WO2018163468A1 - 逆浸透膜装置の運転管理方法および逆浸透膜処理システム - Google Patents

逆浸透膜装置の運転管理方法および逆浸透膜処理システム Download PDF

Info

Publication number
WO2018163468A1
WO2018163468A1 PCT/JP2017/032490 JP2017032490W WO2018163468A1 WO 2018163468 A1 WO2018163468 A1 WO 2018163468A1 JP 2017032490 W JP2017032490 W JP 2017032490W WO 2018163468 A1 WO2018163468 A1 WO 2018163468A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reverse osmosis
osmosis membrane
concentration
membrane device
Prior art date
Application number
PCT/JP2017/032490
Other languages
English (en)
French (fr)
Inventor
英邦 亀田
英之 小森
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201780088133.0A priority Critical patent/CN110382089A/zh
Priority to KR1020197023085A priority patent/KR20190118573A/ko
Priority to US16/489,173 priority patent/US20190381456A1/en
Priority to SG11201907773XA priority patent/SG11201907773XA/en
Publication of WO2018163468A1 publication Critical patent/WO2018163468A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • B01D61/081Apparatus therefor used at home, e.g. kitchen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • B01D2311/246Concentration control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/40Automatic control of cleaning processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/003Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Definitions

  • the present invention relates to a reverse osmosis membrane device operation management method and reverse osmosis membrane treatment which can continue operation stably for a long time even under low water temperature conditions (for example, water temperature of 5 to 10 ° C.). About the system.
  • “reverse osmosis membrane” means “reverse osmosis membrane” in a broad sense including “reverse osmosis membrane” and “nanofiltration membrane”.
  • a reverse osmosis membrane consisting of a dense surface layer and a porous support layer that allows solvent molecules to pass but not solute molecules to allow one-stage desalination of seawater.
  • reverse osmosis membranes expanded, and low-pressure reverse osmosis membranes that could be operated at low pressure were developed. Osmotic membranes have been used.
  • the reverse osmosis membrane Since the reverse osmosis membrane has a high solute rejection rate, the permeated water obtained by the reverse osmosis membrane treatment has good water quality and can be effectively used for various applications. As the reverse osmosis membrane device continues to operate, the amount of treated water gradually decreases, so it is important to properly manage the quality of water supply and the operation method of the reverse osmosis membrane device. In particular, under a low water temperature condition, a scale mainly composed of silica is highly likely to be generated, and a decrease in flux due to the silica scale on the film surface becomes a problem.
  • the silica concentration of the feed water is about 10 to 20 mg / L
  • the solubility (at equilibrium) of silica is as low as 20 mg / L at low water temperature, especially at 5 ° C. Therefore, it is difficult to concentrate with a reverse osmosis membrane.
  • silica scale may be generated on the membrane surface and the flux may be lowered even though the device is operated so as to have a condition not exceeding the saturation solubility of silica.
  • the hydrogen carbonate ion or carbonate ion of the feed water becomes dissolved carbon dioxide, which permeates the reverse osmosis membrane, which may deteriorate the quality of the treated water.
  • the method using the scale dispersant has a risk of scale generation when the addition of the drug is poor. In this method, the drug cost is an economic burden.
  • Patent Document 5 describes a reverse osmosis membrane separation device that changes a circulation ratio in a reverse osmosis membrane permeation module according to the quality of either supply water or concentrated water.
  • the target drainage flow rate Qd ′ is determined by measuring the silica concentration Cs in the supply water, and comparing the silica solubility Ss determined from the detected temperature value with Cs, and adjusted to be this flow rate. By doing so, it is described that the precipitation of silica-based scale is suppressed.
  • Patent Document 5 has no description suggesting that operation management is performed based on the aluminum ion and / or iron ion concentration of the water supply or concentrated water of the reverse osmosis membrane device.
  • Patent Document 7 calculates the allowable concentration ratio of silica in concentrated water based on the silica solubility determined from the silica concentration of feed water and the temperature value of permeated water or concentrated water. By calculating the first drainage flow rate value from the target water flow rate value and controlling the drainage valve so that the actual drainage amount becomes the first drainage amount value, the scale on the surface of the RO membrane can be obtained without using chemicals. A method for suppressing the occurrence of precipitation and fouling is described. Patent Document 7 also has no description suggesting that operation management is performed based on the aluminum ion and / or iron ion concentration of the water supply or concentrated water of the reverse osmosis membrane device.
  • Patent Documents 8 and 9 and Non-Patent Document 1 describe that in a reverse osmosis membrane module, precipitation of silica scale is promoted by the presence of aluminum ions and iron ions in the water to be treated. These all describe only the influence of aluminum ions and iron ions as “coexisting ions” of silica, and the aluminum ions and iron ions in the concentrated water of the reverse osmosis membrane device have nothing to do with silica. As an independent index, it does not suggest the technical idea of the present invention that affects the decrease in the flux of the reverse osmosis membrane.
  • the present invention suppresses the generation of silica scale in the reverse osmosis membrane device and is stable for a long time even under a low water temperature condition of 5 to 10 ° C. without requiring pH adjustment or addition of a scale dispersant. It is an object to provide a reverse osmosis membrane device operation management method and a reverse osmosis membrane treatment system capable of continuing operation.
  • the present inventor has a large influence on the decrease in the flux of the reverse osmosis membrane not only in silica scale but also in water. I found out.
  • the present inventor has found that the long-term stabilization of the operation of the reverse osmosis membrane apparatus includes the concentration of aluminum ions and / or iron ions in a certain concentration range as an index independent of silica, together with the silica concentration in the feed water and / or concentrated water. It was clarified that it is important to manage properly.
  • the gist of the present invention is as follows.
  • water introduced into the reverse osmosis membrane device (hereinafter referred to as “water supply”) and / or aluminum ions of concentrated water of the reverse osmosis membrane device and / or
  • An operation management method for a reverse osmosis membrane device comprising: managing the operation of the reverse osmosis membrane device based on an iron ion concentration.
  • the suitability as feed water, the feed water temperature, the concentration rate (recovery rate), and the pressure (reverse osmosis) It is characterized by managing at least one of membrane feed water supply pressure, concentrated water pressure, treated water pressure), concentrated water volume, continuous operation period, washing time, washing frequency, and reverse osmosis membrane exchange time. Operation management method for reverse osmosis membrane device.
  • the aluminum ion and / or iron ion concentration is an index of any one or more of a desired continuous operation period, a cleaning time, a concentration rate, and water supply water quality.
  • the concentrated water has an aluminum ion concentration of 0.2 mg / L or less, an iron ion concentration of 0.2 mg / L or less, or a total concentration of aluminum ions and iron ions.
  • the operation management method for the reverse osmosis membrane device is characterized in that the management is performed so as to be 0.2 mg / L or less.
  • the management is performed based on an aluminum ion and / or iron ion concentration of the water supply and / or concentrated water and a saturation solubility of silica alone.
  • An operation management method for a reverse osmosis membrane device is performed based on an aluminum ion and / or iron ion concentration of the water supply and / or concentrated water and a saturation solubility of silica alone.
  • [7] A reverse osmosis membrane device operation management method according to [6], wherein the management is performed so that the silica concentration of the concentrated water is 80 mg / L or less.
  • a reverse osmosis membrane device for treating raw water with a reverse osmosis membrane water introduced into the reverse osmosis membrane device (hereinafter referred to as “water supply”) and / or aluminum ions of concentrated water of the reverse osmosis membrane device, and
  • a reverse osmosis membrane treatment system comprising: a measuring means for measuring iron ion concentration.
  • control means performs the management based on the total concentration of aluminum ions and iron ions of water supply and / or concentrated water measured by the measurement means.
  • Membrane processing system
  • control means includes an aluminum ion concentration of 0.2 mg / L or less, an iron ion concentration of 0.2 mg / L or less, or aluminum ions and iron ions.
  • the reverse osmosis membrane processing system is characterized in that the management is performed so that the total concentration is 0.2 mg / L or less.
  • the reverse osmosis membrane treatment system is characterized in that the management is performed based on a value and a measured value of a concentration based on the saturation solubility of the silica alone.
  • a reverse osmosis membrane device in a reverse osmosis membrane device, it is possible to continue operation with a stable flux for a long period of time by operation management based on water quality without requiring pH adjustment or addition of a scale dispersant. According to the present invention, even when the feed water is at a low temperature (for example, 5 to 10 ° C.), stable operation with a high flux is possible by suppressing the precipitation of scale.
  • the converted flux is 70% of the initial value
  • FIG. 1 is a schematic flow diagram showing an embodiment of a reverse osmosis membrane treatment system of the present invention.
  • FIG. 2 is a graph showing the results of Experimental Example 3.
  • FIG. 3 is a graph showing the results of Experimental Example 4.
  • examples of raw water to be treated with a reverse osmosis membrane include tap water, turbidized industrial water, well water, and the like, but are not limited thereto.
  • the water supply is fouling index (FI) defined in JIS K3802, or the silt density index (SDI) defined in ASTM D4189.
  • FI fouling index
  • SDI silt density index
  • the MF value proposed by Taniguchi was evaluated as a simpler evaluation method, and the raw water was added as necessary so that this value was not more than the predetermined value.
  • Pre-processing has been done. For example, raw water is pretreated as necessary so that the FI value or SDI value is 3 to 4 or less, and the water supply is clarified to some extent. Also in the present invention, it is preferable to perform a pretreatment such as a turbidity treatment as necessary so that the FI value of the feed water is 4 or less.
