WO2018161897A1 - 一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用 - Google Patents

一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用 Download PDF

Info

Publication number
WO2018161897A1
WO2018161897A1 PCT/CN2018/078153 CN2018078153W WO2018161897A1 WO 2018161897 A1 WO2018161897 A1 WO 2018161897A1 CN 2018078153 W CN2018078153 W CN 2018078153W WO 2018161897 A1 WO2018161897 A1 WO 2018161897A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
weight polyethylene
fiber
epoxy resin
ultrahigh molecular
Prior art date
Application number
PCT/CN2018/078153
Other languages
English (en)
French (fr)
Inventor
马俭
Original Assignee
浙江全米特新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710127280.6A external-priority patent/CN108532286A/zh
Priority claimed from CN201710552564.XA external-priority patent/CN109208338B/zh
Priority claimed from CN201721810742.6U external-priority patent/CN208198777U/zh
Priority claimed from CN201721921518.4U external-priority patent/CN208078152U/zh
Application filed by 浙江全米特新材料科技有限公司 filed Critical 浙江全米特新材料科技有限公司
Priority to CN201880015301.8A priority Critical patent/CN110418864A/zh
Publication of WO2018161897A1 publication Critical patent/WO2018161897A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • D06M15/555Epoxy resins modified by compounds containing phosphorus
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them

