が300A以上、電流振幅が50A以上になるように、溶接電流Iwを変動させることにより、溶融金属の安定化を図っても良い。溶接電源1の電源部11は、電圧検出部11f及び電流検出部11gにて溶接電圧Vw及び溶接電流Iwを検出し、検出された溶接電流Iwの周波数、電流振幅及び平均電流が設定された溶接条件に一致し、溶接電流Iwが周期的に変動するように、目標電圧を生成し、溶接電圧VwをPWM制御する。
 以下、本実施形態1に係るアーク溶接方法の作用効果を説明する。まず、短絡磁路6を形成することなく埋もれアーク溶接を行う場合の磁気吹きについて説明する。
 図7は、短絡磁路6を形成せずに溶接を行う場合に形成される磁場の様子を示す模式図、図8は、短絡磁路6を形成せずに溶接を行う場合における溶接電流Iw回りの磁束密度を示す模式、図9は、短絡磁路6を形成せずに溶接を行う場合における溶接電流Iwに働く電磁気力を示す模式図である。図7中、破線は磁力線を示し、図8中、黒塗り矢印は磁束密度を示し、図9中、白抜き矢印は磁気力を示す。
 図7に示すように、溶接ワイヤ5が正極となり、溶接電流Iwが溶接ワイヤ5から母材4へ流れる直流アーク溶接による突合せ溶接を考える。この場合、アース点の位置に関わらず、溶接方向前方(図8中右側)に磁束密度が集中する磁場が形成される。間隙の無い板状の均一導体中であれば、電流に対して磁場は同心円状に形成されるが、磁性材料からなる母材4の突き合わせ溶接においては母材4を構成する磁性体中に優先的に磁場が形成されるため、図8に示すように、溶接方向前方の被溶接部4cに存在する空隙には磁場が形成されにくくなり、アーク8の前方に存在する僅かな溶融金属部に磁場が形成されやすくなる。その結果、溶接方向後方に形成される磁束密度に対して、溶接方向前方かつアーク発生点近傍に形成される磁束密度は比較的大きくなり、図9に示すように、アーク8に対して溶接方向後向きの電磁気力が生じ、アーク8が溶接方向後方に磁気偏向する。
 特に大電流溶接では、アーク長が長くなることが多く、磁場の影響を受けやすく、特に埋れアーク溶接においては、溶接電圧Vwを調整してもアーク長を短くすることができず、上記磁気の影響がより顕著となる。
 次に、短絡磁路6を形成することによる磁気吹きの抑制効果について説明する。
 図10は、短絡磁路6を形成して溶接を行う場合に形成される磁場の様子を示す模式図である。溶接ワイヤ5と、第1母材41及び第2母材42との間に流れる溶接電流Iwの回りに形成される磁場は、溶接によって形成される第1箇所4a側のビード7と、第2箇所4b側の短絡磁路6とを通る。図10に示すように、第2箇所4b側、つまり溶接方向前方に、仮付けによる短絡磁路6を形成することによって、溶接ワイヤ5の溶接方向側に形成される磁場は短絡磁路6に形成されやすくなり、アーク発生点近傍における溶接方向前方の磁束密度を低減することができる。従って、磁気吹きを抑制することができる。
 このように、溶接方向前方に仮付けを行わずに突合せ溶接を行う場合、磁気吹きによりアーク8が溶接方向後方に偏向し、溶接が不安定化する一方で、仮付けによって短絡磁路6を形成してから溶接を行う場合、磁気偏向が解消され、安定して溶接を行うことができる。
 以上の通り、本実施形態1に係るアーク溶接方法によれば、300Aの大電流で埋もれアーク溶接を行う場合であっても、磁気吹きが抑制され、アーク8を安定化させることができる。また、アーク8の偏向がなくなるため、アーク8が下向きに維持され、深い溶け込みを得ることができる。よって、磁気吹きが抑えられ、安定した大電流埋もれアーク溶接が可能になる。
 また、本実施形態1によれば、特別な磁性体構造物を用意せずとも、第2箇所4b側の少なくとも一箇所を溶接することによって、短絡磁路6を簡易に形成することができる。
 上記実施形態1では、一箇所の仮付け溶接によって、短絡磁路6を形成する例を説明したが、あくまで一例であり、種々の変形が可能である。以下、変形例を説明する。
 実施形態1では溶接にて短絡磁路6を形成したが、上記第2箇所4b側に、第1母材41及び第2母材42に跨る鉄鋼等の磁性材料からなる磁性体を固定配置しても良い。磁性体は、第1母材41及び第2母材42の表面、側面又は裏面側に配置しても良い。
 上記磁性体は、溶接にて第1母材41及び第2母材42に溶接しても良い。
 鉄鋼等の磁性材料からなる裏当てを磁性体として、第1母材41及び第2母材42の裏側に配置しても良い。
 非磁性材料からなる裏当てを用いる場合、第1母材41及び第2母材42に跨がる磁性材料からなるブリッジ型の治具を作成し、当該治具を短絡磁路6である磁性体として第1母材41及び第2母材42に配置しても良い。
 更に、実施形態1では、第2箇所4b側を一箇所溶接する例を説明したが、第1箇所4a及び第2箇所4b間の複数箇所に短絡磁路6を複数形成しても良い。
 図11は、複数箇所に形成された短絡磁路6を示す斜視図である。アーク溶接装置は、実施形態1のステップS13において、被溶接部4cの第2箇所4b側の複数箇所を溶接することによって、複数の短絡磁路6を離散的に形成すると良い。複数の溶接箇所は等間隔であることが望ましい。
 当該変形例によれば、第1箇所4a及び第2箇所4b間の複数箇所に短絡磁路6を形成するため、アーク8と、直近の短絡磁路6との位置関係は大きく変動せず、溶接ワイヤ5の移動に伴う溶接方向前方の磁束密度の変動を抑えることができる。従って、磁気吹きを抑えた大電流アーク溶接が可能になる。
(実施形態2)
 実施形態2に係るアーク溶接方法は、短絡磁路6の配置態様が実施形態1と異なるため、以下では主に上記相違点について説明し、対応する箇所には同様の符号を付して詳細な説明を省略する。