  • FIG. 1 is a schematic flow diagram showing an example of an embodiment of a reverse osmosis membrane treatment system of the present invention.
  • Raw water from a raw water tank (not shown) is introduced into the reverse osmosis membrane device 4 through a water supply pipe 3 by a feed water pump and a high pressure pump 2 for reverse osmosis membrane device (not shown).
  • the permeated water that has passed through the reverse osmosis membrane is discharged from the treated water pipe 6, and the concentrated water is discharged from the concentrated water pipe 5.
  • a management instrument 1 is provided in the water supply pipe 3 to measure the aluminum ion and / or iron ion concentration of the water supply, and the operation management of the reverse osmosis membrane device is performed based on the measurement result.
  • the management instrument 1 may be provided in the concentrated water pipe 5 or may be provided in both the concentrated water pipe 5 and the water supply pipe 3.
  • the water supply pipe 3 and / or the concentrated water pipe 5 may be provided with a management instrument that measures the silica concentration and the Langeria index and performs operation management based on these values.
  • the management instrument 1 may be used for both measurement and control of the silica concentration and / or the Langerian index.
  • the concentration of aluminum ions and / or iron ions in feed water and / or concentrated water is measured, and based on this measured value (hereinafter sometimes referred to as “Al / Fe measured value”), a reverse osmosis membrane Manage the operation of the equipment.
  • Operation management items include suitability as raw water supply, feed water temperature, concentration rate (recovery rate), pressure (reverse osmosis membrane water supply pressure, concentrated water pressure, treated water pressure), concentrated water volume, continuous operation period , Any one or more of washing time, washing frequency and reverse osmosis membrane exchange time. Specifically, the following operation management methods can be mentioned.
  • the measured Al / Fe value is less than or equal to the predetermined value, it is introduced directly into the reverse osmosis membrane device. If the measured value of Al / Fe is higher than the predetermined value, it is judged that the raw water is inappropriate as the feed water, and the feed of the raw water to the reverse osmosis membrane is stopped, or the concentration of aluminum ions and / or iron ions in the raw water Is applied to the reverse osmosis membrane device after performing a treatment for reducing the Al / Fe measurement value to a predetermined value or less, for example, iron removal / manganese removal treatment or ion exchange treatment.
  • the flocculation treatment is performed with PAC or salt iron on the upstream side, it affects the washing cycle, and therefore, the flocculation conditions are preferably changed as appropriate.
  • the predetermined value of the measured Al / Fe value is appropriately set so that a desired stable operation can be performed based on the specifications of the reverse osmosis membrane device and other operating conditions.
  • the Al / Fe measured value of concentrated water is in the range of 0.01 to 0.2 mg / L aluminum ion concentration, and the iron ion concentration is 0 It is appropriately determined within a range of 0.01 to 0.2 mg / L and a total concentration of aluminum ions and iron ions of 0.02 to 0.2 mg / L.
  • the continuous operation period of concentrated water, the cleaning time, the concentrated water magnification, and the water temperature may be set from the Al / Fe measurement value. You may manage these so that the Al / Fe measured value of concentrated water may become below a predetermined value.
  • the aluminum ion concentration of concentrated water is 0.2 mg / L or less, preferably 0.15 mg / L or less
  • the iron ion concentration is 0.2 mg / L or less, preferably 0.15 mg / L or less
  • aluminum ions and iron ions By controlling the operation so that the total concentration of water is 0.2 mg / L or less, preferably 0.15 mg / L or less, maintenance is free for a long time even when the temperature of the feed water is as low as 5 to 10 ° C. Operation can be continued by washing.
  • the aluminum ion concentration in the concentrated water is 0.2 mg / L or less
  • the iron ion concentration is 0.2 mg / L or less
  • the total concentration of aluminum ions and iron ions is 0.2 mg / L.
  • the silica concentration of water supply and / or concentrated water may be used as a management index together with the Al / Fe measurement value.
  • Operation management based on measured values of Al / Fe is effective in the entire water temperature range of the water supply.
  • the water temperature of the feed water is lower than 10 ° C., it is preferable to perform other operation management, for example, operation management based on the silica concentration of concentrated water and / or the Langeria index.
  • the water temperature of the feed water is 5 to 10 ° C.
  • it is recovered from the silica concentration and calcium hardness of the feed water or concentrated water, or the aluminum ion concentration and iron ion concentration of the concentrated water as follows: There is a method of determining the rate and selecting the lowest recovery rate among the recovery rates calculated based on the respective values.
  • the recovery rate at which the concentrated water silica concentration is 80 mg / L or less, preferably 60 mg / L or less is determined. For example, when the silica concentration of feed water is 20 mg / L, the recovery rate is about 70% in consideration of the saturation solubility of silica alone. The recovery rate is determined so that the Langeria index of the concentrated water is 0 or less. Further, the recovery rate is determined so that the aluminum ion concentration of the concentrated water is 0.2 mg / L or less, the iron ion concentration is 0.2 mg / L or less, or the total concentration thereof is 0.2 mg / L or less.
  • the equilibrium concentration of silica at a water temperature of 5 ° C. is 20 mg / L. Since the polymerization rate of silica is slow, concentrated water allows a silica concentration of 80 mg / L. However, if the operation of the apparatus is stopped as it is, silica may precipitate on the concentrated water side, so low pressure flushing is performed.
  • the low pressure flushing is performed by stopping the high pressure pump for the reverse osmosis membrane device when the device is stopped, operating only the feed water pump, allowing the feed water to flow at the following pressure and water volume, and ensuring the time between them. .
  • Pressure About 0.1 to 0.3 MPa
  • Water volume More than 3 times the amount of water retained in the reverse osmosis membrane vessel For example, about 3 to 5 times
  • a reverse osmosis membrane permeated water can be further processed by providing an electrodeionization device or an ion exchange device downstream of the reverse osmosis membrane device in the present invention.
  • a safety filter may be provided upstream of the reverse osmosis membrane device, and when the residual chlorine concentration of raw water is high, a residual chlorine remover such as an activated carbon tower may be provided upstream of the reverse osmosis membrane device.
  • Run 1 was performed without adding any chemicals to Nogicho water.
  • magnesium chloride, ferric chloride, and aluminum chloride were added to Nogi-cho water as the Mg source, Fe source, and Al source, respectively, so as to have predetermined concentrations.
  • Table 1 shows the following. In Run 2, a tendency to increase the differential pressure is observed. In Run 2, it is presumed that the reverse osmosis membrane surface is clogged by the Fe component because the Fe material balance does not match. Al also has a large error compared to other coexisting ions, and adhesion to the film surface is considered.
  • Table 3 shows the following. The number of days for which 70% operation can be continued depends on the Al concentration of concentrated water, the Fe concentration, and the total concentration of Al and Fe. From the conditions 1 and 2, the conditions 3 and 4, and the conditions 6 and 7 of the example, it can be seen that the Al concentration has an influence on the number of days that the operation can be continued than the Fe concentration.
  • the Al concentration (calculated value) in the concentrated water is 0.2 mg / L or less
  • the Fe concentration (calculated value) is 0.2 mg. It is clear that the reverse osmosis membrane can be stably operated over a long period of time by setting the total concentration (calculated value) of Al and Fe to 0.2 mg / L or less.
  • Table 3 shows the result of calculating the 70% operation continuation days from some graphed numerical values. Using these results, operation management can be performed as follows.
  • a relational expression between the number of days for which operation can be continued and the Al / Fe measured value is obtained from the slope of the graphed result, and the Al / Fe measurement value is calculated by substituting a predetermined number of days as the number of days for which operation can be continued. Then, the concentration ratio (recovery rate) and the like are controlled so that the measured value of Al / Fe in the concentrated water becomes the calculated value.
  • the continuous operation time can be set and the cleaning cycle can be predicted. It is also possible to calculate how much it can be concentrated with respect to the Al / Fe measured value of the feed water.
  • Simulated water supply 1 was prepared by adding ferric chloride and aluminum chloride to pure water so as to have the Al concentration and Fe concentration shown in Table 4 below. Separately, ferric chloride, aluminum chloride, and silica were added to pure water to prepare simulated water supply 2 having Al concentration, Fe concentration, and SiO 2 concentration shown in Table 4 below.
  • Simulated water supply 1 and 2 were passed through the reverse osmosis membrane under the following test conditions, respectively, and the change with time of the flux was examined. The results are shown in FIG. It was shown in 2.
  • the simulated water supply 1 that does not contain silica and the simulated water supply 2 that contains silica should not have the same tendency to lower flux.
  • the simulated water supply 2 containing silica and the simulated water supply 1 not containing silica show the same flux decreasing tendency. This means that aluminum ions and iron ions are indicators that must be controlled and managed independently of silica.
  • Example 4 Add silica further to the feed water, change the silica concentration, Al concentration and Fe concentration of the feed water, calculate the Al concentration of the concentrated water obtained by the reverse osmosis membrane treatment, Fe concentration, the total concentration of Fe and Al
  • the silica concentration was adjusted to the concentration shown in Table 5, and the relationship with the 70% operation continuation days at a water temperature of 5 ° C. or 25 ° C. was examined in the same manner as in Experimental Example 2. The results are shown in Table 5.
  • Table 5 shows the following. Regardless of the water temperature, if the Al and Fe concentrations are the same, the number of days in which 70% operation can be continued is equivalent. Al concentration and Fe concentration affect the number of days in which 70% operation can be continued.
  • Fig. 3 shows the following.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