Definitions

  • Ultra High Molecular Weight Polyethylene (UHMWPE) fiber is a high strength, high modulus fiber prepared by UHMWPE as a raw material. It is called three high performance fibers with aramid and carbon fiber.
  • UHMWPE fiber is composed of simple methylene (-CH 2 -). The crystallinity of the fiber is more than 90%, and the orientation degree of the segment can be close to 100%. The structural characteristics result in excellent mechanical properties, and the fiber surface is very smooth and cohesive. Low energy, good abrasion resistance and chemical resistance.
  • UHMWPE fiber has excellent properties such as low density, high strength, corrosion resistance, impact resistance and cutting resistance. Therefore, UHMWPE fiber is modified as a substrate to obtain a functional fiber material with excellent properties.
  • the interface is not firmly bonded, and it is difficult to directly use as a reinforcing fiber to prepare fiber reinforced composite materials.
  • the problem to be solved by the present invention is how to increase the surface energy of ultrahigh molecular weight polyethylene fibers.
  • a first aspect of the invention provides an ultrahigh molecular weight polyethylene fiber characterized in that the fiber has a surface energy of 72 mN/m or higher, preferably 80 mN/m or higher, more preferably 90 mN/m or Higher, more preferably 100 mN/m or higher.
  • a second aspect of the invention provides a surface treatment method for ultrahigh molecular weight polyethylene fibers, comprising the steps of:
  • At least a portion or all of the treated yarn is subjected to a sizing treatment using a sizing composition to obtain ultrahigh molecular weight polyethylene fibers, wherein the sizing composition contains an alcohol, an epoxy resin, a polyurethane, and an isocyanate.
  • the ultrahigh molecular weight polyethylene fibers have a surface energy of 72 mN/m or more, preferably 80 mN/m or more, more preferably 90 mN/m or more, more preferably 100 mN/ m or higher.
  • the stretching treatment of the treated yarn is performed before and/or after the sizing treatment and/or simultaneously.
  • the stretching treatment is carried out at a speed of from 1 to 50 m/min, preferably from 10 to 30 m/min, more preferably from 15 to 25 m/min.
  • the sizing composition contains one or more selected from the group consisting of alcohols of C1 to C12, bisphenol-A-(chlorohydrin) epoxy resins, polyurethanes, and isocyanates.
  • the alcohol is a propanol, preferably 1-methoxy-2-propanol, and/or the bisphenol-A-(chlorohydrin) epoxy resin is a double having a molecular weight of 700 or less. Phenol-A-(chlorohydrin) epoxy resin.
  • the sizing composition contains the following components: a. 0 to 5 wt% of 1-methoxy-2-propanol, and/or b. 0 to 5 wt% of bisphenol having a molecular weight of 700 or less - A-(chlorohydrin) epoxy resin, and/or c. 0 to 5 wt% of polyurethane, and/or d.0 to 5 wt% of isocyanate, and 80% to 96 wt% of water, based on the total weight of the sizing composition The calculation assumes that a, b, c, and d cannot be 0 at the same time.
  • the plasma treatment is carried out in an ion atmosphere filled with an inert gas and/or a non-inert gas.
  • the gas component used in the plasma treatment is 90% nitrogen and 10% oxygen.
  • the power during the plasma treatment is from 3 to 100 kW, preferably from 20 to 80 kW, and most preferably from 40 to 60 kW.
  • the method further comprises the step of performing sizing treatment on the treated yarn, preferably drying, wherein the drying temperature is from 100 ° C to 160 ° C, preferably from 105 ° C to 140 ° C, most preferably 120 ° C.
  • the original ultrahigh molecular weight polyethylene fiber has a molecular weight of 100,000 or more, preferably 200,000 or more, more preferably 500,000 or more, further preferably 1,000,000 or more and/or a fineness of 50 to 10000 dtex.
  • a third aspect of the invention provides an ultrahigh molecular weight polyethylene fiber obtained by the above method.
  • a fourth aspect of the invention provides an article comprising the above ultrahigh molecular weight polyethylene fiber, which article can be a film, composite or fabric.
  • the ultrahigh molecular weight polyethylene fiber is used for preparing a soft composite fabric such as a gas film building, an airbag, an airship, a radome, a protective textile, a tent, and a helmet, a club/racquet, a vehicle casing, and the like.
  • a soft composite fabric such as a gas film building, an airbag, an airship, a radome, a protective textile, a tent, and a helmet, a club/racquet, a vehicle casing, and the like.
  • a sixth aspect of the invention provides a sizing composition comprising one or more selected from the group consisting of alcohols, epoxy resins, polyurethanes, and isocyanates, preferably, the sizing composition contains a group selected from C1 to One or more of C12 alcohol, bisphenol-A-(chlorohydrin) epoxy resin, polyurethane and isocyanate, more preferably, the alcohol is propanol, preferably 1-methoxy- 2-propanol, and/or the bisphenol-A-(chlorohydrin) epoxy resin is a bisphenol-A-(chlorohydrin) epoxy resin having a molecular weight of 700 or less, and most preferably, the sizing The composition contains the following components: a.
  • FIG. 1 is a schematic view showing the arrangement of a production line apparatus of the present invention.
  • Figure 2 is a schematic illustration of a composite membrane of the present invention.
  • the original ultrahigh molecular weight polyethylene fiber has a molecular weight of 100,000 or more, preferably 200,000 or more, more preferably 500,000 or more, further preferably 1,000,000 or more and/or a fineness of 50 to 10,000 dtex.
  • the strength of the original ultrahigh molecular weight polyethylene fibers is not less than 1 g/d, preferably not less than 5 g/d, more preferably not less than 10 g/d, further preferably not less than 15 g/d.
  • original ultra high molecular weight polyethylene fibers are derived from a fiber making step obtained by one or more stretching or other means.
  • An ideal process for producing fibers, including stretching to obtain highly oriented fibers is described in U.S. Patents 6,969,553, 7,344,668, 7,370,395, and 7,846,363.
  • the original ultra-high molecular weight polyethylene fibers (yarns) are usually produced from the gel spinning process, and the highly oriented fibers (yarns) are obtained by stretching, which is distinguished from the "partial orientation”.
  • “Fiber or “partially oriented yarn”
  • a highly oriented yarn/fiber has a higher strength than a partially oriented yarn/fiber.
  • the term "strength” as used herein refers to the maximum tensile stress (grams) that a fiber can withstand, and its unit is expressed as g/d, which is measured by ASTM D2256.
  • the treatment to increase surface energy e.g., plasma treatment or corona treatment
  • surface energy is defined as the amount of energy that is added to the surface of a material relative to the interior of the material. Decomposing a solid material into small pieces requires breaking the chemical bonds inside it, so energy is consumed. Because the newly formed surfaces are very unstable, they reduce surface energy by recombining surface atoms and reacting with each other, or by adsorbing other molecules or atoms around them. It can also be understood that since the bond energy of the surface layer atoms toward the outside is not compensated, the surface particles have an extra potential energy than the body particles, which is called surface energy.
  • the surface of the substance has a surface tension ⁇ .
  • ⁇ dA Reversibly increasing the surface area dA under constant temperature and constant pressure requires ⁇ dA because the required work is equal to the increase of the free energy of the system, and this increase is due to the increase in the surface area of the system. It is called surface free energy or surface energy.
  • the surface tension can be expressed in units of N/cm.
  • the surface tension of different materials (liquids) is different, which is related to the magnitude of the interaction between molecules (including dispersion, polarity, and hydrogen bonding). The surface tension is high when the interaction is large, and the surface tension is low when the interaction is small, but regardless of the surface tension, the object always tries to reduce the surface, reduce the surface energy, and tend to be stable.
  • fiber is an elongated structure having an aspect ratio greater than 1000.
  • the fibers used are preferably a continuous elongated structure rather than a short, discontinuous "short fiber".
  • the cross-section of the fibers used in the present invention may vary widely, they may be round , flat or elliptical cross section.
  • the term “fiber” includes filaments, ribbons and strips having a regular or irregular cross section, and preferably the fibers have a substantially circular cross section.
  • the term “yarn” is defined as a continuous strand of multiple filaments.
  • the yarn may be formed from a filament or from a plurality of filaments, referred to as "monofilament fibers" or “multifilament fibers", respectively.
  • the fiber is subjected to plasma treatment in an ionizing environment filled with an inert or non-inert gas, and as a gas component used in the plasma treatment, for example, oxygen, argon, helium, ammonia or other suitable inert gas or non-inert gas may be mentioned.
  • the gas also including the combination of the above gases, contacts the fibers with a combination of neutral molecules, ions, free radicals, and ultraviolet light. It is also possible to subject the fibers to plasma treatment through an ionizing environment that is not filled with a special gas.
  • kinetic energy and electron exchange due to collision with the surface of charged particles (ions) increase the surface energy of the fiber surface. Collisions between the fiber surface and free radicals will result in similar chemical rearrangements, which in turn increase the surface energy of the fiber.