 図12は、短絡磁路である磁性体206を移動させながら行う母材4の溶接工程を示す斜視図である。実施形態2に係るアーク溶接装置は、円筒状の磁性体206を備え、当該磁性体206は中心線を回転軸にて回転可能にアーク溶接装置の適宜箇所に支持されている。例えば、トーチ2には、斜め下方に突出した支持棒が設けられており、磁性体206は支持棒によって回転可能に支持されている。支持棒は例えば弾性材料からなり、母材4を溶接する際にトーチ2が母材4に近接した場合、磁性体206は第1母材41及び第2母材42に跨がるようにして母材4の表面に接触して押圧される。そして、トーチ2が被溶接部4cに沿って第1箇所4aから第2箇所4b側へ直線的に移動した場合、溶接ワイヤ5と共に磁性体206も回転しながら第2箇所4b側へ移動する。
 具体的には、実施形態1で説明したステップS13の磁路形成工程において、アーク溶接装置は、第2箇所4b側を仮付けすることなく、トーチ2を第1箇所4a側へ移動させ、母材4へ接近する方向へ移動させることによって、第1母材41及び第2母材42に磁性体206を接触させる。そして、アーク溶接装置は、第1箇所4a側から第2箇所4b側へトーチ2及び溶接ワイヤ5を移動させながら被溶接部4cの溶接を行う。上記の通り、溶接ワイヤ5より第2箇所4b側に配された円筒状の磁性体206は、溶接ワイヤ5の移動に伴って第1箇所4aから第2箇所4b側へ移動する。
 実施形態2においては、溶接ワイヤ5と共に短絡磁路として機能する磁性体206を第2箇所4b側へ移動させる構成であるため、アーク8と、磁性体206との位置関係は大きく変動せず、溶接ワイヤ5の移動に伴う溶接方向前方の磁束密度の変動を抑えることができる。従って、磁気吹きを抑えた大電流アーク溶接が可能になる。
 なお、上記実施形態2では、回転可能な円筒状の磁性体206を説明したが、磁性体206の形状及び移動機構は特に限定されるものでは無く、第1母材41及び第2母材42間に透磁率が高い短絡磁路を形成することが可能な磁性材料であって、溶接ワイヤ5と共に移動することが可能な構成であれば良い。例えば、磁性体206は、磁性材料からなるブラシ状の形態であっても良い。また、第1母材41及び第2母材42に跨がる磁性材料からなるブリッジ型の治具を磁性体206として第1母材41及び第2母材42に配置し、溶接ワイヤ5の移動と共に、第1母材41及び第2母材42表面を摺動させても良い。更に、円筒状の磁性体206を転がす例を説明したが、磁性材料からなる棒部材の両端に、磁性材料からなる車輪を設けた形態であっても良い。各車輪は、第1母材41及び第2母材42に接触し、その結果、棒部材及び車輪によって、他の被溶接部4cに比べて透磁率が高い短絡磁路が形成される。
(実施形態3)
 実施形態3に係るアーク溶接方法は、短絡磁路6の配置態様が実施形態1と異なるため、以下では主に上記相違点について説明し、対応する箇所には同様の符号を付して詳細な説明を省略する。
 図13は、磁性粉末306を配することによる磁路形成工程を示す斜視図である。実施形態1で説明したステップS13の磁路形成工程において、第2箇所4b側を仮付けする代わりに、第1箇所4aよりも第2箇所4b側における第1母材41及び第2母材42間に磁性粉末306を配することによって、他箇所に比べて高い短絡磁路を形成する(ステップS13)。磁性粉末306は、被溶接部4cに沿って均一に散布することが望ましい。磁性粉末306は、例えば切断した磁性材料の溶接ワイヤ5である。磁性粉末306は人手で配しても良いし、散布装置をアーク溶接装置に設け、自動で配するように構成しても良い。
 そして、アーク溶接装置は、ステップS14において、磁性粉末306を除去すること無く、磁性粉末306をアーク8によって溶融させ、磁性粉末306と共に第1母材41及び第2母材42を溶接する。
 実施形態3に係るアーク溶接方法によれば、第2箇所4b側の第1母材41及び第2母材42間に磁性粉末306を配することによって、簡易に短絡磁路を形成することができる。また、被溶接部4cに沿って磁性粉末306を均一に配した場合、アーク8と、直近の磁性粉末306との位置関係は大きく変動せず、溶接ワイヤ5の移動に伴う溶接方向前方の磁束密度の変動を抑えることができる。従って、磁気吹きを抑えた大電流アーク溶接が可能になる。
 なお、上記実施形態3では、溶接ワイヤ5を切断してなる磁性粉末306を説明したが、磁性粉末306の製造方法、材質、形状は特定のものに限定されるものでは無い。磁性粉末306には、粒状の磁性材料、線状の磁性材料、綿状の磁性材料、薄膜状の磁性材料等が含まれる。
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 溶接電源
 2 トーチ
 3 ワイヤ送給部
 4 母材
 4a 第1箇所
 4b 第2箇所
 4c 被溶接部
 5 溶接ワイヤ
 5a 先端部
 6 短絡磁路
 206 磁性体
 306 磁性粉末
 7 ビード
 8 アーク
 9 溶融部分
 9a 空間
 10 制御装置
 10a 溶接ロボット
 11 電源部
 11a 電源回路
 11b 出力電圧設定回路
 11c 周波数設定回路
 11d 電流振幅設定回路
 11e 平均電流設定回路
 11f 電圧検出部
 11g 電流検出部
 11h 比較回路
 12 送給速度制御部
 41 第1母材
 42 第2母材
 Vw 溶接電圧
 Iw 溶接電流
 Ecr 出力電圧設定信号
 Ed 電圧値信号
 Id 電流値信号
 Ev 差分信号
 