逆浸透膜装置の給水および/または濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて、逆浸透膜装置の運転を管理する逆浸透膜装置の運転管理方法。給水および/または濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて、原水の給水としての適否、給水の水温、濃縮倍率(回収率)、圧力(逆浸透膜の給水供給圧力、濃縮水圧力、処理水圧力)、濃縮水水量、連続運転期間、洗浄時間、洗浄頻度、および逆浸透膜の交換時期のうちのいずれか1以上を管理する。

Description

逆浸透膜装置の運転管理方法および逆浸透膜処理システム
 本発明は、逆浸透膜装置において、低水温条件下(例えば、水温5~10℃)においても、長時間安定に運転を継続することができる逆浸透膜装置の運転管理方法と逆浸透膜処理システムに関する。本発明において、「逆浸透膜」は、「逆浸透膜」と「ナノ濾過膜」を包含する広義の「逆浸透膜」を意味する。
 表面緻密層と多孔質支持層とからなり、溶媒分子は通すが溶質分子を通さない逆浸透膜により、海水の一段淡水化が可能になった。その後、逆浸透膜の利用分野が広がり、低圧力で運転可能な低圧逆浸透膜が開発され、下水二次処理水、工場排水、河川水、湖沼水、ゴミ埋め立て浸出水などの浄化にも逆浸透膜が利用されるようになった。
 逆浸透膜は溶質の阻止率が高いため、逆浸透膜処理により得られる透過水は良好な水質を有するので、各種用途に有効利用できる。逆浸透膜装置は運転を継続すると徐々に処理水量が低下していくため、逆浸透膜装置の給水水質および運転方法を適正に管理することが重要である。特に、低水温条件下では、シリカ主体のスケールが発生する可能性が高く、膜面のシリカスケールに起因するフラックスの低下が問題となる。
 例えば、水道水が原水の場合、給水のシリカ濃度は約10~20mg/Lであるのに対して、低水温、特に水温5℃の条件ではシリカの溶解度(平衡時)は20mg/Lと低いため、逆浸透膜での濃縮が困難となる。
 逆浸透膜装置では、シリカの飽和溶解度以下の条件となるように運転しているにもかかわらず、膜面にシリカスケールが発生し、フラックスが低下する場合がある。
 これらの問題に対しては、一般的に、給水のpH調整やスケール分散剤を使用することで対応している。例えば、給水にスケール分散剤を添加し、給水のpHを5.5程度に調整する方法が採用されている(特許文献1)。また、スケール分散剤を添加して、濃縮水のランゲリア指数を0.3以下、および濃縮水のシリカ濃度を150mg/L以下に抑えるように運転する方法が採用されている(特許文献2~4)。
 しかし、pH調整のために過剰な酸を加えると、給水の炭酸水素イオンや炭酸イオンが溶存二酸化炭素となり、これが逆浸透膜を透過してしまうため、処理水質が悪化する可能性がある。スケール分散剤を用いる方法は、薬剤添加不良時にスケール生成のリスクがある。この方法は薬剤コストが経済的な負荷となる。
 特許文献5には、供給水及び濃縮水いずれかの水質に応じて、逆浸透膜透過モジュールにおける循環比を変化させる逆浸透膜分離装置が記載されている。特許文献5には、供給水におけるシリカ濃度Csを計測し、検出温度値から決定されるシリカ溶解度SsをCsと比較することで、目標排水流量Qd'を決定し、この流量となるように調整することでシリカ系スケールの析出を抑制することが記載されている。特許文献5には、逆浸透膜装置の給水や濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて運転管理を行うことを示唆する記載はない。
 特許文献6には、濃縮水のランゲリア指数とシリカ濃度が一定の数値範囲内に維持されるよう、pH調整手段及び透過水の回収率調整手段を制御することで逆浸透膜エレメントのスケール付着を抑制する方法が記載されている。特許文献6にも、逆浸透膜装置の給水や濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて運転管理を行うことを示唆する記載はない。
 特許文献7には、供給水のシリカ濃度及び透過水又は濃縮水の温度値から決定したシリカ溶解度に基づいて、濃縮水におけるシリカの許容濃縮倍率を演算し、この許容濃縮倍率の演算値及び透過水の目標流量値から第1排水流量値を演算し、実際排水量が第1排水量値となるように排水弁を制御することで、薬剤を使用することなしに、RO膜の表面へのスケールの析出やファウリングの発生を抑制する方法が記載されている。特許文献7にも、逆浸透膜装置の給水や濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて運転管理を行うことを示唆する記載はない。
 特許文献8,9および非特許文献1には、逆浸透膜モジュールにおいて、被処理水中のアルミニウムイオンや鉄イオンの存在によりシリカスケールの析出が促進される旨の記載がある。これらはいずれもシリカの「共存イオン」としてのアルミニウムイオンと鉄イオンの影響を述べているにすぎず、逆浸透膜装置の濃縮水中のアルミニウムイオンと鉄イオンが、シリカとは全く関係のない、独立した指標として、逆浸透膜のフラックスの低下に影響するという本発明の技術思想を示唆するものではない。
特開平9-206749号公報 特許第5287908号公報 特許第5757109号公報 特許第5757110号公報 特開2014-188439号公報 特開2012-183473号公報 特開2013-154274号公報 特開平10-128075号公報 特開2003-326259号公報
S. Salvador Cob et al.,"Silica and silicate precipitation as limiting factors in high-recovery reverse osmosis operations",Journal of Membrane Science,2012年 7月23日,Vol.423-424,pp.1-10
 逆浸透膜面にスケールが発生すると処理水量が極端に低下するため、長期的な安定運転を実現するためには、給水濃度および運転方法を適切に設定する必要がある。従来においては、十分に満足し得る技術が提供されていない。
 本発明は、pH調整やスケール分散剤の添加を必要とすることなく、水温5~10℃というような低水温条件下においても、逆浸透膜装置におけるシリカスケールの発生を抑制し、長時間安定運転を継続することができる逆浸透膜装置の運転管理方法および逆浸透膜処理システムを提供することを課題とする。
 本発明者は、逆浸透膜のフラックスの低下のメカニズムについて検討を重ねた結果、逆浸透膜のフラックスの低下には、シリカスケールだけではなく、水中におけるアルミニウムイオンや鉄イオンそれ自体が大きく影響することを見出した。本発明者は、逆浸透膜装置の運転の長期安定化には、給水および/または濃縮水中のシリカ濃度とともに、シリカとは独立した指標として、ある濃度領域においてはアルミニウムイオンおよび/または鉄イオン濃度を適切に管理することが重要であることを解明した。
 本発明は、以下を要旨とする。
[1] 原水を逆浸透膜装置で処理するにあたり、該逆浸透膜装置に導入される水(以下「給水」と称す。)および/または該逆浸透膜装置の濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて、該逆浸透膜装置の運転を管理することを特徴とする逆浸透膜装置の運転管理方法。
[2] [1]において、前記給水および/または濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて、原水の給水としての適否、給水の水温、濃縮倍率(回収率)、圧力(逆浸透膜の給水供給圧力、濃縮水圧力、処理水圧力)、濃縮水水量、連続運転期間、洗浄時間、洗浄頻度、および逆浸透膜の交換時期のうちのいずれか1以上を管理することを特徴とする逆浸透膜装置の運転管理方法。
[3] [1]または[2]において、前記給水および/または濃縮水のアルミニウムイオンと鉄イオンの合計濃度に基づいて、前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
[4] [1]ないし[3]のいずれかにおいて、前記アルミニウムイオンおよび/または鉄イオン濃度を、所望の連続運転期間、洗浄時間、濃縮倍率、および給水水質のうちのいずれか1以上を指標として設定することを特徴とする逆浸透膜装置の運転管理方法。
[5] [1]ないし[4]のいずれかにおいて、前記濃縮水のアルミニウムイオン濃度が0.2mg/L以下、鉄イオン濃度が0.2mg/L以下、或いはアルミニウムイオンと鉄イオンの合計濃度が0.2mg/L以下となるように、前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
[6] [1]ないし[5]のいずれかにおいて、前記給水および/または濃縮水のアルミニウムイオンおよび/または鉄イオン濃度とシリカ単独での飽和溶解度とに基づいて、前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
[7] [6]において、前記濃縮水のシリカ濃度が80mg/L以下となるように前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
[8] [1]ないし[6]のいずれかにおいて、前記給水の水温が5~10℃の期間と、10℃を超える期間とがあり、該水温が5~10℃の期間において、前記逆浸透膜装置の運転管理方法に従った前記管理と、シリカ濃度及び/又はランジェリア指数による運転管理とを併せて行うことを特徴とする逆浸透膜装置の運転管理方法。
[9] 原水を逆浸透膜処理する逆浸透膜装置と、該逆浸透膜装置に導入される水(以下「給水」と称す。)および/または該逆浸透膜装置の濃縮水のアルミニウムイオンおよび/または鉄イオン濃度を測定する測定手段とを備えることを特徴とする逆浸透膜処理システム。
[10] [9]において、前記測定手段で測定されたアルミニウムイオンおよび/または鉄イオン濃度に基づいて、前記原水の給水としての適否、給水の水温、濃縮倍率(回収率)、圧力(逆浸透膜の給水供給圧力、濃縮水圧力、処理水圧力)、濃縮水水量、連続運転期間、洗浄時間、洗浄頻度、および逆浸透膜の交換時期のうちのいずれか1以上を管理する制御手段を有することを特徴とする逆浸透膜処理システム。
[11] [10]において、前記制御手段は、前記測定手段で測定された給水および/または濃縮水のアルミニウムイオンと鉄イオンの合計濃度に基づいて、前記管理を行うことを特徴とする逆浸透膜処理システム。
[12] [10]または[11]において、前記制御手段は、前記濃縮水のアルミニウムイオン濃度が0.2mg/L以下、鉄イオン濃度が0.2mg/L以下、或いはアルミニウムイオンと鉄イオンの合計濃度が0.2mg/L以下となるように、前記管理を行うことを特徴とする逆浸透膜処理システム。
[13] [10]ないし[12]のいずれかにおいて、更に前記給水および/または濃縮水のシリカ濃度を測定する手段を有し、前記制御手段は、前記アルミニウムイオンおよび/または鉄イオン濃度の測定値と、該シリカ単独での飽和溶解度をベースにした濃度の測定値とに基づいて、前記管理を行うことを特徴とする逆浸透膜処理システム。
[14] [13]において、前記制御手段は、前記濃縮水のシリカ濃度が80mg/L以下となるように前記管理を行うことを特徴とする逆浸透膜処理システム。
 本発明によれば、逆浸透膜装置において、pH調整やスケール分散剤の添加を必要とすることなく、水質に基づく運転管理で、長期間安定したフラックスで運転を継続することができる。本発明によれば、給水が低温(例えば5~10℃)であっても、スケールの析出を抑制して高いフラックスで安定した運転が可能である。
 本発明によれば、例えば、換算フラックスが初期値の70%となる期間として、少なくとも3ヶ月以上、無洗浄で連続運転することが可能である。
 従来法のようにスケール分散剤を用いる場合は、薬剤添加不良時のスケールのリスクがあるが、本発明はスケール分散剤を用いることなく対応可能であるため、このような問題は解消される。
Fig.1は本発明の逆浸透膜処理システムの実施の形態を示す模式的なフロー図である。 Fig.2は実験例3の結果を示すグラフである。 Fig.3は実験例4の結果を示すグラフである。
 以下に本発明の実施の形態を詳細に説明する。
[給水]
 本発明において、逆浸透膜で処理する原水としては、水道水、または除濁された工水、井戸水等が挙げられるが、何らこれらに限定されるものではない。
 逆浸透膜の給水の水質について、従来、長期連続運転を行うために、給水をJIS K3802に定義されているファウリングインデックス(FI)、またはASTM D4189に定義されているシルトデンシティインデックス(SDI)や、より簡便な評価方法として谷口により提案されたMF値(Desalination,vol.20,p.353-364,1977)で評価し、この値が既定値以下となるように、必要に応じて原水を前処理することが行われている。例えばFI値またはSDI値が3~4、あるいはそれ以下となるように、必要に応じて原水を前処理して、給水をある程度清澄にすることが行われている。本発明においても、必要に応じて除濁処理等の前処理を行って、給水のFI値を4以下とすることが好ましい。
[逆浸透膜処理システムの構成]
 Fig.1は本発明の逆浸透膜処理システムの実施の形態の一例を示す模式的なフロー図である。原水槽(図示せず)からの原水は、図示しない給水ポンプと逆浸透膜装置用高圧ポンプ2により、給水配管3を経て逆浸透膜装置4に導入される。逆浸透膜を透過した透過水が処理水配管6より排出され、濃縮水が濃縮水配管5より排出される。
 給水配管3には管理計器1が設けられており、給水のアルミニウムイオンおよび/または鉄イオン濃度を測定し、この測定結果に基づいて、逆浸透膜装置の運転管理が行われる。