  • the choice of gas is important because the chemical structure of the fiber surface can be modified differently using different plasma gases, as is well known in the art.
  • an amine function can be introduced onto the surface of the fiber using an ammonia plasma, and the carboxyl and hydroxyl groups can be introduced onto the surface of the fiber with an oxygen plasma.
  • the plasma treatment can be carried out using any useful commercial plasma processor, such as SoftalCorana & Plasma GmbH & Co, located in Hamburg, Germany, 4th State, Belmont, California, in Elgin, Illinois. Plasmatrcat US LP and more.
  • SoftalCorana & Plasma GmbH & Co located in Hamburg, Germany, 4th State, Belmont, California, in Elgin, Illinois. Plasmatrcat US LP and more.
  • the plasma treatment process is carried out at an RF power setting of preferably 3 to 100 kW, more preferably 20 to 80 kW, and most preferably 40 to 60 kW.
  • the plasma treatment process is carried out under vacuum conditions, the degree of vacuum is less than 10 mbar, and the treatment time may be between 0 and 1000 seconds.
  • the plasma treated fibers/yarns are conveyed to a post-drawing device before and/or after sizing and/or at the same time, the device comprising one or more drafting rolls and a plurality of ovens, the original super high
  • the molecular weight polyethylene fibers are stretched/restretched, and the drawing process simultaneously dries the slurry on the fibers, which is ultimately converted to the desired fibers/yarns.
  • the oven is preferably a forced convection oven maintained at a temperature of from about 100 ° C to about 160 ° C, preferably from 105 ° C to 140 ° C, more preferably at 120 ° C.
  • a plurality of adjacent ovens in the post-stretching device may be arranged horizontally, or vertically at the top of each other, or may be a combination of horizontal and vertical alignment. Other means of drying the coatings described in the prior art can also be used.
  • the sizing composition of the present invention is also called a sizing composition containing one or more selected from the group consisting of alcohols, epoxy resins, polyurethanes and isocyanates.
  • the alcohol refers to a compound having a hydroxyl group bonded to a hydrocarbon group or a carbon on a side chain of a benzene ring. According to the number of hydroxyl groups, it can be divided into mono-, di-, tri- or polyhydric alcohols. Commonly used alcohols are C1-C12 alcohols such as methanol, ethanol, propanol, benzyl alcohol, ethylene glycol, glycerol, butanol and the like.
  • the epoxy resin refers to an organic compound containing two or more epoxy groups in the molecule, and their relative molecular masses are not high except for a few.
  • epoxy resins can be broadly classified into five categories:
  • Polyurethane is a general term for macromolecular compounds containing repeating urethane groups (-NHCOO-) in the main chain. It is formed by the addition of an organic diisocyanate or a polyisocyanate with a dihydroxy or polyhydroxy compound.
  • the polyurethane macromolecule may contain, in addition to the carbamate, a group such as an ether, an ester, a urea, a biuret, an allophanate or a vinyl group.
  • the isocyanate compounds can be classified into the following categories: (1) alkyl monoisocyanate (2) (substituted) phenyl monoisocyanate (3) ⁇ -substituted benzyl isocyanate (4) polyisocyanate. At present, the most widely used and the largest output are: Toluene Diisocyanate (TDI); MethylenediphenylDiisocyanate (MDI).
  • the sizing composition of the present invention more preferably contains one or more selected from the group consisting of alcohols of C1 to C12, bisphenol-A-(chlorohydrin) epoxy resins, polyurethanes and isocyanates, and more preferably, the alcohol
  • the class is propanol, preferably 1-methoxy-2-propanol, and/or the bisphenol-A-(chlorohydrin) epoxy resin is bisphenol-A-(chlorine) having a molecular weight of 700 or lower.
  • Alcohol) epoxy resin most preferably, the sizing composition contains the following components: a. 0 to 5 wt% of 1-methoxy-2-propanol, and/or b.
  • the content of oxy-2-propanol may be between 0 and 20% by weight, and the content of bisphenol-A-(chlorohydrin) epoxy resin having a molecular weight of 700 or less is between 0 and 20% by weight, c
  • the content of the polyurethane is between 0 and 20% by weight, and the content of the isocyanate is between 0 and 20% by weight.
  • Figure 1 depicts a post-tensioning apparatus comprising an unwinding frame 1, a seven-roller machine 2, a plasma processing apparatus 3, a sizing machine 4, an oven 5, a seven-roller machine 6, and a winder 7.
  • the number of repeating units of the stretching device may be more or less.
  • one roll or more of the original ultrahigh molecular weight polyethylene fibers are placed on the unwinding frame 1, and the yarn is taken up by the pulling of the seven roll machine one to obtain the yarn.
  • the pulling speed of the seven-roller-two is 1 to 50 m/min, preferably 5 to 10 m/min.
  • the yarn is passed through the plasma processing apparatus 3, the sizing machine 4 and the oven 5 in sequence on the traction line of the seven-roller two.
  • the speed of the seven-roller two 6 is from 1 to 50 m/min, preferably from 10 to 30 m/min, more preferably from 15 to 25 m/min.
  • the gas components used in the plasma treatment were 90% nitrogen and 10% oxygen.
  • the sizing material is preferably a sizing composition containing an alcohol and an epoxy resin.
  • the length of the oven 5 may be 3 m to 30 m, preferably 6 m to 12 m.
  • the drying time is from 10 to 150 seconds, preferably from 10 to 90 seconds, more preferably from 10 to 30 seconds.
  • the sizing-treated ultrahigh molecular weight polyethylene fibers are wound up. Due to the difference in the pulling speed of the seven-roller two 6 and the winder 7, the fibers are stretched.
  • the ultrahigh molecular weight polyethylene fiber has a draw ratio of 1..15, preferably 1..3, more preferably 1..1, and the final fiber has a surface energy of 50 mN/m or higher, preferably 60 mN. /m or higher, more preferably 70 mN/m or higher, more preferably 72 mN/m or higher, preferably 80 mN/m or higher, more preferably 90 mN/m or higher, still more preferably 100 mN/m or higher .
  • the obtained ultrahigh molecular weight polyethylene fiber can be produced into various products, and for example, it may be a film, a composite material, a woven fabric or the like containing the above ultrahigh molecular weight polyethylene fiber.
  • the article may contain the ultrahigh molecular weight polyethylene fiber (yarn) of the present invention.
  • the film herein refers to a film made of a material containing at least the ultrahigh molecular weight polyethylene fiber of the present invention.
  • the composite material refers to a structural material made of the ultrahigh molecular weight polyethylene fiber of the present invention and other matrix materials, and means a fiber combination having at least the ultrahigh molecular weight polyethylene fiber of the present invention. It is also possible to form a thermoplastic polymer layer on the surface.
  • the fabric is composed of fibers, filaments and/or yarns containing at least the ultrahigh molecular weight polyethylene fibers of the present invention, which are formed by crossing, winding, joining, etc., including filament fabrics and staple fabrics.
  • the fabric includes a woven fabric and a nonwoven fabric.
  • the nonwoven fabric is not formed by weaving, but the fibers or filaments are oriented or randomly arranged to form a web structure, which is then reinforced by mechanical, thermal bonding or chemical methods.
  • the composite film fiber of the present invention comprises a reinforcing layer and a polymer coating, wherein the reinforcing layer is a fabric containing the above ultrahigh molecular weight polyethylene fiber, and the polymer coating is applied. Apply to the top and / or below the reinforcement layer.
  • the above-mentioned fabric containing ultrahigh molecular weight polyethylene fibers used as the reinforcing layer is a base fabric having an ultrahigh molecular weight polyethylene fiber having a volume content of more than 10%.
  • the base fabric is woven from a fibrous material containing ultrahigh molecular weight polyethylene fibers.
  • the micropores of the base fabric are uniformly distributed and less than or equal to 1000 mesh; preferably less than or equal to 100 mesh; more preferably less than or equal to 50 mesh.
  • the ultrahigh molecular weight polyethylene fibers have a strength of not less than 10 cN/dtex; preferably not less than 20 cN/dtex; more preferably not less than 30 cN/dtex.
  • the above polymer coating is a thermoplastic polymer coating, preferably it may be one selected from the group consisting of thermoplastic polyurethane elastomer, polytetrafluoroethylene, polyethylene, polyvinyl chloride, and liquid silicone rubber.
  • thermoplastic polyurethane elastomers polyethylene, polyvinyl chloride; most preferably thermoplastic polyurethane elastomer; particularly preferred polyether thermoplastic polyurethane elastomer with better water resistance .
  • the above-mentioned polymer coating applied on the upper and lower sides of the reinforcing layer can be cooled and solidified by the micropores of the reinforcing layer.
  • the above curing refers to a process in which a polymer is converted from a molten state to a solid state.
  • the cooling method can be natural cooling or water cooling or air cooling.
  • the composite film has a tensile strength greater than 2000 N/5 cm, preferably greater than 5000 N/5 cm, preferably greater than 7000 N/5 cm, more preferably greater than 10000 N/5 cm, most preferably greater than 12000 N/5 cm; tear strength greater than 600 N, preferably greater than 900 N, more preferably greater than 1200 N; burst strength greater than 1000 N, preferably greater than 1500 N, more preferably greater than 1900 N.
  • the method for producing a composite film of the present invention comprises the following steps:
  • the selected polymer coating material is melt extruded through a screw
  • the melt extruded molten polymer is coated on both sides of the fabric.
  • the method for producing a composite film of the present invention may further comprise the step of pressing a plurality of base fabric layers or polymer layers together under external pressure to form a film material.
  • selection of fibers and coating materials select ultra-high molecular weight polyethylene fibers with a strength of not less than 10 cN/dtex; select a suitable polymer coating according to the requirements of use, which may be selected from thermoplastic polyurethane elastomers, polytetrafluoroethylene, poly Ethylene, polyvinyl chloride or silicone rubber.
  • Coating The polymer pellets are placed in a hopper of a screw extruder, and the coating material is melt extruded by a screw extruder, and the polymer melt is uniformly coated on the super high after being extruded from the die.
  • Molecular weight polyethylene fabric The polymer pellets are placed in a hopper of a screw extruder, and the coating material is melt extruded by a screw extruder, and the polymer melt is uniformly coated on the super high after being extruded from the die. Molecular weight polyethylene fabric.
  • the coating of the polymer coating was carried out on the upper and lower sides of the fabric, respectively, and finally a composite film coated with a polymer coating on both sides was obtained.
  • the product containing the ultrahigh molecular weight polyethylene fiber of the invention can be a film, a composite material or a fabric, and can be applied to a soft composite fabric of a gas film building, an airbag, an airship, a radome, a protective textile, a tent, etc., a helmet and a ball.
  • Hard structural materials such as rods, rackets, and vehicle casings.
  • the original ultrahigh molecular weight polyethylene fibers used in Examples 1 to 7 were 1000D ultrahigh molecular weight polyethylene fibers purchased from Qingdao Xintai Polymer Materials Co., Ltd., having a molecular weight of 3 million and a density of 0.97 g/cm 3 .
  • the yarn passes through the plasma processing apparatus 3 in parallel, and the plasma treatment uses a gas component of 90% nitrogen and 10% oxygen, a power of 30 kW, a vacuum of 1 mbar, and a treatment time of 500 seconds, introducing a radical and a small amount of polar functional groups on the surface of the fiber.
  • a gas component of 90% nitrogen and 10% oxygen e.g., 90% nitrogen and 10% oxygen
  • a power of 30 kW e.g., a power of 30 kW
  • a vacuum of 1 mbar e.g., a vacuum
  • a treatment time e.g., a treatment time of 500 seconds
  • the treated fibers were passed through a coating solution in the sizing machine 4, and the composition of the sizing composition solution is shown in Table 1.
  • the fibers coated with the above solution were dried in an oven 5, the drying time was 100 seconds, and the temperature of the oven was set to 120 °C.
  • the speed of the seven-roller two 6 is 11 m/min.
  • the winding speed of the winder 7 was 11.1 m/min.
  • the treated fibers obtained were used to determine surface energy values.
  • the surface energy test method and the surface energy test ink are as follows:
  • the test method for the fiber of the invention is: using the plasmatreat test ink C (ethanol series test ink) series, the fiber is layered, the dart pen is used to take an appropriate amount of surface energy to test the ink, and then draw a long along the fiber radial direction. A line of about 10 cm, if the fiber does not shrink or form a droplet within 2 seconds, indicates that the surface energy of the fiber is greater than the surface energy value of the surface of the surface test ink.
  • Example 2 After the completion of the treatment, 20 sites were randomly selected from the fibers obtained in Example 1 of the present invention, and the surface energy values were measured. As a result, as shown in Table 2, the test dyne values were all at least 72 mN/m.
  • Example 1 of the present invention For the fiber obtained in Example 1 of the present invention, at the time of completion of the treatment, 24 hours, 48 hours, 96 hours, 168 hours, and 6 months after the completion of the treatment, 20 sites were randomly selected on the surface for surface energy test, and the results are shown in the table. As shown in 3, the average test dyne value is at least 72 mN/m.
  • the fibers obtained in Examples 2 to 7 of the present invention were randomly selected from the obtained fibers after the completion of the treatment, and the surface energy values were measured.
  • the test dyne values were all at least It is 72mN/m.
  • the fibers obtained in Examples 2 to 7 of the present invention were randomly selected from the surface at the completion of the treatment and at 24 hours, 48 hours, 96 hours, 168 hours, and 6 months after the completion of the treatment.
  • the surface energy was tested at the site, and the average test dyne value was also at least 72 mN/m.
  • the original ultrahigh molecular weight polyethylene fiber was obtained by using 1000D ultrahigh molecular weight polyethylene fiber purchased from Qingdao Xintai Polymer Material Co., Ltd., having a molecular weight of 3 million and a density of 0.97 g/cm 3 .
  • the fibers which were not plasma treated and sized were dried in an oven 5, the drying time was 100 seconds, and the temperature of the oven was set to 120 °C.
  • the speed of the seven-roller two 6 is 11 m/min.
  • the winding speed of the winder 7 was 11.1 m/min.
  • the fibers obtained by this treatment were subjected to a surface energy test using a surface energy test ink, and the test dyne values were all lower than 42 mN/m.
  • the original ultrahigh molecular weight polyethylene fiber was obtained by using 1000D ultrahigh molecular weight polyethylene fiber purchased from Qingdao Xintai Polymer Material Co., Ltd., having a molecular weight of 3 million and a density of 0.97 g/cm 3 .
  • the fibers subjected to the same plasma treatment as in Example 1 but not subjected to the sizing treatment were dried in an oven 5, and the drying time was 100 seconds, and the temperature of the oven was set to 120 °C.
  • the speed of the seven-roller two 6 is 11 m/min.
  • the winding speed of the winder 7 was 11.1 m/min.
  • the fibers obtained by this treatment were randomly selected from the surface at 20 hours, 48 hours, 96 hours, 168 hours, and 6 months after the completion of the treatment, and the surface energy test was performed.
  • the test results are shown in Table 4. Shown.
  • the original ultrahigh molecular weight polyethylene fiber was obtained by using 1000D ultrahigh molecular weight polyethylene fiber purchased from Qingdao Xintai Polymer Material Co., Ltd., having a molecular weight of 3 million and a density of 0.97 g/cm 3 .
  • the fiber which was not subjected to plasma treatment and subjected to the same sizing treatment as in Example 1 was dried in an oven 5, and the drying time was 100 seconds, and the temperature of the oven was set to 120 °C.
  • the speed of the seven-roller two 6 is 11 m/min.
  • the winding speed of the winder 7 was 11.1 m/min.
  • the fibers obtained by this treatment were randomly selected from the obtained fibers to determine the surface energy values, and the test results are shown in Table 5.
  • Example 8 the ultrahigh molecular weight polyethylene fiber obtained in Example 4 (strength of 20 cN/dtex) was used; as the material of the polymer coating, thermoplastic polyurethane was used ( 9000TPU, Lubrizol).
  • the woven fabric When woven into a base fabric, the woven fabric was woven in a plain weave with an areal density of 630 g/m 2 .
  • the polyether thermoplastic polyurethane polymer pellets are placed in the hopper of the screw extruder, and the screw temperature is set to 200 ° C, so that the pellets flow into the screw extruder by gravity, and the polyurethane particles pass. After the screw is heated and melted, it becomes a flowable liquid, which is formed into a film shape through a mold, and then coated on the surface of the fabric to form a composite film structure.
  • the polymer coating is applied to the upper and lower sides of the fabric, and finally a composite film coated with a polymer coating on both sides is obtained.
  • Example 9 the ultrahigh molecular weight polyethylene fiber obtained in Example 2 (strength: 30 cN/dtex) was used in the reinforcing layer, and the areal density was 400 g/m 2 , and polyvinyl chloride was used in the polymer coating.
  • a composite film was obtained in the same manner as in Example 8 except that (PVC-specific resin, Dongguan Chaohua Chemical Co., Ltd.) was used.
  • Example 10 the ultrahigh molecular weight polyethylene fiber obtained in Example 1 (strength: 30 cN/dtex) was used in the reinforcing layer, the number of layers of the fabric was 2, and the areal density was 1600 g/m 2 .
  • a composite film was obtained in the same manner as in Example 8.
  • Example 10 In the same manner as in Example 10, a composite film was obtained in the same manner as in Example 10 except that the number of the woven fabric layers was one in the reinforcing layer and the areal density was 1000 g/m 2 .
  • a composite film was obtained in the same manner as in Example 8 except that polyester (TCS-FDY, Tongkun Group) was used in the reinforcing layer to have an areal density of 1000 g/m 2 .
  • the performance characterization of the obtained composite film was measured.
  • the surface density according to the measurement standard of each performance standard was carried out according to the provisions of GB/T 4669-2008, and the tensile strength was determined according to the provisions of GB/T 3923.1-2013.
  • the strength is carried out according to the provisions of GB/T 2791-1995, the tear strength is carried out according to the provisions of GB3917.3, and the bursting strength is carried out according to the provisions of GB/T14800-2010.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用,该超高分子量聚乙烯纤维的表面能达72mN/m以上。其制备方法的特征在于用化学和物理相结合的方法在超高分子量聚乙烯纤维表面引入极性官能团。由于极性官能团的引入使得纤维的表面能显著提高,与其他材料的复合性能明显提高,含有该超高分子量聚乙烯纤维的制品的拉伸强度、撕裂强度、顶破强度大,故该超高分子量聚乙烯纤维能够广泛地用于膜、复合材料或织物的制备并被应用于气膜建筑、气囊、飞艇、雷达罩、防护纺织品、帐篷等软质复合织物以及头盔、球杆/球拍、车辆外壳等硬质结构材料。

Description

一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用 技术领域
本发明涉及一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用。
背景技术
超高分子量聚乙烯(英文缩写UHMWPE)纤维是以UHMWPE为原料经特殊工艺制备的一种高强度、高模量纤维,与芳纶和碳纤维并称为三大高性能纤维。UHMWPE纤维由简单的亚甲基(-CH 2-)组成,纤维的结晶度大于90%,链段的取向度可接近100%,这样结构特点导致其力学性能优异,纤维表面非常光滑,内聚能低,具有良好的耐摩擦性和耐化学腐蚀性。UHMWPE纤维因具有密度小、强度高、耐腐蚀、抗冲击、抗切割等优异性能,所以用UHMWPE纤维作为基材进行改性,可获得具有优异性能的功能性纤维材料。但是,由于UHMWPE纤维与其它复合材料的粘合能力极差,界面结合不牢固,很难直接用作增强纤维制备纤维增强复合材料。
对于提如何提高超高分子量聚乙烯纤维的表面能,国内外的学者一直致力于该项目的研究,也有很多相关专利和文献著作,其中各有利弊。
发明内容
本发明所要解决的问题是如何提高超高分子量聚乙烯纤维的表面能。
本发明的第一方面提供了一种超高分子量聚乙烯纤维,其特征在于,所述纤维的表面能为72mN/m或更高,优选为80mN/m或更高,更优选90mN/m或更高,更优选100mN/m或更高。
本发明的第二方面提供了一种超高分子量聚乙烯纤维的表面处理方法,其包括以下步骤:
提供一卷或超过一卷强度不低于1g/d、优选不低于5g/d、更优选不低于10g/d、进一步优选不低于15g/d的原始超高分子量聚乙烯纤维并进行放线获得纱线;
将纱线进行等离子体处理以获得处理过的纱线;
对所述处理的纱线的至少一部分或全部使用上浆组合物进行上浆(sizing)处理以获得超高分子量聚乙烯纤维,其中所述上浆组合物含有选自醇类、环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上,所述超高分子量聚乙烯纤维的表面能为72mN/m或更高,优选为80mN/m或更高,更优选90mN/m或更高,更优选100mN/m或更高。
优选地,在所述上浆处理之前和/或之后和/或同时进行所述处理过的纱线的拉伸处理。优选地,所述拉伸处理的速度为1~50m/min,优选为10~30m/min,更优选 为15~25m/min。
优选地,所述上浆组合物含有选自C1~C12的醇类、双酚-A-(氯醇)环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上。
优选地,所述醇类为丙醇类,优选1-甲氧基-2-丙醇,和/或所述双酚-A-(氯醇)环氧树脂为分子量等于或低于700的双酚-A-(氯醇)环氧树脂。
优选地,所述上浆组合物含有以下成分:a.0~5wt%的1-甲氧基-2-丙醇、和/或b.0~5wt%的分子量等于或低于700的双酚-A-(氯醇)环氧树脂、和/或c.0~5wt%的聚氨酯、和/或d.0~5wt%的异氰酸酯、以及80%~96wt%的水,基于上浆组合物的总重量计算,前提条件为a、b、c、d不能同时为0。
优选地,所述等离子体处理在充满惰性气体和/或非惰性气体的离子环境下进行。
优选地,所述等离子体处理使用的气体组分为90%氮气和10%氧气。
优选地,进行所述等离子体处理时的功率为3~100kw,优选20~80kw,最优选40~60kw。
优选地,所述方法进一步包括对所述处理过的纱线进行上浆处理后进行烘干的步骤,优选地,所述烘干温度为100℃~160℃,优选105℃~140℃,最优选120℃。
优选地,所述原始超高分子量聚乙烯纤维的分子量在10万以上、优选20万以上更优选50万以上、进一步优选100万以上和/或其纤度为50~10000dtex。
本发明的第三方面提供了一种通过上述方法获得的超高分子量聚乙烯纤维。
本发明的第四方面提供了一种含有上述超高分子量聚乙烯纤维制品,所述制品可以为膜、复合材料或织物。
本发明的第五方面提供了上述超高分子量聚乙烯纤维用于制备气膜建筑、气囊、飞艇、雷达罩、防护纺织品、帐篷等软质复合织物以及头盔、球杆/球拍、车辆外壳等硬质结构材料的用途。
本发明的第六方面提供了一种上浆组合物,其含有选自醇类、环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上,优选地,所述上浆组合物含有选自C1~C12的醇类、双酚-A-(氯醇)环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上,更优选地,所述醇类为丙醇类,优选1-甲氧基-2-丙醇,和/或所述双酚-A-(氯醇)环氧树脂为分子量等于或低于700的双酚-A-(氯醇)环氧树脂,最优选地,所述上浆组合物含有以下成分:a.0~5wt%的1-甲氧基-2-丙醇、和/或b.0~5wt%的分子量等于或低于700的双酚-A-(氯醇)环氧树脂、和/或c.0~5wt%的聚氨酯、和/或d.0~5wt%的异氰酸酯、以及e.80%~96wt%的水,基于上浆组合物的总重量计算,前提条件为a、b、c、d不能同时为0。
附图说明
图1是表示本发明的一种生产线设备设置方式的示意图。
图2是本发明的复合膜的示意图。
具体实施方式
本发明通过具体实施例和附图进一步阐述本发明的技术方案,但是本领域普通技术人员可以理解的是:以下具体实施方式以及实施例旨在阐述本发明,而不应理解为以任何方式限制本发明。
本发明中,原始超高分子量聚乙烯纤维的分子量在10万以上、优选20万以上更优选50万以上、进一步优选100万以上和/或其纤度为50~10000dtex。并且,原始超高分子量聚乙烯纤维的强度不低于1g/d、优选不低于5g/d、更优选不低于10g/d、进一步优选不低于15g/d。
本文所使用的“原始超高分子量聚乙烯纤维”(或纱线),来自通过一步或多步拉伸或其它方式获得的纤维制作步骤。理想的生产纤维的过程,包括通过拉伸来得到高度取向的纤维,在美国专利6969553、7344668、7370395、7846363中有描述。正如上述引用的专利中所述,原始超高分子量聚乙烯纤维(纱线)通常是从凝胶纺丝过程中产生的,通过拉伸得到高度取向的纤维(纱线),区别于“部分定向”纤维(或“部分取向的纱线”),对高度取向的纤维进行拉伸后的处理,从而提高其纤维强度。因此,一个高度取向的纱线/纤维具有比部分取向的纱线/纤维更高的强度。本文所使用的术语“强度”指的是是指每旦纤维所能够承受的最大拉伸应力(克),其单位表示为g/d,其通过ASTMD2256测量。按照本发明的方法,用以提高表面能(如等离子体处理或电晕处理)的处理在裸露的纤维表面/表面区域进行。
表面能是创造物质表面时对分子间化学键破坏的度量。在固体物理理论中,表面原子比物质内部的原子具有更多的能量,因此,根据能量最低原理,原子会自发的趋于物质内部而不是表面。
在材料领域,表面能的定义是,材料表面相对于材料内部所多出的能量。把一个固体材料分解成小块需要破坏它内部的化学键,所以需要消耗能量。因为新形成的表面是非常不稳定的,他们通过表面原子重组和相互间的反应,或者对周围其他分子或原子产生吸附,从而使表面能量降低。也可以这样理解,由于表面层原子朝向外面的键能没有得到补偿,使得表面质点比体内质点具有额外的势能,称为表面能。
产生单位面积新表面所作的功:
y=dw/ds
物质的表面具有表面张力σ,在恒温恒压下可逆地增大表面积dA,则需功σdA,因为所需的功等于物系自由能的增加,且这一增加是由于物系的表面积增大 所致,故称为表面自由能或表面能。表面张力可以用N/cm的单位来表示。不同材料(液体)的表面张力是不同的,这与分子间的作用力(包括色散、极性和氢键)大小有关。相互作用大者表面张力高,相互作用小者则表面张力低,但不论表面张力大小,物体总是力图缩小其表面,降低表面能,趋向稳定。
此处使用的“纤维”是一种长径比大于1000的细长结构体。所使用的纤维优选是一个连续的细长结构体,而不是短的、不连续的“短纤维”,在本发明中使用的纤维的横截面可能会有很大的不同,它们可以是圆形的,平坦的或椭圆形的横截面。因此,“纤维”一词包括具有规则或不规则的横截面的丝、带和条等,优选纤维有一个基本上是圆形的横截面。术语“纱线(yarn)”被定义为一种由多个长丝组成的连续线束。纱线可以由一种长丝或由多种长丝形成,分别被称为“单丝纤维”或“复丝纤维”。
使纤维通过在充满惰性或非惰性气体的电离环境来进行等离子体处理,作为等离子体处理中使用的气体组分,例如,可以列举氧、氩、氦、氨或其它合适的惰性气体或非惰性气体,也包括上述气体的组合,从而使纤维与中性分子、离子、自由基和紫外光的组合接触。也可以使纤维通过没有充有特殊气体的电离环境来进行等离子体处理。在纤维表面,由于与带电粒子(离子)的表面的碰撞导致的动能和电子交换等,从而提高了纤维表面的表面能。纤维表面和自由基之间的碰撞将导致类似的化学重排,进而提高纤维的表面能。
气体的选择是重要的,因为使用不同的等离子体气体可以将纤维表面的化学结构进行不同的修饰,这在本领域属于公知技术。例如,可以使用氨等离子体将胺官能引入到纤维表面上,用氧等离子体将羧基和羟基基团引入到纤维表面上。
等离子体处理可以使用任何有用的商用等离子体处理机进行,作为该商用等离子体处理机,例如可购自位于德国汉堡的SoftalCorana&Plasma GmbH&Co,位于加利福尼亚贝尔蒙特的4th State,位于伊利诺斯艾尔金的Plasmatrcat US LP等等。
作为一个实施方式,等离子体处理过程是在RF功率设置优选3~100kw,更优选20~80kw,最优选在40~60kw进行。所述等离子处理过程是在真空条件下进行,真空度小于10mbar,处理时间可以为0~1000秒之间。
经过等离子体处理后的纤维/纱线在进行上浆之前和/或之后和/或同时被输送到一个后拉伸装置,所述装置包括一个或多个牵伸辊以及多个烘箱,原始超高分子量聚乙烯纤维被拉伸/再拉伸,牵伸过程同时对纤维上的浆料进行干燥,其最终转化为所需要的纤维/纱线。该烘箱最好是强制对流烘箱,其温度保持在100℃至160℃左右,优选105℃~140℃,更优选120℃。所述后拉伸装置中的多个相邻的烘箱可以水平排列,或垂直排列在彼此的顶部,或者也可以是水平排列和垂直排列的组合。也可以使用现有技术中描述的干燥涂层的其他手段。
本发明所述的上浆(sizing)组合物也叫上胶组合物,其含有选自醇类、环氧树 脂、聚氨酯和异氰酸酯中的一种或一种以上。
所述醇类是指分子中含有跟烃基或苯环侧链上的碳结合的羟基的化合物。根据羟基的多少,可以分为可分为一元、二元、三元或多元醇。常用的醇有C1~C12醇类,例如甲醇、乙醇、丙醇、苯甲醇、乙二醇、丙三醇、丁醇等。
所述环氧树脂是指分子中含有两个或两个以上环氧基团的有机化合物,除个别外,它们的相对分子质量都不高。
根据分子结构,环氧树脂大体上可分为五大类:
1.缩水甘油醚类环氧树脂
2.缩水甘油酯类环氧树脂
3.缩水甘油胺类环氧树脂
4.线型脂肪族类环氧树脂
5.脂环族类环氧树脂
聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨酯基(-NHCOO-)的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲、脲基甲酸酯、乙烯基等基团。
异氰酸酯是异氰酸的各种酯的总称。若以-NCO基团的数量分类,包括单异氰酸酯R-N=C=O和二异氰酸酯O=C=N-R-N=C=O及多异氰酸酯等。异氰酸酯化合物可以分为以下几类:(1)烷基单异氰酸酯(2)(取代)苯基单异氰酸酯(3)α-取代苄基异氰酸酯(4)多异氰酸酯。目前应用最广、产量最大的是有:甲苯二异氰酸酯(Toluene Diisocyanate,简称TDI);二苯基甲烷二异氰酸酯(MethylenediphenylDiisocyanate,简称MDI)。
本发明的上浆组合物更优选含有选自C1~C12的醇类、双酚-A-(氯醇)环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上,更优选地,所述醇类为丙醇类,优选1-甲氧基-2-丙醇,和/或所述双酚-A-(氯醇)环氧树脂为分子量等于或低于700的双酚-A-(氯醇)环氧树脂,最优选地,所述上浆组合物含有以下成分:a.0~5wt%的1-甲氧基-2-丙醇、和/或b.0~5wt%的分子量等于或低于700的双酚-A-(氯醇)环氧树脂、和/或c.0~5wt%的聚氨酯、和/或d.0~5wt%的异氰酸酯、以及e.80%~96wt%的水,基于上浆组合物的总重量计算,前提条件为a、b、c、d不能同时为0。在上述上浆组合物的成分之中,本领域技术人员可以理解的是,a、b、c、d四种成分可以在有限次实验的基础上进行修正,比如,组分:a.1-甲氧基-2-丙醇的含量可以在0~20wt%之间、b.分子量等于或低于700的双酚-A-(氯醇)环氧树脂的含量为0~20wt%之间、c.聚氨酯的含量为0~20wt%之间、d.异氰酸酯的含量为0~20wt%之间。
本领域普通技术人员了解拉伸操作的常规操作方法,例如包括美国专利 6969553、美国专利7344668或美国专利7370395中所描述的条件都在此引入以供参考。一个后拉伸过程中的实施方式如图1所示。图1描述了一种后拉伸装置,包括退绕架1、七辊机一2、等离子体处理设备3、上浆机4、烘箱5、七辊机二6、卷绕机7。但本领域技术人员可以理解,根据所需的配置,只要能达到本发明的目的,其中所述拉伸装置重复单元的数量可多可少。
在如图1所示的实施方式中,将1卷或1卷以上原始超高分子量聚乙烯纤维置于退绕架1上,经七辊机一2的牵引进行放线,获得纱线。七辊机一2的牵引速度为1~50m/min,优选5~10m/min。
纱线在七辊机二6的牵引线依次通过等离子体处理设备3、上浆机4和烘箱5。七辊机二6的速度为1~50m/min,优选10~30m/min,更优选15~25m/min。
等离子体处理使用的气体组分为90%氮气和10%氧气。
上浆机4中,上浆原料优选为含有醇类和环氧树脂的上浆组合物。
在七辊机二6的牵引下,纱线以一定的速度通过烘箱5。烘箱5的长度可以为3m~30m,优选6m~12m。烘干时间为10~150秒,优选10~90秒,更优选10~30秒。
在卷绕机7,将上浆处理后的超高分子量聚乙烯纤维收卷。由于七辊机二6与卷绕机7的牵引速度差,纤维被拉伸。在一个优选的实施方式中,超高分子量聚乙烯纤维的拉伸比例为1︰15,优选1︰3,更优选1︰1,最终纤维的表面能为50mN/m或更高,优选为60mN/m或更高,更优选70mN/m或更高,更优选72mN/m或更高,优选为80mN/m或更高,更优选90mN/m或更高,更优选100mN/m或更高。
所得到的超高分子量聚乙烯纤维能够制成各种制品,例如,可以为含有上述超高分子量聚乙烯纤维的膜、复合材料、织物等。所述制品只要含有本发明的超高分子量聚乙烯纤维(纱线)即可。
这里的膜是指由至少含有本发明的超高分子量聚乙烯纤维的材料制得的膜。
复合材料是指含有本发明的超高分子量聚乙烯纤维和其它基体材料制成的结构材料,是指至少具有本发明的超高分子量聚乙烯纤维的纤维组合。也可以在表面形成有热塑性聚合物层。
织物是由至少含有本发明的超高分子量聚乙烯纤维的纤维、长丝和/或纱线通过交叉、绕结、连接等关系构成的,包括长丝织物和短纤维织物。织物包括纺织物和无纺布。无纺布不需要经过织造来形成,只是将纤维或长丝进行定向或随机排列,形成纤网结构,然后采用机械、热粘或化学等方法加固而成。
作为本发明的超高分子量聚乙烯纤维的一个应用,本发明的复合膜纤维包括增强层和聚合物涂层,其中,增强层为含有上述超高分子量聚乙烯纤维的织物,聚合物涂层涂敷于增强层的上面和/或下面。
在一个优选实施方式中,上述用作增强层的含有超高分子量的聚乙烯纤维的织 物为超高分子量聚乙烯纤维体积含量高于10%的基布。
在一个优选实施方式中,上述基布用含有超高分子量聚乙烯纤维的纤维材料织造而成。
在一个优选实施方式中,上述基布的微孔均匀分布且小于或等于1000目;优选小于或等于100目;更优选小于或等于50目。
在一个优选实施方式中,上述超高分子量聚乙烯纤维的强度不小于10cN/dtex;优选不小于20cN/dtex;更优选不小于30cN/dtex。
在一个优选实施方式中,上述聚合物涂层是热塑性聚合物涂层,优选地,其可为选自热塑性聚氨酯弹性体、聚四氟乙烯、聚乙烯、聚氯乙烯、液体硅橡胶中的一种或多种;优选为选自热塑性聚氨酯弹性体、聚乙烯、聚氯乙烯中的一种或多种;最优选为热塑性聚氨酯弹性体;特别优选耐水性能更好的聚醚型热塑性聚氨酯弹性体。
上述涂敷于增强层上下的聚合物涂层可以通过增强层的微孔贯通进而冷却固化粘结在一起。
上述固化是指聚合物由熔融态转变为固态的过程。冷却方式可以采用自然冷却或水冷或风冷。
这样的复合膜的拉伸强度、撕裂强度和顶破强度得到了提高。具体而言,该复合膜的拉伸强度大于2000N/5cm,优选大于5000N/5cm,优选大于7000N/5cm,更优选大于10000N/5cm,最优选大于12000N/5cm;撕裂强度大于600N,优选大于900N,更优选大于1200N;顶破强度大于1000N,优选大于1500N,更优选大于1900N。
本发明的复合膜的制造方法,包括以下步骤:
将选定含有超高分子量聚乙烯纤维的纤维材料织成织物;
将选定的聚合物涂层材料经螺杆熔融挤出;
将熔融挤出的熔融聚合物涂覆在织物的两侧。
本发明的复合膜的制造方法还可以包括将多个基布层或聚合物层在外压力的作用下压合在一起而形成一层膜材料的步骤。