Claims (7)

  1.  接合される第1母材及び第2母材の被溶接部に沿って、第1箇所から第2箇所へ溶接ワイヤを移動させながらアークを発生させ、第1母材及び第2母材を溶接する消耗電極式のアーク溶接方法であって、
     第1箇所よりも第2箇所側における第1母材及び第2母材間に、透磁率が他箇所に比べて高い短絡磁路を形成する磁路形成工程と、
     前記被溶接部の第1箇所から第2箇所へ前記溶接ワイヤを移動させながら、前記溶接ワイヤに平均電流300A以上の溶接電流を供給して第1母材及び第2母材を溶接する溶接工程と
     を備えるアーク溶接方法。
  2.  前記磁路形成工程は、
     第2箇所側の少なくとも一箇所を溶接する工程を含む
     請求項1に記載のアーク溶接方法。
  3.  前記磁路形成工程は、
     第1箇所及び第2箇所間の複数箇所を離散的に溶接する工程を含む
     請求項1又は請求項2に記載のアーク溶接方法。
  4.  前記磁路形成工程は、
     第1母材及び第2母材に跨る磁性体を配する工程を含む
     請求項1~請求項3までのいずれか一項に記載のアーク溶接方法。
  5.  前記溶接ワイヤより第2箇所側に配された前記磁性体を、前記溶接ワイヤの移動に伴って第2箇所側へ移動させる工程を備える
     請求項4に記載のアーク溶接方法。
  6.  前記磁路形成工程は、
     第2箇所側の第1母材及び第2母材間に磁性粉末を配する工程を含む
     請求項1~請求項5までのいずれか一項に記載のアーク溶接方法。
  7.  前記溶接工程は、
     前記溶接ワイヤの先端部及び前記被溶接部間に発生したアークによって第1母材及び第2母材に形成された凹状の溶融部分によって囲まれる空間に前記先端部を進入させて第1母材及び第2母材を溶接する
     請求項1~請求項6までのいずれか一項に記載のアーク溶接方法。
     