 管理計器1は、濃縮水配管5に設けられていてもよく、濃縮水配管5と給水配管3との両方に設けられていてもよい。給水配管3および/または濃縮水配管5には、シリカ濃度やランジェリア指数を測定しこの値に基づいて運転管理を行う管理計器が設けられていてもよい。管理計器1は、シリカ濃度および/またはランジェリア指数の測定と制御を兼ねるものであってもよい。
 逆浸透膜装置の基本的な運転条件については特に制限はないが、濃縮水量3.6m/hr以上を確保する。超低圧逆浸透膜であれば、標準圧力0.735MPa、膜面積35~41m、初期純水フラックス1.0m/day(25℃)以上、初期脱塩率98%以上である。逆浸透膜であればアルミニウムイオンや鉄イオンの排除率はほとんど変化しないため、膜の種類はこれによらない。
[逆浸透膜装置の運転管理]
 本発明においては、給水および/または濃縮水のアルミニウムイオンおよび/または鉄イオン濃度を測定し、この測定値(以下「Al/Fe測定値」と称す場合がある。)に基づいて、逆浸透膜装置の運転を管理する。運転管理項目としては、原水の給水としての適否、給水の水温、濃縮倍率(回収率)、圧力(逆浸透膜の給水供給圧力、濃縮水圧力、処理水圧力)、濃縮水水量、連続運転期間、洗浄時間、洗浄頻度および逆浸透膜の交換時期のうちのいずれか1以上が挙げられる。具体的には以下の運転管理を行う方法が挙げられる。
1) Al/Fe測定値が所定値以下の場合は、そのまま逆浸透膜装置に導入する。Al/Fe測定値が所定値より高い場合は、原水が給水として不適当であると判断し、逆浸透膜への原水の給水を停止するか、或いは、原水のアルミニウムイオンおよび/または鉄イオン濃度を低減してAl/Fe測定値を所定値以下にする処理、例えば、除鉄/除マンガン処理やイオン交換処理を施した後、逆浸透膜装置に導入する。上流側でPACや塩鉄で凝集処理を行っている場合は、洗浄周期に影響を及ぼすので、凝集条件を適宜変更することが好ましい。
2) Al/Fe測定値が所定値以下の場合は、そのまま運転を継続する。Al/Fe測定値が所定値より高い場合は、給水の水温を上げる。
3) Al/Fe測定値が所定値よりも高い場合は、フラックスや圧力、濃縮倍率(回収率)を下げる。Al/Fe測定値が所定値よりも低い場合はフラックスや圧力、濃縮倍率(回収率)を上げる。
4) Al/Fe測定値が所定値よりも高い場合は連続運転期間を短く、洗浄時間を長く、洗浄頻度を高く、逆浸透膜の交換時間を短く(交換頻度を低く)、設定する。Al/Fe測定値が所定値よりも低い場合は、連続運転期間を長く、洗浄時間を短く、洗浄頻度を低く、逆浸透膜の交換時間を長く(交換頻度を高く)、設定する。
 Al/Fe測定値の所定値は、逆浸透膜装置の仕様やその他の運転条件等に基づいて、所望の安定運転が行えるように適宜設定される。例えば給水の水温が低温(5~10℃)の場合も10℃以上の場合も、濃縮水のAl/Fe測定値としてアルミニウムイオン濃度0.01~0.2mg/Lの範囲、鉄イオン濃度0.01~0.2mg/Lの範囲、アルミニウムイオンイオンと鉄イオンの合計濃度0.02~0.2mg/Lの範囲の範囲で適宜決定される。
 本発明では、Al/Fe測定値から、濃縮水の連続運転期間、洗浄時間、濃縮水倍率、水温のいずれかを設定してもよい。濃縮水のAl/Fe測定値が所定値以下となるように、これらを管理してもよい。
 例えば、濃縮水のアルミニウムイオン濃度が0.2mg/L以下、好ましくは0.15mg/L以下、鉄イオン濃度が0.2mg/L以下、好ましくは0.15mg/L以下、アルミニウムイオンと鉄イオンの合計濃度が0.2mg/L以下、好ましくは0.15mg/L以下となるように運転管理することにより、給水の水温が5~10℃の低温であっても、長時間メンテナンスフリー、無洗浄で運転を継続することができる。
 例えば、後述の表3で示すように、濃縮水中のアルミニウムイオン濃度を0.2mg/L以下、鉄イオン濃度を0.2mg/L以下、アルミニウムイオンと鉄イオンの合計濃度を0.2mg/L以下に管理することで、3カ月以上メンテナンスフリーで運転を継続することができる。濃縮水中のアルミニウムイオン濃度や鉄イオン濃度を管理するにあたっては、濃縮水配管に管理センサを設けても良い。給水配管に設けられた管理センサの測定値を基に、濃縮倍率を調整する等で上記範囲になるように管理しても良い。
 Al/Fe測定値と共に、給水および/または濃縮水のシリカ濃度も管理指標としてもよい。この場合、濃縮水のシリカ濃度が80mg/L以下、特に60mg/L以下となるように管理することが好ましい。
 Al/Fe測定値に基づく運転管理は、給水の全水温域で有効である。給水の水温が10℃よりも低い場合は他の運転管理、例えば、濃縮水のシリカ濃度および/またはランジェリア指数に基づく運転管理を併せて行うことが好ましい。
 具体的な運転管理方法としては、以下のように、給水の水温が5~10℃の場合に、給水または濃縮水のシリカ濃度およびカルシウム硬度、または濃縮水のアルミニウムイオン濃度、鉄イオン濃度から回収率を決定し、各々の値に基づいて算出した回収率の中で最も低い回収率を選定する方法が挙げられる。
 まず、濃縮水シリカ濃度80mg/L以下、好ましくは60mg/L以下となる回収率を決定する。例えば、給水のシリカ濃度が20mg/Lの場合、シリカ単独での飽和溶解度を考慮して回収率は70%程度とする。
 また、濃縮水のランゲリア指数が0以下となるように回収率を決定する。
 更に、濃縮水のアルミニウムイオン濃度が0.2mg/L以下、鉄イオン濃度が0.2mg/L以下、もしくは、これらの合計濃度が0.2mg/L以下となるように回収率を決定する。
 上記の3つの回収率のうち最も低い回収率で運転を行うことにより、フラックスの低下を抑えて長期に亘り安定運転を行える。フラックスが初期値の70%以下になると洗浄によっても回復出来ない可能性が高くなる。しかし、Al/Fe測定値に基づく運転管理を行うことにより、フラックスが初期値の70%以下に低下するまで3ヵ月間もの間、無薬注運転が可能となる。
[フラッシングについて]
 本発明では、逆浸透膜装置の運転停止時には以下の通り低圧フラッシングを行うことが好ましい。
 水温5℃におけるシリカの平衡濃度は20mg/Lである。シリカの重合速度は遅いため、濃縮水ではシリカ濃度80mg/Lまで許容される。ただし、そのまま装置の運転を停止すると、濃縮水側でシリカの析出が生じる可能性があるため、低圧フラッシングを実施する。
 低圧フラッシングは、装置停止の際に、逆浸透膜装置用高圧ポンプを停止して、給水ポンプのみを作動し、以下の圧力及び水量で給水を流し、その間の時間を確保することで実施される。
  圧力:0.1~0.3MPa程度
  水量:逆浸透膜ベッセルの保有水量の3倍分以上例えば3~5倍程度
 運転停止時に上記の低圧フラッシングを実施し、その後、5時間以上装置の運転停止状態が続く場合には再度低圧フラッシングを実施することが好ましい。
[その他の処理]
 本発明における逆浸透膜装置の後段には、電気脱イオン装置やイオン交換装置を設けて、逆浸透膜透過水を更に処理することができる。逆浸透膜装置の前段には保安フィルターを設けてもよく、原水の残留塩素濃度が高い場合には、逆浸透膜装置の前段に活性炭塔等の残留塩素除去器を設けてもよい。
 以下に実施例に代わる実験例を挙げて本発明をより具体的に説明する。
[実験例1]
 以下の条件で逆浸透膜装置を運転した。
<試験条件>
 原水:野木町水
 処理水量:0.6~0.8m/day
 逆浸透膜:日東電工社製 超低圧逆浸透膜「ES-20」
 回収率:75%
 給水(逆浸透膜入口)水温:5~8℃
 給水シリカ濃度:約16mg/L
 Run1は、野木町水に薬品無添加で行った。Run2では、野木町水にMg源、Fe源、Al源としてそれぞれ塩化マグネシウム、塩化第二鉄、塩化アルミニウムを所定濃度となるように添加した。
 Run1,2における逆浸透膜装置の給水と濃縮水の各成分濃度を調べ、各々の成分毎の濃縮倍率と水量の濃縮倍率を求めた。また、4日間の運転前後の差圧から、差圧上昇速度を調べた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から次のことが分かる。Run2では、差圧上昇傾向が認められる。Run2では、Feのマテリアルバランスが合っていないことから逆浸透膜面でのFe成分による閉塞が生じていることが推定される。Alについても、他の共存イオンに比較して、誤差が大きく、膜面への付着が考えられる。
 Run2における運転後の逆浸透膜の膜面付着物の元素分析を行い、結果を表2に示した。表2より、共存イオンの中でも特にAl、Feが多く付着していることが分かる。
Figure JPOXMLDOC01-appb-T000002
[実験例2]
 水温5℃、シリカ20mg/Lで残留塩素を除去した水道水を逆浸透膜装置の給水として用い、Al源、Fe源としてそれぞれ塩化アルミニウム、塩化第二鉄を添加し、所定のAl濃度、Fe濃度に調整し、日東電工社製超低圧逆浸透膜「ES-20」を用いて3倍濃縮した(濃縮水シリカ60mg/L)。
 給水のAl濃度およびFe濃度を種々変更し、計算により求めた逆浸透膜処理で得られた濃縮水のAl濃度、Fe濃度、およびFeとAlの合計濃度と、フラックスの低下速度から求めた換算フラックスが初期値の70%に低下するまでの運転期間(以下、「70%運転継続可能日数」と称する場合がある。)との関係をグラフ化した。その結果を表3にまとめた。表3中、70%運転継続可能日数は月数で示す。
Figure JPOXMLDOC01-appb-T000003
 表3より次のことが分かる。70%運転継続可能日数は、濃縮水のAl濃度、Fe濃度、およびAlとFeの合計濃度に依存している。実施例の条件1と2、条件3と4、条件6と7から、Al濃度のほうがFe濃度より運転継続可能日数に影響を及ぼすことがわかる。
 実施例の条件1~6と比較例の条件1~3および実施例の条件7から、濃縮水中のAl濃度(計算値)は0.2mg/L以下、Fe濃度(計算値)は0.2mg/L以下、AlとFeの合計濃度(計算値)は0.2mg/L以下に設定することで、長期間にわたって逆浸透膜を安定に運転することが可能であることが明らかである。
 表3に、グラフ化した一部の数値から70%運転継続可能日数を計算した結果を示した。これらの結果を利用して、以下のようにして運転管理を行うことができる。
 例えば、グラフ化した結果の傾きから運転継続可能日数とAl/Fe測定値の関係式を求め、この関係式に運転継続可能日数として所定の日数を代入してAl/Fe測定値を算出する。そして、濃縮水中のAl/Fe測定値が当該算出した値となるように、濃縮倍率(回収率)等を制御する。
 あるいは、上記関係式にAl/Fe測定値を代入し、70%運転継続可能日数を求めることで、連続運転可能な時間を設定することができ、洗浄周期を予測することができる。また、給水のAl/Fe測定値に対して、どの程度まで濃縮可能かを算出することもできる。
 表3では、算式フラックスが70%に低下するまでの運転期間を評価したが、初期フラックスからの低下は、70%に限定されない。初期フラックスからの低下は洗浄頻度、所望の運転条件での運転を継続できるように適宜決定される。
[実験例3]
 濃縮水中のアルミニウムイオンおよび鉄イオンは、シリカを析出させるための共存イオンとしてではなく、シリカとは独立して逆浸透膜のフラックスの低下に影響する因子であることを立証する実験を行った。
 純水に、塩化第二鉄および塩化アルミニウムを下記表4に示すAl濃度、Fe濃度となるように添加して模擬給水1を調製した。別に、純水に、塩化第二鉄と、塩化アルミニウムとシリカを添加して、下記表4に示すAl濃度、Fe濃度、SiO濃度の模擬給水2を調製した。
Figure JPOXMLDOC01-appb-T000004
 模擬給水1,2をそれぞれ以下の試験条件で逆浸透膜に通水し、フラックスの経時変化を調べた。結果をFig.2に示した。
<試験条件>
 逆浸透膜:日東電工社製 超低圧逆浸透膜「ES-20」
 回収率:80%
 給水(逆浸透膜入口)水温:23℃
 初期フラックス:1.0m/day
 Fig.2より明らかなように、給水のシリカの有無にかかわらず、給水中のAl濃度とFe濃度が同じであると、フラックスの低下傾向は同等となる。この結果から、次のことが分かる。
 仮りにアルミニウムイオンおよび鉄イオンがシリカの共存イオンとして影響するものであれば、シリカを含有しない模擬給水1とシリカを含有する模擬給水2とは同じフラックス低下傾向とはならないはずである。実験例3の結果からも明らかなように、シリカを含む模擬給水2とシリカを含まない模擬給水1とでは同じフラックス低下傾向を示している。このことは、アルミニウムイオンと鉄イオンはシリカとは独立して制御、管理しなくてはならない指標であることを意味している。
[実験例4]
 給水に更にシリカを添加し、給水の、シリカ濃度、Al濃度およびFe濃度を変更し、計算により求めた逆浸透膜処理で得られた濃縮水のAl濃度、Fe濃度、FeとAlの合計濃度、およびシリカ濃度が表5に示す濃度となるようにして、実験例2と同様に水温5℃又は25℃における70%運転継続可能日数との関係を調べた。結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 同様に濃縮水のAlとFeの合計濃度を種々変えて、5℃又は25℃で、濃縮水Al+Fe濃度の計算値と70%運転継続可能日数との関係を調べた。結果をFig.3に示した。
 表5より次のことが分かる。水温によらず、Al、Fe濃度が同等であれば70%運転継続可能日数は同等となる。70%運転継続可能日数にAl濃度とFe濃度が影響する。
 Fig.3より次のことが分かる。濃縮水のAlとFeの合計濃度が大きいほど70%運転継続可能日数が短くなる。70%運転継続可能日数を3ヶ月以上とするためには、Al+Fe濃度は0.20mg/L以下とする必要がある。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2017年3月7日付で出願された日本特許出願2017-043002に基づいており、その全体が引用により援用される。
 1 管理計器
 2 高圧ポンプ
 3 給水配管
 4 逆浸透膜装置
 5 濃縮水配管
 6 処理水配管

Claims (14)

  1.  原水を逆浸透膜装置で処理するにあたり、該逆浸透膜装置に導入される水(以下「給水」と称す。)および/または該逆浸透膜装置の濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて、該逆浸透膜装置の運転を管理することを特徴とする逆浸透膜装置の運転管理方法。
  2.  請求項1において、前記給水および/または濃縮水のアルミニウムイオンおよび/または鉄イオン濃度に基づいて、原水の給水としての適否、給水の水温、濃縮倍率(回収率)、圧力(逆浸透膜の給水供給圧力、濃縮水圧力、処理水圧力)、濃縮水水量、連続運転期間、洗浄時間、洗浄頻度、および逆浸透膜の交換時期のうちのいずれか1以上を管理することを特徴とする逆浸透膜装置の運転管理方法。
  3.  請求項1または2において、前記給水および/または濃縮水のアルミニウムイオンと鉄イオンの合計濃度に基づいて、前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
  4.  請求項1ないし3のいずれか1項において、前記アルミニウムイオンおよび/または鉄イオン濃度を、所望の連続運転期間、洗浄時間、濃縮倍率、および給水水質のうちのいずれか1以上を指標として設定することを特徴とする逆浸透膜装置の運転管理方法。
  5.  請求項1ないし4のいずれか1項において、前記濃縮水のアルミニウムイオン濃度が0.2mg/L以下、鉄イオン濃度が0.2mg/L以下、或いはアルミニウムイオンと鉄イオンの合計濃度が0.2mg/L以下となるように、前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
  6.  請求項1ないし5のいずれか1項において、前記給水および/または濃縮水のアルミニウムイオンおよび/または鉄イオン濃度とシリカ単独での飽和溶解度とに基づいて、前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
  7.  請求項6において、前記濃縮水のシリカ濃度が80mg/L以下となるように前記管理を行うことを特徴とする逆浸透膜装置の運転管理方法。
  8.  請求項1ないし6のいずれか1項において、前記給水の水温が5~10℃の期間と、10℃を超える期間とがあり、該水温が5~10℃の期間において、前記逆浸透膜装置の運転管理方法に従った前記管理と、シリカ濃度及び/又はランジェリア指数による運転管理とを併せて行うことを特徴とする逆浸透膜装置の運転管理方法。
  9.  原水を逆浸透膜処理する逆浸透膜装置と、該逆浸透膜装置に導入される水(以下「給水」と称す。)および/または該逆浸透膜装置の濃縮水のアルミニウムイオンおよび/または鉄イオン濃度を測定する測定手段とを備えることを特徴とする逆浸透膜処理システム。
  10.  請求項9において、前記測定手段で測定されたアルミニウムイオンおよび/または鉄イオン濃度に基づいて、前記原水の給水としての適否、給水の水温、濃縮倍率(回収率)、圧力(逆浸透膜の給水供給圧力、濃縮水圧力、処理水圧力)、濃縮水水量、連続運転期間、洗浄時間、洗浄頻度、および逆浸透膜の交換時期のうちのいずれか1以上を管理する制御手段を有することを特徴とする逆浸透膜処理システム。
  11.  請求項10において、前記制御手段は、前記測定手段で測定された給水および/または濃縮水のアルミニウムイオンと鉄イオンの合計濃度に基づいて、前記管理を行うことを特徴とする逆浸透膜処理システム。
  12.  請求項10または11において、前記制御手段は、前記濃縮水のアルミニウムイオン濃度が0.2mg/L以下、鉄イオン濃度が0.2mg/L以下、或いはアルミニウムイオンと鉄イオンの合計濃度が0.2mg/L以下となるように、前記管理を行うことを特徴とする逆浸透膜処理システム。
  13.  請求項10ないし12のいずれか1項において、更に前記給水および/または濃縮水のシリカ濃度を測定する手段を有し、前記制御手段は、前記アルミニウムイオンおよび/または鉄イオン濃度の測定値と、該シリカ単独での飽和溶解度をベースとした濃度の測定値とに基づいて、前記管理を行うことを特徴とする逆浸透膜処理システム。
  14.  請求項13において、前記制御手段は、前記濃縮水のシリカ濃度が80mg/L以下となるように前記管理を行うことを特徴とする逆浸透膜処理システム。
PCT/JP2017/032490 2017-03-07 2017-09-08 逆浸透膜装置の運転管理方法および逆浸透膜処理システム WO2018163468A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780088133.0A CN110382089A (zh) 2017-03-07 2017-09-08 逆渗透膜装置的运转管理方法以及逆渗透膜处理系统
KR1020197023085A KR20190118573A (ko) 2017-03-07 2017-09-08 역침투막 장치의 운전 관리 방법 및 역침투막 처리 시스템
US16/489,173 US20190381456A1 (en) 2017-03-07 2017-09-08 Method for managing operation of reverse osmosis membrane device and reverse osmosis membrane treatment system
SG11201907773XA SG11201907773XA (en) 2017-03-07 2017-09-08 Method for managing operation of reverse osmosis membrane device and reverse osmosis membrane treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043002 2017-03-07
JP2017-043002 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018163468A1 true WO2018163468A1 (ja) 2018-09-13

Family

ID=63447419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032490 WO2018163468A1 (ja) 2017-03-07 2017-09-08 逆浸透膜装置の運転管理方法および逆浸透膜処理システム

Country Status (6)

Country Link
US (1) US20190381456A1 (ja)
KR (1) KR20190118573A (ja)
CN (1) CN110382089A (ja)
SG (1) SG11201907773XA (ja)
TW (1) TWI723224B (ja)
WO (1) WO2018163468A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166591A1 (ja) * 2023-02-06 2024-08-15 オルガノ株式会社 水処理方法および水処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113387492A (zh) * 2020-03-13 2021-09-14 莱克电气绿能科技(苏州)有限公司 净水器防结垢方法及净水器
CN115999376A (zh) * 2023-03-20 2023-04-25 金科环境股份有限公司 一种反渗透膜清洗方法、装置、电子设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128075A (ja) * 1996-11-05 1998-05-19 Nitto Denko Corp 逆浸透膜装置および逆浸透膜を用いた処理方法
JP2003326259A (ja) * 2002-05-14 2003-11-18 Toray Ind Inc 造水方法および造水装置
JP2012183473A (ja) * 2011-03-04 2012-09-27 Miura Co Ltd 水処理装置
JP2012210593A (ja) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd 超純水製造システム及び超純水の製造方法
JP2014188439A (ja) * 2013-03-27 2014-10-06 Miura Co Ltd 逆浸透膜分離装置
JP2014213306A (ja) * 2013-04-30 2014-11-17 オルガノ株式会社 純水製造装置、純水およびろ過水製造装置、純水製造方法、ならびに純水およびろ過水製造方法
JP2016179442A (ja) * 2015-03-24 2016-10-13 三菱レイヨンアクア・ソリューションズ株式会社 逆浸透膜処理方法
JP2017170273A (ja) * 2016-03-18 2017-09-28 栗田工業株式会社 逆浸透膜装置の運転管理方法および逆浸透膜処理システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287908A (en) 1976-01-19 1977-07-22 Hitachi Ltd Pam transmission system
JPS5757109A (en) 1980-09-18 1982-04-06 Fuji Heavy Ind Ltd Screw drum-shaped reservoir elector
JPS5757110A (en) 1980-09-25 1982-04-06 Sanyo Kiko Kk Clutch for pallet
JPH09206749A (ja) 1996-02-02 1997-08-12 Japan Organo Co Ltd 造水装置、及び造水方法
US6936172B2 (en) * 2003-01-24 2005-08-30 L. Claude Hebert Catalytic treatment of hard water in a reverse osmosis system
EP1948344B1 (en) * 2005-10-20 2013-01-16 Osmoflo Pty. Ltd. Purified water production and distribution system
CN102216224A (zh) * 2008-09-17 2011-10-12 西门子私人有限公司 高回收率的硫酸盐除去方法
JP5287908B2 (ja) * 2011-03-04 2013-09-11 三浦工業株式会社 水処理装置
JP5811866B2 (ja) 2012-01-27 2015-11-11 三浦工業株式会社 逆浸透膜分離装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128075A (ja) * 1996-11-05 1998-05-19 Nitto Denko Corp 逆浸透膜装置および逆浸透膜を用いた処理方法
JP2003326259A (ja) * 2002-05-14 2003-11-18 Toray Ind Inc 造水方法および造水装置
JP2012183473A (ja) * 2011-03-04 2012-09-27 Miura Co Ltd 水処理装置
JP2012210593A (ja) * 2011-03-31 2012-11-01 Kurita Water Ind Ltd 超純水製造システム及び超純水の製造方法
JP2014188439A (ja) * 2013-03-27 2014-10-06 Miura Co Ltd 逆浸透膜分離装置
JP2014213306A (ja) * 2013-04-30 2014-11-17 オルガノ株式会社 純水製造装置、純水およびろ過水製造装置、純水製造方法、ならびに純水およびろ過水製造方法
JP2016179442A (ja) * 2015-03-24 2016-10-13 三菱レイヨンアクア・ソリューションズ株式会社 逆浸透膜処理方法
JP2017170273A (ja) * 2016-03-18 2017-09-28 栗田工業株式会社 逆浸透膜装置の運転管理方法および逆浸透膜処理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024166591A1 (ja) * 2023-02-06 2024-08-15 オルガノ株式会社 水処理方法および水処理装置

Also Published As

Publication number Publication date
US20190381456A1 (en) 2019-12-19
KR20190118573A (ko) 2019-10-18
TWI723224B (zh) 2021-04-01
SG11201907773XA (en) 2019-09-27
TW201838709A (zh) 2018-11-01
CN110382089A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
JP6142937B1 (ja) 逆浸透膜装置の運転管理方法および逆浸透膜処理システム
JP5359898B2 (ja) 水処理方法及び水処理システム
JP6978353B2 (ja) 水処理管理装置及び水質監視方法
WO2018163468A1 (ja) 逆浸透膜装置の運転管理方法および逆浸透膜処理システム
Song et al. Investigation on high NF permeate recovery and scaling potential prediction in NF–SWRO integrated membrane operation
JP2015020131A (ja) ホウ素含有水の処理方法及び装置
JPWO2016035174A1 (ja) 水処理装置の付着物監視装置、水処理装置及びその運転方法、水処理装置の洗浄方法
JP2012192363A (ja) 水処理方法及び水処理システム
JP2012187471A (ja) 水処理方法及び水処理システム
JP2003326259A (ja) 造水方法および造水装置
JP2006015236A (ja) 再生水の製造装置および方法
Yaranal et al. An analysis of the effects of pressure-assisted osmotic backwashing on the high recovery reverse osmosis system
JP2011088151A (ja) 再生水の製造装置および方法
JP6699681B2 (ja) 逆浸透膜装置の運転管理方法および逆浸透膜処理システム
US11307134B2 (en) Measuring apparatus and method of operating a measuring apparatus for membrane fouling index
JP4351559B2 (ja) 海水淡水化方法
JP2013022574A (ja) 逆浸透膜を用いた淡水化装置
JP2012061402A (ja) 淡水化システム
JP2011056411A (ja) 被処理水の淡水化システムおよび淡水化方法
JP6860648B1 (ja) 水処理システム及び水処理方法
JP2014034005A (ja) 塩水淡水化装置および造水方法
JP6512322B1 (ja) 逆浸透膜のスケール抑制方法
JP7052461B2 (ja) 電気再生式脱イオン装置の運転制御方法および水処理装置
Manalo et al. Long-term pilot plant study using direct chlorination for biofouling control of a chlorine-resistant polyamide reverse osmosis membrane
TWI757581B (zh) 水處理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023085

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899730

Country of ref document: EP

Kind code of ref document: A1