在一个优选的实施方式中,包括以下步骤:
1.纤维及涂覆材料的遴选:选择强度不小于10cN/dtex的超高分子量聚乙烯纤维;根据使用要求选择合适的聚合物涂层,可选自热塑性聚氨酯弹性体、聚四氟乙烯、聚乙烯、聚氯乙烯或硅橡胶。
2.织成织物:根据复合膜的经纬向强度要求,设计合适的线密度进行织布。
3.涂覆涂层:将聚合物粒料放入螺杆挤出机的料斗内,用螺杆挤出机将涂敷料熔融挤出,聚合物熔融料从模头挤出后均匀涂敷在超高分子量聚乙烯织物上。
如此在织物的上下两面分别进行聚合物涂层的涂敷,最终得到双面都涂敷有聚 合物涂层的复合膜。
含有本发明的超高分子量聚乙烯纤维的制品,能够为膜、复合材料或织物,可应用于气膜建筑、气囊、飞艇、雷达罩、防护纺织品、帐篷等的软质复合织物,头盔、球杆/球拍、车辆外壳等硬质结构材料。
下面以具体实施例描述本发明,本领域技术人员理解的是,本发明的保护范围限于权利要求,下述实施例仅仅为了阐明本发明的目的,并不以任何方式限制本发明。
实施例
[实施例1~7]
实施例1~7中使用的原始超高分子量聚乙烯纤维是购于青岛信泰高分子材料有限公司的1000D超高分子量聚乙烯纤维,分子量为300万,密度为0.97g/cm 3
将20卷强度为15g/d的原始超高分子量聚乙烯纤维,放置在退绕架上1进行放线。通过七辊机一2,其通过速度为10m/min。
纱线平行通过等离子体处理设备3,等离子体处理使用气体组分为90%氮气和10%氧气,功率为30kw,真空度1mbar,处理时间500秒,在纤维表面引入自由基和少量极性官能团,如羧基、羟基和羰基等。
经处理后的纤维通过上浆机4中的涂敷溶液,上浆组合物溶液成分如表1所示。
[表1]
Figure PCTCN2018078153-appb-000001
涂敷了上述溶液的纤维进入烘箱5烘干,烘干时间为100秒,烘箱的温度设定为120℃。
七辊机二6的速度为11m/min。卷绕机7的卷绕速为11.1m/min。
获得的经过处理的纤维用于测定表面能值。
表面能测试方法和使用表面能测试墨水如下:
表面能的测试使用表面能测试墨水进行。所使用的表面能测试墨水为德国 plasmatreat测试墨水,能够达到的表面能的测试范围为40~72mN/m,购自上海中序信息科技有限公司。具体测试的说明见http://www.plasmatreat.cn/surface-determination/test-ink-method.html。
本发明对纤维进行的测试方法为:使用plasmatreat测试墨水C(乙醇系列测试墨水)系列,将纤维进行铺层,用达因笔沾取适量表面能测试墨水,然后沿着纤维径向画一条长约10cm的线,如果2秒内纤维没有收缩或形成液滴,则表明纤维的表面能大于该表面能测试墨水的标记表面能值。
在处理完成后,在本发明实施例1中得到的纤维上随机选取20个位点,测定表面能值,结果如表2所示,测试达因值全部至少为72mN/m。
[表2]
纱线位号 测试达因值(mN/m)
1 ≥72
2 ≥72
3 ≥72
4 ≥72
5 ≥72
6 ≥72
7 ≥72
8 ≥72
9 ≥72
10 ≥72
11 ≥72
12 ≥72
13 ≥72
14 ≥72
15 ≥72
16 ≥72
17 ≥72
18 ≥72
19 ≥72
20 ≥72
对本发明实施例1中得到的纤维在处理完成时、处理完成后24小时、48小时、96小时、168小时、6个月时,在表面随机选取20个位点进行表面能测试,结果如表3所示,测试平均达因值全部至少为72mN/m。
[表3]
测试时间 测试平均达因值(mN/m)
处理完成时 ≥72
处理后24h ≥72
处理后48h ≥72
处理后96h ≥72
处理后168h ≥72
处理后6个月 ≥72
对本发明实施例2~7中得到的纤维也与实施例1同样地,在处理完成后,在所得到的纤维上随机选取20个位点,测定表面能值,结果,测试达因值全部至少为72mN/m。
对本发明实施例2~7中得到的纤维也与实施例1同样地,在处理完成时、处理完成后24小时、48小时、96小时、168小时、6个月时,在表面随机选取20个位点进行表面能测试,测试平均达因值也全部至少为72mN/m。
[比较例1]
原始超高分子量聚乙烯纤维使用购于青岛信泰高分子材料有限公司的1000D超高分子量聚乙烯纤维,分子量为300万,密度为0.97g/cm 3
将20卷强度为15g/d的原始超高分子量聚乙烯纤维,放置在退绕架1上进行放线。通过七辊机一2,其通过速度为10m/min。
未经等离子体处理和上浆处理的纤维进入烘箱5烘干,烘干时间为100秒,烘箱的温度设定为120℃。七辊机二6的速度为11m/min。卷绕机7的卷绕速为11.1m/min。
经过此处理得到的纤维用表面能测试墨水进行表面能测试,测试达因值全部低于42mN/m。
[比较例2]
原始超高分子量聚乙烯纤维使用购于青岛信泰高分子材料有限公司的1000D超高分子量聚乙烯纤维,分子量为300万,密度为0.97g/cm 3
将20卷强度为15g/d的原始超高分子量聚乙烯纤维,放置在退绕架1上进行放线。通过七辊机一2,其通过速度为10m/min。
经与实施例1同样的等离子体处理、但不进行上浆处理的纤维进入烘箱5烘干,烘干时间为100秒,烘箱的温度设定为120℃。七辊机二6的速度为11m/min。卷绕机7的卷绕速为11.1m/min。
对经过此处理得到的纤维在处理完成时、处理完成后24小时、48小时、96小时、168小时、6个月时,在表面随机选取20个位点进行表面能测试,测试结果如表4所示。
[表4]
测试时间 测试平均达因值(mN/m)
处理完成时 72
处理后24h 64
处理后48h 52
处理后96h <42
处理后168h <42
处理后6个月 <42
[比较例3]
原始超高分子量聚乙烯纤维使用购于青岛信泰高分子材料有限公司的1000D超高分子量聚乙烯纤维,分子量为300万,密度为0.97g/cm 3
将20卷强度为15g/d的原始超高分子量聚乙烯纤维,放置在退绕架1上进行放线。通过七辊机一2,其通过速度为10m/min。
未经等离子体处理、经与实施例1同样的上浆处理的纤维进入烘箱5烘干,烘干时间为100秒,烘箱的温度设定为120℃。七辊机二6的速度为11m/min。卷绕机7的卷绕速为11.1m/min。
对经过此处理得到的纤维在处理完成后,在所得到的纤维上随机选取20个位点,测定表面能值,测试结果如表5所示。
[表5]
纱线位号 测试达因值(mN/m)
1 50
2 42
3 42
4 62
5 52
6 46
7 50
8 52
9 48
10 42
11 58
12 52
13 62
14 56
15 46
16 42
17 54
18 42
19 58
20 46
平均值 50.1
[实施例8]
在实施例8中,使用实施例4获得的超高分子量聚乙烯纤维(强度为20cN/dtex);作为聚合物涂层的材料,使用热塑性聚氨酯(
Figure PCTCN2018078153-appb-000002
9000TPU,Lubrizol公司)。
在织成基布时,织物的编织方式为平纹机织,面密度为630g/m 2
在涂覆涂层时,将聚醚型热塑性聚氨酯聚合物粒料放入螺杆挤出机的料斗内,设定螺杆温度为200℃,使粒料通过重力作用流入螺杆挤出机,聚氨酯颗粒通过螺杆的加温熔融后,变为可流动的液态,经过模具形成膜状,然后涂敷在织物表面,形成复合膜结构。
如此在织物的上下两面分别进行聚合物涂层的涂敷,最终得到双面都涂敷有聚合物涂层的复合膜。
[实施例9]
在实施例9中,在增强层中使用实施例2获得的超高分子量聚乙烯纤维(强度 为30cN/dtex),并使面密度为400g/m 2,在聚合物涂层中使用聚氯乙烯(PVC专用树脂,东莞市超华化工),除此以外,与实施例8同样地得到复合膜。
[实施例10]
在实施例10中,在增强层中使用实施例1获得的超高分子量聚乙烯纤维(强度为30cN/dtex),使织物层数为2层,面密度为1600g/m 2,除此以外,与实施例8同样地得到复合膜。
[实施例11]
在实施例11中,在增强层中使织物层数为1层,面密度为1000g/m 2,除此以外,与实施例10同样地得到复合膜。
[比较例4]
在比较例中,在增强层中使用涤纶(TCS-FDY,桐昆集团),使面密度为1000g/m 2,除此以外,与实施例8同样地得到复合膜。
对所得到的复合膜的性能表征进行测定,其中,关于各个性能标准的测定标准,面密度根据GB/T 4669-2008的规定进行,拉伸强度根据GB/T 3923.1-2013的规定进行,剥离强度根据GB/T 2791-1995的规定进行,撕裂强度根据GB3917.3的规定进行,顶破强度根据的规定进行GB/T14800-2010。
实施例8~11及比较例4的信息及产品性能见表6。
[表6]
Figure PCTCN2018078153-appb-000003

Claims (17)

  1. 一种超高分子量聚乙烯纤维,其特征在于,所述纤维的表面能为72mN/m或更高,优选为80mN/m或更高,更优选90mN/m或更高,更优选100mN/m或更高。
  2. 一种超高分子量聚乙烯纤维的表面处理方法,其包括以下步骤:
    提供一卷或超过一卷强度不低于1g/d、优选不低于5g/d、更优选不低于10g/d、进一步优选不低于15g/d的原始超高分子量聚乙烯纤维并进行放线获得纱线;
    将纱线进行等离子体处理以获得处理过的纱线;
    对所述处理过的纱线的至少一部分或全部使用上浆组合物进行上浆处理以获得超高分子量聚乙烯纤维,其中所述上浆组合物含有选自醇类、环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上,所述超高分子量聚乙烯纤维的表面能72mN/m或更高,优选为80mN/m或更高,更优选90mN/m或更高,更优选100mN/m或更高。
  3. 根据权利要求2所述的方法,其中,在所述上浆处理之前和/或之后和/或同时进行所述处理过的纱线的拉伸处理。
  4. 根据权利要求2或3所述的方法,其中,所述上浆组合物含有选自C1~C12的醇类、双酚-A-(氯醇)环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上。
  5. 根据权利要求4所述的方法,其中,所述醇类为丙醇类,优选1-甲氧基-2-丙醇,和/或所述双酚-A-(氯醇)环氧树脂为分子量等于或低于700的双酚-A-(氯醇)环氧树脂。
  6. 根据权利要求2或3所述的方法,其中,所述上浆组合物含有以下成分:
    a.0~5wt%的1-甲氧基-2-丙醇,和/或
    b.0~5wt%的分子量等于或低于700的双酚-A-(氯醇)环氧树脂,和/或
    c.0~5wt%的聚氨酯,和/或
    d.0~5wt%的异氰酸酯
    以及
    e.80%~96wt%的水,
    基于上浆组合物的总重量计算,前提条件为a、b、c、d不能同时为0。
  7. 根据权利要求2至6任一项所述的方法,其中,所述等离子体处理在充满惰性气体和/或非惰性气体的离子环境下进行。
  8. 根据权利要求7所述的方法,其中,所述等离子体处理使用的气体组分为90%氮气和10%氧气。
  9. 根据权利要求7所述的方法,其中,进行所述等离子体处理时的功率为3~ 100kw,优选20~80kw,最优选40~60kw。
  10. 根据权利要求2至9任一项所述的方法,进一步包括对所述处理过的纱线进行上浆处理后进行烘干的步骤,优选地,所述烘干温度为100℃~160℃,优选105℃~140℃,最优选120℃。
  11. 根据权利要求3所述的方法,其中,所述拉伸处理的速度为1~50m/min,优选为10~30m/min,更优选为15~25m/min。
  12. 根据权利要求2至11任一项所述的方法,其中,所述原始超高分子量聚乙烯纤维的分子量在10万以上、优选20万以上更优选50万以上、进一步优选100万以上和/或其纤度为50~10000dtex。
  13. 根据权利要求2~12所述的方法获得的超高分子量聚乙烯纤维。
  14. 一种制品,其含有权利要求1或权利要求13所述的超高分子量聚乙烯纤维。
  15. 根据权利要求14所述的制品,其中,所述制品为膜、复合材料或织物。
  16. 权利要求1或权利要求13所述的超高分子量聚乙烯纤维用于制备气膜建筑、气囊、飞艇、雷达罩、防护纺织品、帐篷等软质复合织物以及头盔、球杆/球拍、车辆外壳等硬质结构材料的用途。
  17. 一种上浆组合物,其含有选自醇类、环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上,优选地,所述上浆组合物含有选自C1~C12的醇类、双酚-A-(氯醇)环氧树脂、聚氨酯和异氰酸酯中的一种或一种以上,更优选地,所述醇类为丙醇类,优选1-甲氧基-2-丙醇,和/或所述双酚-A-(氯醇)环氧树脂为分子量等于或低于700的双酚-A-(氯醇)环氧树脂,最优选地,所述上浆组合物含有以下成分:
    a.0~5wt%的1-甲氧基-2-丙醇,和/或
    b.0~5wt%的分子量等于或低于700的双酚-A-(氯醇)环氧树脂,和/或
    c.0~5wt%的聚氨酯,和/或
    d.0~5wt%的异氰酸酯
    以及
    e.80%~96wt%的水,
    基于上浆组合物的总重量计算,前提条件为a、b、c、d不能同时为0。
PCT/CN2018/078153 2017-03-06 2018-03-06 一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用 WO2018161897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880015301.8A CN110418864A (zh) 2017-03-06 2018-03-06 一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201710127280.6 2017-03-06
CN201710127280.6A CN108532286A (zh) 2017-03-06 2017-03-06 一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用
CN201710552564.XA CN109208338B (zh) 2017-07-07 2017-07-07 一种超轻、高强柔性复合膜及其制备方法
CN201710552564.X 2017-07-07
CN201721810742.6 2017-12-21
CN201721810742.6U CN208198777U (zh) 2017-12-21 2017-12-21 一种沉船打捞用气囊
CN201721921518.4 2017-12-29
CN201721921518.4U CN208078152U (zh) 2017-12-29 2017-12-29 一种新型的柔性雷达罩

Publications (1)

Publication Number Publication Date
WO2018161897A1 true WO2018161897A1 (zh) 2018-09-13

Family

ID=63448355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078153 WO2018161897A1 (zh) 2017-03-06 2018-03-06 一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用

Country Status (2)

Country Link
CN (1) CN110418864A (zh)
WO (1) WO2018161897A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113584624A (zh) * 2021-08-18 2021-11-02 山东莱威新材料有限公司 一种超高分子量、低蠕变聚乙烯纤维的制备方法及应用
CN114457580B (zh) * 2022-01-19 2023-11-10 北京理工艾尔安全科技有限公司 一种复合膜材料及其制备方法
CN115522386A (zh) * 2022-10-25 2022-12-27 重庆国际复合材料股份有限公司 超高分子量聚乙烯纤维上浆剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1348413A (en) * 1969-11-20 1974-03-20 Fiber Industries Inc Surface treated polyester shaped articles
CN102797089A (zh) * 2012-09-14 2012-11-28 山东爱地高分子材料有限公司 单丝状超高分子量聚乙烯纤维及其连续制备方法
CN104641034A (zh) * 2012-07-27 2015-05-20 霍尼韦尔国际公司 新型uhmwpe纤维和制造方法
CN104662221A (zh) * 2012-07-27 2015-05-27 霍尼韦尔国际公司 新型uhmwpe纤维和制造方法
CN105544180A (zh) * 2015-12-22 2016-05-04 中国航空工业集团公司济南特种结构研究所 一种含超高分子量聚乙烯纤维涂层处理表面改性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1348413A (en) * 1969-11-20 1974-03-20 Fiber Industries Inc Surface treated polyester shaped articles
CN104641034A (zh) * 2012-07-27 2015-05-20 霍尼韦尔国际公司 新型uhmwpe纤维和制造方法
CN104662221A (zh) * 2012-07-27 2015-05-27 霍尼韦尔国际公司 新型uhmwpe纤维和制造方法
CN102797089A (zh) * 2012-09-14 2012-11-28 山东爱地高分子材料有限公司 单丝状超高分子量聚乙烯纤维及其连续制备方法
CN105544180A (zh) * 2015-12-22 2016-05-04 中国航空工业集团公司济南特种结构研究所 一种含超高分子量聚乙烯纤维涂层处理表面改性的方法

Also Published As

Publication number Publication date
CN110418864A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2018161897A1 (zh) 一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用
JP6488309B2 (ja) タイヤ用多成分複合補強物
KR101775142B1 (ko) 고강도 폴리에틸렌 멀티필라멘트 섬유 및 제조방법
JP2020524727A5 (zh)
CN111386191B (zh) 包括由部分交联的热塑性聚合物制成的多孔层的增强材料以及相关方法
KR20160147767A (ko) 다중-복합물 평면형 보강재
JP2019506587A (ja) 多層ポリマーシートを有するレドーム壁
WO2005095691A1 (ja) 織布およびその織布加工品
CN100395386C (zh) 一种提高超高相对分子量聚乙烯纤维表面粘结性能的方法
JP2020515434A (ja) 高性能繊維ハイブリッドシート
JP6577423B2 (ja) 補強材の材質変更により疲労抵抗性能が改善された可とう性を有する液化ガス貯蔵タンク用2次ガスバリア
CN109208338B (zh) 一种超轻、高强柔性复合膜及其制备方法
EP1876287A1 (en) Heat-resistant crosslinked polyester fiber and fiber cord
CN108532286A (zh) 一种超高分子量聚乙烯纤维的表面处理方法和处理后纤维的应用
CN111534093A (zh) 一种聚酰亚胺预浸料、复合材料及其制备方法
CN101988266B (zh) 一种提高超高分子量聚乙烯纤维表面粘接强度的方法
KR101436194B1 (ko) 가요성을 갖는 액화가스 저장탱크용 2차 가스배리어 및 이의 제조방법
KR20170079656A (ko) 폴리프로필렌 원사의 제조방법, 폴리올레핀 기반의 복합재 및 그 제조방법
CN106009666B (zh) 一种碳纤维增强双马来酰亚胺泡沫材料及其制备方法
CN105885413B (zh) 一种玻璃纤维增强双马来酰亚胺泡沫材料及其制备方法
CN115182060B (zh) 一种超高分子量聚乙烯纤维及其制备方法与应用
CN111918756A (zh) 经浸渍的纤维材料的幅材、其生产方法及其用于生产三维复合材料部件的用途
CN112677577B (zh) 一种高抗拉强度防水透湿复合织物材料及其制备工艺
Üzümcü et al. Effect of UV Exposure on the Mechanical Properties of Polyurethane-Coated Fabrics
CN116442571A (zh) 一种牛皮纸复合塑编布及其加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763192

Country of ref document: EP

Kind code of ref document: A1