PCT/JP2018/006102 2017-03-09 2018-02-21 アーク溶接方法 WO2018163808A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-045366 2017-03-09
JP2017045366 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018163808A1 true WO2018163808A1 (ja) 2018-09-13

Family

ID=63447681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006102 WO2018163808A1 (ja) 2017-03-09 2018-02-21 アーク溶接方法

Country Status (1)

Country Link
WO (1) WO2018163808A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112719531A (zh) * 2021-01-27 2021-04-30 中国水电四局(兰州)机械装备有限公司 一种具有磁性的高强度合金钢板的组焊方法
CN112719532A (zh) * 2021-01-27 2021-04-30 中国水电四局(兰州)机械装备有限公司 一种具有磁性的高强度合金钢板的气保焊方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507543B1 (ja) * 1970-08-19 1975-03-26
JPS5542171A (en) * 1978-09-22 1980-03-25 Mitsubishi Heavy Ind Ltd Arc blow preventing method of terminal part of welding
JPH10249522A (ja) * 1997-03-10 1998-09-22 Nippon Steel Weld Prod & Eng Co Ltd ア−ク溶接装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507543B1 (ja) * 1970-08-19 1975-03-26
JPS5542171A (en) * 1978-09-22 1980-03-25 Mitsubishi Heavy Ind Ltd Arc blow preventing method of terminal part of welding
JPH10249522A (ja) * 1997-03-10 1998-09-22 Nippon Steel Weld Prod & Eng Co Ltd ア−ク溶接装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112719531A (zh) * 2021-01-27 2021-04-30 中国水电四局(兰州)机械装备有限公司 一种具有磁性的高强度合金钢板的组焊方法
CN112719532A (zh) * 2021-01-27 2021-04-30 中国水电四局(兰州)机械装备有限公司 一种具有磁性的高强度合金钢板的气保焊方法

Similar Documents

Publication Publication Date Title
JP5905074B2 (ja) ハイブリッド・レーザ・サブマージアーク溶接プロセスを用いた厚板接合方法及び装置
JP6777969B2 (ja) アーク溶接方法及びアーク溶接装置
WO2007144997A1 (ja) アーク溶接制御方法
CN110023021B (zh) 电弧焊接方法以及电弧焊接装置
EP3342523B1 (en) Welding methods and arc welding device
WO2018057487A1 (en) Field former for use in welding applications
WO2018163808A1 (ja) アーク溶接方法
JP2007237225A (ja) 薄鋼板の高速ホットワイヤ多電極tig溶接方法
JP2018176255A (ja) アーク溶接装置及びアーク溶接方法
JP6748555B2 (ja) アーク溶接方法及びアーク溶接装置
EP3383572B1 (en) Welding system and method
WO2017033978A1 (ja) 溶接方法及びアーク溶接装置
JPS60170577A (ja) ア−ク熔接方法及び装置
JP4890179B2 (ja) プラズマミグ溶接方法
JP2015150572A (ja) 多電極片面サブマージアーク溶接方法、溶接物の製造方法
JP6211431B2 (ja) 多電極片面サブマージアーク溶接方法、溶接物の製造方法
JP4053753B2 (ja) 多電極パルスアーク溶接制御方法及び溶接装置
JP7222810B2 (ja) アーク溶接装置及びアーク溶接方法
CN109693016B (zh) 电弧焊接装置以及电弧焊接方法
JP6748556B2 (ja) アーク溶接方法及びアーク溶接装置
JP2013094792A (ja) 消耗電極アーク溶接のくびれ検出時電流制御方法
JP7000790B2 (ja) Mig溶接方法及びmig溶接装置
JP2018069332A (ja) アーク溶接方法
US20220001479A1 (en) Mig welding method and mig welding device
JPH01299766A (ja) ホツトワイヤ溶接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP